
Survey of Lockstep based Mitigation Techniques for
Soft Errors in Embedded Systems

Eduardo Weber Wächter, Server Kasap, Xiaojun Zhai, Shoaib Ehsan and Klaus McDonald-Maier
School of Computer Science and Electronic Engineering

University of Essex
Colchester, UK

{eduardo.wachter, server.kasap, xzhai, sehsan, kdm}@essex.ac.uk

Abstract—Soft errors are one of the significant design tech-
nology challenges at smaller technology nodes and especially in
radiation enviro nments. This paper presents a particular class of
approaches to provide reliability against radiation-induced soft
errors. The paper provides a review of the lockstep mechanism
across different levels of design abstraction: processor design,
architectural level, and the software level. This work explores
techniques providing modifications in the processor pipeline,
techniques allied with FPGA dynamic reconfiguration strategies
and different types of spatial redundancy.

Index Terms—Lockstep, Reliability, Fault Tolerance, soft error
mitigation, radiation effects

I. INTRODUCTION

One of the largest and most complex environmental reme-
diation tasks in the whole of Europe is the cleaning up the
legacy nuclear waste, which projected costs more than £115bn
and perhaps as high as £220bn, over the next 120 years [1].
Much of this must be done by robots because the materials are
too hazardous for humans. But many of the necessary robotic
solutions remain to be developed since electronic circuits
effects in extreme nuclear radiation environments have not
been thoroughly studied. One example is the robots that keep
failing when entering the Fukushima nuclear site.

Additionally, robotics will play an increasingly important
role in in-service maintenance and inspection of the current
nuclear fleet to support plant life extension (PLEX). Finally,
robotic systems will soon also become an essential design
element of new-build reactors, as well as helping to build
them in the first place, thereby reducing risk and cost while
concurrently improving safety.

Soft errors are induced by energetic particles (e.g. alpha
particles, heavy ions, neutrons) striking the semiconductor
substrate of transistors [2]. These errors have a transient
behaviour that does not permanently damage digital circuits.

Historically, soft errors have been primarily concerned with
the design of reliable systems or systems which are deployed
in environments hostile to electronics, such as outer space.
As devices scale, the soft error rate for each device due
to radiation is projected to remain approximately constant
or expected to decrease (depending on the specific device).
However, the exponential increase in the integration of the
chip (i.e., the computing system) leads to correspondingly
dramatic decreases in reliability. Today, soft errors are one

of the significant design technology challenges at and beyond
the 22 nm technology nodes [3].

This survey introduces soft error mitigation from the per-
spective of the lockstep mechanism and its variations. It also
provides a survey of the existing soft error mitigation methods
across different levels of design abstraction: processor design,
the architectural level, and the program level.

II. MOTIVATION

There is a strong motivation to use robots, and conse-
quently, electronic devices to enter radiation facilities, e.g.
nuclear power plants, nuclear waste disposal sites. When using
electronic devices, human beings are spared from entering
harsh environments. There are two examples where electronic
equipment can be employed and then spare human lives.
The first one is to manage (move, dispose of) nuclear waste
generated by nuclear plants. The second is in case of a nuclear
disaster. In both cases using robots instead of human beings
shows a more sensible solution.

One possible path to lead the use of digital circuits in
these harsh environments is the adoption of fault mitigation
techniques. There are multiple approaches proposed in the
literature [3], [4]. The lockstep technique is a well-know tech-
nique that has been employed for years with many different
implementations. For some cases it shows better area-error
correction tradeoffs. Therefore a survey of this techniques is
required.

III. MITIGATION TECHNIQUES AT SOFTWARE LEVEL

Basic mitigation techniques can be classified into two broad
categories: (i) detection and (ii) correction techniques. Detec-
tion techniques are responsible to identify an error in a given
hardware module while correction techniques should correct
it (or mask using redundancy modules).

A. Checkpoint Recovery

The goal of checkpoint recovery is to roll back the state of
the processor as soon as the occurrence of transient faults is
detected. The idea consists of saving the correct state of the
system regularly (Checkpoints). If an error occurs, the latest
safe state stored is then restored (Recovery). Fig 1 present one
example approach used in the State-of-the-Art.

978-1-7281-2952-5/19/$31.00 ©2019 IEEE 124

A few changes to the original approach propose to use
the roll forward method. In this method, when the system
detects that it has made an error, roll-forward recovery takes
the system state at that time and corrects it, to be able to
continue the execution without errors.

