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We analyze a repeated cheap-talk game in which the receiver is privately informed about 
the conflict of interest between herself and the sender and either the sender or the receiver 
controls the stakes involved in their relationship. We focus on payoff-dominant equilibria 
that satisfy a Markovian property and show that if the potential conflict of interest is 
large, then the stakes increase over time, i.e., “starting small” is the unique equilibrium 
arrangement. In each period, the receiver plays the sender’s ideal action with positive 
probability and the sender provides full information as long as he has always observed his 
ideal actions in the past. We also show that as the potential conflict of interest increases, 
the extent to which the stakes are back-loaded increases, i.e., stakes are initially smaller 
but grow faster.
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1. Introduction

We analyze a repeated cheap-talk game in which the receiver is privately informed about the conflict of interest between 
herself and the sender and either the sender or the receiver controls the stakes involved in their relationship. For example, 
the sender could be a manufacturer who is better informed about demand and makes retail-price recommendations to 
a retailer, who in turn decides on the actual retail price and may have different objectives than the manufacturer.1 The 
retailer might decide on how much to buy from the manufacturer, in which case we would have a situation where the 
receiver controls the stakes, or the manufacturer might decide on how much to deliver to that particular retailer, in which 
case it is the sender who controls the stakes.
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device in vertical supply relations.
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Or the receiver could be an investor who first decides how much to save and then how to allocate these funds after 
receiving advice from an informed financial advisor. The investor is privately informed about her preferences, which might 
include risk preferences or some behavioral bias. This would be a situation in which the receiver chooses the stakes involved 
in the relationship. Alternatively, it could be the advisor (sender) who chooses the stakes by controlling which investment 
opportunities to present to the investor in each period. For example, he may present more important ones (or a big bunch 
of them) at the beginning and less important ones later, or vice versa.

In situations where the sender is a subordinate, e.g., an advisor, in a hierarchical relationship, we could also think of the 
problem faced by the receiver as the optimal design of the importance of the decisions about which the sender is consulted 
over time, i.e., the sender’s career path. At what level of the hierarchy should the receiver start the sender and how should 
she go about promoting him? Is it best to start him at a very low rank and keep him there for a long time, or should the 
career of the sender progress at a steady pace? What is the role of potential conflict of interest between the sender and the 
receiver in the optimal design of the career path of the sender?

In our model, each period a sender observes a payoff relevant state of the world and communicates this information 
to the receiver. The receiver observes the message sent by the sender and makes a decision. State of the world and the 
decision jointly determine the payoffs, which are revealed at the end of the period. Overall payoff of each player is equal 
to the weighted sum of period payoffs, where the weight of each period is determined by the size of the stakes (or the 
importance of the decision) in that period.2 The sender would like the decision to match the state of the world while the 
receiver might be biased. More crucially, the sender’s preferences are common knowledge while that of the receiver is her 
private information.

We assume that the information on the state of the world is “soft”, i.e., it cannot be verified, and that the messages 
are costless. This makes the communication phase in each period a “cheap-talk” game, i.e., the sender may lie and this has 
no direct costs for him. We also assume that the decisions of the receiver are not contractible. This could be due to legal 
reasons or because the decisions are impossible to reproduce before courts.3 Our third crucial assumption is that states 
of the world are independently distributed across periods. This implies that the sender decides how much information to 
reveal each period without having to worry about its informational implications for the future states. Finally, we assume 
that the receiver’s preferences are similar for each decision, i.e., she either shares the preferences of the sender or is biased 
in the same manner for all the decisions. Therefore, our model is more suitable for situations in which the decisions are 
related, such as a series of investment decisions, or budgetary decisions for different departments, etc. An alternative, and 
perhaps more plausible, way to interpret the model is that the receiver makes the same decision in each period and the 
state of the world observed by the sender corresponds to the optimal decision for that period.4

We assume that the receiver is either an unbiased type, who myopically chooses the decision best suited to the state 
given her beliefs in each period, or a biased type who acts strategically. The unbiased type resembles a commitment type 
that is common in the reputation literature. But, unlike a standard commitment type who always plays the same action, 
the unbiased receiver plays a best response to her beliefs in any given period. Furthermore, unlike in standard models of 
repeated games and reputation, where the discount rates and the stage game payoffs are fixed, in our model the size of the 
stakes (or the importance of the decision) in each period is chosen strategically by either the sender or the receiver.5 Our 
aim is to characterize the perfect Bayesian equilibria of the resulting extensive form game with incomplete information.

In order to gain some intuition about the major forces at work in the model, note that the sender would like to receive 
his favorite decision, i.e., the unbiased decision which matches the state, in each period. Therefore, if he believes that the 
receiver is going to make the unbiased decision with high enough probability, then he has an incentive to reveal the state of 
the world truthfully. The biased receiver, on the other hand, would like to make a decision that is best for her, i.e., the biased 
decision, in any period and for that reason she would like to receive accurate information. However, if she makes a decision 
that is different from the decision that would be made by the unbiased commitment type, she would be revealed as biased 
and receive no information in the future. This introduces reputation concerns in the sense that she may masquerade as the 
unbiased receiver and act against her own interest today, in order to receive better information in the future.

It is clear that the receiver benefits from truthful communication. It turns out that, ex-ante, the sender also benefits from 
truthful communication, irrespective of whether the receiver is biased or not. In fact, if he could commit to a communication 
strategy before learning the state in the stage game, he would commit to full revelation.6 Therefore, the stage game exhibits 
both conflict of interest, because of the possible bias, and common interest, because of the common preference for truthful 
communication.

These considerations imply that the sender (or the receiver) may choose the stakes in a strategic manner in order 
to utilize the reputational incentives and facilitate communication. In particular, if relatively larger stakes are left for the 

2 From now on we will use the terms “importance of the decision” and “size of the stakes” interchangeably.
3 The assumption that decisions are observable but not contractible follows the “incomplete contracts” perspective (e.g., Grossman and Hart (1986) and 

Hart and Moore (1990).
4 We are grateful to a referee for this interpretation of our model.
5 This could also be thought of as choosing a time varying discount rate in a strategic manner.
6 As in the standard cheap-talk games, we assume that the sender cannot commit to a communication strategy. Even if he could, however, commitment 

to truth-telling may not be in his interest in the repeated game, because that would eliminate the ability to punish the receiver for playing the biased 
action.
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future, then the biased receiver may choose to play the unbiased action early on in the game and this may enable truthful 
communication.

As is usual in cheap-talk games, our model exhibits multiple equilibria. In order to circumvent this problem, we focus on 
equilibria that satisfy a Markovian property and yield the highest equilibrium payoffs for all the players, which we call the 
payoff-dominant equilibria. We show that if the potential bias is large and the initial reputation of the receiver bad enough, 
then there is a unique payoff-dominant equilibrium outcome in which the size of the stakes increases over time. In other 
words, the time path of the stakes exhibits “gradualism” or “starting small”, which has been a recurring theme in economics 
in different contexts.7 Our paper contributes to this literature by providing an alternative rationale for these phenomena, 
which is based on utilizing reputational incentives to maintain a healthy communication in a relationship.

We show that the time path of the stakes is chosen in such a way that the biased receiver is indifferent between the 
biased and the unbiased actions in each period. She mixes between these actions in a way that builds her reputation 
(after each successive unbiased action) at just the right speed in order to facilitate communication in every period. If her 
reputation were to evolve faster, then truthful communication would fail in the current period, while if it were to evolve 
slower, it would fail in the future. Sender reveals the state truthfully in every period as long as he has always observed the 
unbiased action in the past.8

Interestingly, the sender does not prefer a screening equilibrium in which the biased receiver reveals herself at the 
beginning of the game. This is because once the biased receiver reveals herself, the sender can no longer communicate with 
her and, as we have mentioned before, ex-ante the sender prefers to communicate even with the biased receiver. The biased 
receiver does not prefer to be screened either because, if her initial reputation is bad, she will receive information neither in 
the period she reveals herself nor afterwards. The unbiased receiver could potentially benefit from being revealed but only 
if that helps her receive more information. In the payoff-dominant equilibrium outcome, she receives complete information 
in every period except perhaps the first period in which the biased receiver plays a mixed strategy. However, if the biased 
receiver reveals herself by playing the biased action with probability one in the first period, rather than mixing, then the 
sender cannot communicate in that period. Thus, screening does not increase the amount of information provided to the 
unbiased receiver either.

Our results further imply that as the potential conflict of interest between the sender and the receiver increases, initial 
stakes become smaller but they grow faster. This is due the fact that as the bias becomes larger, the future must become 
relatively more important in order to provide sufficient incentives to the biased receiver to play the unbiased action in the 
current period. We also show that, both the sender and the receiver prefer to spread the total stake in their relationship 
over as many periods as possible. If the potential bias is large, this would mean that the stakes remain very small for a long 
period of time and then increase quickly towards the end of the relationship.

Finally, we should note that since the sender fully reveals the state in every period as long as he observes the unbi-
ased action, a payoff-dominant equilibrium is also the most informative one on the equilibrium path.9 Therefore, payoff-
dominance is potentially a reasonable equilibrium selection in our context.10

2. The model

A sender and a potentially biased receiver play a repeated cheap-talk game for N periods. Since it is more convenient 
to do so, we will count the periods in reverse, so that the first period is labeled N , the second N − 1, and so on. In each 
period i, the following stage-game is played:

1. The sender (or the receiver) chooses the parameter δi ∈ [0, 1] for period i. The parameter δi represents the proportion 
of the total stakes deferred to subsequent periods and 1 − δi represents the proportion in period i. Since there are no 
subsequent periods in the last period, we set δ1 = 0.

2. Nature chooses the state of the world θi ∈ {0, 1}. We assume that each state is equally likely and that states are inde-
pendent across periods.

3. The sender observes the state θi and chooses a message mi ∈ {0, 1}.11

4. The receiver observes the sender’s message and chooses an action ai ∈R without observing the state of the world.

We define the parameter γi as the importance of the decision or the proportion of the total stakes made in period i. More 
precisely, γN = 1 − δN , γi = δN · · · δi+1(1 − δi), and γ1 = δN · · · δ2(1 − δ1). The sender’s payoff for period i is v(ai, θi, γi) =

7 See Section 6 for a discussion of the literature on gradualism and starting small.
8 If the initial reputation of the receiver is not bad enough, then the sender-optimal equilibrium is not optimal for the receiver. Still, even in this case, 

we show that the size of the stakes increases over time in the receiver-optimal equilibrium.
9 As we will show subsequently, this is true except perhaps in the first period.

10 We refer the reader to Chen et al. (2008) and the references cited therein for justification of the most informativeness criterion in cheap-talk games. 
We should, however, note that the condition developed in that paper, i.e., no incentive to separate, can be directly applied only to a one-period version of 
our model, in which it would indeed select the fully informative equilibrium when it exists.
11 We can show that any equilibrium with a larger message space can be replicated with two messages and hence restricting the number of messages to 

two is without loss of generality.
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−γi(ai − θi)
2 and the receiver’s payoff is u(ai, θi, β, γi) = −γi(ai − (θi + β))2, where β ∈ {0,b} and b > 0. The parameter b

measures the divergence of the preferences of the sender and the receiver, or simply the “bias” of the receiver. We assume 
that nature chooses β = b with probability p ∈ (0,1) before the game begins and privately informs the receiver. The payoff 
of each player over the N periods is simply the sum of the payoffs from each period.

The state of the world, the messages, and the decisions of the receiver are unverifiable and hence cannot be contracted 
upon. Furthermore, as the payoff functions imply, the messages have no direct payoff consequence. This implies that the 
communication between the sender and the receiver is “cheap-talk” and that outcome contingent contracts cannot be 
written. After a period is over, the sender and receiver observe their payoffs and therefore the receiver learns the state in 
that period and the sender learns the receiver’s action.

We assume that the unbiased (type β = 0) receiver is a commitment type who, in each period, plays the action that is 
perfectly aligned with the sender’s preferences. More precisely, fix a period i and let λ ∈ [0, 1] be the probability assigned 
by the receiver to the event that θi = 1. Define the best period action for type β ∈ {0, b} as follows:

aβ(λ) = argmax
ai∈R

E
[
−(ai − (θi + β))2

]
= λ + β. (2.1)

We refer to a0(λ) as the unbiased action and to ab(λ) as the biased action. The unbiased receiver is a commitment type (or 
an automaton) who plays action a0(λ) in each period, i.e., she picks the myopic best response of a receiver who has zero 
bias and therefore chooses an action that is perfectly aligned with the sender’s preferences. The biased receiver, in contrast, 
is rational and chooses her period action strategically.

The main question analyzed in the paper is the equilibrium allocation of the stakes or the importance of decisions over 
time. We assume that any δi ∈ [0, 1] can be chosen at the beginning of each period i and that at least one period has a 
positive weight. In other words, the importance of period i decision can be fine-tuned in any desired way. This could be 
motivated in three different ways: (1) The parameter γi is the proportion of the total stakes in the relationship that is 
assigned to period i; (2) There is a large set of decisions and each period a subset of these decisions is chosen; (3) There is 
a large set of decisions with varying importance and each period one decision from this set is chosen.

