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Abstract—In this work, we compare between H∞ and Integral
Backstepping (IBS) controllers, while they applied to a leader-
follower formation problem of quadrotors. The controllers were
used to control the quadrotors with external disturbances and
model parameter uncertainties consideration. Nonlinear H∞
design approach is introduced for a general nonlinear affine
system to derive a robust controller by solving a Hamilton-Jacobi
inequality. Then robustness conditions of the proposed controller
are derived via selecting an appropriate parametrised Lyapunov
function. The resultant state feedback controller establishes the
asymptotically stability of the closed-loop nonlinear system. IBS
controller is derived and the stability analysis is achieved via
Lyapunov function. Simulation results show a good performance
for both controllers in normal circumstance and H∞ controller
perform much better than IBS controller in disturbances cir-
cumstance. Experimental results of using H∞ controller show
its stability and robustness against the disturbances.

I. INTRODUCTION
In last decade, the focus of control single unit quadrotor has

expanded to control a team of quadrotors to be able to achieve
their tasks in variable weather and complicated environments.
Team formation flight also provide advantages over the use of
an individual quadrotor in both civil and military applications,
such as inspection of inaccessible area, disaster management,
and search and rescue in risky circumstances, etc. Most
of these applications demand more than one quadrotor to
accomplish the desired objective [1]–[3]. The leader-follower
approach is one of the main approaches of formation control
design.

Distributed and decentralised control techniques were used
in the literature to solve the leader-follower control problem.
The distributed control technique assumes that not all fol-
lowers receive the leader’s information and there is a kind
of cooperation among them [4]–[14], while the decentralised
control technique proposes that all followers are able to receive
the leader’s information [15]–[20].

Different controllers have been implemented with both
distributed and decentralized control techniques. In [4] the
problem of the leader-follower consensus of a swarm of rigid
body space crafts system was analysed based on quaternion
representation using a distributed control technique. They
assumed that the communication between two neighbouring
followers is bidirectional and that all followers can receive
the leader information. Stability analysis was obtained via
Lyapunov theory and the simulation results proved the attitude
and angular velocity tracking stability. A nonlinear control
theory was presented to ensure the stability of quadrotors team
formation in [9]. The wireless networks communication among
the team was obtained via medium access control protocols.
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Experimental tests verified the proposed algorithm with time
delay consideration. An integrated optimal control framework
was presented in [10] for the formation of a group of UAVs
problem. The methodology was to integrate the formation
control, trajectory tracking, and obstacle avoidance into one
optimal control framework.

A robust LQR controller was proposed for individual
quadrotors and team formation as well in [8]. The controller
was designed for a linearised system around the hovering
point. The simulation results indicated the ability of the
controller to overcome the changes in communication topology
among the robots with no dynamic effects. A NNs controller
was presented in [5] for addressing the leader-follower prob-
lem. These two studies used Lyapunov theory to analyse the
controller stability.

A backstepping controller was discussed in [11] based on
graph theory to maintain the distance among the robots and
in [7] with balanced graph and strong connection among
the robots. The quadrotors’ dynamic systems were linearised
around the hovering point and a good performance was
obtained in normal circumstances. A distributed coordinated
control scheme was proposed by [6] to solve the problem
of time-delay in leader-follower team formation communica-
tion of quadrotors and the simulation results under sufficient
conditions demonstrated the validity of the presented control
technique. A distributed cohesive motion control scheme was
presented in [12] for 3D motion to maintain the distance
among robots. This technique was developed to become a
decentralised technique and significant attempts to deal with
decentralised control techniques have been made. In [13]
a MPC technique with integrated trajectory planning was
analysed with a planning horizon for both team formation and
obstacle avoidance. The method showed good simulation re-
sults. Again the MPC technique was presented in [14] to solve
the problem of dynamic encirclement for a group of UAVs.
The comtroller was tested in simulation and experiment. The
simulation and experimental results show the ability of the
controller to guide the vehicles to the desired radius.

On the other hand, some controllers have been proposed
with decentralized control technique. For instance, a hybrid
supervisory control based on a polar partitioning approach
was suggested in [15] for the team formation problem and
for collision avoidance as well. The combination of discrete
quadrotors dynamic system and the supervisor was achieved
using the parallel composition and the simulation results
displayed that this method allows the supervisors to achieve a
free collision in normal environments. A MPC technique was
proposed in [20], where its hierarchical control effectiveness
was compared with the potential field technique. The stability
of the feedback controller based on fluid dynamic models in
[16] was obtained based on smoothed-particle hydrodynamic.



The simulation results of the above methods validated the
proposed approaches.

Authors in [17] proposed the trajectory planners and feed-
back controllers for following the planned trajectory. Next they
proposed a nonlinear decentralised controller for an aggressive
formation problem in the micro quadrotors team in [18]. Com-
munication failures and network time delays impact on team
formation efficiency were considered. Local information of
neighbour robots in the team was used for individual trajectory
planning. Preserving the required form was based on the status
estimation of neighbour robots. Then the authors presented two
approaches to overcome the problem of concurrent assignment
and planning of trajectories (CAPT) for the quadrotors team,
a decentralised D-CAPT and centralised C-CAPT in [19]. The
decentralised D-CAPT and centralised C-CAPT results were
compared in simulation and practice and the experimental
results demonstrated a good performance in indoor application.