Begin

Rollback Checkpoint

Program Execution

Sanity Check

fail pass

Fig. 1: Flowchart of rollback recovery using checkpoint. [5]

IV. MITIGATION TECHNIQUES AT HARDWARE LEVEL

A. Dual Modular Redundancy

Dual Modular Redundancy (DMR) is a type of spatial
redundancy-based mitigation method. Fig 2 presents an ex-
ample of possible implementation. These methods rely on the
replication of modules to increase the reliability of the system.
They do not require multiple repetitions of the computation,
but fully or partially duplicate the hardware to implement
redundant computation. DMR mainly duplicates the module.
This way it can be used for error detection: if the result
given by the two modules mismatches and error is detected.
Unfortunately, using a comparison module does not point
out which one of the modules has been affected by a fault.
Expanding the spatial redundancy to three modules deliver the
Triple Modular Redundancy (TMR) which then, can be used
for error detection and recovery [6], [7].

The main reason most of the works adopt DMR is that
the area overhead is lower when compared to TMR. Roughly,
the DMR imposes a two times area overhead while TMR
introduces three times. Also, the overheads apply to power
consumption and critical path (usually there is a comparator
at the end).

V. LOCKSTEP TECHNIQUES

The first proposals in the literature proposing spatial mod-
ular redundancy techniques (e.g. TMR, DMR) date to the
early 1960s, i.e. during the start of space programs, since
reliability provisions were required to avoid human lives being
jeopardised by computer failure [9]. The initial examples

Output Mismatch?

P2P1

Compare

Fig. 2: Duplication with comparison basic lockstep scheme.[8]

proposing a lockstep mechanism started showing in the early
2000s [10]. Table I presents a comprehensive comparison of
the further published works.

Hua Ng [11] presents an implementation of a Lockstep
mechanism using the EDA (Electronic Design Automation)
tools from Xilinx. The implementation employs two PowerPC
405 processors in a Virtex II Pro FPGA, executing a Mon-
taVista Linux operating system. The Author also explain how
to manually stop one of the processors to force a mismatch
and observe the comparator module compute it. There are no
results showing area overheads or fault injection.

In 2008 Abate et al. [5] present a standard implementation
of lockstep mechanism on a Xilinx FPGA containing two
PowerPC processors. Soon after they extend [12] the approach
trying to reduce the saving context overheads. The novelty
is a hardware module named Write History Table (WHT)
that reduces the checkpoint overhead temporarily storing the
addresses and values that have been written by the application
during one execution cycle. In this way, the checkpoint is only
executed for the modified addresses and values. The Authors
do not present any results of the recovery overheads neither
apply fault injection or actual radiation tests.

In [13] the Authors present a lockstep mechanism with
LEON3 processors with two FPGA boards. The second board
is responsible for rebooting the other FPGA when two conse-
quent rollbacks are executed. The target is a space application
that runs a periodic task. Later, the same group extended this
work [14] and proposed an automated design environment
capable of generating designs and necessary libraries for some
families of SPARC and PowerPC processors. Both works
evaluated the designs under radiation-induced heavy ions in
two scenarios to estimate the availability of the system. Results
have shown that the area overhead, as expected, is less than
a TMR implementation: roughly 2.10 times for the lockstep
while the TMR is 3.50 times the baseline processor. The
Authors also reveal the finding of persistent errors in 1% of
the injected faults. In those cases a rollback is going to use

978-1-7281-2952-5/19/$31.00 ©2019 IEEE 125

TABLE I: Comparison of State-of-the-Art implementations of Lockstep mechanism.

Author Year Processor Approach Area Overhead Saving Overhead Recovery
Overhead

Actual
Radiation

Test

Fault
Injection

Simulation

Persistent
Errors

Xilinx
[11] 2007 PowerPC Lockstep

with Linux N/A N/A N/A no yes N/A

Abate
[5] 2008 PowerPC Classic Lockstep 5869 LUTs

16x 16KB BRAM N/A N/A no yes N/A

Abate
[12] 2009 PowerPC reduce checkpoint

with HW module
6 991 slices and
48x16kB BRAM

10x app
exec time N/A no yes N/A

Reorda
[13] 2009 Leon 3 2 FPGAs: 1 for

reconfiguring

30% of slices
16% of memory

of Xilinx xc2v6000
N/A N/A no no every 14 s

to 1 hour

Violante
[14] 2011 Leon Classic Lockstep 2.10x compared

to baseline
17% to 53%

app time 250ms no yes every 14 s
to 1 hour

DARA
[15] 2012 SH-2 ISA

double pipeline
checkpoint treated
as a branch
misprediction

5.47 mm2 for
0.18 µm technology not necessary negligible yes yes N/A

Pham
[8] 2013 Microblaze roll-forward 2,97x slices

112KB BRAM 2.6us (325 cc) 494us no yes 2.3%/0.4%

Oliveira
[16] 2018 ARM A9

interruption checks
registers values.
If mismatch,
interruption to
recover

275% LUTs
244% FF

compared to baseline

1.26x to 6.48x
app time N/A yes yes N/A

a faulty context, forcing the processor to fail again. To solve
this issue the Authors adopt a configuration memory scrubbing
[17] and a processor reset to correct it.