We will analyze two different versions of the model: (1) Sender chooses the parameter δi (sender-game); (2) Receiver 
chooses the parameter δi (receiver-game). For the sake of clarity, we will describe and present our results in detail for only 
the sender-game. In Section 5 we will describe the receiver-game and argue that our results go through for that model as 
well.

Let oi = (δi, θi, mi, ai) denote a period i outcome and O i the set of all possible period i outcomes. For any i < N , let Hi
be the set of all histories before decision i is made, i.e., sequences of the type (oN , . . . ,oi+1). Define H N = {∅}. The sender’s 
belief in period i is a mapping pi : Hi → [0, 1] where pi(h) = prob(β = b|h) for each h ∈ Hi and pN (∅) = p. A period i
strategy for the sender is comprised of two components: τi : Hi → [0, 1], where τi(h) is the sender’s choice of δi ∈ [0, 1]
in period i after history h ∈ Hi , and μi : Hi × [0, 1] × {0, 1} → [0, 1], where μi(h, δi, θi), denotes the probability of sending 
message 1 after history h, δi , and θi .12 The receiver moves after histories of the type (h, δi, θi, mi) where h ∈ Hi . For any 
history h ∈ Hi , a period i information set for the receiver is given by Ii = {(h, δi, θi, mi) : θi ∈ {0,1}}. In other words, before 
making a decision in period i, the only thing that is not known by the receiver is θi . Let the set of all period i information 
sets be Ii . Receiver’s belief that θi = 1 is given by λi : Ii → [0, 1]. Since the unbiased receiver is a commitment type, we 
will only describe strategies for the biased receiver. Biased receiver’s (mixed) strategy is given by αi : Ii → 	 

(
R
)
, where 

	 
(
R
)

denotes the set of all probability distributions with support in R. For ease of exposition we will sometimes write 
λi (h, δi,mi) and αi (h, δi,mi) for any h ∈ Hi , δi ∈ [0,1], and mi ∈ {0,1}. A collection σ = (τi, μi, αi, pi, λi)

N
i=1 constitutes an 

assessment.
We are interested in the perfect Bayesian equilibria (PBE) of the game. For expositional reasons, we will restrict attention 

to equilibria in which for any i ∈ {N, N − 1, . . . ,1}, h ∈ Hi , and δi ∈ [0,1] (1) The sender sends message m = 0 after observing 
θi = 0, i.e., μi(h, δi, 0) = 0 and (2) The receiver puts positive probability only on the biased and unbiased actions, i.e.,

αi (h, δi,m) ∈ 	
({

a0(λi(h, δi,m)),ab(λi(h, δi,m))
})

.

We should note that restriction (1) is without loss of generality in terms of equilibrium outcomes and restriction (2) is 
satisfied in any equilibrium.13

Furthermore, we focus our attention on equilibria that satisfy the following two properties:

Property 1. Fix an assessment σ , a period i, a history h ∈ Hi , and an outcome oi = (δi, θi, mi, ai). If ai �= a0(λi(h, δi, mi)), 
then σ is a PBE only if p j(ĥ) = 1 in any period j = i − 1, . . . , 1 and history ĥ ∈ H j that follows oi .

12 Although we define only the pure strategies in the choice of δi , in our analysis we allow for mixed strategies in both the sender and the receiver-game.
13 As we will show in the sequel (see Lemma 2), any equilibrium where type 0 mixes between the two messages is completely uninformative and hence 

can be replicated with an equilibrium in which both types send message 0. Furthermore, playing any action other than the unbiased action reveals the 
receiver as biased, i.e., leads to the worst beliefs about her. This implies that if she plays any action other than the unbiased action with positive probability, 
it has to be her best period action, i.e., the biased action.
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This property implies that any action other than the unbiased action is believed to be played by the biased type and 
once beliefs put probability one on the biased type, they are never altered.14

Property 2. For any i = N, . . . , 1 and h, h′ ∈ Hi : (1) pi (h) = pi
(
h′) implies τi(h) = τi(h′), μi(h, δi, θi) = μi(h′, δi, θi), 

αi (h, δi,mi) = αi
(
h′, δi,mi

)
; (2) αi (h, δi,0) = αi (h, δi,1).

The first part of this property states that past history matters only to the extent that it changes the reputation of the 
receiver, while the second part states that the receiver plays a symmetric strategy. Together, they imply that strategies do 
not depend on the past communication behavior of the sender.15 Since the sender’s past communication behavior has no 
effect on current and future payoffs or the states of the world, this is a Markovian property in the sense that strategies 
are independent of payoff irrelevant histories.16 In particular, this restriction eliminates punishments in the form of “no 
information revelation” or “playing the biased action” after histories in which the sender did not communicate truthfully. 
In addition to its Markovian nature, this property is also implied by “renegotiation-proofness”, because even after histories 
in which the sender has lied, both parties have an incentive to choose a continuation equilibrium in which there is full 
communication. In section 3.2 and 4 we will comment on how our results change when this restriction is removed.

From this point on, we restrict attention to PBE that satisfy Properties 1 and 2. Hence, when we say that an assessment 
σ constitutes an equilibrium we mean that the assessment is a PBE and the assessment satisfies Properties 1 and 2.

Given the above restrictions, we simplify notation and describe period i strategies by functions τi : Hi → [0, 1], μi :
Hi ×[0, 1] → [0, 1], and qi : Hi ×[0, 1] → [0, 1], where τi(h) determines the choice of δi , μi(h, δi) determines the probability 
that the sender sends message 1 after δi and θi = 1, and the function qi(h, δi) is a distributional strategy (see Milgrom and 
Weber (1985)) for the receiver that determines the total probability with which the receiver plays the biased action.

As is usual in cheap-talk games, there are many equilibria of the game defined above, even under the Markovian restric-
tion introduced in Property 2. In this paper, we focus on the payoff-dominant equilibria, i.e., equilibria that yield the highest 
equilibrium payoffs for the players.

3. Preliminaries

Fix an assessment σ , a period i, a history h ∈ Hi , and δi ∈ [0,1]. Let Pr(m) be the total probability that the sender sends 
message m ∈ {0,1} in this assessment in period i after (h, δi).17 Let q = qi (h, δi) and λ (m) = λi (h, δi,m). We can then write 
the sender’s and the biased receiver’s ex-ante costs in that period as follows:

C S
i (σ |h, δi) = qb2︸︷︷︸

Cost of bias

+
∑

m∈{0,1}
Pr(m)λ(m)(1 − λ(m))

︸ ︷︷ ︸
Cost of miscommunication

C B R
i (σ |h, δi) =

(
1 − q

p

)
b2

︸ ︷︷ ︸
Cost of bias

+
∑

m∈{0,1}
Pr(m)λ(m)(1 − λ(m))

︸ ︷︷ ︸
Cost of miscommunication

These costs are composed of two components: The first component (cost of bias) comes from the fact that the receiver plays 
the biased action with total probability q after both messages. The second component (cost of miscommunication) comes 
from the fact that the sender may not provide full information and is equal to the expected conditional variance of the 
state of the world. If, for example, the sender’s message provides no information on θi , then λ (m) = 1/2 for m ∈ {0,1}
and the cost of miscommunication is equal 1/4. If it is perfectly informative, then λ (1) = 1 and λ (0) = 0 and the cost of 
miscommunication is equal to zero. The cost of the unbiased receiver is simply the cost of miscommunication.

3.1. One-period model

To fix ideas, we begin our analysis with the simple case of N = 1. Let q be the total probability with which the biased 
action is played and note that sequential rationality implies that the biased receiver plays the biased action with probability 
one after both messages, i.e., q = p. As it is the case in cheap-talk games, there is always an equilibrium in which the 

14 The first part is quite reasonable because the unbiased action is the unique action that is available to the unbiased type. The second part is the same 
as the “never dissuaded once convinced” assumption in Rubinstein (1985).
15 Note that the second part, i.e., symmetry, is necessary for this to be true. If the receiver plays differently after different messages, then the sender’s 

choice of the message may induce different reputation levels, and hence different behavior, in the future. However, symmetry does not imply that the 
receiver plays the same mixed strategy over the same set of actions after each message. It only implies that the same probabilities are assigned after each 
message to the biased and unbiased actions, which themselves depend on beliefs and thus on the message.
16 See Maskin and Tirole (2001) for the notion of payoff irrelevant histories and some arguments in favor of focusing on Markov perfect equilibria.
17 More precisely, Pr(1) = 0.5μi (h, δi) and Pr(0) = 0.5 + 0.5 (1 − μi (h, δi)).
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sender’s message provides no information about the state, the so called “babbling equilibrium”. Instead, suppose that the 
sender communicates truthfully in equilibrium and, without loss of generality, assume that type θ = 0 sends message m = 0
and type θ = 1 sends message m = 1. Therefore, after message m ∈ {0,1}, the unbiased action is m and the biased action is 
m + b. Optimality of the strategy of type θ = 1 sender implies that the cost of sending message m = 1 is less than the cost 
of sending message m = 0, i.e.,

q(1 + b − 1)2 + (1 − q)(1 − 1)2 ≤ q(0 + b − 1)2 + (1 − q)(0 − 1)2.

This is equivalent to qb ≤ 1/2 or q ≤ q̄, where

q̄ ≡ 1

2b
.

Optimality of the strategy of type θ = 0 implies that

q(b − 0)2 + (1 − q)(0 − 0)2 ≤ q(1 + b − 0)2 + (1 − p)(1 − 0)2,

which is always satisfied. Conversely we can show that if q ≤ q̄, then there is an equilibrium with full revelation. If q̄/2 <
q < q̄, then there is also an equilibrium in which type θ = 1 completely mixes, but since this plays no major role in our 
analysis we relegate its proof to the Section 8 (see the proof of Lemma 2). Therefore, if q > q̄ there is no information 
revelation in equilibrium. Note that truthful communication becomes an issue only when q̄ < 1, or equivalently b > 1/2. We 
summarize this discussion in the following lemma for easy reference.

Lemma 1. Let N = 1 and p ∈ [0,1] be the probability that the receiver is biased. In any equilibrium, the receiver plays the biased action 
with probability one, i.e., q = p. If p > q̄, then the sender’s message provides no information. If p ≤ q̄, then there is an equilibrium where 
the sender truthfully reports the state and if q̄/2 < p < q̄, then there is an equilibrium where the sender’s report is partially truthful 
(i.e., the sender sends the same message with positive probability in both states). These are the only equilibria.

Note that the equilibria described in Lemma 1 are Pareto ranked: the more informative equilibrium yields a strictly 
higher expected payoff to both the sender and the receiver. In fact, in the truthful equilibrium, the receiver’s cost is equal to 
zero whereas the (ex-ante) cost of the sender is pb2. In the partially informative equilibrium, receiver’s cost is (1/2 − pb) ∈
(0,1/4), whereas the sender’s is equal to pb2 + (1/2 − pb). In the babbling equilibrium, expected costs of the receiver and 
the sender are 1/4 and pb2 + 1/4, respectively.

Remark 1. We should note that the observation in Lemma 1 is true for any period in which the communication incentives 
of the sender depends only on the total probability with which the biased action is played in that period. Property 2 ensures 
that this is indeed the case and hence we have Lemma 2, whose proof is in Section 8.

Lemma 2. Fix a perfect Bayesian equilibrium, a period i ∈ {1, . . . , N}, history h ∈ Hi , and δi ∈ [0,1]. Sender’s equilibrium communica-
tion strategy can be of three types: (1) fully informative; (2) partially informative; or (3) non-informative. It is completely informative 
only if q (h, δi) ≤ q̄ and partially informative only if q̄/2 < q (h, δi) < q̄.

3.2. Two-period model

In this subsection, we provide some intuition for our general result by analyzing the two-period version of the model. 
We will assume that the sender chooses the stakes and analyze the more interesting and challenging case of p > q̄. We will 
comment later on what happens when p ≤ q̄ and in Section 5 we will argue that our results go through for the receiver-
game. We will first establish two important facts that are true in any equilibrium, including those that do not satisfy the 
Markovian property (Property 2). After that we will construct an equilibrium and show that it yields the unique payoff 
dominant outcome among all equilibria that satisfy Property 2.

As we stated in Lemma 2, the Markovian property implies that truth-telling incentives of the sender in each period 
depends only on the total probability with which the biased action is played in that period: if the biased action is played 
with total probability qi in period i, then full revelation is incentive compatible if qi ≤ q̄ while no information can be 
revealed if qi > q̄. Note that we are using two aspects of Property 2 here: (1) communication behavior in the next period 
is independent of the communication behavior in the current period; and (2) symmetry, i.e., total probability of playing the 
biased action is the same and equal to some qi after each message.18

18 We should note that the definitions of the biased and unbiased action depend on the receiver’s beliefs (see Equation (2.1)) and hence potentially on 
the message. Therefore, symmetry does not mean that the receiver plays the same mixed strategy over the same set of actions after each message. For 
example, if the sender fully reveals the state, then after message m = 0, the biased and unbiased actions are b and 0, respectively, while after m = 1, they 
are 1 + b and 1. Symmetry only means that probability assigned to b (resp. 0) after m = 0 is the same as the probability assigned to 1 + b (resp. 1) after 
m = 1.
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This allows us to write the total cost of the sender in the following simple form:

C S (δ2,q2, c2, c1|p) = (1 − δ2)
[

q2b2 + c2

]
︸ ︷︷ ︸

Period 2 cost

+δ2[q2 (b2 + 1

4
)︸ ︷︷ ︸

Cost after biased action

+(1 − q2) (p1b2 + c1)︸ ︷︷ ︸
Cost after unbiased action

]

= (1 − δ2)
[

q2b2 + c2

]
+ δ2

[
pb2 + q2

1

4
+ (1 − q2)c1

]
, (3.1)

where p is the prior probability assigned to the biased receiver, the posterior belief in period 1 is p1 = (p − q2) / (1 − q2)

(by Bayes’ rule), c2 is the cost of miscommunication period 2, and the cost of miscommunication in period 1 is equal to 1
4

and c1 after the biased and unbiased actions, respectively. Similarly, we can write the total cost of the biased and unbiased 
receivers as follows:

C B R (δ2,q2, c2, c1|p) = (1 − δ2)

[(
1 − q2

p

)
b2 + c2

]
+ δ2

[
q2

p

1

4
+

(
1 − q2

p

)
c1

]
(3.2)

C U R (δ2,q2, c2, c1|p) = (1 − δ2)c2 + δ2c1 (3.3)

Note that, as we have remarked before, the costs of miscommunication are the same for the sender and the receiver and 
symmetry allows us to use one q2 after both messages.