With regard to the leader-follower control problem, Ab-
dessameud and Tayebi [21] proposed a procedure which
depends on a quaternion representation and is split up into
translational and rotational control design under the upper
bounded translational control input. Analysis of the closed-
loop system stability was achieved using Lyapunov theory.
The proposed strategy took 8 seconds to catch the desired
formation shape. In [22] a human user for teleoperation with
a haptic device was proposed for the quadrotor team forma-
tion control problem with the cooperation of a backstepping
controller. The simulation results revealed the ability of the
human user to teleoperate in order to perform the formation.
A triangle formation control of three quadrotors using optimal
control techniques via the Pontryagin maximum principle
was presented in [23] and the simulation results showed the
effectiveness of using team formation rather than using an
individual quadrotor in terms of fuel consumption. In [24] a
consensus problem of swarm systems was discussed to obtain
the time-varying formation based on double-integrator system
modelling. The experimental results of the three quadrotors in
formation verified the effectiveness of the proposed approach
in dynamic-free conditions.

The results in most of the previous papers on leader-follower
formation control of multi-quadrotor system did not consider
the effect of external disturbances, such as payload changes
(or mass changes), wind disturbance, inaccurate model pa-
rameters, etc., which often affected the quadrotors’ control
performance. Therefore, a quadrotor controller must be robust
enough in order to reject the effect of disturbances and cover
the change in model parameter uncertainties and external
disturbances.
H∞ control approach is able to attenuate the disturbance

energy by measuring a ratio between the energy of input
signals and the energy of disturbance signals [25]. In this
paper, we focus on using integral backstepping controller for
the team formation control problem. The obtained results is
then compared with the original H∞ controller controller.
This paper is organised as follows, Section II introduces
the formation control platform used in this work and its
dynamics. Section III describes the details of state feedback
controllers for the leader and followers. Section IV presents

the integral backstepping controller derivation. In section V
a comparison between the two controllers are illustrated via
simulation results. Section VI provides experimental results.
Our conclusion and future work are given in Section VII.

II. LEADER-FOLLOWER FORMATION PROBLEM

A. Quadrotor Model

To describe the orientation of a quadrotor, the Euler repre-
sentation is used. The full dynamic model of a quadrotor can
be written as:

ṗi = vi
v̇i = −ge + fi

mi
Rie

ζ̇i = ηi
Jiη̇i = S(ηi)Jiηi +G(ηi)− τi

(1)

where i is L for the leader and F for the follower, mi is the
quadrotor mass, ζi = [ϕi, θi, ϕi]

T , ηi = [ϕ̇i, θ̇i, ϕ̇i]
T , Ji is the

3×3 diagonal matrix representing three inertial moments in the
body frame, G(ηi) represents the gyroscopic effect, τi is the
torque vector applied on the quadrotor, vi = [vix, viy, viz]

T

is the linear velocity, pi = [xi, yi, zi]
T is the position vector,

the vector e = [0, 0, 1]T , and the rotation matrix Ri is:

Ri =

 cψicθi cψisθisϕi − sψicϕi cψisθicϕi + sψisϕi
sψicθi sψisθisϕi + cψicϕi sψisθicϕi − cψisϕi
−sθi cθisϕi cθicϕi


B. Leader-follower Formation Control Problem

One leader and one follower are considered in the leader-
follower formation control problem to be solved in this paper.
The leader control problem is formulated as a trajectory
tracking, and the follower control problem is also formulated
as a tracking problem, but with a different tracking target.

The follower keeps its yaw angle (ψF ) the same as the
leader when it maintains the formation pattern. It moves to
a desired position pFd, which is determined by a desired
distance d, a desired incidence angle ρ, and a desired bearing
angle σ. A new frame F ′ is defined by the translation of the
leader frame L to the frame with the desired follower position
pFd as the origin. As shown in Figure 1, the desired incidence
angle is measured between the desired distance d and the x−y
plane in the new frame F ′, and the desired bearing angle is
measured between the x axis and the projection of the d in
x− y plane in the new frame F ′. The desired position pFd is

pFd = pL −RTLd

 cos ρ cosσ
cos ρ sinσ

sin ρ

 .
Now, the formation control problem for the follower is to

satisfy the following conditions:{
limt→∞(pFd − pF ) = 0
limt→∞(ψL − ψF ) = 0

(2)

The leader just tracks a desired trajectory represented by
(pLd, ψLd). So, the formation control problem for the leader
is to satisfy the following conditions:



Fig. 1. Body Frames in Formation

{
limt→∞(pLd − pL) = 0
limt→∞(ψLd − ψL) = 0

(3)

In summary, the leader-follower formation control problem
to be solved in this work is a distributed control scheme.
Assume both the leader and the follower are able to obtain
their own pose information and the follower is able to obtain
the leader’s pose information via wireless communication. The
design goal of the controllers is to find the state feedback
control law for the thrust and torque inputs for both the
leader and the follower. The leader-follower formation control
problem is solved if both conditions (2) and (3) are satisfied.

The communication among the robots is assumed to be
available. The position pL, yaw angle ψL of the leader L
and its first and second derivatives ψ̇L and ψ̈L are assumed to
be available and measurable. The linear velocity of the leader
L and its derivatives vL and v̇L are assumed bounded and
available for the follower.

