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ABSTRACT 

Microbial communities are notably complex and underpin many important global 

biogeochemical processes. However, there is still much that we do not know regarding 

the structuring dynamics of microbial communities and their biodiversity-ecosystem 

functioning (BEF) relationships. Therefore, there is great importance in researching 

these aspects in greater detail. In order to do this kind of analysis, large datasets are 

needed to properly capture the nuances of microbial communities. The CBESS 

(Coastal Biodiversity and Ecosystem Service Sustainability) dataset used here is one 

such dataset. Random forest analysis, a type of machine learning, was applied here 

to an expansive dataset of microbial metabarcode reads and environmental measures 

across multiple spatial scales. Two different coastal habitats were used to create 

further distinctions. Random forest models were created with and without 

environmental measures and it was found that notable differences across domain, 

spatial scale, and habitat were only observed when environmental measures were 

included. The relative importance of environmental factors increased both when scale 

increased and when specific habitat models were constructed, emphasizing the role 

that scale and context play in the interpretation of this type of analysis. Across 

domains, the relative importance of taxonomic factors was much higher in bacteria, 

indicating a possible increased role of dispersal limitations for that domain. Co-

occurrence networks were then constructed using the same dataset to investigate if 

there were any relationships between microbial network structure and process profiles 

across spatial scales. Significant relationships were only found at the smallest spatial 

scale with bacteria and archaea exhibiting nearly all the relationships. In those two 

domains, clear ecological patterns were linked with specific ecological processes for 

both network size and network interconnectedness. Across taxonomic levels, bacteria 

had stronger links at higher taxonomic levels and archaea had the strongest links at 
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the genus level. Overall, this study reveals both the complex spatial dynamics of 

microbial community structuring and BEF relationships that exist between microbial 

communities and globally important processes. 
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CHAPTER 1: GENERAL INTRODUCTION 

Belowground microbial communities are defined as any microbial community that exist 

at or below the sediment surface and the community ecology of these systems differ 

significantly from aboveground terrestrial systems (Fierer and Jackson, 2006; Bardgett 

and van der Putten, 2014). Despite this difference less effort is put into studying 

belowground diversity. What is understood about these systems reveals stark 

differences in diversity patterns and the drivers behind them (Hendershot et al., 2017). 

While knowing the composition of a microbial community does not automatically reveal 

its functional ability (Baldrian, 2019), there is still plenty of value in community diversity 

studies. These values range from uncovering the underlying dynamics that structure 

microbial communities to better understanding any potential links between microbial 

diversity patterns and important ecosystem functions.   

Studying these dynamics also has value in other fields of ecology. Experiments 

have demonstrated that microbes show notably complex degrees of spatiotemporal 

behaviour (Gore, 2018) with their abundances fluctuating noticeably across scales (Ji 

et al., 2019). Studying spatiotemporal effects on microbial communities is still an 

underdeveloped field and there is much that is still not known (Dumbrell et al., 2011). 

Research thus far indicates that the scale of observation plays an important role in the 

interpretation of microbial communities and their relationships. Different factors affect 

communities at different spatial scales so unique patterns naturally emerge at different 

levels (Bardgett and van der Putten, 2014). Therefore, using larger scale gradients 

often does not accurately represent the heterogeneity of microbial systems properly 

since smaller-scale spatial variations would not be accounted for (Hendershot et al., 

2017). The short-lived and dynamic nature of microbes means that they quickly adapt 

to new conditions. These smaller-scale spatial variations are often only observed at 

scales smaller than what is needed to capture similar dynamics in larger organisms 
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(Lauber et al. 2013). Just looking at broadscale patterns would not properly capture 

the smaller scale variations seen in microbes (Barberán et al., 2014). 

The microbial communities that underpin coastal systems are just some of the 

many belowground community types that are still poorly understood. Coastal 

ecosystems have a lot to offer regarding investigating BEF relationships in microbes. 

As important transition zones between terrestrial and marine habitats (Levin et al., 

2001), coastal ecosystems offer the opportunity for researchers to study life in highly 

dynamic systems. These natural variations allow for in-depth research into the 

functional relationships of microbial communities (Baumann et al., 2015). Because of 

their status as transition zones, coastal ecosystems are important buffers zones that 

absorb and process nutrients such as nitrogen that can be harmful to marine habitats 

in higher concentrations than normal (Bowen et al., 2011; Vivanco et al., 2015). 

However, complications arise when studying these systems since previous research 

into both soil and sediment communities must be considered at different degrees 

depending on the environmental characteristics of a given habitat. For example, tidal 

changes affect bacterial abundances in estuarine waters, creating another potential 

dispersal mechanism that must be considered (Chen et al., 2019a). Coastal systems 

also serve vital roles as nurseries to commercially important fishes and as buffers for 

both erosion and nutrient run-off so better understanding the microbial communities 

present will help in researching these aspects as well (Beck et al., 2001; Gedan et al., 

2011; Vivanco et al., 2015).  

One of the biggest hurdles in microbial ecology is the amount of data and 

processing power that is needed disentangle causative mechanisms. Addressing 

these issues, recent advances in next-generation sequencing (NGS) have created 

new avenues for bioinformatic analysis in many fields (Goodwin et al., 2016). In the 

case of metabarcoding, the targeted amplification and sequencing of phylogenetic 
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marker genes, increasing the depth and size of sequence libraries while lowering costs 

allows for more detailed analysis (Sinclair et al., 2015). Once sequencing is done the 

sequences can then be clustered based on similarity and assigned taxonomy. This 

process creates OTUs (operational taxonomic units) that can then be used in 

subsequent analysis of microbial communities in their natural habitat (Ward et al., 

1990; Kim and Isaacson, 2015; Gore et al., 2018). By using OTU data a researcher 

can look at what is in a system via the occurrence of OTUs and how much is there via 

the relative abundance of OTUs (Clark et al., 2018).  

The data used are just as important as the methods used. This statement is 

especially true when investigating microbial communities. Larger datasets provide 

unique opportunities to understand communities at depths and scales that normal 

studies cannot. For instance, more intensive sampling is required to capture the full 

diversity of microbial communities (Hermans et al., 2019). Scaling up the size of 

datasets is typically done by conducting a meta-analysis, but accounting for 

methodological differences across studies typically limits the ability to do more in-

depth analysis. These differences are seen in a recent meta-analysis focused on 

microbial community structuring using random forest analysis. This study found that 

technical factors play a major role in influencing relative abundance measures 

(Ramirez et al., 2018b). By removing technical variation from sampling and analysis, 

the factors which are important in structuring microbial communities can be better 

elucidated. The CBESS (Coastal Biodiversity and Ecosystem Service Sustainability) 

dataset used here combines the analytical advantages of being a larger dataset with 

the technical consistency of a single study. With a focus on better understanding the 

biodiversity, ecosystem processes, and ecosystem services of UK coastal habitats, 

this dataset opens the door to many novel insights (Raffaelli et al, 2014). 
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The overarching aim of this thesis is to investigate microbial community 

structuring, BEF relationships in microbial communities, and how these two aspects 

change across contexts. There is still much that is not known about each of these aims 

so research of this kind has great importance. To cover each aim metabarcode reads 

and environmental measures from the CBESS dataset were used. Random forest 

models were used to identify factors important in structuring communities and co-

occurrence networks were used to identify links between community structure and 

important processes. Spatial scales, multiple habitats, and multiple domains were all 

used to see how results differed in each context.  

• In Chapter 2 the general materials and methods used throughout are described. 

• In Chapter 3 the structuring of microbial communities is investigated using random 

forest models. 

• In Chapter 4 BEF relationships are analysed using co-occurrence networks. 

• In Chapter 5 the broader implications and takeaways from this work are discussed. 
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

 Study Site 

In this study the CBESS dataset was used. CBESS was a sub-project of the NERC 

(Natural Environment Research Council) funded BESS (Biodiversity and Ecosystem 

Service Sustainability) program that focused on coastal areas (Raffaelli et al, 2014). 

There were two main geographic locations sampled, Essex and Morecambe Bay 

(Figure 1). Each location had three sites and each site contained a salt marsh and a 

mud flat, providing 12 unique areas for sampling. For a map level view of the sampling 

sites please refer to Alzarhani et al. (2019). 

At each site-specific habitat, 22 soil cores (5-cm diameter, 15-cm depth) were 

taken for microbial community metabarcoding in both summer and in winter, yielding  

Figure 1. Flowchart describing the sampling hierarchy of the CBESS dataset. There 

were 528 total samples taken, 264 at each location, and 88 at each site. 24 salt 

marsh samples and 24 mud flat samples were taken at each site, equally divided 

seasonally between summer and winter.  
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Category Measurement Notes 

Sediment Chlorophyll 
(B) 

Chlorophyll a, b and c concentration - 

Sediment Colloidal 
Carbohydrates (B) 

Colloidal carbohydrate concentration - 

NDVI (Normalised 
Difference Vegetation 

Index) (B) 
Spectral reflectance - 

NPP (Net primary 
Productivity) (B) 

kg / m2 yr 
Mass of the dry 

vegetation 

Particle Size (A) % of each size sediment type - 

Sediment Stability by 
CSM (Cohesive 

Strength Meter) (A) 
stagnation pressure in N / m2 

Resistance of surface 
to erosive force via 
critical threshold for 

surface erosion 

Sediment Water Content 
(A) 

% Water content - 

TOC (Total Organic 
Carbon) (B) 

Loss on Ignition 
Loss after ignition (g) 
and % composition 

Light and dark nutrient 
and oxygen fluxes  

μmol / m2 hr 

Oxygen, NPOC (non-
purgeable organic 

carbon) Nitrate, NOx, 
Ammonia, Nitrate, 

Phosphate and Silicate 

Greenhouse Gas Fluxes 
(GHG) 

μmolCO2 / m2 h (NPP, BCR, GPP)  
nmolCH4 / m2 s (CH4)  
nmolN2O / m2 s (N2O) 

NPP - (Net primary 
Productivity) 

BCR - (Benthic 
Community 
Respiration) 

GPP - (Gross primary 
Productivity) 

CH4 - (Methane) 
 N2O - (Nitrous Oxide) 

Bulk Density* (B) dry weight (kg) 
taken from bulk density 

rings 

Table 1. Brief description of the environmental factors measured. All the factors aside 

from nutrient and GHG fluxes are used for analysis in chapter 3 and nutrient and GHG 

fluxes are used in chapter 4. Some measures were only recorded in salt marshes (*) 

or mud flats (**) and are identified accordingly. For the bioturbation measures, the 

species in question were any animals found in 10cm cylindrical cores. (B) Biotic 

measures and (A) abiotic factors are tagged respectively. 
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Electrical Conductivity* 
(A) 