We now establish two equilibrium facts that will be useful later on. First define,

δ∗
2 = 4b2

1 + 4b2

and

q∗
2(p) = p − q̄

1 − q̄

In the equilibrium that we will construct, the sender chooses δ∗
2 and the receiver plays the biased action with total proba-

bility q∗
2 (p) in period 2. The first fact states that if the future is less important than δ∗

2 , then the biased receiver plays the 
biased action with probability one in period 2.

Fact 1. If δ2 < δ∗
2 , then in any equilibrium the biased receiver plays the biased action with probability one in period 2, i.e., q2 = p.

The proof of this fact is simple. If the biased receiver plays the biased action in period 2, i.e., q2 = p, then her cost 
is (1 − δ2) c2 + δ2/4. If, on the other hand, she plays the unbiased action her cost is at least (1 − δ2)

(
c2 + b2

)
. δ2 < δ∗

2
implies (1 − δ2) c2 + δ2/4 < (1 − δ2)

(
c2 + b2

)
, i.e., the cost of playing the biased action is smaller than the cost of playing 

the unbiased action. Intuitively, when the future is not important enough, the future reputational benefit of playing the 
unbiased action is smaller than its current cost. Therefore, in the current period the biased receiver plays the biased action.

In order to state our second fact, first note that if the total probability of playing the biased action in period 2 is q∗
2(p), 

then Bayes’ rule implies that beliefs must assign the following probability to the biased receiver in the next period (after 
the unbiased action):

p1 = p − q∗
2(p)

1 − q∗
2(p)

.

Definition of q∗
2 implies that if the total probability of the biased action is q2 = q∗

2 (p) in period 2, then p1 = q̄ and if 
q2 < q∗

2 (p), then p1 > q̄. In other words, q∗
2(p) is the smallest probability of the biased action in period 2 that makes p1 ≤ q̄

and hence full revelation in period 1 possible. This leads to the following fact:

Fact 2. In any equilibrium, the total probability of the biased action is at least q∗
2 (p) in period 2 and the probability assigned to the 

biased receiver in period 1 after the unbiased action is at most q̄. In other words, q2 ≥ q∗
2 (p) > 0 and p1 ≤ q̄ in any equilibrium.

The proof of this fact is also simple. As we have argued above, if q2 < q∗
2 (p), then p1 > q̄. But p1 > q̄ implies that 

the sender will not provide any information in period 1 after the unbiased action, i.e., there is no benefit of playing the 
unbiased action for the biased receiver. Therefore, she should play the biased action with probability one, i.e., q2 = p ≥
q∗

2 (p), contradicting the hypothesis q2 < q∗
2 (p). Finally, Bayes’ rule and q2 ≥ q∗

2 (p) imply that p1 ≤ q̄ in any equilibrium. 
The intuition behind Fact 2 is simple: the biased receiver must play the biased action with high enough probability, because, 
otherwise, her reputation next period after the unbiased action will be so bad that she will not receive any information. We 
should also note that, q2 ≥ q∗

2 (p) implies that the (minimum possible) equilibrium cost of miscommunication in period 2 is 
at least as high as the one in our equilibrium.
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We are now ready to construct our equilibrium, which we denote by σ ∗ . We say that a period 2 outcome is cooperative 
if δ∗

2 is chosen and the unbiased action is played. In period 2, the sender chooses δ∗
2 and the unbiased receiver always plays 

the unbiased action given her beliefs. The biased receiver mixes after δ∗
2 so that total probability of the biased action is 

q∗
2(p), and plays the biased action with probability one (total probability p) after any other δ2. Type θ2 = 0 sender always 

sends message m2 = 0. Type θ2 = 1 sends message m2 = 1, i.e., the sender fully reveals the state, if and only if δ∗
2 has 

been chosen and it is incentive compatible to reveal the state, i.e., q∗
2(p) ≤ q̄. If δ2 �= δ∗

2 or q∗
2(p) > q̄, type θ2 = 1 sender 

sends message m2 = 0, i.e., the sender reveals no information. In period 1, the biased receiver plays the biased action with 
probability one and the sender reveals the state truthfully if and only if period 2 outcome is cooperative and it is incentive 
compatible to reveal truthfully, i.e., posterior probability that the receiver is biased after the unbiased action is smaller than 
q̄, i.e., p1 ≤ q̄. If period 2 outcome is not cooperative or p1 > q̄, then both senders send message m1 = 0, i.e., the sender 
reveals no information. Beliefs are derived from Bayes’ rule whenever possible.

Under σ ∗ , the sender’s cost is equal to

C S (σ ∗|p) = C S (δ∗
2,q∗

2 (p) , c∗
2,0|p) = (1 − δ∗

2)
(

q∗
2 (p)b2 + c∗

2

)
+ δ∗

2

(
pb2 + q∗

2 (p)
1

4

)
, (3.4)

the biased receiver’s total cost is

C B R (
σ ∗|p) = (

1 − δ∗
2

)
c∗

2 + δ∗
2

1

4
, (3.5)

and the unbiased receiver’s cost is

C U R (
σ ∗|p) = (

1 − δ∗
2

)
c∗

2, (3.6)

where c∗
2 = 0 if q∗

2 (p) ≤ q̄, and c∗
2 = 1/4 otherwise.

We first show that σ ∗ is an equilibrium. Let us start with period 1. The biased receiver plays the biased action with 
probability one in period 1, which is the unique sequentially rational behavior. The sender reports truthfully if and only if 
the previous period’s outcome is cooperative and p1 ≤ q̄, which is also sequentially rational.

Now let us consider period 2 behavior. After histories that start with δ∗
2 , the receiver plays the biased action with total 

probability q∗
2 (p), which implies that communicating truthfully is sequentially rational if q∗

2 (p) ≤ q̄. If the receiver plays 
the unbiased action, then she induces a cooperative history and posterior belief is p1 = q̄ (As we have shown before, this 
follows from the definition of q∗

2(p)). Therefore, she learns the state perfectly in the next period and plays her best period 
action. This implies that the total cost of playing the unbiased action is (1 − δ∗

2) 
(
b2 + c2

)
, where c2 ∈ [0,1/4] is the cost 

of miscommunication. If the receiver plays the biased action, then her cost is equal to the same cost of miscommunication 
c2 in the current period, but she induces a history that is not cooperative and receives no information in the next period, 
which costs her 1/4. Definition of δ∗

2 implies that (1 − δ∗
2) 

(
b2 + c2

) = (1 − δ∗
2)c2 + δ∗

2/4, i.e., the receiver is indifferent 
between the biased and the unbiased actions and hence playing the biased action with total probability q∗

2 (p) is sequentially 
rational. Now consider histories that start with δ2 �= δ∗

2 . In this case, the sender provides no information in both periods 
irrespective of what the receiver does. Therefore, it is sequentially rational for the biased receiver to play the biased action 
with probability one after any δ2 �= δ∗

2 . If the sender chooses δ2 �= δ∗
2 , there is no information revelation and the biased 

receiver plays the biased action with probability one in both periods. Therefore, the cost of the sender is equal to pb2 +
1/4, which is the highest possible cost for him, and hence higher than the cost of choosing δ∗

2 , which is at most (1 −
δ∗

2) 
[
q∗

2(p)b2 + 1/4
]+ δ∗

2

[
pb2 + q∗

2(p)/4
]
.

We will now show that σ ∗ yields the unique payoff dominant equilibrium outcome. Let us start with the biased receiver. 
As we have established in Fact 2, q2 > 0 in any equilibrium, i.e., she plays the biased action in period 2 with positive 
probability. This implies that, in any equilibrium, her cost is equal to the cost of playing the biased action, i.e., (1 − δ2) c2 +
δ2/4. Since c2 ≤ 1/4, she prefers smaller δ2. But if δ2 is smaller than δ∗

2 , then Fact 1 implies that q2 = p > q̄ and hence she 
receives no information in period 2. Note that here we are using the Markovian property, which, as we have argued before, 
implies that if the total probability of the biased action is greater than q̄ then the sender reveals no information. Therefore, 
if δ2 < δ∗

2 , then the cost of miscommunication in period two is c2 = 1/4 and her total cost is the highest possible, i.e., 1/4. 
Therefore, the best for her is the minimum δ2 that may possibly allow information revelation in period 2, i.e., δ∗

2 .
Now let us consider the unbiased receiver. If q∗

2 (p) ≤ q̄, then σ ∗ is optimal for the unbiased receiver because her cost 
is zero and hence no other equilibrium can yield a lower cost. If, on the other hand, q∗

2 (p) > q̄, then her cost in our 
equilibrium is equal to (1 − δ∗

2)/4. Fact 2, i.e., q2 ≥ q∗
2 (p) > q̄, implies that her cost is at least (1 − δ2) /4 in any equilibrium 

(again an implication of the Markovian property). If δ2 ≤ δ∗
2 , then (1 − δ2) /4 ≥ (

1 − δ∗
2

)
/4, that is, the unbiased receiver’s 

cost is at least as large as her cost in our equilibrium. If δ2 > δ∗
2 and the unbiased receiver’s cost is smaller than her cost in 

σ ∗ , then the biased receiver would be better off with playing the unbiased action herself, which contradicts q2 ≥ q∗
2 (p) > 0

(Fact 2).19

19 More precisely, if δ2 > δ∗
2 and (1 − δ2) /4 + δ2c1 <

(
1 − δ∗

2

)
/4, or equivalently δ2/4 > δ∗

2/4 + δ2c1, then δ∗
2/4 = (1 − δ∗

2)b2 implies that δ2/4 > (1 −
δ∗

2)b2 + δ2c1 > (1 − δ2)b2 + δ2c1. In other words, the cost of playing the biased action is larger than the cost of playing the unbiased action for the biased 
receiver, which contradicts q2 ≥ q∗

2 (p) > 0, i.e., she plays the biased action with positive probability in period 2 in any equilibrium.
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Now let us consider the sender. First note that since the cost of miscommunication in period 1 is at most 1/4, i.e., 
c1 ≤ 1/4, the sender’s cost is strictly increasing in the total probability of the biased action in period 2, i.e., q2 (see equation 
(3.1)). Intuitively, this is because a higher q2 leads to a higher cost of the biased action today and a higher probability of 
miscommunication tomorrow. Assume first that δ2 < δ∗

2 in equilibrium. In this case, Fact 1 implies that the biased receiver 
plays the biased action with probability one in period 2, i.e., q2 = p > q∗

2 (p). This implies that, for a fixed δ2, the sender’s 
cost is strictly higher than his cost if q2 were to equal to q∗

2 (p): (1) cost of miscommunication in period 2 is the highest 
possible, i.e., 1/4; (2) cost of biased action is strictly higher, i.e., pb2 >

[
(1 − δ2)q∗

2 (p) + δ2 p
]

b2. Furthermore, (1 − δ2) >(
1 − δ∗

2

)
implies that more weight is assigned to today. Since the cost of miscommunication today (= 1/4) is higher than 

the (expected) cost of miscommunication tomorrow (= p/4), smaller δ2 is costlier. Therefore, sender’s cost is higher than 
his cost in our equilibrium if δ2 < δ∗

2 .
Assume now that δ2 > δ∗

2 and remember that q2 ≥ q∗
2 (p) > 0 in any equilibrium. Since the sender’s cost is increasing in 

q2, the cost in any equilibrium where q2 > q∗
2 (p) is higher than the cost if we replace q2 with q∗

2 (p). Furthermore, when 
q2 = q∗

2 (p) sender’s cost is strictly increasing in δ2: As δ2 increases the cost of the biased action increases because in period 
1 the biased receiver plays the biased action with a higher probability than in period 2. However, the cost of miscommu-
nication decreases because it is equal to 1/4 today while its expectation is q∗

2/4 tomorrow. A straightforward computation 
shows that when b > 1/2, the increase in the cost of biased action outweighs the decrease in cost of miscommunication. 
Therefore, starting with an arbitrary equilibrium with q2 > q∗

2 (p) and δ2 > δ∗
2 and decreasing q2 to q∗

2 (p) and δ2 to δ∗
2 , 

decreases the sender’s cost. This shows that the sender’s cost is higher than his cost in our equilibrium if δ2 > δ∗
2 . We 

conclude that δ2 = δ∗
2 and q2 = q∗

2 (p) uniquely minimizes the sender’s cost.
The important ingredients in our result are the following facts that are true in any equilibrium: (1) δ2 < δ∗

2 implies that 
the biased receiver plays the biased action with probability one in period 2; (2) q2 ≥ q∗

2 (p) > 0 in any equilibrium; (3) q∗
2 (p)

is the smallest probability of biased action that makes information revelation possible in the next period. The two other 
properties that we have used come from the Markovian property: (4) the receiver plays the biased action with the same 
probabilities after each message; (5) if the total probability of the biased action in period 2 is greater than q̄, then there is 
no information revelation. The rest of the intuition can be summarized as follows: δ2 < δ∗

2 is bad for the sender because 
it leads to a higher probability of the biased action and no information today and higher probability of no information 
tomorrow. Similarly, it is bad for both types of the receiver because it leads to no information today. Sender prefers the 
smallest possible probability of the biased action today that allows information revelation tomorrow, which is q∗

2 (p). If this 
probability is indeed equal to q∗

2 (p), then he prefers smaller δ2 because the biased action is played with higher probability 
tomorrow, i.e., p > q∗

2 (p). The biased receiver also likes smaller δ2 because she may receive information today but will not 
receive it tomorrow. So, it is best for her that δ2 is the smallest that allows information revelation today, i.e., δ∗

2 . Large δ2
may benefit the unbiased receiver, but if it does then the biased receiver would also prefer playing the unbiased action, 
contradicting that she must play the biased action with positive probability, i.e., ingredient (2) above.