[15] presents an implementation of a dual SH-2 instruction
set architecture to provide fault tolerance for SEU caused by
radiation. The actual prototype shows a DMR implementation
with a SH-2 instruction set architecture. The idea is that every
time a pipeline stage does not match in the two implementa-
tions, the last valid instruction is roll-back as it would occur
in a normal branch misprediction. As the recovery is executed
at the pipeline level, the recovery overhead is negligible and
there is no saving overhead. The authors also prototyped the
chip in a 0.18 µm technology and executed a radiation test to
evaluate the behaviour under fault injection. Results observed
a 0.58 bit per second error injection rate on the actual chip
while having 0.3 to 0.4 recoveries per second.

In [8] the Authors propose a lockstep mechanism using
two MicroBlaze processors allied with a fault-tolerant Con-
figuration Engine (CE) using a TMR PicoBlaze core. The
approach relies on the partial reconfiguration technique present
on Xilinx FPGAs, allowing an affected area by SEU to
heal once the device is reconfigured so that the design can
return to normal operation. The CE has a scan motor module
that continuously reads the configuration bits of the FPGA
to check for errors. In paralell the two MicroBlaze outputs
are compared. Upon a mismatch detection, the system is
stopped, the CE then scans the comparator, and then the
MicroBlaze cores. If a different configuration bit is found,
the PicoBlaze core communicates with the interface to start
the partial reconfiguration of the selected area. The procedure
uses a roll-forward error recovery that reconfigures only the
faulty MicroBlaze processor (or the comparator). The saving
overhead is small (325 clock cycles or 2.6 µs) while the

recovery is costly due to the partial reconfiguration (494
µs). The Authors also report persistent errors — 2.3% for
MicroBlaze and and 0.4 % for the comparator.

In [16] a proposal for rollback/recovery is proposed for
FPGAs containing ARM A9 processors. The proposal is a
dual-core lockstep (DCLS) fault-tolerance technique to mit-
igate radiation-induced faults in embedded processors. The
DCLS system is composed of a dual-core ARM (CPU0 and
CPU1), two BRAM memories, an external DDR memory,
and a checker module. Each ARM CPU is connected to its
own private dual-port 64-KB BRAM memory protected by
error detection and correction (EDAC), where all the data and
context are stored. The lockstep works by executing the same
application in both cores simultaneously. The application is
divided into blocks, and a verification point (VP) is added
between each one. When the execution reaches a VP, the
processor status is saved, and its execution paused, then a
hardware module compares it to the last safe stored context.
If no difference is detected, the system is considered to be in
a safe state, and it may execute the next block. If there is any
mismatch in the results, an interruption is generated to recover
the processors using the rollback mechanism. Unfortunately,
this approach is not capable of correcting all faults. If a bit-flip
affects one of the specific registers, generating illegal data or
instruction, the system may lead the ARM processor to stop
handling interruptions.

Finally, [18] shows a fault analysis for state-of-the-art lock-
step techniques. The approach employs an FMEA (Fault Mode
and Effects Analysis) tool to execute a fault-tree analysis.
Based on this, a proposal is presented, but not implemented,
on how to achieve higher reliability of these techniques.

978-1-7281-2952-5/19/$31.00 ©2019 IEEE 126

VI. DISCUSSION

A few proposals that avoid the context saving overhead
seems promising [15] and [8]. The first one focuses on the
internal modifications that do not require to pay the overhead
to save the context since it only requires the same action as
a branch misprediction in the pipeline. The drawback is that
this approach requires a one-time costly implementation for
each different architecture since the designer should know the
details of the hardware implementation to apply it. The second
works come with a different approach that does not need to
modify the internal hardware of the processors. The drawback
is the requirement of a dynamic partial reconfiguration unit
and additional modules to determine the location to be recon-
figured.

A good idea to avoid internal hardware modifications is
to use COTS (Commercial Off-The-Shelf) processors which
some works propose [5], [12], [13], [14], [16]. The drawback
seems the limitation of flexibility this choice imposes. Some
works [16] cite problems with handling interruptions that
could be avoided with little modifications in the hardware
platform.

The opposite approach is presented in [15] where a low
recovery overhead is necessary. The authors employed a
thorough modification of the pipeline to allow to handle a
mismatch of the outputs as an instruction branch mispredic-
tion. This is an example that with the flexibility of internal
hardware modifications could generate substantial savings, in
this case, context saving and recovery overhead.

Some works explicitly avoid using caches [8], [16] since if
they are enabled, the lockstep process becomes more compli-
cated. This is necessary for the context saving step, and a cache
flush is also required during the rollback, which may lead to
a higher impact on performance overhead. Furthermore, the
cache would need protection from errors, like error-correcting
code (ECC).