Electrical Conductivity proxy for salinity 

pH* (A) pH - 

Plant Cover* (B) Plant % cover 
Percentage cover of 
each plant species 

Plant Height* (B) height (cm) 
Direct measurements of 

plant height 

Root Biomass* (B) dry weight (kg) / m2 
Root biomass of 3 soil 

depths 

Sediment Erosion Rate* 
(A) 

% mass loss / hr 
Sediment cores placed 

in flume tank flow 

Shear Stress* (A)  N / cm2 
Measured at three soil 

depths 

Soil Moisture Content* 
(A) 

Soil moisture content (%) 
Field soil moisture 

content measured from 
bulk density samples 

Soil Organic Matter* (B) Soil organic matter (%) 

Soil organic matter 
assessed by LOI (Loss-
on-ignition) using bulk 
density samples, taken 
adjacent to flume core 

Standing Crop* (B) dry weight (kg)/m2 

50cm x 25cm area of 
above ground 

vegetation cut to 
ground level and dried 

to give indication of 
standing crop biomass 

Vegetation Projected 
Area* (B) 

Veg area (mm2) / Horizontal extent (mm) 

Area of vegetation 
normalised by the 

horizontal extent of the 
section analysed 
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Individual Bioturbation** BPi per m2 

BPi = √B x Mi x Ri 
 Bi = individual biomass 
Mi = individual species 

mobility 
Ri = individual species 

reworking 

Population 
Bioturbation** 

BPp per m2 
BPp = BPi x Ai 

Ai = Individual species 
abundance per m² 

44 total samples for each site-specific habitat. Overall, there were 528 total samples 

taken. For each soil sample an extensive list of plant, soil, and nutrient measures were 

taken from the 1x1m quadrat associated with each core in the summer and winter of 

2013 (Table 1). Note that certain measures were not taken at every site due to 

logistical constraints. There was still enough coverage of measurements across sites 

and habitats to conduct in-depth analysis though. To limit the effect of space and time 

on sampling data, field sampling was coordinated across sampling teams and taken 

at similar spaces and times. To minimize the influence of sampling on measurements, 

a hierarchy of observations was created to attain accurate readings. For a more 

detailed explanation of the hierarchical sampling please refer to section 4.2 of chapter 

2 of Raffaelli et al. (2014). The CBESS environmental data can be found at 

https://catalogue.ceh.ac.uk/eidc/documents#term=cbess&page=1. 

 

Molecular analysis 

Following field sampling DNA was extracted from 0.05 g of homogenised dry roots 

from each soil core using the MoBio PowerPlant DNA isolation kit. DNA samples were 

then run through PCR cycles using Illumina’s recommended amplicon-sequencing 

protocols (Dumbrell et al., 2016). Libraries were multiplexed by adding Nextera XT 

indices with an 8-cycle PCR to differentiate between samples  and bead purification 

https://catalogue.ceh.ac.uk/eidc/documents#term=cbess&page=1
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of PCR products was done using Agencourt AMPure XP PCR Purification beads. The 

16S rRNA Klindworth primers, 341f (5’-CCTACGGGNGGCWGCAG-3’) and 785r (5’-

GACTACHVGGGTATCTAATCC-3’), (Klindworth et al., 2013) were used to target 

bacteria. 16S 344f (5’-ACGGGGYGCAGCAGGCGCGA-3’) (Raskin et al., 1994) and 

915r (5’-GTGCTCCCCCGCCAATTCCT-3’) (Stahl and Amann, 1991) primers were 

used for archaea and 18S 574*f (5’-CGGTAAYTCCAGCTCYV-3’) and 1132r (5’-

CCGTCAATTHCTTYAART-3’) (Hugerth et al., 2014) were used for eukaryotes. Each 

PCR product was then sequenced in an Illumina HiSeq machine 2500 in rapid run 

mode run at NBAF (NERC Biomolecular Analysis Facility) in Liverpool yielding 

300+300bp paired-end sequences.  

 

Bioinformatics analyses 

After sequencing, data clean up and filtering was run following recommendations in 

Dumbrell et al. (2016). Sickle v1.33 (Joshi and Fass, 2011) was run for quality trimming 

on all reads with a minimum length filter of 275bp. SPAdes v3.10.1 (Nurk et al., 2013) 

was then run for error correction with the BayesHammer denoising algorithm 

(Nikolenko et al., 2013). Paired-end assembly was then run on the remaining reads. 

PANDAseq v2.11 (Masella et al., 2012) with the PEAR algorithm (Zhang et al., 2014) 

was used for paired-end assembly. PEAR was used over the PANDAseq algorithm 

because PEAR has been found to align more paired-end sequences compared to 

PANDAseq (Schirmer et al., 2015). Any sequences smaller than 300bp were then 

filtered out before OTU clustering. Only the forward reads were used for archaea 

community analysis because the length of the region targeted by the archaea primers 

does not allow for paired-end assembly. Using this approach has been shown to have 

marginal effects on results (Clark et al., 2017). 
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OTU tables were created for each respective domain using the open-source 

VSEARCH v2.4.3 pipeline (Rognes et al., 2016). Reads were first dereplicated, 

removing singleton sequences to omit likely artefacts (Flynn et al., 2015). The 

dereplicated reads were then sorted by abundance and used to pick centroid 

sequences. UCHIME was run to filter chimeras from the centroids using the RDP 

database (release 11. The remaining centroids were used to create the OTU table. 

OTUs were selected at a 97% similarity level, corresponding to the intragenus 

similarity level between species (Yarza et al., 2014). Taxonomy was assigned to each 

OTU table using the RDP classifier v2.11 and the RDP database (Wang et al., 2007). 

For the eukaryotic reads the RDP classifier was trained using the PR2 (Protist 

Ribosomal Reference) database (Guillou et al., 2013). The PR2 database primarily 

targets protists but metazoans, land plants, fungi, and eukaryotic organelles are 

included in comparatively less detail.  

  All subsequent analysis was conducted using R v3.5.0 (R Core Team, 2018). 

Prior to running analysis each OTU table was rarefied to account for variable read 

numbers across samples. To prevent rarefying to too low of a read number certain 

samples were filtered out based on rarefaction curves. Samples with read counts 

below 100,000 for the bacteria OTU table, 5,000 for the archaea OTU table, and 4,600 

for the eukaryotic OTU table were filtered out for each domain. Using the vegan 

package (Oksanen et al., 2018) NMDS plots were then created for each domain to 

visualize how microbial community composition differed across sites, location, and 

habitat type. Plots were made using both a presence/absence algorithm (Jaccard) and 

abundance-based algorithm (Morisita-horn). 

Each table was then reformatted to prepare for subsequent analysis. To do this 

the OTU data was replicated for each sample, creating an expanded table with 

samples as rows and each row containing the abundance and taxonomic identification 
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for a given OTU. Rows with an abundance of 0 were filtered out and the remaining 

table was one-hot encoded based on the taxonomic information. One-hot encoding 

was the process by which the variables signifying taxonomic categories at each level 

were removed and new binary variables were added for each unique category. This 

table was then summarised, resulting in a table with each row representing a sample 

and columns representing the relative abundance for each taxonomic level found in 

the data. Columns for sample-specific information were included as well. These tables 

were created for each domain using the full taxonomic data, just the salt marsh data, 

and just the mud flat data. For each table created there was a version made that 

included environmental measures as well. These tables were used for all subsequent 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 
 

 

 

CHAPTER 3: MICROBIAL COMMUNITY STRUCTURING DYNAMICS 

 

Introduction 

Two prevailing theories exist for explaining ecological structuring: niche theory 

(Tokeshi, 1990) and neutral theory (Chave, 2004). Under niche theory coexistence is 

possible because species respond to environmental factors in different ways, 

ultimately creating a community structure where each species fits into a unique niche 

(Leibold and McPeek, 2006). In contrast, the neutral theory assumes all species have 

the same demographic traits (Chave, 2004) with community structure being dictated 

by stochastic processes and dispersal limitations (Rosindell et al., 2011). 

Disentangling the effects of deterministic versus stochastic processes in microbial 

community structuring is a current field of interest and work done thus far has revealed 

interesting insights (Ning et al., 2019). While communities are influenced by stochastic 

community-level processes, previous research in specific study systems have 

demonstrated that microbial community composition is largely determined by 

environmental factors (Dumbrell et al., 2010; Stegen et al., 2012). For example, the 

evolution and retention of new genes in bacterial populations seem to be largely 

environmentally driven (Noda-García et al., 2019) and environmental effects have 

been shown on specific microbial genera (Hu et al., 2019). However, the exact effects 

of environmental drivers on microbial communities are still very much unknown (Lladó 

et al., 2018) and there is evidence that stochasticity plays a role in structuring as well 

(Albright et al., 2019).  

Different structuring patterns occur at different scales and the patterns that 

emerge may be indicative of overall structuring dynamics. From certain perspectives 

these changes in dynamics could indicate that the nested patterns of microbial 

communities are more due to environmental selection than dispersal limitation 
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(Menegotto et al., 2019). However, this shift to environmental selection could also be 

due to there naturally being more environmental heterogeneity seen at larger scales, 

confounding the interpretation of structuring dynamics (Zinger et al., 2019). Certain 

environmental factors may also be influencing the prevalence of stochasticity in 

community structuring which is important to consider (Albright et al., 2019).  

Microbial communities being the immensely diverse communities that they are 

makes them rather difficult to analyse using traditional methods. However, recent 

applications of machine learning methods have demonstrated that the value it holds 

in analysing microbial communities (Qu et al., 2019). Machine learning has been 

useful for predicting certain environmental associations in microbial species (Martínez-

García et al., 2016) and random forest analysis specifically has been used to 

investigate microbial structuring patterns, revealing interesting insights (Ramirez et al., 

2018b). Random forests are a form of decision tree-based machine learning that 

creates multiple iterations of trees using a different subset of predictors in each 

iteration. In this analysis predictors were the variables used to build a given random 

forest model. The advantages of random forests lie in their ability to work with data 

that has many more predictors than it does samples to identify variables that are 

important in differentiating samples. As machine learning methods continue to be 

developed and improved the potential applications of them continue to increase so it 

is well worth applying them more in the field of microbiology.  