To summarize, if the initial reputation of the receiver is bad, i.e., p > q̄, then in the unique payoff-dominant equilibrium 
outcome: (1) The relative size of the stakes in period 2 is chosen so that the receiver is indifferent between the biased and 
the unbiased actions for that period, given that the sender will communicate truthfully after the unbiased action and will 
provide no information otherwise; (2) The receiver mixes in such a way that her reputation next period is just good enough 
to make truthful communication possible; (3) A larger share of the stakes is left to the future (δ∗

2 > 1/2), i.e., starting small 
is the unique payoff-dominant equilibrium outcome.

Remark 2. In order to understand the role of reputational concerns, it might be instructive to compare the equilibrium we 
have presented above with the scenario in which the sender learns the receiver’s type. Assuming that b > 1/2, once the 
sender learns that the receiver is biased, he will provide no information and the receiver will play the biased action in 
each period. Therefore, the cost of the sender will be b2 + 1/4. If, on the other hand, the sender learns that the receiver 
is unbiased, then the sender’s cost will be zero in every period. Therefore, if the sender knows that he will learn the type 
of the receiver, his ex ante cost is p 

(
b2 + 1/4

)
. This cost is higher than his cost in our equilibrium. Intuitively, in our 

equilibrium, the probability of the biased action is smaller in each period, which directly benefits the sender, and also leads 
to higher probability of truthful communication in the future. This is the main reason why the sender does not prefer to 
screen the receiver early on in the game.

Remark 3. We should also note that, for our results, it is not necessary that the sender and the receiver share the same δ2. 
The main role of δ2 is to provide incentives to the biased receiver to play the unbiased action with positive probability. It 
is easy to show that if the sender has a fixed δ2 and the choice variable is the size of the stakes for the receiver, then our 
main result still goes through, i.e., σ ∗ is still the payoff-dominant equilibrium.

Remark 4. In the analysis above we have restricted the search for payoff-dominant equilibrium to those in which the Markov 
property, i.e., Property 2, holds.

If, however, we allow the sender to coordinate her communication strategy across periods, then the incentive compati-
bility constraint for telling the truth is relaxed. When the Markov property holds, the binding constraint for telling the truth 
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in the first period is given by q2b2 ≤ q2b2 + 1 − 2q2b, or q2 ≤ q̄, where q2 is the total probability with which the agent plays 
the biased action. Without the Markov restriction, this constraint is given by

(1 − δ2)q2b2 + δ2

(
p2b2 + 1

4
q2

)
≤ (1 − δ2)

(
q2b2 + 1 − 2q2b

)
+ δ2

(
p2b2 + 1

4

)
,

which is equivalent to

q2 ≤ q̂(δ) ≡ δ2/4 + (1 − δ2)

δ2/4 + (1 − δ2)2b
.

Otherwise, the non-Markov payoff-dominant equilibrium is exactly the same as the Markov equilibrium. In particular, 
q2 = 1 − (1 − p) / (1 − q̄) in any payoff-dominant equilibrium, both Markov and non-Markov. Since, q̂(δ) < q̄ for any b > 1/2, 
truth-telling is optimal for a larger set of prior probabilities in the non-Markov payoff-dominant equilibrium.

Remark 5. It is easy to adapt the arguments in the text and show that, in any payoff-dominant equilibrium, the receiver 
plays the biased action with the same probability after any message sent with positive probability. In other words, the 
symmetry part of the property is not binding for our results in the two-period model. However, the analysis rapidly becomes 
intractable for N > 2 without the symmetry assumption. Beyond tractability, there is also an economic justification for the 
symmetry assumption: the choice of stakes is independent of whether the receiver plays symmetrically because stakes are 
chosen to leave the receiver indifferent between playing the biased action in the current period and playing the unbiased 
action in the current period and then switching to the biased action in the subsequent period. Importantly, the probability 
of playing the biased action in the current period and therefore the communication strategy of the sender does not enter 
this calculation of the stakes.

Remark 6. If p ≤ q̄, then the sender’s cost in our equilibrium is δ∗
2 pb2. The sender’s cost in any equilibrium with δ2 > δ∗

2 is 
at least δ2 pb2, which is strictly greater than δ∗

2 pb2. If δ2 < δ∗
2 , then q2 = p and the sender’s cost is at least pb2, which is 

also strictly greater than δ∗
2 pb2. Therefore, our equilibrium uniquely minimizes the sender’s cost when p ≤ q̄ as well.

However, when p ≤ q̄, equilibrium σ ∗ is not optimal for the receiver. Still, there is an equilibrium which is receiver-
optimal and has the same property of starting small. In this equilibrium δ2 = 1, the sender provides full information in 
both periods and the biased receiver plays the unbiased action in the first and the biased action in the last period. In other 
words, the players effectively play a one-period game with the same prior. The costs of both the biased and the unbiased 
receivers are equal to zero in this equilibrium, while the cost of the biased receiver is at least δ∗

2/4 in equilibrium σ ∗ .

4. The main result

In this section, we will show that the main results we have obtained in the two-period version of the model go through 
in the general model with N periods: There is a unique sender-optimal equilibrium outcome and this outcome is also 
optimal for the receiver as long as the receiver has a sufficiently bad initial reputation. In other words, for sufficiently bad 
initial reputation levels, there is a unique equilibrium outcome that Pareto dominates all other equilibrium outcomes. If the 
potential conflict of interest is large enough, i.e., b > 1/2, this equilibrium outcome is characterized by “starting small”, i.e., 
increasing the stakes over time as long as the receiver does the “right thing”. We also show that as the receiver’s potential 
bias b increases, the initial stakes become smaller but they grow faster.

In order to facilitate the definition of the payoff-dominant equilibrium we first need some preliminary definitions. Let 
δ∗

1 = 0 and define δ∗
i recursively as

δ∗
2 = 4b2

1 + 4b2
(4.1)

δ∗
i = 4b2

1 + 4b2
∏i−1

j=2 δ∗
j

, i = 3, . . . , N (4.2)

For any p ∈ [0,1], let20

q∗
i (p) =

⎧⎨
⎩
(

1 − 1−p
(1−q̄)i−1

)+
, q̄ < 1 or i = 1

0, otherwise
(4.3)

Define the set of period i histories H∗
i as follows. H∗

N = {∅} and, for any i = N − 1, . . . , 1, a history h = (oN , oN−1 . . . ,

oi+1) ∈ H∗
i if (1) period N outcome, oN = (δN , θN ,mN ,aN), is such that δN = δ∗

N and

20 x+ = max {0, x} for any x ∈R.
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aN =
{

mN , if q∗
N (p) ≤ q̄

1/2, if q∗
N (p) > q̄

(2) for all j = N − 1, . . . , i + 1, period j outcome, o j = (
δ j, θ j,m j,a j

)
, is such that δ j = δ∗

j and a j = m j . In other words, a 
history belongs to H∗

i if in each previous period j, δ∗
j has been chosen and the receiver played the unbiased action after 

each message believing that the sender was telling the truth (except in period N , where she believes the sender is telling 
the truth if and only if doing so is sequentially rational for the sender).

We will define the payoff-dominant equilibrium assessment σ ∗ = (τi,μi,qi, pi, λi) for the sender-game and point out 
how it differs for the receiver-game in Section 5. After each history in H∗

i , the sender chooses δ∗
i and after any other history 

he chooses δi = 0, i.e.,

τi (h) =
{

δ∗
i , h ∈ H∗

i

0, otherwise
(4.4)

If h ∈ H∗
i and δ∗

i has been chosen in period i, then the receiver’s total probability of playing the biased action is equal to 
q∗

i (pi (h)), where q∗
i is defined in (4.3); otherwise, the biased receiver plays the biased action with probability one, i.e.,21

qi (h, δi) =
{

q∗
i (pi (h)) , if h ∈ H∗

i , δi = δ∗
i , pi (h) < 1

pi (h) , otherwise
(4.5)

The sender communicates truthfully in period i as long as the total probability of the biased action in that period is less 
than or equal to q̄, the history belongs to H∗

i , and δ∗
i has been chosen. Since we assumed type θi = 0 sender sends message 

mi = 0, this implies that the probability with which type θi = 1 sends message mi = 1 is given by

μi (h, δi) =
{

1, if h ∈ H∗
i , δi = δ∗

i , qi (h, δi) ≤ q̄, pi (h) < 1

0, otherwise
(4.6)

which implies that

μN (δN) =
{

1, if δN = δ∗
N , q∗

N (p) ≤ q̄

0, otherwise

In any period i, the unbiased action is given by a0 (λi (h, δi,m)), where

λi (h, δi,m) =
{ 1−μi(h,δi)

2−μi(h,δi)
, m = 0

1, m = 1
(4.7)

Beliefs on the receiver’s type are defined as follows: pN (∅) = p and

pi−1 (h,oi) = 1 − 1 − pi (h)

1 − qi (h, δi)
, for all h ∈ Hi, oi ∈ O i (4.8)

Note that if the players play according to σ ∗ up to and including period i + 1, which implies that hi ∈ H∗
i , then hi−1 /∈

H∗
i−1 if δi �= δ∗

i is chosen or if in period i the receiver plays an action that is different from the unbiased action, i.e., plays 
ai �= mi . In that case, the sender assigns probability one to the event that the receiver is biased, provides no information, 
and terminates the game by choosing δi−1 = 0.

Theorem 1. The assessment σ ∗ is a perfect Bayesian equilibrium and induces the unique sender-optimal equilibrium outcome. If 
p > 1 − (1 − q̄)N−1 , then σ ∗ is also a receiver-optimal equilibrium and therefore payoff-dominant.

In the equilibrium σ ∗ described above, the sender leaves a proportion δ∗
i of the total stakes in the relationship to 

subsequent periods on the equilibrium path. This proportion leaves the receiver exactly indifferent between the biased and 
the unbiased actions in period i, given that in each subsequent period, the sender communicates truthfully after having 
observed the unbiased action in all prior periods and provides no information otherwise.

In order to further describe the equilibrium, let us first focus on the case in which σ ∗ is payoff-dominant, i.e., p >
1 − (1 − q̄)N−1. In this case the receiver plays the biased action with total probability equal to 1 − (1 − p)/(1 − q̄)N−1 in 
period N and plays the biased action with total probability q̄ thereafter. The sender reports the state truthfully in every 

21 Note that in the last period δ1 = δ∗
1 = 0 by construction.
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Fig. 1. Equilibrium behavior for b = 1, p = 0.9. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

period except possibly the first period, i.e., period N in our notation. In period N , total probability of the biased action may 
exceed q̄ and if this is the case the sender communicates no information. In other words, if the receiver has a sufficiently 
bad initial reputation, then informative communication may fail in the first period, i.e., period N , but communication is fully 
informative thereafter.

If p ≤ 1 − (1 − q̄)N−1, then the sender-optimal equilibrium in not receiver-optimal anymore. In the sender-optimal equi-
librium σ ∗ , the receiver plays the unbiased action with probability one until the game reaches period k, where k is the 
first period (largest integer) such that p > 1 − (1 − q̄)k−1. The receiver plays the biased action with total probability equal 
to 1 − (1 − p)/(1 − q̄)k−1 ≤ q̄ in period k and plays the biased action with total probability q̄ in all subsequent periods. The 
receiver’s reputation remains constant and equal to 1 − p until the game reaches period k and then monotonically increases 
in each period to reach exactly 1 − q̄ in the last period of the game. The sender reports the state truthfully in every period 
after observing the unbiased action.

Fig. 1 plots the importance parameter (γi ), reputation of the receiver (1 − pi ), and the total probability with which the 
receiver plays the biased action (qi ) for each period i, when the bias is equal to 1, the prior on b is 0.9, and total number 
of periods is 10. Note that q̄ = 1/2 and hence k = 4.