Only a couple of works [15], [16] carry out actual radiation
tests. In the first case, the proposed circuit was capable of
recovery from injected faults. In the second case, if the fault
affects come control-flow registers, a hard reset is necessary.

One could divide the different approaches into two cat-
egories: intrusive and non-intrusive. The non-intrusive ap-
proaches employ COTS processors to implement the lockstep
method while the intrusive ones need internal modification
of the processor. Non-intrusive approaches seem to lack in
excellent features that could force the adoption of this ap-
proach. In the other side, intrusive works applying architectural
modifications shows good results such as very low recovery
overhead and roll-forward techniques.

No current work adopts a state of the art full open source
(hardware code and ISA) hardware processors like RISC-V
[19] which has become widely adopted in FPGAs development
and for the open source community.

VII. CONCLUSION

This paper presents a comprehensive survey of lockstep
approaches in the state-of-the-art of the literature. Different

state-of-the-art approaches are presented and compared. The
works are compared concerning area overhead, context saving
and restore overheads.

ACKNOWLEDGMENT

This work is partially supported by the UK Engineer-
ing and Physical Sciences Research Council through grants
EP/R02572X/1 and EP/P017487/1.

REFERENCES

[1] “NDA,” https://www.gov.uk/government/publications/nuclear-provision-
explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-
provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
[Accessed: 2019-03-29].

[2] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.

[3] T. Li, J. A. Ambrose, R. Ragel, and S. Parameswaran, “Processor design
for soft errors: Challenges and state of the art,” ACM Comput. Surv.,
vol. 49, no. 3, pp. 57:1–57:44, Nov. 2016.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[5] F. Abate, L. Sterpone, and M. Violante, “A new mitigation approach
for soft errors in embedded processors,” IEEE Transactions on Nuclear
Science, vol. 55, no. 4, pp. 2063–2069, Aug 2008.

[6] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A
fault injection analysis of virtex fpga tmr design methodology,” in 6th
European Conference on Radiation and Its Effects on Components and
Systems, Sep. 2001, pp. 275–282.

[7] L. Sterpone and M. Violante, “A new partial reconfiguration-based fault-
injection system to evaluate seu effects in sram-based fpgas,” IEEE
Transactions on Nuclear Science, vol. 54, no. 4, pp. 965–970, Aug 2007.

[8] H. Pham, S. Pillement, and S. J. Piestrak, “Low-overhead fault-tolerance
technique for a dynamically reconfigurable softcore processor,” IEEE
Transactions on Computers, vol. 62, no. 6, pp. 1179–1192, June 2013.

[9] A. Aviziens, “Fault-tolerant systems,” IEEE Transactions on Computers,
vol. 25, no. 12, pp. 1304–1312, dec 1976.

[10] J. Klecka, W. Bruckert, and R. Jardine, “Error self-checking and recov-
ery using lock-step processor pair architecture,” patent US6 393 582B1.

[11] H. H. Ng, “Ppc405 lockstep system on ml310,” Xilinx, Tech. Rep. Xilinx
Application Note 564, 2007.

[12] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New
techniques for improving the performance of the lockstep architecture
for sees mitigation in fpga embedded processors,” IEEE Transactions
on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug 2009.

[13] M. S. Reorda, M. Violante, C. Meinhardt, and R. Reis, “An on-
board data-handling computer for deep-space exploration built using
commercial-off-the-shelf sram-based fpgas,” in 2009 24th IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems,
Oct 2009, pp. 254–262.

[14] M. Violante, C. Meinhardt, R. Reis, and M. Sonza Reorda, “A low-cost
solution for deploying processor cores in harsh environments,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 7, 2011.

[15] J. Yao, S. Okada, M. Masuda, K. Kobayashi, and Y. Nakashima, “Dara:
A low-cost reliable architecture based on unhardened devices and its case
study of radiation stress test,” IEEE Transactions on Nuclear Science,
vol. 59, no. 6, pp. 2852–2858, Dec 2012.

[16] B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A.
Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira,
“Lockstep dual-core arm a9: Implementation and resilience analysis
under heavy ion-induced soft errors,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1783–1790, Aug 2018.

[17] C. C. Yui, G. M. Swift, C. Carmichael, R. Koga, and J. S. George, “Seu
mitigation testing of xilinx virtex ii fpgas,” in 2003 IEEE Radiation
Effects Data Workshop, July 2003, pp. 92–97.

[18] J. Arm, Z. Bradac, and R. Stohl, “Increasing safety and reliability
of roll-back and roll-forward lockstep technique for use in real-time
systems,” vol. 49, no. 25, pp. 413 – 418, 2016, 14th IFAC Conference
on Programmable Devices and Embedded Systems PDES 2016.

[19] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, Aug 2014.

978-1-7281-2952-5/19/$31.00 ©2019 IEEE 127