Random forest analysis was used to ensure that the full breadth of 

environmental factors included in the dataset was accounted for. Random forest 

models have the advantage of being able to work with many predictors, so it made 

sense to utilize them in this study. Analysis of the important taxonomic and 

environmental variables focused on answering three main questions: (1) how does the 

relative importance of factors change across spatial scales, (2) what role does habitat 
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type play in structuring importance, and (3) how do structuring dynamics differ across 

microbial domains? It was hypothesized that environmental variables would increase 

in importance as scale increased, differences would be observed between habitats, 

and similar overarching patterns would be shown across microbial domains. 

 

Methods 

All random forest analysis was run using the randomForest package in R (Liaw 

and Wiener, 2002). Random forests analysis is a form of decision tree-based machine 

learning that creates multiple iterations of trees using a different subset of predictors 

in each iteration (figure 1). The advantages of random forests lie in their ability to work 

with many predictors to identify which variables are important in classifying samples. 

Random forests can either be run unsupervised or supervised. Unsupervised runs use 

only predictors with no classification or regression to predict. Instead, they compare 

the original data to synthetically generated data using the original data as a reference. 

In the case of this analysis, unsupervised runs were useful in that they yielded the 

importance of each predictor in differentiating between samples. In comparison, 

supervised models were run against a dependent variable and the importance of a 

Figure 2. Overview of the classification framework for a random forest model. Each 

sample has n number of decisions trees created and each has a subset of the 

predictors used to build the model. Each tree is then evaluated based on the sample 

values and the final classification is determined by the classification that occurs the 

most frequently. This process is repeated for each sample. 



21 
 
 

 

 

given predictor was how important it was in classifying the dependent variable. 

Variable-importance (the mean decrease in accuracy, or how much the accuracy of 

the model would decrease if a given predictor was removed from the model) was used 

throughout this analysis to signify importance. To account for scale differences across 

models, unscaled permutation variable-importance was used for all models. For each 

model, 10,000 trees were created, and the number of predictors sampled per tree was 

set to default (square root of the number of variables).  

To analyze relative importance in structuring communities, unsupervised 

random forests were run for each taxonomy only group. Supervised models were run 

against site and location to investigate differences in variable-importance across 

different scales. MDS plots were created as well to compare the clustering of samples 

compared to the NMDS plots. To visualize the relative variable-importance for each 

model, the sum of all variable-importance values greater than zero for each model was 

taken and used to get the relative variable-importance of each predictor on a scale of 

zero to one. These were then plotted as stacked bar plots to compare how the relative 

variable-importance of different taxonomic levels in structuring communities differs 

depending on domain, habitat, and spatial scale. Correlations were taken across each 

model grouping as well to investigate how the relative variable-importance of 

predictors changed across scales. 

The same process was done using the data containing environmental 

measures to look at the relative variable-importance measures for classifying samples, 

sites, and locations. For plotting purposes there were too many environmental variable 

categories to visualize them all in a meaningful manner. Instead, the environmental 

variables were grouped as either abiotic or biotic to make visual interpretation 

possible. Significant variable categories and their potential implications were still 

discussed though.   
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Another useful feature of random forest models is that supervised models can 

be used to predict new data. In the case of this analysis the taxonomic structure 

models built only using one habitat type were used to predict the data from the other 

habitat type. Predicting taxonomic data from one habitat using a model trained on the 

other habitat is useful because it exposes potential biases in extrapolating models to 

a context they have not been exposed to. It can also help identify taxa that are 

important in structuring communities in both habitats. Predicting was not done using 

the models made using the data from both habitats because predicting data that was 

used to train the model being applied to it is counterintuitive. Predictions were also not 

done on the models that included environmental data because some measures were 

only taken at only one of the habitat types and environmental measures would have 

to have been assumed to run cross-habitat predictions. 

 

Results 

OTU Analysis 

After quality filtering approximately 220 million bacteria sequences were clustered into 

140,983 OTUs, 272 million archaea sequences were clustered into 45,726 OTUs, and 

82 million eukaryotes sequences were clustered into 14,058 OTUs. As expected, the 

average unique OTU richness for each sample followed roughly the same scale 

pattern to the OTU counts (bacteria: 6300 +/- 2455; archaea: 688.8 +/- 674.3; 

eukaryotes: 174.4 +/- 90.6). Richness patterns across sites for each domain were 

consistent aside from noticeably higher bacteria and archaea richness measures in 

the Essex mud flat sites. Community structure analysis via NMDS plots revealed 

multiple groupings based on location and on habitat (figure 2). All of the domains 

showed the same overall pattern as seen in the figure but the clearest distinctions 

were observed with the bacterial data. In comparison, both the archaeal and  
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eukaryotic data had more overlap in their groupings. However, there was more overlap 

observed with these domains, eukarya in particular. After assigning taxonomy and 

filtering the data 2,452, 1,070, and 2,870 unique taxonomic categories were present 

Figure 2. NMDS (Non-metric multidimensional scaling) plot of bacterial OTUs. 

Points represent samples, shapes represent habitat type, and color represents the 

specific site. OTUs showed distinct groupings based on both location since AH, 

FW, and TM represented were the Essex sites and CS, WP, and WS were at 

Morecambe Bay. Habitat groupings between salt marsh samples and mud flat 

samples are seen as well. 
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eukaryotic data respectively. There were some bacterial taxa identified using the 

eukaryotic data respectively. There were some bacterial taxa identified using the 

archaeal primers but those were not removed in the interest of accurately representing 

what was captured by the archaea primers. 

 

Relative Importance in Structuring Communities  

The output of the random forest models showed similar distinctions as the NMDS plots, 

confirming that the random forest models grouped samples correctly. When data from 

only one habitat was modelled the MDS plots showed the location split more clearly 

than when the full dataset was used, highlighting how the number of factors 

differentiating sampling sites affects modelling. There did not seem to be any 

consistent patterns across spatial scales regarding the relative variable-importance of 

taxonomic levels across the different conditions (figure 3). However, there was a clear 

difference seen across domains with bacteria showing the highest relative variable-

importance at the genus level. The eukaryotes were similar to the bacteria at the lower 

taxonomic levels but that is at least partly due to the eukaryotes only having taxonomic 

identification at the class level and below. Meanwhile, the archaea showed closer to 

even distribution of variable-importance across taxonomic levels. The archaea models 

also showed variable-importance in the domain which was a by-product of the archaea 

primers capturing some bacterial 16S rRNA. 

For these taxonomic models a general pattern of the variable-importance of 

sample-level predictors being better correlated with site than location was observed in 

all models except for the mud flat models where the relationship was not clear (figure 

4). The same pattern was seen with location level variable-importances being better 

correlated with site-level variable-importances than sample-level variable- 
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Figure 3. Correlations between the relative importance variables used to build 

random forest models across scales and domains. Models were created using 

datasets of (top) relative abundance values of taxonomic identifiers at each 

taxonomic level (bottom) and of both the same relative abundance values and 

environmental factors.  
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importances. For the most part the salt marsh models had the highest correlations, 

followed by the full dataset models, and then the mud flat models. The correlations  

between models were generally between 0.6 to 0.7 with the differences being 

approximately between 0.1 and 0.2. Only the bacteria model using the full data showed 

any drastic changes in correlation between scales. 

Figure 4. Relative importance values of random forest models built at various 

habitat, spatial scale, and microbial domain contexts. Models were created using 

datasets of relative abundance values of taxonomic identifiers at each taxonomic 

level. Aside from heightened importances of lower taxonomic levels, no clear trends 

were observed that cannot be explained by domain specific contexts.  
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Adding environmental measures to the models increased the clarity of the 

spatial distinctions for all models. There was a clear spatial scale pattern seen  

regarding the relative variable-importance of abiotic, biotic, and taxonomic factors 

(figure 5). Aside from the salt marsh models for bacteria and archaea taxonomic 

factors were consistently the most important at the sample level. The category then  

Figure 5. Relative importance values of random forest models built at various 

habitat, spatial scale, and microbial domain contexts. Models included both 

taxonomic and environmental data. Clear trends are observed across all scales, 

especially so for spatial scale and for domain.  
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showed reduced variable-importance as scale increased. In other words, the relative 

variable-importance of environmental factors decreased as the scale of observation 

decreased. Taxonomic factors were the most important when data from both habitats 

were modelled, followed by the salt marsh models, and then the mud flat data. There 

were also clear differences observed across domains as well. The bacteria models 

had by far the highest variable-importance of taxonomic factors. In comparison, the 

archaea and eukaryotic models both had much higher variable-importance of 

environmental factors. A noticeable portion of that gain went to biotic factors at the site 

level.   

Looking at the specific environmental factors for the bacteria models, soil 

geometry measures made up almost all the total environmental variable-importances. 

Total organic carbon and sediment chlorophyll measures were the only factors of any 

significance in the small biotic category slices. In the archaea and eukaryote models 

soil geometry measures still took up approximately all the relative variable-importance 

for the abiotic factors across the board but these models also had significant 

contributions from the biotic category that varied between habitats. The full data 

models for these domains still only had a showing of mainly total organic carbon 

measures followed by a smaller contribution of sediment chlorophyll measures. The 

mud flats had the same basic pattern as well, but variable-importance was clear for a 

mud flat specific category, bioturbation potential. In contrast, sediment chlorophyll had 

little variable-importance in the salt marsh models and the relative contribution of total 

organic carbon measures was reduced. Instead, the biotic categories for the two salt 

marsh models had a mix of salt marsh specific factors: bulk density, soil organic 

matter, and plant coverage. Of these factors plant coverage did show increased 

variable-importance as spatial scale increased. Soil moisture content and pH were 
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also only taken in the salt marsh samples, but their variable-importance made up a 

marginal percentage of the abiotic factors.  

Adding environmental variables improved the correlations between factor 

significance levels for the full dataset models (figure 3). The correlations for the salt 

marsh only eukaryotic models and all the mud flat models were increased and 

homogenized across scales as well. Meanwhile, the correlations between scales were 

lowered for the salt marsh bacteria and archaea models. Correlations dropped 

especially between site and location. These differing responses also switched what 

models had the highest and lowest correlations. The mud flat models now had the 

highest and the salt marsh models had the lowest in this context.   