Remark 7. If p ≤ 1 − (1 − q̄)N−1, then σ ∗ is not receiver-optimal. Let i∗ (p) denote the largest i such that p > 1 − (1 − q̄)i−1. 
Consider an equilibrium σ ∗∗ where in all periods N through i∗(p) + 1, the stakes are chosen to be zero, i.e., δi = 1, the 
sender communicates truthfully, and the receiver plays the unbiased action with probability one. Starting in period i∗(p), 
the equilibrium σ ∗∗ then follows σ ∗ . Lemma 6 in the Appendix proves that this equilibrium is receiver-optimal irrespective 
of the identity of the player who chooses the stakes. In this equilibrium, players act as if the game effectively begins 
in period i∗ (p). Notice that this equilibrium also entails starting small. The unbiased receiver is indifferent between this 
equilibrium and σ ∗ because the sender communicates truthfully in every period. On the other hand, the biased receiver’s 
payoff in equilibrium σ ∗∗ strictly exceeds her payoff in equilibrium σ ∗ . This is because the stakes are chosen to be zero in 
exactly those periods in which the unbiased action is played with probability one in equilibrium σ ∗ . That is, the receiver 
maintains her reputation at zero cost in periods N through i∗(p) + 1.

Remark 8. In Remark 4, we have commented on how the results would change in the two-period model if we remove 
restrictions imposed by the Markov property, i.e., Property 2. For N > 2, we conjecture that any payoff-dominant non-
Markov equilibrium involves similar behavior to that in the Markov equilibrium, except that truth-telling constraints are 
relaxed, i.e., in (4.6) q̄ is replaced with a properly defined q̂i (δi, δi−1, . . . , δ2) > q̄ in a similar way as in the two-period 
model.

We should also note that, when the receiver chooses the stakes and faces a series of senders each of whom interacts with 
the receiver for only one period, then our main results go through in the general model without imposing this Markovian 
restriction. We will comment more on the receiver-game in Section 5.

Remark 9. We have assumed that the unbiased receiver is a commitment type who plays her myopic best response, i.e., 
the unbiased action given her beliefs, in each period, which is also the best period action for the sender. The fact that the 
unbiased receiver’s preferences are perfectly aligned with that of the sender provides one justification for that assumption. 
Furthermore, the equilibrium we have specified remains an equilibrium even if the unbiased receiver is a fully strategic 
player. However, there may exist other Markov equilibria, such as a separating equilibrium where, in some period, the 
unbiased receiver plays an action different from the unbiased action while the biased receiver plays the biased action. Our 
assumption that the unbiased receiver is a commitment type who always plays the unbiased action rules out such equilibria.
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Fig. 2. Importance parameter for different biases.

4.1. Allocation of stakes

We are now ready to answer the main question that motivated our model: What is the equilibrium path of the stakes 
or the importance of the decisions?

Proposition 1. Suppose that play unfolds according to equilibrium σ ∗ and denote by γ ∗
i the proportion of the total stakes in period i in 

this equilibrium. If b > 1/2, then the equilibrium path is characterized by progressively larger stakes, i.e., γ ∗
N < γ ∗

N−1 < · · · < γ ∗
2 < γ ∗

1 , 
whereas if b < 1/2, then the size of the stakes decreases over time, i.e., γ ∗

N > γ ∗
N−1 > · · · > γ ∗

2 > γ ∗
1 . As b increases, the initial stakes 

become smaller but they grow faster, i.e., γ ∗
j /γ ∗

i is increasing in b for all j < i.

Proof. See Section 8. �
Let a = 4b2. The proof of Proposition 1 shows that the proportion of the stakes in the first period, i.e., period N , is given 

by

γN = 1∑N−1
j=0 a j

,

and then each subsequent proportion is just a times the previous one. If a > 1, i.e., b > 1/2, this implies that each period 
receives more weight than the previous one. More precisely, the growth rate of γi is equal to a − 1 > 0, i.e., the greater the 
potential bias of the receiver, the higher the growth rate of the stakes. If, on the other hand a < 1, i.e., b < 1/2, then the 
size of the stakes decreases over time.

In order to gain some intuition for this result let us consider the two-period model where the first period’s proportion is 
γ2 and the last period’s γ1. If the biased receiver plays the biased action in the first period, then her cost is γ1/4. If she plays 
the unbiased action, then her cost is γ2b2, assuming that after playing the unbiased action she receives full information as 
she does in our equilibrium. Therefore, the receiver is indifferent between the biased and the unbiased actions if and only 
if γ1/4 = γ2b2 or γ1 = aγ2.

Fig. 2 plots the evolution of the stakes over time for three different bias parameters, two of which are greater than 1/2
and one is smaller than 1/2. Observe that, when the potential bias is larger, the stakes are initially smaller but they grow 
faster. This is because the larger the bias the more important the future must become in order for the biased receiver to 
play the unbiased action. Since the total size of the stakes is normalized to one, this implies smaller stakes at the beginning 
and a higher growth rate.

Finally, we can show that the equilibrium costs of the players are decreasing in the number of periods N .

Proposition 2. Cost of the sender strictly decreases in N in any sender-optimal equilibrium. Cost of (both types of) the receiver is 
decreasing in N in any receiver-optimal equilibrium.

Proof. See Section 8. �
This result implies that, if the sender or the receiver had a choice over the number of periods over which to spread the 

total stakes available in their relationship, then they would choose as many periods as possible. Of course, this neglects any 
cost of time, which would act as a countervailing force.



278 A. Atakan et al. / Games and Economic Behavior 121 (2020) 265–296
5. The receiver-game

In the receiver-game, it is the receiver who chooses δi at the beginning of each period i rather than the sender. There-
fore, τi is the receiver’s strategy and specified as τi : Hi × {0,b} → [0, 1]. The sender’s belief in period i is a mapping 
pi : Hi × [0,1] → [0, 1], and hence different δi may lead to different beliefs. Finally, Property 2 changes as follows: For 
any i = N, . . . , 1 and h, h′ ∈ Hi : (1) pi (h) = pi

(
h′) implies τi(h, β) = τi(h′, β) for any β ∈ {0,b}, μi(h, δi, θi) = μi(h′, δi, θi), 

αi (h, δi,mi) = αi
(
h′, δi,mi

)
; (2) αi (h, δi,0) = αi (h, δi,1).

Adapt the assessment σ ∗ defined in Section 4 by replacing the definition of τi given in (4.4) with

τi (h,0) = τi (h,b) =
{

δ∗
i , h ∈ H∗

i

0, otherwise
(5.1)

and adding

pi (h, δi) =
{

pi (h) , δi = δ∗
i

1, otherwise
(5.2)

In other words, both types of the receivers choose δ∗
i as long as the history is cooperative and the sender’s belief does not 

change after observing δ∗
i , while it assigns probability one to the biased receiver after any other δi . We prove in Section 8

that Theorem 1 as well as Propositions 1 and 2 are true verbatim for the receiver-game. In what follows, we provide some 
intuition for the two-period version of the model.

It is easy to show that σ ∗ is a perfect Bayesian equilibrium of the two-period receiver-game. Furthermore, Fact 1 is true 
verbatim and Fact 2 is true as long as the prior on the biased receiver is greater than or equal to p. We now argue that 
σ ∗ yields the payoff-dominant equilibrium outcome if p > q̄. Let us consider the biased receiver first. The key observation 
in this case is that the posterior on the biased receiver, say p′ , must be greater than or equal to the prior p after some δ2
chosen with positive probability by the biased receiver. (This follows from Bayes’ rule.) But then the arguments we have 
made in the sender-game go through. Again, intuitively, p′ ≥ p > q̄ implies that the biased receiver must play the biased 
action with positive probability in period 2, because otherwise her reputation in period 1 will be p′ > q̄ and she will receive 
no information from the sender, which makes playing the unbiased action suboptimal in period 2. Therefore, her total cost 
is (1 − δ2) c2 + δ2/4, i.e., she accrues the highest information cost in period 1 and hence she would like to lower δ2. But if 
δ2 goes below δ∗

2 , Fact 1 and p′ > q̄ imply that she receives no information in period 2. Therefore, the best for her is the 
minimum δ2 that may possibly allow information revelation in period 2, i.e., δ∗

2 .
Now consider the unbiased receiver. If q∗

2 (p) ≤ q̄, then our equilibrium is optimal for the unbiased receiver because 
her cost under that equilibrium is zero. Suppose now that q∗

2 (p) > q̄. The key observation is that, as we argued above, 
the posterior after some δ2 chosen with positive probability by the biased receiver must be greater than or equal to the 
prior and Fact 2 implies that total probability of the biased action q2 ≥ q∗

2 (p) > q̄ after such δ2. Therefore, the information 
cost must be 1/4 after δ2. But then the information cost must be 1/4 after any δ′

2 chosen by the unbiased receiver since, 
otherwise, the biased receiver would rather choose δ′

2, receive some information and then play the biased action. This 
would lead to a smaller cost for her. Therefore, the cost of the unbiased receiver must be at least 

(
1 − δ′

2

)
/4. The rest of 

the arguments for why this must be greater than equal to her cost in our equilibrium is exactly like the one we provided 
in the sender-game.

Now let us consider the sender. First suppose that both types pool and choose the same δ2. After observing δ2, the 
posterior belief of the sender is the same as the prior and the arguments we have made for the sender-game are still valid. 
Second, suppose that the sender and receiver choose different δ2s in period 2, i.e., let σ be a separating equilibrium. The 
sender’s payoff after any δ2 in the support of the biased receiver’s strategy is equal to b2 + 1

4 , because the sender believes 
that the receiver is biased with probability one after observing any such δ2, communicates no information in either period, 
and the biased receiver plays the biased action in both periods. Therefore, the sender’s cost under σ is at least p 

(
b2 + 1

4

)
, 

which strictly exceeds the sender’s cost under σ ∗ .
Below, we sketch the argument for the more general case. Consider any equilibrium σ where the biased and unbiased 

receivers randomize over a range of δ2s. Bayesian consistency (i.e., the martingale property of beliefs) implies that the 
expectation of the sender’s posterior belief, formed after observing the receiver’s choice of δ2, is equal to her prior belief. 
More precisely, E [p(δ2)] = p, where p(δ2) is the sender’s posterior after observing δ2 and the expectation is taken over 
the choice of δ2 using the probability distribution in equilibrium σ . Define the function f (p′) = C S

2

(
σ ∗|p′) if q∗

2(p′) ≤ q̄

and f (p′) = C S
2

(
σ ∗|p′)− (1−δ∗

2 )

4 , otherwise. In words, f (·) is equal to the sender’s cost under σ ∗ , excluding the information 
costs in period 2. The arguments we have made for the sender-game are still valid after each realization of δ2 and therefore 
the sender’s cost after observing any δ2 in the support of σ exceeds the cost under σ ∗ when the initial belief is equal 
to p(δ2). Therefore, C S

2 (σ |p(δ2)) ≥ C S
2 (σ ∗|p(δ2)) ≥ f (p(δ2)). A straightforward computation shows that f (·) is a convex 

function. Therefore, E 
[
C S

2 (σ |p(δ2))
] ≥E [ f (p(δ2))] ≥ f (E [p(δ2)]) = f (p).

If q∗
2(p) ≤ q̄, then the information cost in period 2 is equal to zero and thus E 

[
C S

2 (σ |p(δ2))
] ≥ f (p) = C S

2 (σ ∗|p). On 
the other hand, if q∗(p) > q̄, a key step in our argument shows that C S (σ |p(δ2)) ≥ (1 − δ∗) 1 + f (p(δ2)) for each δ2 in 
2 2 2 4
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the support of σ .22 Therefore, using the convexity of the function f establishes the result through the following chain of 
inequalities

E
[

C S
2 (σ |p(δ2))

]
≥E

[
(1 − δ∗

2)
1

4
+ f (p(δ2))

]
≥ (1 − δ∗

2)
1

4
+ f (p) = C S

2

(
σ ∗|p) .

Intuitively, information revelation through the choice of stakes only hurts the sender because it makes communication more 
difficult and the sender prefers to communicate even with the biased receiver.