III. FORMATION H∞ CONTROLLERS

The controller design for the leader and the follower is
based on H∞ suboptimal control. The follower H∞ controller
is designed by following the introduction of an error state
model, and the introduction of a H∞ control theorem for
general affine systems. Then the leader H∞ controller is
briefly presented later.

A. Follower State Error Model

The control strategy for the follower is to track the desired
position pFd. The tracking errors for the follower according

to the nonlinear dynamic system (1) can be written as:

p̃F = pFd − pF

ṽF = vFd − vF

ζ̃F = ζFd − ζF
η̃F = ηFd − ηF

where vFd = ṗFd is the desired linear velocity, ζFd =
[0, 0, ψL]T is the desired angles, and ηFd = [0, 0, 0]T is the
desired angles derivative. Then equation (1) can be rewritten
in error form as:

˙̃pF = ṽF
˙̃vF = v̇Fd + ge− fF

mF
RFe

˙̃
ζF = η̇F
JF ˙̃ηF = S(η̃F )JF η̃F +G(η̃F )− τF

. (4)

Consider the external disturbances dF = [dTvF ,d
T
ηF ]T applied

to the nonlinear system (4), where dvF
= [dvFx

, dvFy
, dvFz

]T ,
dηF = [dFϕ̇, dF θ̇, dFψ̇]T are the disturbance vectors applied
to p̃F and η̃F , respectively. Those disturbances are used here
to model the changes of mass and moment, and the wind
disturbances.

Let

xF =


p̃F
ζ̃F
ṽF
η̃F


uF =

[
v̇Fd + ge− fF

mF
RFe

G(η̃F )− τF

]
.

The nonlinear dynamic system (4) with the disturbance vector
dF can be written into an affine nonlinear form:

ẋF = f(xF ) + g(xF )uF + k(xF )dF (5)

where

f(xF ) =


ṽF
η̃F

03×1
J−1F S(η̃F )JF η̃F



g(xF ) = k(xF ) =


03×3 03×3
03×3 03×3
I 03×3

03×3 J−1F

 .
B. H∞ Suboptimal Control Approach

In this section, an overview on the H∞ suboptimal control
approach is summarised for affine nonlinear systems of the
form:

ẋ = f(x) + g(x)u + k(x)d (6)
y = h(x)

where x ∈ Rn is a state vector, u ∈ Rm is an input vector,
y ∈ Rp is an output vector, and d ∈ Rq is a disturbance
vector. Detailed information on H∞ control approach can be
found in [25].



We assume the existence of an equilibrium x∗, i.e. f(x∗) =
0, and we also assume h(x∗) = 0. Given a smooth state
feedback controller, {

u = l(x)
l(x∗) = 0.

(7)

The H∞ suboptimal control problem considers the L2-gain
from the disturbance d to the vector of z = [yT ,uT ]T . This
problem is defined below.

Problem 1: Let γ be a fixed nonnegative constant. The
closed loop system consisting of the nonlinear system (6) and
the state feedback controller (7) is said to have L2-gain less
than or equal to γ from d to z if∫ T

0

‖z(t)‖2dt ≤ γ2
∫ T

0

‖d(t)‖2dt+K(x(0)) (8)

for all T ≥ 0 and all d ∈ L2(0, T ) with initial condition x(0),
where 0 ≤ K(x) <∞ and K(x∗) = 0.

For the nonlinear system (6) and γ > 0, define the
Hamiltonian Hγ(x, V (x)) as below:

Hγ(x, V (x)) =
∂V (x)

∂x
f(x) +

1

2

∂V (x)

∂x[
1

γ2
k(x)kT (x)− g(x)gT (x)

]
∂TV (x)

∂x
+

1

2
hT (x)h(x) (9)

Theorem 1: [25] If there exists a smooth solution V ≥ 0
to the Hamilton-Jacobi inequality

Hγ(x, V (x)) ≤ 0

V (x∗) = 0, (10)

then the closed-loop system for the state feedback controller

u = −gT (x)
∂TV (x)

∂x
(11)

has L2-gain less than or equal to γ, and K(x) = 2V (x).
The nonlinear system (6) is called zero-state observable if

for any trajectory x(t) such that y(t) = 0,u(t) = 0,d(t) = 0
implies x(t) = x∗.

Proposition 1: [25] If the nonlinear system (6) is zero-
state observable and there exists a proper solution V ≥ 0 to
the Hamilton-Jacobi inequality, then V (x) > 0 for x(t) 6= x∗
and the closed loop system (6), (11) with d = 0 is globally
asymptotically stable.

C. Follower H∞ controller

The H∞ suboptimal control approach will be used to design
the follower controller in this section. The following form of
energy function V is suggested for the dynamic model (5):

V (xF ) =
1

2

[
p̃TF ζ̃TF ṽTF η̃TF

]

CFpI 03×3 KFp 03×3
03×3 CFζI 03×3 JFKFζ

KFp 03×3 KFv 03×3
03×3 JFKFζ 03×3 JFKFη




p̃F
ζ̃F
ṽF
η̃F


(12)

where diagonal matrices KFp > 0,KFζ > 0,KFv >
0,KFη > 0 are the proportional and derivative gains for
translational and rotational parts. CFp > 0, CFζ > 0 are
constants. We have:

∂V (xF )

∂xF
= [CFpp̃F +KFpṽF CFζ ζ̃F + JFKFζ η̃F

KFpp̃F +KFvṽF JFKFζ ζ̃F + JFKFη η̃F ]

Accordingly the controller is

uF = −gT (xF )
∂TV (xF )

∂xF

= −
[
KFpp̃F +KFvṽF
KFζ ζ̃F +KFη η̃F

]
(13)

The following diagonal weighting matrices are chosen
WF1 > 0, WF2 > 0, WF3 > 0 and WF4 > 0.

h(xF ) = [
√
WF1.p̃

T
F

√
WF2.ζ̃

T
F

√
WF3.ṽ

T
F

√
WF4.η̃

T
F ]T

which satisfies h(x∗F ) = 0, where the equilibrium point
x∗F = [01×3, 01×3, 01×3, 01×3]T . And we know

V (x∗F ) = 0 (14)

Now the team formation problem of the quadrotors under
the disturbance dF is defined below.