 

Predicting Across Habitats 

The OOB (out-of-bag) estimate of the error rate for each random forest model, or the 

expected classification error rate for each model, differed by habitat, scale, and 

domain (figure 6). For reference, a lower OOB estimate indicates that the model is 

expected to have more accurate classifications. The models that incorporated 

environmental predictors were expected to be much more accurate and this 

hypothesis was reflected in their OOB estimates. Habitat differences were also 

observed with the mud flat only models having a lower OOB estimate and the salt 

marsh models having a higher OOB estimate compared to when the full dataset was 

used. Scale differences were obvious with the OOB estimates for models that 

classified based on location being much lower than the site-based models. Domain-

specific differences were observed as well. Eukaryotic models displayed the highest 

OOB estimates for the site-based models, with the bacteria having the smallest 

estimates and the archaea models having estimates that were slightly larger. 
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Eukaryotic models were also the only ones with OOB estimates of any significance for 

the location-based models. 

Contrary to the pattern seen with expected classification error rates, classifying 

the taxonomic data from one habitat with the model created using the data from the 

other habitat had the Eukaryotic models as the most accurate (figure 7). This pattern 

held true for classifying both location and site. The situation became more nuanced 

Figure 6. Expected prediction error rate of supervised random forest models built 

across multiple scale. Including environmental data in models decreased error 

rates in most cases. Location level models had higher error rates than site, the 

smaller spatial scale. Eukaryote models had much higher error rates in most cases 

as well. Little differences were seen between salt marsh models (SM), mud flat 

models (MF), and models using data from both habitats. 
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when the correct classification rate of specific factors was looked at. For the bacteria 

and archaea models the salt marsh models were heavily biased towards Essex and 

the mud flat models were biased towards Morecambe Bay. Both models seemed to 

be biased towards specific sites as well, which in turn influenced their location 

predictions as well. Meanwhile, the eukaryotic salt marsh models showed a smaller 

Figure 7. Correct prediction rate when classifying samples from one habitat using 

the model created from the other habitat. Predictions were done at the site and the 

location scale. Bacteria and archaea predictions both showed significant bias 

towards specific spatial contexts while microbial eukaryote prediction accuracies 

were more consistent. 
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bias towards Essex and the mud flat models showed very little bias. When analysing 

the validity of these biases, it was confirmed that they were not a by-product of a lack 

of overlapping taxonomic groups between habitats. Instead, the biases were likely a 

by-product of differing relative abundances of taxa between mud flats and salt 

marshes.  

 

Discussion 

Scale Effects on Structuring  

Results showed that spatial scale plays an important role in interpreting what factors 

are important in structuring and classifying microbial communities (Bardgett and van 

der Putten, 2014). The gradient used should correspond to the study organism and, 

as seen here, the heterogeneity of microbial communities is only properly captured at 

smaller-scales (Hendershot et al., 2017). The factors being considered does play a 

role in this observation though. When only taxonomic factors were considered 

individual factor variable-importances did change but the overall relative variable-

importance of categories did not. In contrast, clear categorical patterns were observed 

when the environmental factors surrounding the microbial communities were 

considered as well. Microbial communities do not exist in isolation, so it makes sense 

that both environmental interactions and interactions between microbes need to be 

considered to best understand microbial ecology (Gore, 2018). 

Environmental factors were consistent within random forest model groupings 

so changes in relative variable-importance values were dependent on what taxonomic 

domain was used, which habitat was considered, and what spatial scale the model 

classified. Therefore, if environmental factors had a higher relative variable-

importance in a random forest model then variation in environmental factors was of 

more use in classifying samples. This higher variable-importance also implies that 
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environmental factors are more useful in explaining variation in taxonomic 

abundances, potentially indicating an increased role of environmental selection. 

Greater heterogeneity in environmental factors naturally exists at larger scales, so this 

study’s observation of environmental selection being more prevalent as scale 

increases makes sense (Zinger et al., 2019). 

Conversely, a higher variable-importance of taxonomic factors in classifying 

spatial categories can be interpreted as dispersal limitations and stochastic effects 

having greater effects in structuring communities. Dispersal limitations can mask 

relationships between environmental factors and community compositions in a variety 

of ways, so it is important to not understate their effects (Evans et al., 2017). The 

concept of metacommunities helps explain the likely role of dispersal limitations in the 

microbial communities studied here. Most of the species in microbial communities 

likely draw from a regional metacommunity with specific local compositions depending 

on conditions. The size of the metacommunities in this study are likely smaller than 

the site level category but their presence still plays a role in structuring. Not all 

microbes have the capacity for global distributions so the makeup of a given 

metacommunity should in theory define the dispersal limitations of different microbes 

(Lindström and Langenheder, 2012, Barberán et al., 2014). Combine these 

metacommunities with the fact that initial species abundances are important in future 

community composition and the role of dispersal limitations in structuring communities 

becomes clear (Fukami, 2015; Dann et al., 2019). Extinctions in belowground systems 

are poorly studied so regional extinctions may have played a role in defining the 

realized dispersal ranges of various microbes as well (Veresoglou et al., 2015). 

Environmental factors usually play more significant roles at larger scales so it was 

expected that dispersal limitations would show a decreased relative variable-

importance. Alternatively, as scale increases metacommunities can be viewed as 
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dispersal networks so the elevated level of taxonomic variable-importances in certain 

models can be explained as well. 

 

Habitat Effects on Structuring Microbial Communities 

The increased variable-importance of taxonomic factors in the models that used data 

from both habitats signifies that more than just spatial scales affect the interpretation 

of structuring dynamics. Modelling the data from only one habitat type resulted in 

environmental factors being more important than in the both habitat models. Using 

data from multiple habitats added more variation that the model had to explain, 

ultimately at the expense of the variable-importance of environmental factors. One 

such factor category was soil particle metrics.  

Soil particle metrics were the most important environmental factor for 

differentiating samples in all the models which is consistent with other studies (Vera-

Gargallo et al, 2019). This importance stems from the physical structure of 

belowground systems creating microhabitat complexity, allowing for considerable 

amounts of niche partitioning (Decaëns, 2010). However, this category had reduced 

relative influences in structuring when both habitats were considered (Stegen et al., 

2012). As seen by the NMDS done in this analysis, the different habitats had different 

microbial community compositions (Lindström and Langenheder, 2012), but not all 

particle size measures had distinct habitat groupings. In the context of random forest 

analysis, having overlap in particle size measures across habitats created uncertainty 

in classification, reducing the relative variable-importance of the category. Instead, the 

more distinct differences in taxonomic abundances had higher variable-importance in 

structuring. Looking at single habitats did not have this issue, increasing the variable-

importance of this category. Keep in mind that the relative variable-importance of soil 

particle metrics was still high despite the reduction when both habitats were 
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considered. Not all environmental factors were reduced in the cross-habitat models 

though. Total organic carbon was an influential category in all models which was 

expected because of the effect of nutrient availability on community composition (Yin 

et al., 2019).  

The presence of vegetation played numerous roles in the salt marsh samples. 

The roots of plants create unique microhabitats that harbour microbial populations 

(Whipps, 2001). These roots also produce root exudates which play an important role 

in both a plant’s nutrient uptake and in shaping microbial community composition 

(Haichar et al., 2012; Guyonnet, et al., 2018). This array of plant-related feedbacks 

helped to create the much more nuanced consortium of biotic factors that were 

important in structuring and classifying the salt marsh samples. Additionally, plant 

evenness has been shown to be important in determining microbial community 

structure and it is likely that this evenness and its associated feedbacks has variable 

effects depending on both scale and microbial domain (Sun et al., 2019). Correlation 

analysis revealed that these variable effects are most apparent when comparing 

factors important to structuring salt marsh samples at the site level compared to the 

location level. This variable scaling effect was not seen in the eukaryotes, implying 

that there are different factors at play in structuring that domain that are more 

consistent across spatial scales. Traditionally an important factor in structuring 

communities (Hendershot et al., 2017; Rath et al., 2019), pH was another salt marsh 

specific measure. However, it was not a very important factor in the models created 

here. Only having one variable associated with the category when looked at in the 

breadth of all the other factors played a role in reducing the overall variable-importance 

of pH.  

The mud flat models exhibited similar trends as the salt marsh models with 

environmental structuring being more prevalent compared to the full models. However, 
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the contextual reasons behind these trends are different. In other soil systems without 

plant life, also known as incipient soil systems, microbial communities have been 

found to be selected primarily through environmental drivers (Sengupta et al., 2019). 

For instance, bioturbation by invertebrates plays an important role in structuring by 

creating different oxygen regimes for microbial communities (Li et al., 2019) which 

helps explain the increased relative variable-importance of the biotic category 

observed here. However, when soil systems first form microbes play a larger role in 

shaping their environment in incipient systems (Sengupta et al., 2019). Therefore, the 

mud flat communities observed here could still be affected by higher dispersal 

limitations than what was seen since the microbial communities would have played a 

larger role in creating the current environmental conditions.  

Another important temporal factor is tidal fluxes. These fluxes can be a 

dispersal mechanism for microbes and mud flats are subjected to greater tidal 

pressures than salt marshes due to their lack of vegetation (Pennings et al., 2005; 

Coulon et al., 2012; Yao et al., 2019). These increased tidal effects may help shuffle 

microbes throughout each site, decreasing the effect of dispersal limitations and 

lowering the relative variable-importance of taxonomic factors (Stegen et al., 2013). In 

this scenario soil geometry and other local conditions still play a role in determining 

where microbes settle, maintaining the role of environmental factors (Li et al., 2019). 

Note that the possible role of tidal dispersion could not be assessed directly in this 

study due to their temporal nature. Temporal dynamics, such as tides, were observed 

across multiple scales but this study only contained seasonal variations (Lauber et al. 

2013). 

 

Domain Effects on Structuring Microbial Communities 
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Trends were observed in relative variable-importances across domains for the 

taxonomic only models and for the full environmental models. The most meaningful 

interpretation of the taxonomic only models stems from the higher relative variable-

importance of lower taxonomic groups in structuring which was due to multiple 

dynamics. More related taxa are more likely to be ecologically similar (Stegen et al., 

2013) and positive interactions between functional groups show positive covariance in 

occurrences (Lee et al., 2019). Therefore, lower taxonomic groups have stronger 

groupings both within their taxa and with functional groups they interact positively with, 

increasing their relative variable-importance in structuring communities. In the case of 

the full environmental models, microbial interactions with environmental factors and 

other microbes both played important roles in structuring. Each microbial domain has 

a different set of interactions, so it makes sense that variable-importance in structuring 

samples differed by domain in this analysis (Gore, 2018). 