6. Related literature

The main issue addressed in this paper, i.e., dynamic allocation stakes, has been analyzed in prisoners’ dilemma type 
environments before. Watson (1999) and Watson (2002) analyze an infinitely repeated prisoners’ dilemma type game with 
incomplete information and variable stakes over time. In the stage game, the “low” type player prefers to “betray”, which 
benefits herself, injures the other player, and ends the game, while the “high” type prefers cooperation as long as the other 
player also cooperates. He shows that starting with small stakes supports perpetual cooperation between the high types as 
an equilibrium outcome. Watson (2002) assumes that players commit to the way stakes change over time while Watson 
(1999) characterizes an equilibrium in which the stakes satisfy a renegotiation condition. Andreoni and Samuelson (2006)
study a twice repeated prisoners’ dilemma game with incomplete information and variable stakes. Players are conditional 
cooperators in the sense that, in the stage game, a type-α player prefers to cooperate if she believes that the other player 
cooperates with at least α probability.23 They characterize the equilibria of this game with exogenously given stakes and 
show that “starting small” leads to the best payoffs for the players.24 The main point of departure of our model from 
these papers is that, in contrast to a prisoners’ dilemma game, our stage game is a game of strategic communication that 
exhibits common interest as well as conflict of interest. Furthermore, we assume that one of the players has the authority 
to determine the stakes involved in their relationship and analyze how they are determined in equilibrium.25

Our paper is also related to Aghion et al. (2004), which shows that, if control rights are not contractible, then trans-
ferring them unconditionally to the agent and learning her willingness to cooperate could be the optimal arrangement for 
the principal. In their model, the principal would like to learn the agent’s type and the “bad” agent has no incentive for 
reputation, while in our case the “bad” receiver has an incentive to maintain a “good” reputation and the sender does not 
prefer to screen the agent types because doing so hinders communication.26

In each period of our model, the sender and the receiver are involved in a cheap-talk game, which has been introduced by 
Crawford and Sobel (1982). They analyze the equilibrium communication behavior between an informed but biased sender 
and an uninformed receiver and show that the informativeness of equilibrium decreases in the degree of the sender’s bias. 
There are two main differences between Crawford and Sobel (1982) and our model: (1) The degree of preference divergence 
between the sender and receiver is the private information of the receiver; (2) The game is repeated, where in each period 
a new state of the world is realized but preferences remain the same.

Morris (2001) also differs from Crawford and Sobel along those two dimensions. The main difference is that in Morris 
(2001) the bias is the private information of the sender whereas in our model it is the private information of the receiver. 
Morris (2001) finds that the unbiased sender, who prefers to inform the receiver about the state of the world, may choose 
not to do so in the first period in order to be regarded as unbiased and hence better inform the receiver in the future. In 
contrast, in our model, the biased receiver may mimic the unbiased receiver in order to maintain a good reputation and 
receive better information in the future. Furthermore, we analyze the equilibrium allocation of the stakes over time whereas 
it is exogenously given in Morris (2001).

Morgan and Stocken (2003) analyzes a one period cheap-talk game with a sender with uncertain preferences, whereas 
Sobel (1985) and Benabou and Laroque (1992) are earlier papers that analyze repeated cheap-talk games, except that they 
assume that the unbiased (or good) sender always tells the truth. Li and Madarász (2008) extend Morgan and Stocken (2003)
so that the bias can be in either direction and compare equilibria under known and unknown biases, while Dimitrakas and 
Sarafidis (2005) allow the bias to have an arbitrary distribution. Our model differs from these papers in that we assume the 
bias is receiver’s private information and that the cheap-talk game is repeated.

22 This is because the information cost in period 2 must be the same for any δ2 in the support σ since the biased agent must be indifferent between 
these choices of stakes. Moreover, there is a δ2 in the support of σ where the information cost in period 2 is equal to 1/4. This is because there must be 
a δ2 in the support of σ such that p(δ2) ≥ p and therefore q2(p(δ2)) ≥ q∗

2(p) > q̄.
23 They allow α to be negative or greater than one, which corresponds to unconditional cooperators or defectors, respectively.
24 Andreoni and Samuelson (2006) also test their theory experimentally and find empirical support for their predictions. Andreoni et al. (2016) extend 

this paper so that players choose the stakes themselves in the experiment. They show that the subjects indeed choose the payoff maximizing strategy of 
starting small. Other papers that feature gradualism as an optimal or equilibrium outcome include Marx and Matthews (2000), Blonski and Probst (2004), 
and the loan model in Section 6 of Sobel (1985).
25 We also show that gradualism is not always the best equilibrium arrangement for the sender. Indeed, if the potential conflict of interest between the 

receiver and the sender is small enough, then the opposite arrangement of “starting big” turns out to be optimal for the sender.
26 Also related is Halonen (1997), which shows that a joint ownership structure and a concern for reputation may help solve the hold-up problem and 

implement the first best in a (twice) repeated game with incomplete information.



280 A. Atakan et al. / Games and Economic Behavior 121 (2020) 265–296
There is also a recent literature on repeated cheap-talk games, which mostly assumes infinite horizon and explores the 
set of equilibria (in the limit) as the players’ discount rates converge to one. (See Renault et al. (2013), Best and Quigley 
(2017), Margaria and Smolin (2018).)27 Our model is outside of this framework because we assume that the game is finitely 
repeated and that the size of the stakes is determined in equilibrium. Furthermore, this literature assumes that only the 
sender has private information, while in our model the receiver has private information as well, which is the main factor 
that sustains truthful communication.

Another related paper is Ottaviani and Sørensen (2001) in which a sequence of privately informed experts, who are 
exclusively concerned about their reputation for being well-informed, offer public advice to an uninformed receiver. They 
show that reputational concerns may lead to herding by the experts.28 Our model can also be framed as a model of 
sequential cheap-talk with multiple experts (senders) but we have a receiver who is privately informed about the preference 
divergence between herself and the experts, and it is the receiver who is concerned about reputation.29

Our work is also related to the literature on pandering. Maskin and Tirole (2004) analyze a two-period model where in 
the first period an official chooses a policy, which determines whether she stays in office in the second period. They show 
that if the official’s desire to stay in office is sufficiently strong, then in the first period she could choose a popular action, 
i.e., she could pander to public opinion even if she does not think that the public opinion is the optimal policy. In our 
model, incentives to pander come from the desire to receive better information rather than the desire to stay in office.30

Another related strand of literature is the one on career concerns pioneered by Holmström (1999), in which an employ-
ee’s concern about her reputation for talent leads her to exert costly effort even without explicit incentives provided by a 
contract.31 In our model, concern for reputation for being unbiased arises from the receiver’s incentives to obtain accurate 
information and leads her to act in the interest of the sender.

7. Concluding remarks

We have analyzed a model of repeated cheap-talk in which the conflict of interest is the private information of the 
receiver and either the sender or the receiver can determine how the stakes involved in their relationship evolve over 
time. We find that, if the potential conflict of interest is large, then the stakes increase over time, i.e., “starting small” or 
“gradualism” is the unique (payoff-dominant) equilibrium arrangement.

Basically, the stakes are designed in order to utilize the receiver’s incentives to build reputation for being unbiased 
and facilitate communication. In equilibrium, the receiver mixes between her own and the sender’s favorite action and the 
sender communicates truthfully with the receiver throughout their relationship as long as the receiver always does the 
“right thing”.

We also showed that if the potential bias is small, i.e., smaller than 1/2, then this pattern is reversed and the size 
of the stakes decreases over time. Note that if b < 1/2, or more generally the initial reputation of the receiver is good 
enough to make truthful communication possible even in the one-shot game, i.e., pb < 1/2, the sender-optimal equilibrium 
is not receiver-optimal. In fact, in this case, the sender-optimal equilibrium is sustained by the sender’s off-the-equilibrium 
threat to communicate no information if the receiver plays the biased action. This threat is perfectly credible when b > 1/2, 
because the only equilibrium behavior once the receiver is revealed to be biased is to reveal no information. The same is 
not true when b < 1/2. Since the sender prefers truthful communication ex-ante, such a threat may be regarded as non-
credible. If that is the position one takes, then our results should be deemed most convincing and interesting for those 
cases in which the potential bias of the receiver is large enough.

The current work raises many other questions and could be extended in a number of ways. For example, what would 
be the equilibrium path of stakes in a situation where reputational concerns create perverse incentives as in Morris (2001), 
Ely and Välimäki (2003), Maskin and Tirole (2004), or Kartik and Van Weelden (2015)? As opposed to what happens in our 
model, would it be optimal to front-load the decisions in order to avoid such perverse incentives? More technical extensions 
include richer type spaces for the players, but our preliminary analyses of such models have so far proved non-trivial.

8. Proofs

Proof of Theorem 1. We start with the proof of Lemma 2.

Proof of Lemma 2. Let λm = λi(h, δi, m), q = q (h, δi), and note that the period cost of sending message m for type θ ∈ {0, 1}
is

27 In Golosov et al. (2014), the game is finitely repeated but, unlike in ours, the state is fixed throughout. Also related is Hörner et al. (2015), which 
provides a more general analysis of dynamic Bayesian games.
28 Also see Ottaviani and Sørensen (2006a,b) in which an expert with reputational concerns (but no bias) fails to provide full information to the receiver.
29 There are other models in which multiple experts with known biases are involved in simultaneous or sequential cheap-talk, among which are Gilligan 

and Krehbiel (1989), Austen-Smith (1990), and Krishna and Morgan (2001).
30 Brandenburger and Polak (1996), Vidal and Möller (2007), Acemoglu et al. (2013), Che et al. (2013), and Morelli and Van Weelden (2013) are some of 

the other papers in the pandering literature.
31 Holmstrom’s model was originally developed in a paper published in 1982 in an edited book. See also Holmström and Costa (1986).
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(λm − θ)2 + 2(λm − θ)qb + qb2.

Property 2 implies that the continuation payoff does not depend on the message and hence only the period payoff matters 
for sequential rationality of the sender. As it is always the case in cheap-talk models, there is always an equilibrium in 
which the sender’s strategy is completely uninformative irrespective of his beliefs, the so called “babbling equilibrium”. 
Suppose that in equilibrium the sender provides full information to the receiver. Sequential rationality of type θi = 0 is 
always satisfied, whereas sequential rationality of type θi = 1 implies that qb2 ≤ 1 − 2qb + qb2 or qb ≤ 1/2. If type θi = 0
plays a completely mixed strategy, then λ2

1 + 2λ1qb = λ2
0 + 2λ0qb, which implies λ0 = λ1. This implies that both types mix 

with equal probabilities and hence the sender’s strategy is non-informative. Therefore, in any other type of equilibrium 
behavior, type 0 must be playing a pure strategy while type 1 completely mixes. Suppose, without loss of generality, that 
type 0 sends message 0. This implies that λ1 = 1 and λ0 ∈ (0, 1/2). It is easy to show that type 0’s sequential rationality is 
satisfied while type 1’s sequential rationality implies that λ0 = 1 − 2qb, which, in turn, implies that 1/4 < qb < 1/2. �
Lemma 3. Suppose that the sender chooses the allocation δ, then the assessment σ ∗ is a perfect Bayesian equilibrium.

Proof. Fix a history h ∈ H∗
1 and note that under σ ∗ the biased receiver plays the biased action with probability one and 

the sender provides information if and only if p1 (h) ≤ q̄. The receiver’s strategy is sequentially rational since period 1 is the 
last period and the sender’s strategy is sequentially rational by Lemma 2.

Let i > 1 and fix a history hi ∈ H∗
i such that pi(hi) < 1. If δi = δ∗

i , then under σ ∗ the receiver is indifferent between the 
biased and unbiased actions after any message mi . In order to see this, note that it is true for i = 2, as we previously showed 
in section 3.2. Suppose that it is true in period i − 1. If, in period i, the receiver chooses the biased action, then she induces 
a history that is not in H∗

i−1, which implies that in period i − 1 the sender chooses δi−1 = 0, provides no information, and 
the receiver plays the biased action. Therefore, the cost of playing the biased action is δ∗

i /4. If she plays the unbiased action 
instead, then she suffers a cost equal to b2 in period i but induces a history in H∗

i−1. In the next period, the sender choses 
δ∗

i−1 and provides full information. Under the induction hypothesis, her expected cost starting from period i − 1 is equal to 
δ∗

i−1/4, i.e., the cost of playing the biased action in period i − 1. Therefore, the cost of playing the unbiased action in period 
i is equal to 

(
1 − δ∗

i

)
b2 + δ∗

i δ∗
i−1/4. Definition of δ∗

i (see (4.2)) implies that

δ∗
i

1

4
= (

1 − δ∗
i

)
b2 + δ∗

i δ∗
i−1

1

4

which, in turn, implies that she is indifferent between the biased and unbiased actions in period i. Therefore, playing the 
biased action with total probability q∗

i (pi (h)) is optimal after such histories.
Lemma 2 implies that the communication strategy of the sender (see (4.6)) is sequentially rational. If the sender chooses 

δi �= δ∗
i , then in period i he provides no information and the biased receiver plays the biased action. In period i − 1, he 

chooses δi−1 = 0, provides no information, and the biased receiver again plays the biased action. Therefore, his expected 
cost of choosing δi �= δ∗

i is equal to

pi (h)b2 + 1

4
.

If he chooses δ∗
i , then the receiver plays the biased action with total probability q∗

i (pi (h)) ≤ pi (h), and this cannot lead to 
a higher expected cost. Therefore, it is sequentially rational for the sender to choose δ∗

i .
If hi /∈ H∗

i or pi (h) = 1, then the biased receiver plays the biased action with probability one. This is sequentially rational 
because the sender provides no information in any subsequent period. The sender is willing to provide no information 
because babbling is always an equilibrium of the cheap-talk game. Moreover, it is sequentially rational for the sender to 
choose δi = 0 because his continuation payoff is equal to pi(hi)b2 + 1

4 and independent of his choice of δi .
Finally, it is straightforward to check that the beliefs defined in (4.7) and (4.8) satisfy the Bayes’ rule whenever it can be 

applied conditional on reaching any h ∈ Hi . �
Lemma 4. Suppose that the receiver chooses the allocation δ, then the assessment σ ∗ is a perfect Bayesian equilibrium.

Proof. Fix a history h ∈ H∗
1 and note that under σ ∗ the biased receiver plays the biased action with probability one and the 

sender provides information if and only if p1 (h) ≤ q̄. The biased receiver’s strategy is sequentially rational since period 1 is 
the last period and the sender’s strategy is sequentially rational by Lemma 2.