Problem 2: Given the equilibrium point x∗F , find the pa-
rameters KFp,KFζ ,KFv,KFη, CFp, CFζ in order to enable
the closed-loop system (5) with the above controller uF (13)
to have L2-gain less than or equal to γF .
Next, our main result is represented in the following theorem.

Theorem 2: If the following conditions are satisfied, the
closed-loop system (5) with the above controller uF (13) has
L2-gain less than or equal to γF . And the closed loop system
(5), (13) with dF = 0 is asymptotically locally stable for the
equilibrium point x∗F .

CFpCFζ ≥ 0

CFpKFv ≥ K2
Fp

CFpCFζKFvKFη ≥ CFpJFK2
FζKFv − JFK2

FζK
2
Fp

+ CFζK
2
FpKFη

CFp = KFpKFv

(
1− 1

γ2F

)
CFζ = KFζKFη

(
1− 1

γ2F

)
‖KFp‖2 ≥

γ2F ‖WF1‖
γ2F − 1

(15)

‖KFζ‖2 ≥
γ2F ‖WF2‖
γ2F − 1

(16)

‖KFv‖2 ≥
γ2F (‖WF3‖+ 2‖KFp‖)

γ2F − 1
(17)

‖KFη‖2 ≥
γ2F (‖WF4‖+ 2‖JF ‖‖KFζ‖)

γ2F − 1
(18)

‖WF1‖ > 0; ‖WF2‖ > 0; ‖WF3‖ > 0; ‖WF4‖ > 0.

Proof: With the given conditions, we need to show (1)
V (x) ≥ 0 and (2) the Hamiltonian Hγ(x, V (x)) ≤ 0. Then



the first part of the theorem can be proved by using Theorem
1. (1) From Equation (12) the conditions for V (x) ≥ 0 are

CFpCFζ ≥ 0

CFpKFv ≥ K2
Fp

CFpCFζKFvKFη ≥ CFpJFK2
FζKFv − JFK2

FζK
2
Fp

+ CFζK
2
FpKFη

(2)

HγF (xF , V (xF )) = p̃TFCFpṽF + ṽTFKFpṽF + ζ̃TFCFζ η̃F

+ η̃TFJFKFζ η̃F + ζ̃TF JFKFζS(η̃F )η̃F

+ η̃TFJFKFηS(η̃F )η̃F +
1

2

(
1

γ2F
− 1

)
‖KFpp̃F +KFvṽF ‖2 +

1

2

(
1

γ2F
− 1

)
‖KFζ ζ̃F +KFη η̃F ‖2 +

1

2
‖WF1‖‖p̃F ‖2

+
1

2
‖WF2‖‖ζ̃F ‖2 +

1

2
‖WF3‖‖ṽF ‖2

+
1

2
‖WF4‖‖η̃F ‖2.

By choosing

CFp = KFpKFv

(
1− 1

γ2F

)
CFζ = KFζKFη

(
1− 1

γ2F

)
,

then

HγF (xF , V (xF )) = ṽTFKFpṽF + ζ̃TF JFKFζS(η̃F )η̃F

+ η̃TFJFKFζ η̃F + η̃TFJFKFηS(η̃F )η̃F

+
1

2

(
1

γ2F
− 1

)
(‖KFp‖2‖p̃F ‖2

+ ‖KFv‖2‖ṽF ‖2) +
1

2

(
1

γ2F
− 1

)
(‖KFζ‖2‖ζ̃F ‖2 + ‖KFη‖2‖η̃F ‖2)

+
1

2
‖WF1‖‖p̃F ‖2 +

1

2
‖WF2‖‖ζ̃F ‖2

+
1

2
‖WF3‖‖ṽF ‖2 +

1

2
‖WF4‖‖η̃F ‖2.

By using |ṽTFKFpṽF | ≤ ‖KFp‖‖ṽF ‖2, ‖S(η̃F )‖ =
‖η̃F ‖, ‖η̃TFJFKFηS(η̃F )η̃F ‖ = 0, |η̃TFJFKFζ η̃F | ≤
‖JF ‖‖KFζ‖‖η̃F ‖2 and |ζ̃TF JFKFηS(η̃F )η̃F | = 0, we have

HγF (xF , V (xF )) = ‖KFp‖‖ṽF ‖2 + ‖JF ‖‖KFζ‖‖η̃F ‖2

+
1

2

(
1

γ2F
− 1

)
(‖KFp‖2‖p̃F ‖2

+ ‖KFv‖2‖ṽF ‖2) +
1

2

(
1

γ2F
− 1

)
(‖KFζ‖2‖ζ̃F ‖2 + ‖KFη‖2‖η̃F ‖2)

+
1

2
‖WF1‖‖p̃F ‖2 +

1

2
‖WF2‖‖ζ̃F ‖2

+
1

2
‖WF3‖‖ṽF ‖2 +

1

2
‖WF4‖‖η̃F ‖2.