Why bacteria showed a much higher degree of taxonomic variable-importance 

was due to multiple factors. While recent research suggests that bacteria do not have 

strong functional redundancy from a diversity perspective (Peter et al., 2011; Delgado-

Baquerizo et al., 2016), bacteria still show high degrees of functional redundancy 

across taxa (Burke et al., 2011; Nielsen et al., 2011; Banerjee et al., 2016). Therefore, 

past observations of the domain’s lack of any strong links between taxonomic diversity 

and functional ability (Wang et al., 2019) may be indicative of more stochastic 

structuring mechanics. This neutral theory-based approach implies that dispersal 

limitations and other stochastic mechanisms like ecological drift would cause bacterial 

communities in different locations to be noticeably different taxonomically, without 

directly impacting the functional ability of the communities. These community patterns 

were observed here in the bacteria models and, to a lesser extent the other domains, 

but it does not automatically support neutral theory. Neutral models have predicted 
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bacterial abundances better in certain systems (Moroenyane et al., 2019), but 

biological interactions within taxonomic groups played a significant role in creating the 

observed dispersal limitations and cannot be discounted. 

Dispersal limitations can occur via restriction of movement or the restriction of 

successful establishment (Hanson et al., 2012), so species interactions can play an 

important role in shaping communities as well (Friedman et al., 2017; Zhao et al., 

2019a). These interactions can vary from competition shaping the composition of 

ammonia-oxidizing bacteria (Veresoglou et al., 2018) to mutualism playing a role in 

shaping range expansions (Momeni et al., 2013). Bacteria have also been shown to 

interact with their environment by altering pH to create more favourable growth 

conditions. This pH change results in inhibiting the growth of other bacteria that are 

not well adapted to the dominant pH (Dohi and Mougi, 2018). In this analysis, this 

inhibition likely translated to an increased variable-importance for taxa that have this 

ability. Network analysis has identified keystone taxa as being important in structuring 

bacterial communities (Banerjee et al., 2018) and this random forest analysis has 

expanded this relationship further by identifying taxonomic factors as being important 

in structuring communities even in the context of environmental factors. Additionally, 

extinction events in belowground systems are poorly studied but they may have 

influenced the distributions observed in this analysis as well (Veresoglou et al., 2015). 

Neutral theory-based structuring did play a role in bacteria samples analysed here, but 

biological interactions still seem to be the driving force structuring communities.  

In contrast, the archaea and eukaryote samples in this analysis were largely 

influenced by environmental factors at larger scales and it is difficult to ascribe any 

functional reason as to why this occurred. It is important to keep in mind that 

environmental variables were the same for each model. Considering that consistency 

and the reasoning used to explain the behaviour of the bacteria models, it seems that 
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the environment played a much greater role in structuring the archaea and eukaryote 

communities. Sample level variable-importances still showed a strong taxonomic 

presence so it seems that scale plays a critical role in structuring dynamics even when 

domains show noticeable differences in structuring dynamics. It is also worth noting 

that the eukaryotic models had much higher classification error rates. Larger 

organisms are more stochastically driven (Zinger et al., 2019) and stochastic 

processes have been observed more in eukaryotic communities (Li et al., 2017). 

Therefore, the higher classification error rates of the eukaryotic models indicate that 

the reduced relative variable-importance of factors in classifying samples is reflective 

of the more random distribution of microbial eukaryotes instead of a heightened 

variable-importance of environmental factors. In this case, eukaryotic communities 

followed a more neutral structuring patterns, albeit for different reasons than the 

bacterial communities.  

Regardless, the environmental factors that showed high relative variable-

importance in structuring made sense for both domains. Soil geometry and total 

organic carbon, the top two environmental factors, have both been shown to play an 

important role in determining the structure of microbial communities, with soil particle 

metrics also showing high variable-importance in differentiating samples (Zhang et al., 

2015; Waldrop et al., 2017; Vera-Gargallo et al, 2019). Environmental filtering (Zhao 

et al., 2019; Liu et al., 2019) having a larger effect on archaea and eukaryotic 

communities may be a big contributor to the patterns observed in this study but further 

research needs to be done to verify this claim. 

Noticeable patterns were found when predicting spatial classifications across 

habitats as well. Most soil diversity was found in both habitats across domains but 

there were significant differences in diversity patterns based on habitat so high 

predictive accuracy was not expected (Ramirez et al., 2014). However, bacteria and 
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archaea models showing almost identical predictions while the eukaryotic models 

differed was not expected. Instead of structuring trends being the delimiter between 

groups it seems that expected model accuracy was the delimiter. While the bacteria 

and archaea models may have had more accurate location-specific taxonomic 

indicators, that did not transfer well when predicting across habitats. Instead, it was 

the eukaryotes that were more predictive despite having higher classification error 

rates. The more equal model classification rates of the eukaryotes provide more 

evidence for the more stochastic nature of the domain.  

Modelling prokaryotic communities was more likely to be skewed by sites that 

show unique characteristics. Therefore, how prone a model is to outliers may be based 

on the degree of stochasticity seen in the study organisms. The differences in correct 

prediction rates between habitats seen in this analysis further highlight the strong 

heterogeneity of microbial communities and how it limits the ability to extrapolate 

microbial biodiversity patterns (Lladó et al., 2018). This extrapolation ability would be 

even more limited in habitats that have higher amounts of unclassified microbes due 

to the higher degree of uncertainty in community compositions (Delgado-Baquerizo, 

2019). 

 

Conclusion 

Based on this random forest analysis it is clear that the relative importance of factors 

in structuring microbial communities and the environment around them differs across 

spatial scales, habitat types, and domain. Taxonomic based dispersal limitations only 

being visible at the sample level in most cases points to the significance of spatial 

scale in structuring dynamics. These dynamics also differed across habitats since 

different habitats showed different scaling trends and different variable-importances. 

Domain arguably had the biggest effect on interpretation though. Bacteria seemed to 
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be structured almost entirely by dispersal limitations while archaea and eukaryotic 

communities were much more environmentally driven, prompting questions regarding 

the underlying mechanics that led to this divide. Domain also had an effect when using 

single habitat models for prediction of data new to the models, with the prokaryotic 

domains showing high bias to specific sites and locations and the eukaryotes being 

more balanced. However, the differences shown in the eukaryotic models may have 

been due to their high classification error rates, creating alternate interpretations of 

their data depending on how much the classification error rate was considered. Overall 

this study revealed many novel insights regarding the structuring of microbial 

communities and the applications of machine learning in microbial ecology.  
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CHAPTER 4: BIODIVERSITY-ECOSYSTEM FUNCTIONING RELAIONSHIPS IN 

MICROBIAL COMMUNITIES 

 

Introduction 

The relationships between biodiversity and ecosystem functioning (BEF) has been a 

long-running subject of interest in ecology, but there is still much to learn (Reiss et al., 

2009; Gamfeldt et al., 2013). As biodiversity is linked to ecosystem functions (Hooper 

et al., 2005; Duffy et al., 2017), there is tremendous value in conserving biodiversity 

to maintain functionality (Cardinale et al. 2012; Isbell et al., 2015; Cavicchioli et al., 

2019). There are many ways to study BEF relationships with taxonomy, functional 

ability, and the relationships between these measures all being used. While there has 

been an increased push for the use of functional measures in BEF research, 

taxonomic measures do still hold merit (Flynn et al., 2011; Gagic et al., 2015; Laureto 

et al, 2015; van der Plas, 2019).  

In the case of microbial communities, both microbial abundance and the 

composition of a microbial community have significant effects on functioning 

(Strickland et al., 2009; García‐Palacios et al., 2014; Lipson and Xu, 2019). 

Furthermore, many ecosystem functions are underpinned by microbial biodiversity 

(Wall et al., 2012). In addition to nutrient cycling, soil microbial communities play 

important roles in crop production (Jeanne et al., 2019) and in maintaining the health 

and stability of the soil (Dubey et al., 2019). While BEF relationships have been 

established for belowground systems, the limited amount of research on them limits 

the depth of understanding of these relationships (Bardgett and van der Putten, 2014; 

Hendershot et al., 2017). In comparison to soil systems, coastal sediment communities 

are naturally different due to tidal and other aquatic effects but much of the same still 

applies to them. Sediment communities are also crucial in ecosystem process delivery 
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via nutrient cycling and there are still many questions surrounding sediment microbial 

diversity dynamics (Bowen et al., 2001; Levin et al., 2001; Moulton et al., 2016).  

Different microbial domains associate with process rates in different ways so it 

is natural to expect that BEF relationships vary across microbial domains (Hale et al., 

2019). Bacteria play key roles in the cycling of carbon, nitrogen, and phosphorous 

(Lladó et al., 2017) and are important in pollutant degradation and nitrogen removal. 

They can also be important in promoting plant growth by absorbing nutrients and 

promoting nitrogen fixation (Chen et al., 2018). Archaea are also widespread in soils 

and other moderate environments despite being better known for their more 

extremophilic roles (Bates et al., 2011). Archaea are important in ammonium oxidation 

amongst many other nutrient cycles (Tourna et al., 2008). For instance, they are the 

taxon that carries out most of the methanogenesis that occurs in nature (Kietäväinen 

and Purkamo, 2015), an important step in the decomposition process (Peng et al., 

2008). Meanwhile, microbial eukaryotes mainly operate as decomposers, predators, 

producers, and parasites (Bik et al., 2012). The sheer amount of diversity in each 

domain does limit the ability to directly ascribe a measured function as being directly 

due to a specific taxonomic group in most cases. However, there are still associations 

that emerge between taxonomic levels (Barberán et al, 2012).  

Proper scaling is essential for the capture of potential BEF relationships. 

Differences have been observed in the biodiversity requirements to maintain BEF 

relationships across spatiotemporal scales indicating the importance of scaling in the 

interpretation of BEF relationships. The processes investigated in a given study also 

have a large bearing on results since studying individual processes underestimates 

the importance of biodiversity in maintaining multifunctional ecosystems (Hector and 

Bagchi, 2007; Isbell et al., 2011). Accounting for all these factors in BEF research while 

still answering meaningful questions can be difficult since doing so requires combining 
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concepts from multiple fields of ecology (Wang and Brose et al., 2018). In the case of 

microbes, the complex and still relatively unknown dynamics of their communities have 

limited the ability of researchers to uncover relationships using traditional methods. 

This limitation is especially apparent when attempting to extrapolate findings outside 

of the specific context in which they were gathered (Lladó et al., 2018).    