Let i > 1 and fix a history hi ∈ H∗
i such that pi(hi) < 1. If δi = δ∗

i , then under σ ∗ the biased receiver is indifferent 
between the biased and unbiased actions after any message mi . In order to see this, note that it is true for i = 2, as we 
previously showed in section 3.2. Suppose that it is true in period i −1. If, in period i, the receiver chooses the biased action, 
then she induces a history that is not in H∗

i−1, which implies that in period i − 1 the receiver chooses δi−1 = 0, the sender 
provides no information, and the biased receiver plays the biased action. Therefore, the cost of playing the biased action 
is δ∗/4. If she plays the unbiased action instead, then she suffers a cost equal to b2 in period i but induces a history in 
i
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H∗
i−1. In the next period, the receiver choses δ∗

i−1 and the sender provides full information. Under the induction hypothesis, 
her expected cost starting from period i − 1 is equal to δ∗

i−1/4, i.e., the cost of playing the biased action in period i − 1. 
Therefore, the cost of playing the unbiased action in period i is equal to 

(
1 − δ∗

i

)
b2 + δ∗

i δ∗
i−1/4. Definition of δ∗

i (see (4.2)) 
implies that

δ∗
i

1

4
= (

1 − δ∗
i

)
b2 + δ∗

i δ∗
i−1

1

4

which, in turn, implies that she is indifferent between the biased and unbiased actions in period i. Therefore, playing the 
biased action with total probability q∗

i (pi (h)) is sequentially rational after such histories. Moreover, Lemma 2 implies that 
the communication strategy of the sender (see (4.6)) is sequentially rational because q∗

i (pi (h)) ≤ q̄.
If the receiver chooses δi �= δ∗

i , then in period i the sender provides no information and the biased receiver plays the 
biased action. In period i − 1, the receiver chooses δi−1 = 0, the sender provides no information, and the biased receiver 
again plays the biased action. Therefore, the expected cost of choosing δi �= δ∗

i is equal to 1/4 for both the biased and 
unbiased receivers. The expected cost of choosing δ∗

i is equal to zero for the unbiased receiver which is clearly lower than 
the cost 1/4 which results from choosing δi . The expected cost of choosing δ∗

i is equal to δ∗
i

1
4 for the biased receiver because 

this receiver is indifferent between the biased and unbiased actions following δ∗
i . However, this cost is clearly lower than 

1/4 which results from choosing δi �= δ∗
i .

If hi /∈ H∗
i or pi (h) = 1, then the biased receiver plays the biased action with probability one. This is sequentially rational 

because the sender provides no information in any subsequent period. The sender is willing to provide no information 
because babbling is always an equilibrium of the cheap-talk game. Moreover, it is sequentially rational for the receiver to 
choose δi = 0 because his continuation payoff is equal to 1/4 and independent of her choice of δi .

Finally, it is straightforward to check that the beliefs defined in (4.7) and (4.8) satisfy the Bayes’ rule whenever it can be 
applied conditional on reaching any h ∈ Hi . �
Lemma 5. If p > 1 − (1 − q̄)N−1 , then the assessment σ ∗ is receiver optimal.

Proof. We first argue that σ ∗ is receiver optimal for the biased receiver.

Claim 1. Suppose that the sender chooses the parameter δ. We argue that the assessment σ ∗ is biased receiver optimal.

Proof. Assume that the assessment σ ∗ is receiver optimal for all reputation levels p > 1 − (1 − q̄)i−1 in the i stage com-
munication game. Under this induction hypothesis, we show that σ ∗ is receiver optimal in the i + 1 stage communication 
game for all reputation levels p > 1 − (1 − q̄)i , i.e., the cost under assessment σ ∗ is smaller than the cost under any other 
assessment σ given the induction hypothesis. Fix an assessment σ �= σ ∗ and assume, on the way to a contradiction, that 
C R

i+1 (σ ) < C R
i+1 (σ ∗).

Step 1. Suppose that the receiver plays the biased action with total probability qi+1 > q̄ in period i + 1. This implies that 
the receiver’s cost is 1/4 since the sender cannot communicate in period i + 1 given that qi+1 > q̄. However, the receiver’s 
cost under σ ∗ is at most 1/4.

Step 2. On the other hand if qi+1 ≤ q̄, then p > 1 − (1 − q̄)i and Bayes’ rule together imply that the receiver’s reputation 
in period i, pi , is strictly greater than 1 − (1 − q̄)i−1. There are two cases to consider:

Case 1. qi+1 < q∗
i+1. If qi+1 < q∗

i+1, then q∗
i (pi) > q̄ by construction and therefore C R (i|σ ∗) = 1

4 . Note that if δi+1 = 1, 
then, by the induction hypothesis, C R

i+1 (σ ) = C R
i (σ |hi) ≥ C R

i (σ ∗) = 1
4 where hi is the history under which the unbiased 

action is played in period i. However, this would contradict our initial hypothesis that 1
4 = C R

i+1 (σ ) < C R
i+1 (σ ∗) because 

C R
i+1 (σ ∗) ≤ 1

4 . Therefore, δi+1 < 1.

In order for the biased receiver to play the unbiased action in period i we must have, 1
4 δi+1 ≥ (1 −δi+1)b2 +δi+1C R

i (σ |hi). 
However, since C R

i (σ ∗) ≤ C R
i (σ |hi) by the induction hypothesis we have

1

4
δi+1 ≥ (1 − δi+1)b

2 + δi+1C R
i (σ |hi)

≥ (1 − δi+1)b
2 + δi+1C R

i (σ ∗)

= (1 − δi+1)b
2 + 1

4
δi+1

leading to a contradiction.
Case 2. qi+1 ≥ q∗

i+1. The facts that qi+1 ≥ q∗
i+1 and qi+1 ≤ q̄ together imply that q∗

i+1 ≤ q̄. If q∗
i+1 ≤ q̄, then the cost under 

σ ∗ is equal to δ∗
i+1/4. The cost under σ is at least δi+1/4 because the receiver must play the biased action with positive 

probability in period i + 1. The fact that the receiver is indifferent between the biased and the unbiased action implies the 
following equalities:
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1

4
δi+1 = (1 − δi+1)b

2 + δi+1C R
i (σ )

1

4
δ∗

i+1 = (1 − δ∗
i+1)b

2 + δ∗
i+1C R

i (σ ∗)

where C R
i (σ ) is the biased receiver’s cost in the continuation game under the strategy σ . The induction hypothesis and 

pi > 1 − (1 − q̄)i−1 together imply that C R
i (σ ∗) ≤ C R

i (σ ). The fact that C R
i (σ ∗) ≤ C R

i (σ ) implies that

δi+1
1

4
≥ (1 − δi+1)b

2 + δi+1C R
i (σ ∗).

Therefore

(δi+1 − δ∗
i+1)(

1

4
+ b2 − C R

i (σ ∗)) ≥ 0

However, because C S
i (σ ∗) < 1

4 + b2 we have δi+1 ≥ δ∗
i+1 and hence δ∗

i+1/4 ≤ δi+1/4 showing that the cost under σ exceeds 
the cost under σ ∗ .

We now complete the inductive argument by showing that σ ∗ is optimal for the biased receiver for i = 2 if p > 1 − (1 −
q̄)2−1 = q̄. This conclusion follows immediately from the argument above because for any two strategy profiles σ and σ ∗
we have C R

1 (σ ) = C R
1 (σ ∗) = 1/4 if the reputation p1 > q̄ in period i = 1 and C R

1 (σ ) ≥ C R
1 (σ ∗) = 0, otherwise. �

Claim 2. Suppose that the receiver chooses the parameter δ. We argue that the assessment σ ∗ is biased receiver optimal.

Proof. Assume that the assessment σ ∗ is receiver optimal for all reputation levels p > 1 − (1 − q̄)i−1 in the i stage com-
munication game. Under this induction hypothesis, we show that σ ∗ is receiver optimal in the i + 1 stage communication 
game for all reputation levels p > 1 − (1 − q̄)i . Fix an assessment σ �= σ ∗ and assume, on the way to a contradiction, that 
C R

i+1 (σ ) < C R
i+1 (σ ∗).

Let δi+1 be a δ in the support of σ such that pi+1 ≥ p. Bayes’ rule implies that there must be such a δi+1 in the support 
of σ . Let qi+1 denote the receiver’s strategy after the history where δi+1 has been chosen.

Suppose that the receiver plays the biased action with total probability qi+1 > q̄ in period i + 1. This implies that the 
receiver’s cost is 1/4 since the sender cannot communicate in period i + 1 given that qi+1 > q̄. However, the receiver’s cost 
under σ ∗ is at most 1/4.

On the other hand if qi+1 ≤ q̄, then pi+1 > 1 − (1 − q̄)i and Bayes’ rule together imply that the receiver’s reputation in 
period i, pi , is strictly greater than 1 − (1 − q̄)i−1. There are two cases to consider:

Case 1. qi+1 < q∗
i+1 (pi+1) where q∗

i+1 (pi+1) is the probability of playing the biased action under σ ∗ if the initial reputa-
tion is equal to pi+1 and given that δ∗

i+1 is chosen by the receiver. If qi+1 < q∗
i+1 (pi+1), then q∗

i (pi) > q̄ by construction and 
therefore C R

i (σ ∗) = 1
4 . Note that if δi+1 = 1, then, by the induction hypothesis, C R

i+1 (σ ) = C R
i (σ |hi) ≥ C R

i (σ ∗) = 1
4 where hi

is the history under which the unbiased action is played in period i. However, this would contradict our initial hypothesis 
that 1

4 = C R
i+1 (σ ) < C R

i+1 (σ ∗) because C R
i+1 (σ ∗) ≤ 1

4 . Therefore, δi+1 < 1.

In order for the biased receiver to play the unbiased action in period i we must have, 1
4 δi+1 ≥ (1 −δi+1)b2 +δi+1C R

i (σ |hi). 
However, since C R

i (σ ∗) ≤ C R
i (σ |hi) by the induction hypothesis we have

1

4
δi+1 ≥ (1 − δi+1)b

2 + δi+1C R
i (σ |hi)

≥ (1 − δi+1)b
2 + δi+1C R

i (σ ∗)

= (1 − δi+1)b
2 + 1

4
δi+1

leading to a contradiction.
Case 2. qi+1 ≥ q∗

i+1 (pi+1) where q∗
i+1 (pi+1) is the probability of playing the biased action under σ ∗ if the initial repu-

tation is equal to pi+1 and given that δ∗
i+1 is chosen by the receiver. Note that q∗

i+1 (pi+1) ≥ q∗
i+1 (p) because pi+1 ≥ p. The 

facts that qi+1 ≥ q∗
i+1 (pi+1) ≥ q∗

i+1 (p) > 0 and qi+1 ≤ q̄ together imply that q∗
i+1 (p) ≤ q̄. If q∗

i+1 (p) ≤ q̄, then the cost under 
σ ∗ is equal to δ∗

i+1/4. The cost under σ is δi+1/4 because the receiver plays the biased action with positive probability 
in period i + 1. The fact that the receiver is indifferent between the biased and the unbiased action implies the following 
equalities:

1

4
δi+1 = (1 − δi+1)b

2 + δi+1C R
i (σ )

1
δ∗

i+1 = (1 − δ∗
i+1)b

2 + δ∗
i+1C R

i (σ ∗)

4
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where C R
i (σ ) is the biased receiver’s cost in the continuation game under the strategy σ . The induction hypothesis and 

pi > 1 − (1 − q̄)i−1 together imply that C R
i (σ ∗) ≤ C R

i (σ ). The fact that C R
i (σ ∗) ≤ C R

i (σ ) implies that

δi+1
1

4
≥ (1 − δi+1)b

2 + δi+1C R
i (σ ∗).

Therefore

(δi+1 − δ∗
i+1)(

1

4
+ b2 − C R

i (σ ∗)) ≥ 0

However, because C S
i (σ ∗) < 1

4 + b2 we have δi+1 ≥ δ∗
i+1 and hence δ∗

i+1/4 ≤ δi+1/4 showing that the cost under σ exceeds 
the cost under σ ∗ . �
Claim 3. Suppose that the sender chooses the parameter δ. We argue that σ ∗ is receiver optimal for the unbiased receiver.

Proof. If q∗
N ≤ q̄, then σ ∗ is optimal for the unbiased receiver because her cost under σ ∗ is equal to zero since the sender 

communicates truthfully in each period.
If, on the other hand, q∗

N > q̄, then her cost under σ ∗ is equal to (1 − δ∗
N )/4 because the sender communicates truthfully 

in each period except period N . Choose any other assessment σ .
Case 1. Suppose that the receiver plays the biased action with total probability qN ≤ q̄. However, then q∗

N > q̄, and qN ≤ q̄
together imply that q j > q̄ for some j < N . However, then the sender will communicate no information in period j. This 
implies that, the biased receiver will play the biased action in period j + 1 with probability one. However, this further 
implies that the sender will communicate no information in period j + 1 either. Working backwards in this way, we find 
that biased receiver will play the biased action in each period i > j contradicting our initial hypothesis that qN ≤ q̄.