Thus, the conditions for HγF (xF , V (xF )) ≤ 0 are

1

2

(
1

γ2F
− 1

)
‖KFp‖2 +

1

2
‖WF1‖ ≤ 0

1

2

(
1

γ2F
− 1

)
‖KFζ‖2 +

1

2
‖WF2‖ ≤ 0

‖KFp‖+
1

2

(
1

γ2F
− 1

)
‖KFv‖2 +

1

2
‖WF3‖ ≤ 0

‖JF ‖‖KFζ‖+
1

2

(
1

γ2F
− 1

)
‖KFη‖2 +

1

2
‖WF4‖ ≤ 0;

i.e.

‖KFp‖2 ≥
γ2F ‖WF1‖
γ2F − 1

‖KFζ‖2 ≥
γ2F ‖WF2‖
γ2F − 1

‖KFv‖2 ≥
γ2F (‖WF3‖+ 2‖KFp‖)

γ2F − 1

‖KFη‖2 ≥
γ2F (‖WF4‖+ 2‖JF ‖‖KFζ‖)

γ2F − 1
.

It is trivial to show that the nonlinear system (5) is zero-state
observable for the equilibrium point x∗F . Further, due to the
fact that V (xF ) ≥ 0 and it is a proper function (i.e. for each
β > 0 the set {xF : 0 ≤ V (xF ) ≤ β} is compact), the closed-
loop system (5), (13) with dF = 0 is asymptotically locally
stable for the equilibrium point x∗F according to Proposition
1. This proves the second part of the theorem.

Remark 1: It should be noted that the proof of Theorem
2, limt→∞ p̃ = 0, limt→∞ ζ̃ = 0, limt→∞ ṽ = 0 and
limt→∞ η̃ = 0 meets the conditions of (2).

Then from uF , we can have

uF =

[
v̇Fd + ge− fF

mF
RFe

G(η̃F )− τF

]
= −

[
KFpp̃F +KFvṽF
KFζ ζ̃F +KFη η̃F

]
.

Then the total force and the torque vector are applied to the
follower, fF and τF ∈ R3;

fF =(kFz z̃F + kFvz ṽFz + v̇Lz − d(R31 cos ρ cosσ

+R32 cos ρ sinσ +R33 sin ρ) + g)
mF

cϕLcθL

τF = KFζ ζ̃F +KFη η̃F +G(η̃F )

where

R̈TL =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 .
D. Leader H∞ controller

The control strategy for the leader is to track a desired
trajectory (pLd, ψLd). The tracking errors for the leader ac-
cording to the nonlinear dynamic system (1) can be written



as:

p̃L = pLd − pL

ṽL = vLd − vL

η̃L = ηLd − ηL
ζ̃L = ζLd − ζL

where ηLd,vLd, ζLd are assumed to be constant for the desired
tracking trajectory. Then equation (1) can be rewritten in an
error form as:

˙̃pL = ṽL
˙̃vL = ge− fL

mL
RLe

˙̃
ζL = η̃L
JL ˙̃ηL = S(η̃L)JLη̃L +G(η̃L)− τL

. (19)

Let

xL =


p̃L
ζ̃L
ṽL
η̃L


uL =

[
ge− fL

mL
RLe

G(η̃L)− τL

]
.

The nonlinear dynamic system (19) with the disturbance
vector dL can be written into an affine nonlinear form:

ẋL = f(xL) + g(xL)uL + k(xL)dL (20)

where

f(xL) =


ṽL
η̃L

03×1
J−1L S(η̃L)JLη̃L



g(xL) = k(xL) =


03×3 03×3
03×3 03×3
I 03×3

03×3 J−1L

 .
The H∞ suboptimal control approach is used to design

the leader controller. By defining an energy function, the
leader controller is obtained as below by following a similar
procedure for stability analysis.{

fL = (kLz z̃L + kLvz ṽLz + g) mL

cϕLcθL

τL = KLζ ζ̃L +KLη η̃L +G(η̃L)

where p̃L = [x̃L, ỹL, z̃L]T is the position tracking error
vector and ṽL = [ṽLx, ṽLy, ṽLz]

T is the linear velocity error
vector. The diagonal matrices KLp = diag(kLx, kLy, kLz),
KLv = diag(kLvx , kLvy , kLvz ), KLζ = diag[kLϕ, kLθ, kLψ],
KLη = diag(kLϕ̇, kLθ̇, kLψ̇) are selected to satisfy the stabil-
ity conditions, which have been presented in [26].

IV. INTEGRAL BACKSTEPPING FORMATION
CONTROL

Integral backstepping control is one of the popular control
approaches for both individual and multiple quadrotors. In this
section, the IBS controller is applied for the individual quadro-
tor path tracking and leader-follower formation problems. An
IBS controller for the follower is developed first. The IBS
control law for the leader is also presented in this section. Its
main result is also used later in simulation for evaluating the
robustness of H∞ controllers.