Studying communities via network analysis has potential to reveal novel 

insights by analysing the interaction dynamics of microbial communities (Faust and 

Raes, 2012; Ramirez et al., 2018a). Microbial species interactions play an important 

role in community structuring and process delivery (Brophy et al., 2017; Friedman et 

al., 2017). Therefore, network analysis is useful for capturing the underlying structuring 

dynamics and functional ability of communities. Functional ability relates more to the 

number of connections in a community and not the number of species so network 

analysis has been especially useful in that regard. Previous work using network 

methods have already revealed non-random structuring of microbial communities, 

associations across taxonomic levels, and unexpected taxonomic and functional 

relationships (Barberán et al, 2012). Having the ability to capture these interactions 

goes a long way in enabling researchers to study these complex communities with 

more resolution. 

Recent advances in network analysis methods have revealed new insights into 

the existence of keystone taxonomic groups and guilds that are important in structuring 

microbial communities (Banerjee et al., 2018). Interactions amongst microbes within a 

community play an important role in influencing many other microbial interactions so 

it makes sense that certain nodes would emerge as being structurally important 

(Mamet et al., 2019). These nodes could potentially play roles in BEF relationships as 

well since some functions such as cellulose degradation rely more on specific species 

composition than overall biodiversity (Peter et al., 2011). Furthermore, these important 



45 
 
 

 

 

taxa are not always the most abundant taxa in a given system since rarer taxa have 

been identified as being important for structuring soil communities as well (Ramirez et 

al., 2018b). To what extent these rare taxa play a role is still up for debate as the 

presence and role of the “rare microbial biosphere” is still contested (Louca et al., 

2019). 

There is a debate surrounding the usefulness of network analysis in studying 

microbial communities as well. Some argue that the ability of co-occurrence networks 

to capture relationships may be overstated. The complex nonlinear dynamics, the 

compositionality of sequencing data, and the natural variability of microbial 

communities all limit the use of correlation-based analysis in inferencing interactions 

(Carr et al., 2019). Additionally, some associations are captured better than others 

across methods with competitive communities being easier to capture than predator-

prey and parasitic communities (Hirano and Takemoto, 2019). Even if networks 

perfectly captured all the interactions in a community, some processes are impacted 

independent of biodiversity changes (Li et al., 2018). Therefore, not all process 

patterns can be explained via microbial diversity anyways. Nevertheless, the 

applications of network analysis in microbial BEF relationship research are huge and 

well worth pursuing. 

The analysis in this chapter used the CBESS dataset to investigate potential 

BEF relationships amongst microbial communities. Microbial community co-

occurrence networks were constructed and used to test for potential BEF 

relationships. Three main questions guided this analysis: (1) are there any 

relationships between microbial network dynamics and ecosystem processes, (2) what 

role does spatial scale play in capturing these relationships, and (3) how do these 

relationships change across domains? It was hypothesized that relationships would 

exist for network size and network interconnectedness and relationship capture was 
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expected to be better at the site level. Differences across domains were expected as 

well. 

 

Methods  

Co-occurrence networks were made using a modified version of the function used by 

Ju et al. (2014). In this function a correlation matrix was constructed using the relative 

abundance table. Spearman’s correlation was used for the correlation matrix because 

of the nonlinearity of microbial distributions across samples. The correlation values 

and their associated p-values were then extracted. Benjamini-Hochberg standard false 

discovery rate correction was used to adjust p-values. The correlation matrix was then 

filtered to only include the correlation values that passed both the correlation threshold 

(0.6) and the p-value threshold (p < 0.01). This filtering included both positive and 

negative correlations. The filtered matrix was then transformed into a node list and an 

edge list. A node list represents the unique identifiers for all of the nodes used to 

construct the network and an edge list represents all of the connections between 

nodes. A checkerboard-score (C-score) test run was on the inputted data as well to 

evaluate the randomness of the community and to see if that randomness was 

significantly different from that of a null model. A higher C-score indicates that a 

network had a lower degree of randomness. Overall this function yielded a list with C-

score metrics, the full correlation and p-value matrices, the filtered correlation 

matrices, node lists, and edge lists. All networks were retained for further analysis 

regardless if they passed the C-score test or not.  

Network topology metrics were then extracted from networks after they were 

constructed using the igraph package (Csardi and Nepusz, 2006). The metrics 

collected all worked to capture the size and interconnectedness of the networks in 

some manner: 
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Nodes (also known as vertices) – the number of taxa present in the network  

Edges - the number of connections between nodes.  

Average degree - the average number of edges across all nodes.  

Density - the number of edges divided by the number of possible edges.  

Diameter - the longest path between any two nodes  

Average Path Length (APL) - the average of the shortest paths between all pairs of 

nodes.  

Modularity - the degree of distinctness between different node groups. A modularity 

value of 1 indicates that a network contains lots of sub-clusters with little 

interconnectedness.  

Clustering Coefficient - the probability that the adjacent vertices of a vertex are 

connected.  

Bootstrapped null models (n =1,000) were generated for each network to 

compare the observed topology metrics to the topology metrics of the randomly 

generated networks. 

Co-occurrence networks were constructed for each taxonomic level within 

each domain except for the phylum level for the Eukaryotes. Networks were made for 

each factor at each spatial scale and for each habitat type as well. Networks were also 

made using the full dataset and using data from both habitats. Co-occurrence 

networks were visualized using the tidygraph package (Pedersen, 2019).  

To investigate how co-occurrence network metrics influenced ecosystem 

processes, principal component analysis (PCA) plots were created to visualize all the 

ecosystem process measures in a 2D ordination space. Scaled PCAs were created 

using the prcomp function in R. A PCA differentiating between habitat types was 

constructed for processes at the site, location, and full dataset scale. The first three 

principal components (PC) were retained for each PCA in order to capture enough of 
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the explained variation for all the PCAs. The PCA scores of each PC were then 

analysed to see if there were any significant relationships with microbial community 

co-occurrence network metrics. To analyse these relationships linear models were 

created between a given PC and a given network metric, with the PC as the response 

variable. An ANOVA (Analysis of variance) test was then run to evaluate if the 

relationship was statistically significant or not. The p-values were extracted from each 

value and the nature of each relationship was visualized to enable comparison of 

relationships across spatial and taxonomic scales. This analysis was also run using 

the average richness at each taxonomic level for each domain.  

 

Results 

Co-Occurrence Networks 

Co-occurrence networks were successfully constructed across all domains, taxonomic 

levels, spatial scales, and habitats (figure 8). Overall the distribution of the network 

topology metrics followed logical trends. Metrics for site and location level were largely 

consistent aside from site-level networks having higher values for measures that 

reflected network size. Across both scales, differences were observed between 

domains, taxonomic levels, and habitats (table 2). Trends across taxonomic levels 

were observed in node counts, edge counts, modularity, density, APL, diameter, and 

average degree. Most patterns were straightforward but modularity and average 

degree did show more nuanced trends. Modularity only dropped in certain archaea 

contexts and average degree only decreased in bacteria and eukarya. Noticeable 

domain trends only emerged in node counts, edge counts, average degree, and 

modularity. The same was true for all but average degree for habitat trends.   
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Figure 8. Examples of co-occurrence networks made using different microbial 

communities. Co-occurrence networks were made at multiple spatial scales across 

two different habitats for each taxonomic level within each microbial domain. Each 

co-occurrence network displayed its own unique patterns specific to the contexts in 

which it was created. 
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Some metric specific behaviour was observed as well. Observed clustering 

coefficient measures varied from 0.9 to 0.35. Note that not all the mud flat archaea 

models had clustering coefficient measures due to networks being too fragmented. 

Modularity measures were near zero for almost all bacteria networks while both 

archaea and eukaryotes had modular structures (values > 0.4) at lower taxonomic 

levels (Ju et al., 2014). 

It was difficult to identify any consistent interconnectedness trends for each 

domain. For bacteria, observed APL and diameter values being greater than expected 

from a random network indicate longer travel paths than expected. Modularity levels 

being near 0 indicate more overall interconnectedness than expected though. Archaea 

seem to be more interconnected than expected with all those metrics aside from 

diameter showing the favourable patterns. In comparison, the eukaryotes followed the 

same trend as the bacteria model aside from their modularity measures being 

inconsistent indicating lower interconnectedness than expected. Overall network size, 

complexity, and interconnectedness differed to varying degrees based on domain, 

habitat, and spatial scale. 
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Network 
Metric 

Trend as 
Taxonomic Level 

Increased 

Spatial 
Trend 

Domain Trend 
Habitat 
Trend 

Nodes Decreased 
Higher at 
site level 

Salt Marsh: bacteria > 
eukarya > archaea  

Mud Flat: eukarya >= 
bacteria > archaea 

Slightly 
higher in salt 

marshes 

Edges Decreased 
Higher at 
site level 

Salt Marsh: bacteria > 
eukarya > archaea  

Mud Flat: eukarya >= 
bacteria > archaea 

Slightly 
higher in salt 

marshes 

Average 
Degree 

Decreased only in 
bacteria and 

archaea 
- 

bacteria > eukarya > 
archaea 

- 

Density 
Near 0 at lower 
levels and then 

increased 
- - - 

Diameter 
Generally 
decreased  

Higher at 
site level 

- - 

Average Path 
Length (APL) 

Generally 
decreased 

Higher at 
site level 

- - 

Modularity 
Dropped in certain 
archaea contexts 

- 

bacteria: consistently 
near 0  

Scattered positive 
values in other two 

More 
variable in 

single habitat 
networks 

Clustering 
Coefficient  

- - - - 

 

 

Table 2. Behavior of each of network metric in microbial co-occurrence networks. 

Networks were made across taxonomic levels for bacteria, archaea, and eukarya. 

Two habitats, salt marshes and mud flats, were sampled and two different spatial 

scales were used for network construction, with site being the smaller scale. 
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Relationships between Network Structure and Ecosystem Processes 

The PCA plots of process profiles each had three main components (figure 9). 

The proportion of variation explained by each PC dropped as spatial scale decreased. 

For the PCA using the full dataset, approximately 100% of the variation was captured 

in PC1. In comparison, both the location and site ordinations had many more PCs 

generated. At the location level, PC1, PC2, and PC3 explained 49%, 34%, and 18% 

of the variation respectively. Meanwhile, PC1, PC2, and PC3 only explained 25%,  

 

Figure 9. PCA biplots of the ecosystem processes measured in the CBESS dataset at 

the (a) location level and (b) site level, with site level being the smaller spatial scale. 

Each axis represents a principal component and how much variation it explains. Points 

represent the spatial context and vectors represent the loadings. Each loading is 

labeled based on the process rate it represents. Light measures were taken in sunlight 

and and dark measures were not (NPOC - Non-Purgeable Organic Carbon). Habitat 

differences were better observed and loadings displayed much tighter groupings at the 

site level.  
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Figure 10. Contributions of process rates to the first three PCs for the location and site 

level PCAs sorted by highest contribution. While each PC displayed different contribution 

patterns, PC1 at the location level and PC2 at the site level were similar.  
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explained by the first two PCs in the site model was the primary reason why the first 

23%, and 15% of the variation at the site level. The limited degree of variation  three 

PCs were retained for further analysis.   

Looking at the loadings of each process (figure 10), each process explained 

PC1 of the ordination at the full dataset level equally. In contrast, the contributions 

were variable at the location and site level and an interesting trend emerged across 

spatial scales. The PC contributions for PC1 at the location level and PC2 at the site 

level follow almost the same trend. Looking at the fluxes based on highest contribution, 

site-level PC1 looks to be majority driven by nutrient fluxes in the light and site-level 

PC2 looks to be majority driven by GPP, BCR, and nutrient fluxes in the dark fluxes. 

Location level PC1 looks to semi-mirror site-level PC2 from this perspective as well.  

Spatially, the PCA plots showed similar patterns to the NMDS of OTU relative 

abundances regarding habitat patterns. There was little to no overlap in flux profiles 

across habitats, but the scores were closer together at the site level. This closeness 

indicated that there was more variability in flux profiles which led to less distinction 

between spatial categories. Additionally, there was more distance in PCA scores for 

the Morecambe sites when compared to the Essex sites. As expected, the scores for 

the process profiles that included both habitats were approximately at the midpoint 

between the scores for the habitat-specific groupings. 

The site-level also had more distinct groupings of loadings and its light/dark 

fluxes were often closer together as well. Additionally, certain process couplings were 

retained across scales. However, the directionality in relation to geographic context 

and habitat of these couplings was not consistent. GHG fluxes were scattered in both 

but GPP (gross primary productivity) and BCR (benthic community respiration) had 

apparent negative correlations in both contexts. 
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Testing the relationships between PCs and network metrics at the genus level 

revealed significant relationships mainly at the site level spatial scale (figure 11). 

Limited relationships were present at the location level and only for archaea. At  

the site level, PC2 was the primary PC involved and the presence of relationships  

Figure 11. Significant relationships (as indicated via a p-value < 0.05 on an 

ANOVA test evaluating linear relationships between metrics and process profile) 

observed between genus level microbial co-occurrence networks and process 

profiles. Colored dots represent the presence of a relationship with each color 

signifying a specific principal component (PC). Both domain and spatial seemed 

to play a role in the observation of relationships. 
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seemed to be domain-dependent. Archaea had significant relationships for a bulk of 

its network metrics while bacteria only had relationships present for vertices and 

clustering coefficient and eukarya only had relationships for average degree and 

density. Not seeing much of anything at the location and full dataset levels suggests 

there are either limitations in obtaining observations of this kind at larger spatial 

delimiters or that the lack of significant relationships was a by-product of the smaller 

vector sizes used in relationship testing at the larger scales in this analysis.  

Looking at these same relationships at higher taxonomic levels (figure 12) 

revealed that PC relationships are much different at higher taxonomic levels. At the 

site level, archaea had the most relationships at the genus level but loses nearly all  

its relationships aside from those with vertices at higher taxonomic levels. Meanwhile, 

bacteria picked up many relationships at the order and class levels. These 

relationships were mainly with PC1 instead of PC2 though. In contrast to both bacteria 

and archaea, eukarya stayed largely consistent with its lack of relationships across 

taxonomic levels. Another wrinkle that was added at higher taxonomic levels was that 

more relationships were seen at the location level. Most of these relationships were 

with location level PC1 which, as previously mentioned, had very similar patterns in 

what fluxes were contributing to it as PC2 at the site level. No relationships were seen 

at the full spatial scale even in this context. 

 When the direction of all the significant network relationships was investigated 

interesting relationships emerged. There were clear trends at the site level for bacteria 

where PC1 had a strong negative relationship with network interconnectedness and 

PC2 having a positive relationship with network size. Note that the significance found 

in bacteria was mainly found at the order and class levels which should be put into 

perspective. PC2 had a strong positive relationship with network size for archaea as 

well. The eukaryotes and their limited number of relationships only showed a slight  
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relation between interconnectedness and PC2. At the location level PC-network 

relationships were much weaker. The only semblance of a relationship at this level 

Figure 12. Significant relationships (as indicated via a p-value < 0.05 on an 

ANOVA test evaluating linear relationships between metrics and process profile) 

between microbial co-occurrence networks across all taxonomic levels and 

process profiles. Colored dots represent the presence of a relationship with each 

color signifying a specific principal component (PC). Just like the genus level, 

domain and spatial scale both played a role in the presence of relationships.  
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was PC1 having a positive relationship with interconnectedness for archaea and for 

the order and class level of bacteria. 

When the same analysis was run using average taxonomic richness at each 

taxonomic level the results differed greatly (figure 13). Aside from bacteria’s relation 

to site-level PC1 none of the network metric trends were present for richness. The only 

other trend seen was the consistent relationship between eukaryotic richness and PC3 

at the location level which was associated with nitrogen cycling and community 

respiration. 

Combining the directionality of process relationships with the loadings 

indicates that the archaea and higher taxonomic level bacteria communities in the 

CBESS dataset are more likely to have higher effluxes of silicates, NOx, and nitrate 

and will have higher influxes of ammonia as network size increases. These 

communities will also have more BCR and they will pull in more CO2. Higher taxonomic 

level bacteria communities will likely also have higher effluxes of almost all nutrients 

in the light as well as higher effluxes of ammonia and phosphate in both the light and 

the dark as interconnectedness increases. In the location context the 

interconnectedness pattern is barely present for archaea and higher taxonomic level 

bacteria communities. At this context more interconnectedness is mainly associated 

with a higher efflux of ammonia and phosphate in the light and the dark and a higher 

efflux of two GHGs,  GPP and N2O. Meanwhile, less interconnectedness is associated 

with a higher efflux of silicate, NOx, and nitrate in the dark and a higher efflux of BCR. 
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Figure 13. Significant relationships (as indicated via a p-value < 0.05 on an 

ANOVA test evaluating linear relationships between metrics and process profile) 

observed between average taxonomic richness and process profiles. Colored 

dots represent the presence of a relationship with each color signifying a specific 

principal component (PC). Compared to network relationships with process 
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Discussion 

Overall it is evident that network size and network interconnectedness both 

play important roles in defining ecosystem processes within a system. It also seems 

that both network size and network interconnectedness have relationships with 

specific processes with an increase in a given factor leading to greater efflux rates. 

For instance, microbial species interactions drive nitrogen fluctuations (Penn et al., 

2019) and the overall size and interconnectedness of the prokaryotic networks here 

do as well. Increasing network size also had a positive relationship with respiration. 

This relationship was interesting since microbial community respiration is related to 

activity levels so there was a connection between network size and total microbial 

activity (Cheng et al., 2013).  

This analysis supports the positive effect of microbial diversity and the role it 

plays in the multifunctionality of ecosystems (Jiao et al., 2019; van der Plas, 2019). 

Furthermore, process delivery in microbes involves lots of interactions so process 

rates would be better maintained in larger and more interconnected networks based 

on the theory of functional redundancy (Feit et al., 2019). While finding diversity-

multifunctionality relationships is great it does make elucidating the exact dynamics of 

specific processes at the whole system perspective understandably difficult (Wagg et 

al., 2014). However, getting information of that resolution from this analysis would 

always have been difficult since inferring ecological influences from complex networks 

is still a challenge. Regardless of network complexity, using many environmental 

factors in the process profile ordination may have limited the depth of variation that 

was captured as well (Tang et al., 2019). 

Nevertheless, network analysis revealed much more than what was shown 

from the richness perspective. Network analysis has revealed many unexpected 

relationships in microbial communities already (Barberán et al, 2012) so it was not 
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surprising that as this analysis revealed the BEF relationships that it did. Furthermore, 

the amount of BEF relationships present may be larger than what was captured here. 

Any intraspecific interactions present in the microbial communities were not captured 

in this analysis (Giri et al., 2019). There were also plenty of unidentified microbial taxa 

so it is possible that expanded sequence classification libraries with increased depth 

and range of identification would help further solidify the relationships observed here 

(Borrel et al., 2019).  

 

Spatial Effects on Relationships 

Spatial context had some of the most prominent effects on the presence of network-

process relationships in this analysis. The effects on spatial scaling were clear even 

when just looking at the network metrics. There was much higher variability in many 

metrics related to network size and network interconnectedness. As shown in the 

random forest analysis, taxonomic factors were most important at the site level and 

then quickly fell off in variable-importance as scale increased. In the case of this 

analysis that fall in taxonomic variable-importance translates to not as much network 

complexity being captured at larger scales. While the effects of biodiversity on 

processes have been found to increase with scale in the past (Cardinale et al., 2012), 

increasing scale in this analysis had the opposite effect instead.  

Microbial communities display incredibly complex heterogeneity patterns so 

maintaining a certain degree of spatial resolution is important to properly capture the 

network dynamics of these communities. From a macroecology perspective larger-

scales are good for generalizing but are less detailed (Barberán et al., 2014). 

Therefore, it makes sense that increasing spatial scale caused a decrease in network 

complexity (Hendershot et al., 2017). There are also many ecological reasons behind 

this drop in detail. Dispersal limitations that come about via metacommunity dynamics 
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and founder effects would cause co-occurrence relationships to be lost at larger scales 

when dispersal limitations are smaller than the scale used in a given analysis (Fukami, 

2015; Dann et al., 2019). Potential dispersal limitations have already been discussed 

in chapter 3 and many of those limitations are relevant here as well. Microbes have 

also demonstrated that local coevolutionary interactions can emerge between species 

which are likely lost at larger scales (Essarioui et al., 2019).  

Microbial community structure is also influenced by different factors at different 

scales (Bardgett and van der Putten, 2014). Therefore, the dynamics of microbial co-

occurrence networks may be decoupled from the ecosystem processes evaluated in 

this analysis at larger scales. However, local-scale effects are likely more important 

than larger-scale regional ones in shaping microbial communities so if this decoupling 

were to exist then it would not be too drastic (Lladó et al., 2018). Furthermore, both 

the variability of microbial communities and the variability between process profiles 

naturally seen between sites is masked as scale increases (Jing et al., 2015). From 

an analytical perspective this translates to fewer data points being considered when 

evaluating potential relationships. This drop may then have influenced the number of 

BEF relationships observed at the larger scale. 