A. Follower integral backstepping controller

The IBS controller for the follower is to track the leader
and maintain a desired distance between them with desired
incidence and bearing angles. In this subsection, we derive
the IBS controller for the follower. Let us recall the follower
translational part (1):

p̈F = f(pF ) + g(pF )fF (21)

where
f(pF ) =

[
0 0 −g

]T
g(pF ) =

[
uFx/mF uFy/mF cθF cϕF /mF

]T
where

uFx = (cψF sθF cϕF + sψF sϕF )

uFy = (sψF sθF cϕF − cψF sϕF ).

Then the position tracking error between the leader and the
follower can be calculated as:

p̃F = pFd − pF = pL −RTLd

 cos ρ cosσ
cos ρ sinσ

sin ρ

− pF (22)

and its derivative is

˙̃pF = ṗFd − ṗF = ṗFd − vF (23)

where vF is a virtual control, and its desirable value can be
described as:

vdF = ṗFd + bF p̃F + kF p̄F (24)

where bF and kF are two positive matrices, p̄F =
∫
p̃F dt is

the integral of the follower position error and it is added to
minimize the steady-state error.

Now, consider the linear velocity error between the leader
and the follower as:

ṽF = vdF − ṗF . (25)

By substituting (24) into (25) we obtain

ṽF = ṗFd + bF p̃F + kF p̄F − ṗF (26)

and its time derivative becomes

˙̃vF = p̈Fd + bF ˙̃pF + kF p̃F − p̈F . (27)



Then from (24) and (25) we can rewrite (23) in terms of the
linear velocity error as:

˙̃pF = ṽF − bF p̃F − kF p̄F . (28)

By substituting (21) and (28) into (27), the time derivative of
the linear velocity error can be rewritten as:

˙̃vF =p̈Fd + bF ṽF − b2F ˙̃pF − bF kF p̄F + kF p̃F

− f(pF )− g(pF )fF . (29)

The desirable time derivative of the linear velocity error is
supposed to be

˙̃vF = −cF ṽF − p̃F . (30)

where cF is a positive diagonal matrix. Now, the total thrust
fF , the longitudinal uFx and lateral uFy motion control can
be found by subtracting (29) from (30) as follows:

fF =(g + v̇Lz + (1− b2Fz + kFz)z̃F + (bFz + cFz)ṽFz

− bFzkFz z̄F − d(R31 cos ρ cosσ +R32 cos ρ sinσ

+R33 sin ρ))
mF

cθF cϕF
(31)

uFx =(v̇Lx + (1− b2Fx + kFx)x̃F + (bFx + cFx)ṽFx

− bFxkFxx̄F − d(R11 cos ρ cosσ +R12 cos ρ sinσ

+R13 sin ρ))
mF

fF
(32)

uFy =(v̇Ly + (1− b2Fy + kFy)ỹF + (bFy + cFy)ṽFy

− bFykFy ȳF − d(R21 cos ρ cosσ +R22 cos ρ sinσ

+R23 sin ρ))
mF

fF
. (33)

For the attitude stability, the following H∞ nonlinear con-
troller is used:

τF = KFζ ζ̃F +KFη η̃F +G(η̃F ).

The attitude stability for the follower was demonstrated in [26]
. Next, we show the stability of follower’s translational part.

B. Follower Controller stability analysis
The following candidate Lyapunov function is chosen for

the stability analysis for the follower’s translational part with
the IBS controller:

V =
1

2
(p̃TF p̃F + ṽTF ṽF + kF p̄

T
F p̄F ) (34)

and its time derivative is

V̇ = p̃TF ˙̃pF + ṽTF ˙̃vF + kF p̄
T
F

˙̄pF . (35)

By substituting ˙̄pF = p̃F and Equations (28) and (30) into
(35), Equation (35) becomes

V̇ = −bF p̃TF p̃F − cF ṽTF ṽF ≤ 0. (36)

Finally, (36) is less than zero provided bF and cF are
positive diagonal matrices, i.e. V̇ < 0, ∀(p̃F , ṽF ) 6= 0 and
V̇ (0) = 0. It can be concluded from the positive definition
of V and applying LaSalle theorem that a global asymp-
totic stability is guaranteed. This leads us to conclude that
limt→∞ p̃F = 0 and limt→∞ ṽF = 0, which meets the
position condition of (2).

C. Leader integral backstepping controller

The leader is to track a desired trajectory pLd. Its IBS
controller is developed by following the procedure described
for the follower quadrotor. The result is that the total force
and horizontal position control laws fL, uLx and uLy can be
written as:

fL = (z̈Ld + g + (1− bLz2 + kLz)z̃L + (bLz + cLz)ṽLz

− bLzkLz z̄L)
mL

cθLcϕL
(37)

uLx = (ẍLd + (1− bLx2 + kLx)x̃L + (bLx + cLx)ṽLx

− bLxkLxx̄L)
mL

fL
(38)

uLy = (ÿLd + (1− bLy2 + kLy)ỹL + (bLy + cLy)ṽLy

− bLykLy ȳL)
mL

fL
. (39)

and the linear velocity tracking errors are defined as: ṽLx = bLxx̃L + ẋLd + kLxx̄L − ẋL
ṽLy = bLy ỹL + ẏLd + kLy ȳL − ẏL
ṽLz = bLz z̃L + żLd + kLz z̄L − żL

.

The torque vector applied to the leader quadrotor τL ∈ R3

is designed as:

τL = KLζ ζ̃L +KLη η̃L +G(η̃L).

V. CONTROLLERS COMPARISON

To further verifying the proposed H∞ control technique, a
comparison with integral backstepping controller for leader-
follower formation of quadrotors has introduced in this sec-
tion. Its well-known that integral backstepping control is a
methodical approach to build the Lyapunov function ahead
with the control input design. Thus by cancellation of the
indefinite error terms, the stability of the derivative of the
Lyapunov function be secured. Although the stability of the
Lyapunov function is guaranteed this does not guaranteed the
performance of the system. While the H∞ control technique
is to convert the control problem to mathematical optimization
problem and solve this optimization problem by finding a
suitable controller. H∞ controller achieves the stabilization
along with performance guaranteed.

It can be noted that the adjusting of the H∞ controller pa-
rameters is easer than adjusting that of integral backstepping.
The former has two insulated parameters and it calculated
mathematically depends on the attenuation parameter value
γ. In contrast, the latter has three coupling parameters to be
tuned manually to find the suitable values which take longer
time and high effort.

Simulation results prove that the performance of using
H∞ controller has significantly smaller errors than that of
using integral backstepping. It is also obvious that using
H∞ controller leads to a smooth and fast performance with
very small overshoot compared with that of using integral
backstepping. Moreover, the respond of using H∞ controller
to reject the external disturbances is faster than that of using



Symbol Definition Value Units
Jx Roll Inertia 4.4× 10−3 kg.m2

Jy Pitch Inertia 4.4× 10−3 kg.m2

Jz Yaw Inertia 8.8× 10−3 kg.m2

m Mass 0.5 kg
g Gravity 9.81 m/s2

l Arm Length 0.17 m
Jr Rotor Inertia 4.4× 10−5 kg.m2

TABLE I
QUADROTOR PARAMETERS

integral backstepping. A scenario of two identical quadrotors
using a MATLAB simulator was considered to track a desired
path for the leader and maintain the desired distance, desired
incidence angle and desired bearing angle between them for
the follower. The quadrotor parameters used in the simulation
are described in Table I.

Two paths were presented in the simulation to show the
performance of using the proposed H∞ controller with four
different circumstances. The first desired path to be tracked
by the leader was{

xLd = 2 cos(tπ/80) ; yLd = 2 sin(tπ/80)
zLd = 1 + 0.1t ; ψLd = 0

.

The leader initial positions were [xL, yL, zL]T = [2, 0, 0]T

metres and the initial angles were [ϕL, θL, ψL]T = [0, 0, 0]T

radian. Then the follower followed the leader and main-
tained the desired distance between them d = 2 metres,
the desired incidence and bearing angles ρ = −π/6, σ =
π/6 radian, respectively. The follower initial positions were
[xF , yF , zF ]T = [0.5, 0, 0]T metres and the initial angles were
[ϕF , θF , ψF ]T = [0, 0, 0]T radian. The second desired path to
be tracked by the leader was{

xLd = 4 cos(tπ/40) ; yLd = 4 sin(tπ/40)
zLd = 1 + 0.1t ; ψLd = π/6

.

The leader initial positions were [xL, yL, zL]T = [4, 0, 0]T

metres and the initial angles were [ϕL, θL, ψL]T = [0, 0, 0]T

radian. Then the follower followed the leader and main-
tained the desired distance between them d = 3 metres,
the desired incidence and bearing angles ρ = 0, σ =
π/6 radian, respectively. The follower initial positions were
[xF , yF , zF ]T = [1.4,−1.5, 0]T metres and the initial angles
were [ϕF , θF , ψF ]T = [0, 0, 0]T radian.

Figures 2 and 5 indicate the response of the proposed
H∞ and integral backstepping controllers when the leader
tracked the first desired path, respectively. Figure ?? shows
the distances between the leader and the follower via the
two controllers, and Figures 3, 4, 6 and 7 illustrate the
yaw angle behaviour for the leader and the follower via the
two controllers, respectively. For the second path, Figures 8
and 11 show the proposed H∞ and integral backstepping
controllers positions respectively, Figures 9, 10, 12 and 13
illustrate the yaw angle of the leader and the follower via
the two controllers respectively, and Figure 14 shows the
distances between the leader and the follower via the two con-
trollers. Its four circumstances included: (1) no disturbance,
(2) force disturbance dvix = −2Nm during 10 ≤ t ≥ 10.25
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Fig. 2. Leader-Follower Formation in First Path under H∞ Controller

seconds, dviz = 2Nm during 20 ≤ t ≥ 20.25 seconds,
dviy = 2Nm during 30 ≤ t ≥ 30.25 seconds in the first
path, dvix = −2Nm during 20 ≤ t ≥ 20.25 seconds,
dviz = 2Nm during 60 ≤ t ≥ 60.25 seconds, dviy = 2Nm
during 100 ≤ t ≥ 100.25 seconds in the second path, and
diϕ̇ = diθ̇ = diψ̇ = 0.01+0.01sin(0.024πt)+0.05sin(1.32πt),
applied at the same time for both the leader and the follower,
(3) +30% model parameter uncertainty, and (4) −30% model
parameter uncertainty.

Figures 16 and 17 show the performance of both paths
when only the leader was affected by force disturbance
dvLx

= −4Nm during 20 ≤ t ≥ 20.25 seconds, dvLz
= 4Nm

during 60 ≤ t ≥ 60.25 seconds, dvLy
= 4Nm during 100 ≤

t ≥ 100.25 seconds, and the leader attitude part is disturbed
using dLϕ̇ = dLθ̇ = dLψ̇ = 0.01 + 0.01sin(0.024πt) +
0.05sin(1.32πt).