 

Domain Differences 

Substantial differences were observed across the three domains looked at in this 

study. Bacteria’s high diversity of OTUs and clear distinctions across locations and 

habitats led to expectations that its co-occurrence networks would be the most 

complex and that it would have noticeable BEF relationships. However, despite the 

bacterial networks generally being the largest most of the expected network 

relationships did not emerge. Instead, most of the significant network relationships with 

process profiles were not seen until the order and class taxonomic levels. However, 
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there is a potential explanation for these observations. Random forest analysis from 

chapter 3 indicated that bacterial communities seem to be much more heterogeneous, 

with an array of dispersal limitations, founder effects (Dann et al., 2019), and other 

factors creating more distinct community structures. Dispersal limitations can mask 

relationships between environmental factors and microbial community composition 

(Evans et al., 2017) so network relationships likely exist at lower taxonomic levels for 

bacteria despite them not being observed here. 

 While the complexity and interconnectedness dynamics of the archaeal 

networks were not as clear the bacterial networks, the domain did show the genus 

level relationships that were expected from the bacterial networks. Both the higher 

variability of the domain’s network metric measures and the drop in relationships after 

the genus level can be explained by the nature of the domain and its branching and 

wide-ranging phylogeny (Brochier-Armanet et al., 2011). Interactions and connections 

between the more differentiated microorganisms in this domain would likely be more 

context-dependent. Relationships would also be expected to fall off since interactions 

between more distant taxonomic groupings would not be expected. Meanwhile, the 

eukaryotic microbes only had one weak interconnectedness relationship at best 

across all taxonomic levels. The lack of BEF relationships seen in this domain was not 

unexpected since larger organisms display a higher degree of stochasticity in their 

dispersal (Zinger et al., 2019). Evidently this stochasticity translated to the co-

occurrence networks of eukaryotic microbial communities not having a relationship 

with process profiles.  

 

Environmental Considerations  

It is important to acknowledge the role that environmental factors may have played in 

this analysis. After all ecosystem processes are essentially abiotic properties 
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interacting with the functional traits of organisms (Lavorel and Garnier 2002). The 

possible effect of environmental factors should not be understated since they have 

been the strongest predictors of process rates in other studies (Graham et al., 2016). 

For instance, changes in nutrient levels have been found to alter a wide range of 

processes in soil microbial systems (Kuske et al., 2019; Yan et al., 2019; Yin et al., 

2019). These additions can even affect the microbial communities present as well 

(Geyer and Barrett, 2019). However, microbial communities have been found to exhibit 

notable stoichiometric plasticity in response to nutrient imbalances so there is a degree 

of persistence that communities can show to changing nutrient levels (Fanin et al., 

2017).  

The possible role of macrobiota in process delivery is also worth considering 

(Moulton et al., 2016). Aboveground-belowground interactions have significant effects 

on microbial communities that can alter process rates. For instance, microbial co-

occurrence patterns have been shown to change across vegetation conditions (Chen 

et al., 2019b) and salt marshes plants have been shown to have a strong influence on 

diazotrophs and ammonia oxidizers (Wang et al., 2018). Plants also influence 

microbial communities via root dynamics affecting microbial community composition, 

the active microbiota community, and nutrient cycling rates (Haichar et al., 2012; 

Iversen et al., 2017; Guyonnet, et al., 2018; Schmid et al., 2018). Plant soil feedbacks 

act both ways in soils though, with soil microbial communities altering plant growth 

dynamics (van der Putten et al., 2016). Plants played much more of a role in the salt 

marshes compared to mud flats due to the differences in habitat characteristics, but 

aboveground flora still have a presence in mud flats. For example, different algal 

covers impact both community composition and nutrient fluxes in mud flat sediments 

(Bishop and Kelaher et al., 2013; Gonzalez et al., 2013). 
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On the note of algae, it is important to also cover the influence that the tides 

have on these coastal habitats. Tidal pressures do influence process rates, but 

microbial groups do differ in their responses to the redox transitions that occur during 

tidal changes (Frindte et al., 2016). Gene expression patterns also change less during 

the transition from oxic to anoxic (high-tide) than from anoxic to oxic conditions (low-

tide) and different processes occur at different rates depending on the depth and 

mixing conditions (Gantzer and Stephen, 2003; Hewson et al., 2014). All told temporal 

dynamics play a role in BEF relationships in coastal systems through the effect of tides 

on process rates. However, it is unlikely that these temporal dynamics were captured 

in this analysis since sampling was only done in areas that were not submerged.  

Aspects of the microbial communities themselves must be considered as well. 

It is important not to discount the effects of stochastic assembly processes, phenotypic 

plasticity, and other factors that create patterns in microbial communities not linked to 

process rates (Graham et al., 2016). Physical characteristics of microbial communities 

also play a role in functioning, especially in the case of processes such as nitrification 

and respiration (Suarez et al., 2019).  

While factors not covered in this analysis likely play a role in regulating 

microbial BEF relationships, the role played by the microbial communities in dictating 

these relationships is still apparent. Microbes exhibit multiple ecotypes within single 

species, allowing them to persist throughout fluctuating environmental conditions so 

the surrounding environment is far from the ultimate determiner of ecosystem 

processes (García-García et al., 2019). Also, the exact effects of environmental drivers 

on microbial BEF relationships may still be unknown (Llado et al., 2018), but microbial 

communities do exhibit strong feedback loops with their environment. Therefore, the 

high predictive value of environmental factors regarding ecosystem processes is likely 

partly due to the effects of microbial communities on environmental variables.  
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Conclusion 

While analytical and theoretical limitations were present in this analysis, the presence 

of relationships between microbial community networks and the functioning of 

ecosystems is evident. Furthermore, the role of spatial scale in observing these 

relationships is clear as well since network-related BEF relationships only showed up 

at the more detailed site level. These relationships differed across domains as well. 

Bacteria and archaea networks both exhibited similar relationships with nitrogen 

cycling and other fluxes. The bacterial relationships were more nuanced though since 

relationships were only observed at higher taxonomic levels. Dispersal limitations 

potentially masked the presence of relationships at lower taxonomic levels but further 

research is required to confirm that theory. However, if that is true then BEF links may 

be shared across prokaryotic communities to a certain extent. In comparison, 

eukaryotes did not exhibit any strong functional relationships and this was likely due 

to the higher stochasticity of the domain. Environmental contexts must always be 

considered in microbial community analysis like this, but even when that is done the 

strength of the relationships between important functions and the microbial 

communities observed here is still evident.  
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CHAPTER 5: GENERAL DISCUSSION 

The value of this work lies just as much in its insights into the structuring dynamics 

and the BEF relationships of microbial communities as it does the research questions 

it poses. There is a lot of potential in investigating the phylogenetic and functional 

relationships of the taxa that were important in structuring. This potential is further 

exemplified in taxa that were important in structuring co-occurrence networks 

(Banerjee et al., 2018). How structuring and BEF drivers change across scales is also 

of great interest. The questions posited throughout this dissertation regarding spatial 

scale offer support for multiple research paths. The degree to which temporal 

dynamics impacted the patterns observed here are well worth investigating as well.  

Creating and sharing more datasets like the CBESS dataset has great value 

because of the insights that can only be attained by using large datasets. While the 

focus of this work is on understanding ecological relationships, the implications of this 

work extend into biomonitoring efforts as well. Random forest analysis illustrated the 

limitations of extrapolating microbial data across habitats, but it is still worth 

considering the possibility of developing models for monitoring habitats using microbial 

communities (Cordier et al., 2019). Maintaining the diversity of habitats is important 

not only for BEF relationships but also for human health so BEF research has 

considerable potential in helping shed light on important biodiversity-ecosystem 

service relationships as well (Cardinale et al. 2012; Duncan et al., 2015; Wall et al., 

2015).  

The future use of machine learning in the field of microbial ecology is worth 

touching upon as well. Machine learning has proven to be invaluable in nearly every 

field, especially as Big Data has risen in popularity, and microbial ecology is no 

exception. The sheer size of data that microbial ecologists work with makes integrating 

machine learning seem like a logical choice in most cases. Numerous studies, some 
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of which highlighted in this analysis, have already demonstrated the value that 

machine learning brings. Looking forward, further integrating machine learning into the 

analysis of metagenomics data seems to be one of the areas that has the greatest 

potential due to the comprehensive picture that metagenomic data provides already. 

Machine learning is not the only useful tool at a researcher’s disposal though and care 

should be taken to ensure there are not methods that are better equipped to solve a 

given problem (Tarca et al., 2007). 

Despite the analytical and theoretical limitations present in this analysis, it is 

still clear that microbial community structuring dynamics and BEF relationships differ 

across spatial scales, habitat types, and domains. The clear trends observed across 

the spatial scales indicate the importance of perspective in spatial analysis. The trends 

also point to the importance of perspective in studies that do not use multiple spatial 

scales since the patterns present at a given scale may mask expected relationships. 

The heterogeneity of microbial communities and the many dynamics behind it should 

not be underestimated (Hendershot et al., 2017).  

Spatial scale seemed to be especially important in both the interpretation of 

structuring mechanics and in the presence of BEF relationships. For instance, 

dispersal limitations were only visible at the sample level in most cases and network-

related BEF relationships only showed up at the smaller-scale site level. Some of the 

largest differences were seen across domains though. Bacteria seemed to be 

structured almost entirely by dispersal limitations while archaea and eukaryotic 

communities were much more environmentally driven. In comparison, bacteria and 

archaea networks both exhibited similar BEF relationships with nitrogen cycling and 

other fluxes, with eukaryotes not exhibiting any strong functional relationships. It is 

interesting that structuring dynamics were more domain-specific while BEF patterns 

more closely followed the divide between prokaryotes and eukaryotes.  
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The exact reasons was to why the domain-specific structuring pattern emerged 

are largely discussed in chapter 2 but it is still worth revisiting the wider implications of 

this observation. The exact contributions of different structuring effects were not 

revealed in this analysis but it is still clear that each domain interacts with the 

environment differently. Therefore care should be taken to ensure domain specific 

structuring effects are taken into account when analysing data and referencing other 

work.  

Further research is recommended for both the community structuring and the 

BEF relationships front specifically as well for the interplay between them. Overall, by 

approaching the questions relating to microbial community structuring and BEF 

relationships from alternative angles, this study revealed many novel insights and 

opens the door to more research questions. 
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