From Figures 2 - 17 the overshoots of using the H∞
controller were very small and the RMSE values of the desired
distances between the leader and the follower were also very
small and the controller’s performance was fast in rejecting the
disturbances as well compared with those of the IBS controller.
Moreover, the IBS controller could not reject the disturbances
in the second path. As a result, the proposed H∞ controller
indeed produced excellent control performance.

VI. EXPERIMENTAL RESULTS

Experimental results are presented in this section with
one leader and one follower tested by using three different
paths in an indoor flight environment with consideration of
external disturbances and weight changes. The leader tracked
a predefined path, then the follower used the leader’s actual
position to calculate its path to follow. The information used to
control the leader and the follower was received from the IMU
and the Vicon Motion Capture System. Figure 18 shows the
control diagram used in this work; here it can be noticed that
the communication between the computer and the quadrotors
was linked via two Xbees: the first one was mounted on the
quadrotor while the second one was connected to the computer.
The position of the leader was sent to the computer, and then
it was sent from the computer to the follower to be used for
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Fig. 5. Leader-Follower Formation in First Path under IBS Controller

 Time (sec) 
0 5 10 15 20 25 30 35 40

 Y
aw

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Nominal
Distirbanced
+30% Mass
-30% Mass

Fig. 6. Leader Yaw Angle in First Path under IBS Controller
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Fig. 8. Leader-Follower Formation in Second Path under H∞ Controller
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Fig. 9. Leader Yaw Angle in Second Path under H∞ Controller
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Fig. 11. Leader-Follower Formation in Second Path under IBS Controller
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Fig. 12. Leader Yaw Angle in Second Path under IBS Controller
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 (a) 

0 10 20 30 40

 D
is

ta
n

c
e

s
 (

m
) 

1.4

1.6

1.8

2

2.2

 (b) 

0 10 20 30 40

 D
is

ta
n

c
e

s
 (

m
) 

1.5

2

2.5

 Nominal

Distirbanced

+30% Mass

-30% Mass

 (c) 

0 50 100 150 200

 D
is

ta
n

c
e

s
 (

m
) 

2.7

2.8

2.9

3

3.1

 (d) 

0 50 100 150 200

 D
is

ta
n

c
e

s
 (

m
) 

2.9

3

3.1

3.2

Fig. 14. The Distance Between the Leader and the Follower (a) in the First
Path under H∞ Controller, (b) in the First Path under IBS Controller, (c)
in the Second Path under H∞ Controller, (b) in the Second Path under IBS
Controller
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Fig. 18. Experimental Control Block Diagram

the desired follower position. Then the controller outputs were
sent to the vehicles via the Xbees to the high level on-board
microcontrollers which directly control the motors speed.

In the first test, both the leader and the follower took off
to 0.5 metres and the formation controllers started from this
point. Then the leader continued to climb to 1.5 metres, moved
forward for 1 metre toward the x-direction, drew a square of
2 metres side length and then landed. The follower followed
the leader and maintained the desired distance between them
d = 2 metres, the desired incidence angle ρ = π/12 and the
desired bearing angle σ = −π/2. In the second test, both
the leader and the follower took off to 0.5 metres. Then the
leader tracked a helical path of 2 metres circle diameter and
1.5 metres height, moved 1 metre towards the origin point and
then landed. The follower tracked the leader and maintained
the desired distance between them d = 2 metres, the desired
incidence angle ρ = −π/12 and the desired bearing angle σ =
−π/2. In the third test, both the leader and the follower took
off to 0.5 metres. Then the leader tracked an eight-shaped path.
The follower tracked the leader and maintained the desired
distance between them d = 2 metres, the desired incidence
angle ρ = −π/12 and the desired bearing angle σ = −π/3.

The experimental trajectories of the first, second and third
tests are shown in Figures 19 - 21, respectively, with the
conditions (1) no disturbance, (2) force disturbance, and (3)
+20% mass. These conditions were applied to both the leader
and the follower. Figure 22 illustrates the actual distance
between the leader and the follower during the tests. The
disturbances of the trajectories in these figures were caused by
the external force exerted on the vehicles. These experimental
results show that the follower successfully tracked the leader
and maintained the distance, incidence and bearing angles
between them with an acceptable error, less than 5 centimetres.
The proposed controllers also show a good stability and
robustness when considering the external disturbances and the
mass change.

VII. CONCLUSIONS

This paper presents a comparison between two different
controllers to leader-follower formation control problem of
quadrotors. The effect of the external disturbance and the
model parameter uncertainties are considered. An H∞ subopti-
mal control approach to designing a state feedback controllers
was proposed. The controller stability and robustness were
analysed and a set of corresponding conditions was given. The
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Fig. 20. Leader-Follower Formation in the Helical Path Test
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second controller derived to compare with the proposed H∞
controller is integral backstepping controller. Both the con-
trollers were tested in MATLAB simulater. Simulation results
show that the proposed H∞ controller perform better than
that of integral backstepping. The proposed H∞ controllers
were tested on the vehicles via several flight scenarios with
external disturbance and mass change consideration. Our next
step work along this direction is to relax the two constant
incidence and bearing angles to demonstrate how the formation
performance can be improved with more followers.
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