Case 2. Suppose that the receiver plays the biased action with total probability p > qN > q̄. In this case, the sender 
communicates no information in period N . Therefore, the unbiased receiver’s cost under σ is at least (1 − δN ) /4. If δN ≤ δ∗

N , 
then (1 − δN ) /4 ≤ (

1 − δ∗
N

)
/4, that is, the unbiased receivers cost under σ ∗ is at most the cost under σ .

Suppose instead that δN > δ∗
N . Let î denote the largest i < N such that δi ≤ δ∗

i . Note that î is possibly equal to one where 
δ1 = δ∗

1 = 0. Also, note that we have δi > δ∗
i for i > î and δî ≤ δ∗

î
by construction.

The biased receiver is indifferent between the biased action and the unbiased action in period N . Therefore, playing 
the biased action in period N is a best response for the receiver given the sender’s strategy under σ and must result in a 
cost that is less than or equal to any other strategy that the receiver may use. In particular, the cost must be less than or 
equal to the cost of playing the unbiased action in each period i ∈ {N, ̂i + 1} and then playing the biased action in period î. 
Therefore,

δN
1

4
≤ (1 − δN)b2 +

N−1∑
i=î+1

γi

(
ci + b2

)
+ γî ci + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

≤ b2
N∑

i=î+1

γi +
N−1∑
i=1

γici + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

where the second inequality follows because ci ≥ 0 for all i.
The fact that the biased receiver is indifferent between the biased and unbiased action in each period i > 1 under 

strategy σ ∗ implies that

δ∗
N

1

4
= b2

N∑
i=î+1

γ ∗
i + 1

4
δ∗

î

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠

Moreover,

(1 − δN)
1

4
+

N−1∑
i=1

γici <
(
1 − δ∗

N

) 1

4

δ∗
N

1

4
+

N−1∑
i=1

γici < δN
1

4

by assumption. Therefore, δ∗ 1 +∑N−1 γici < δ4
1 and the equality displayed above together imply that
N 4 i=1 4
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δN
1

4
> b2

⎛
⎝ N∑

i=î+1

γ ∗
i

⎞
⎠+ 1

4
δ∗

î

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠+

N−1∑
i=1

γici .

The facts that δi > δ∗
i for i > î and δî ≤ δ∗

î
together imply that

b2

⎛
⎝ N∑

i=î+1

γ ∗
i

⎞
⎠+ 1

4
δ∗

î

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠ ≥ b2

⎛
⎝ N∑

i=î+1

γ ∗
i

⎞
⎠+ 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠

≥ b2
N∑

i=î+1

γi + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

The first inequality above follows because δî ≤ δ∗
î

. The second inequality above follows because δi > δ∗
i for each i > î implies 

that 
∑N

i=î+1
γ ∗

i >
∑N

i=î+1
γi and because 1

4 δî ≤ b2 (since b2 ≥ 1
4 and δî ≤ 1). However, the above inequality implies that

N∑
i=î+1

γib
2 +

N−1∑
i=1

γici + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠ ≥ δ4

1

4
>

N∑
i=î+1

γib
2 +

N−1∑
i=1

γici + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

which leads to a contradiction. �
Claim 4. Suppose that the receiver chooses the parameter δ. We argue that σ ∗ is receiver optimal for the unbiased receiver.

Proof. If q∗
N ≤ q̄, then σ ∗ is optimal for the unbiased receiver because her cost under σ ∗ is equal to zero since the sender 

communicates truthfully in each period.
If, on the other hand, q∗

N > q̄, then her cost under σ ∗ is equal to 
(
1 − δ∗

N

)
/4 because the sender communicates truthfully 

in each period except period N . Choose any other assessment σ . Let δN be a δ in the support of σ such that 1 > pN ≥ p. 
Bayes’ rule implies that there must be such a δN in the support of σ . Let qN denote the receiver’s strategy after the history 
where δN has been chosen.

Case 1. Suppose that the receiver plays the biased action with total probability qN ≤ q̄ after each δN in the support of σ . 
However, then q∗

N > q̄, and qN ≤ q̄ together imply that q j > q̄ after some δ j for j < N in the support of σ . However, then 
the unraveling argument detailed further above implies that qN = p > q̄ leading to a contradiction.

Case 2. Suppose that the biased receiver chooses δN and plays the biased action with total probability pN > qN > q̄. If 
δN is in the support of the unbiased receiver’s strategy, then the unbiased receiver’s cost under σ is at least (1 − δN ) /4. 
Alternatively, suppose that the biased receiver chooses a δ′

N under σ that is not in the support of the unbiased receiver. 
In this case, the sender communicates no information in period N . Let δN denote any choice of δ in the support of the
unbiased receiver. Then(

1 − δ′
N

) 1

4
+ δ′

N
1

4
= (1 − δN)

1

4
+ δN

1

4

≤ (1 − δN) cN + δN
1

4

and therefore cN = 1
4 . Hence, the unbiased receiver’s cost under σ is at least (1 − δN ) /4.

If δN ≤ δ∗
N , then (1 − δN ) /4 ≤ (

1 − δ∗
N

)
/4, that is, the unbiased receivers cost under σ ∗ is at most the cost under σ . 

Suppose instead that δN > δ∗
N . Let î denote the largest i < N such that δi ≤ δ∗

i for some δi in the support of the unbiased 
receiver. Note that î is possibly equal to one where δ1 = δ∗

1 = 0. Also, note that we have δi > δ∗
i for i > î and δî ≤ δ∗

î
by 

construction.
Suppose that δN is in the support of the unbiased receiver. Therefore, choosing δN and playing the biased action in period 

N is a best response for the biased receiver given the senders strategy under σ and must result in a cost that is less than 
or equal to any other strategy that the biased receiver may use. In particular, the cost must be less than or equal to the cost 
of choosing δN in the support of the unbiased receiver and playing the unbiased action in each period i ∈

{
N, î + 1

}
and 

then playing the biased action in period î. Therefore,

δN
1

4
≤ (1 − δN)b2 +

N−1∑
ˆ

γi

(
ci + b2

)
+ γî ci + 1

4
δî

⎛
⎝1 −

N∑
ˆ

γi

⎞
⎠

i=i+1 i=i+1
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≤ b2
N∑

i=î+1

γi +
N−1∑
i=1

γici + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

where the second inequality follows because ci ≥ 0 for all i.
Alternatively, suppose that the biased receiver chooses a δ′

N under σ that is not in the support of the unbiased receiver. 
In this case, the sender communicates no information in period N . Let δN denote any choice of δ in the support of the
unbiased receiver. Choosing δ′

N is a best response for the biased receiver given the senders strategy under σ and must 
result in a cost that is less than or equal to any other strategy that the biased receiver may use. In particular, the cost must 
be less than or equal to the cost of choosing δN in the support of the unbiased receiver and playing the unbiased action in 
each period i ∈

{
N, î + 1

}
and then playing the biased action in period î . Therefore,

(
1 − δ′

N

) 1

4
+ δ′

N
1

4
= (1 − δN)

1

4
+ δN

1

4
≤ (1 − δN)

(
b2 + 1

4

)
+

N−1∑
i=î+1

γi

(
ci + b2

)
+ γî ci + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

δN
1

4
≤ (1 − δN)b2 +

N−1∑
i=î+1

γi

(
ci + b2

)
+ γî ci + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

The fact that the biased receiver is indifferent between the biased and unbiased action in each period i > 1 under strategy 
σ ∗ implies that

δ∗
N

1

4
= b2

N∑
i=î+1

γ ∗
i + 1

4
δ∗

î

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠

Moreover,

(1 − δN)
1

4
+

N−1∑
i=1

γici <
(
1 − δ∗

N

) 1

4

δ∗
N

1

4
+

N−1∑
i=1

γici < δN
1

4

by assumption. Therefore, δ∗
N

1
4 +∑N−1

i=1 γici < δ4
1
4 and the equality displayed above together imply that

δN
1

4
> b2

⎛
⎝ N∑

i=î+1

γ ∗
i

⎞
⎠+ 1

4
δ∗

î

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠+

N−1∑
i=1

γici .

The facts that δi > δ∗
i for i > î and δî ≤ δ∗

î
together imply that

b2

⎛
⎝ N∑

i=î+1

γ ∗
i

⎞
⎠+ 1

4
δ∗

î

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠ ≥ b2

⎛
⎝ N∑

i=î+1

γ ∗
i

⎞
⎠+ 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γ ∗
i

⎞
⎠

≥ b2
N∑

i=î+1

γi + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

The first inequality above follows because δî ≤ δ∗
î

. The second inequality above follows because δi > δ∗
i for each i > î implies 

that 
∑N

i=î+1
γ ∗

i >
∑N

i=î+1
γi and because 1

4 δî ≤ b2 (since b2 ≥ 1
4 and δî ≤ 1). However, the above inequality implies that

N∑
i=î+1

γib
2 +

N−1∑
i=1

γici + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠ ≥ δ4

1

4
>

N∑
i=î+1

γib
2 +

N−1∑
i=1

γici + 1

4
δî

⎛
⎝1 −

N∑
i=î+1

γi

⎞
⎠

which leads to a contradiction. �
Claims 1-4 complete the proof of the lemma. �
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Lemma 6. Suppose p ≤ 1 − (1 − q̄)N−1 . Let i∗ (p) denote the largest i such that p > 1 − (1 − q̄)i∗−1 . The assessment that chooses 
τi = δi = 1 in all periods N through i∗(p) and then follows σ ∗ is receiver optimal irrespective of the identity of the player that chooses 
δ.

Proof. First note that the above specified assessment is optimal for the unbiased receiver because the sender communicates 
truthfully in each period where γi > 0.

Choose an assessment σ . Let σ ∗∗ denote the above specified assessment. Assume that the above described assessment 
is receiver optimal for all N − 1 period games. Note that

C R
N

(
σ ∗∗|p) =

(
1 − δ∗

i∗(p) · · · δ∗
2

)
b2

because the receiver is indifferent between the unbiased and biased action in each period 1 < i ≤ i∗(p) and the receiver 
plays the biased action in period 1.

If the receiver plays the biased action with probability qN > q̄ in period N , then the receiver’s cost under σ is equal to 
1/4 which is clearly worse than her cost under the above specified assessment.

If qN = 0, then the cost under σ is clearly higher than the cost under σ ∗∗ . This is because

C R
N(σ ) = (1 − δN)b2 + δN C R

N−1

(
σ | p − qN

1 − qN

)
≥ (1 − δN)b2 + δN C R

N−1

(
σ ∗∗| p − qN

1 − qN
,

)
.

= (1 − δN)b2 + δN C R
N−1

(
σ ∗∗|p)

≥ C R
N−1

(
σ ∗∗|p) = C R

N

(
σ ∗∗|p)

Suppose that 0 < qN < q∗
i∗ ≤ q̄, then

C R
N−1

(
σ ∗∗| p − qN

1 − qN

)
= C R

N−1

(
σ ∗∗|p) = C R

N

(
σ ∗∗|p) .

This is because qN < q∗
i∗ implies that

p − qN

1 − qN
> 1 − (1 − q̄)i∗−1

Under σ ∗∗ , we have γ ∗∗
i = 0 for each period N through i∗ because p−qN

1−qN
> 1 − (1 − q̄)i∗−1. Moreover, the receiver is 

indifferent between the biased and unbiased actions in each period i ≤ i∗ . Therefore, C R
N−1

(
σ ∗∗| p−qN

1−qN

)
= C R

N−1 (σ ∗∗|p) =
C R

N (σ ∗∗|p). Hence, the logic further above implies that C R
N (σ |p) ≥ C R

N (σ ∗∗|p).

Suppose that q∗
i∗ ≤ qN ≤ q̄. The fact that qN ≤ q̄ implies that i∗

(
p−qN
1−qN

)
= i∗ (p) − 1. Therefore,

C R
N−1

(
σ ∗∗| p − qN

1 − qN

)
=

(
1 − δ∗

i∗(p)−1 · · · δ∗
2

)
b2.

The fact that the receiver is indifferent between the biased and unbiased action in period N implies that

(1 − δN)b2 + δN C R
N−1

(
σ | p − qN

1 − qN

)
− 1

4
δN = 0

Moreover,

(1 − δN)b2 + δN C R
N−1

(
σ ∗∗| p − qN

1 − qN

)
− 1

4
δN ≤ 0

because C R
N−1

(
σ | p−qN

1−qN

)
≥ C R

N−1

(
σ ∗∗| p−qN

1−qN
,
)

. Hence,

(1 − δN)b2 + δN

((
1 − δ∗

i∗(p)−1 · · · δ∗
2

)
b2 − 1

4

)
≤ 0.

Moreover,(
1 − δ∗

i∗(p)

)
b2 + δ∗

i∗(p)

((
1 − δ∗

i∗(p)−1 · · · δ∗
2

)
b2 − 1

4

)
= 0

by construction. Thus, we conclude that δN ≥ δ∗
i∗(p)

because 
(

1 − δ∗
i∗(p)−1 · · · δ∗

2

)
b2 − 1

4 ≤ 0. However,

C R
N (σ ) = δN

1

4
≥ 1

4
δ∗

i∗(p) = C R
N

(
σ ∗∗|p)

concluding the proof. �
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Lemma 7. For an N period game suppose that σ = {τi,μi,qi, pi} is such

1. The belief p j = 1 for some j ≤ N and pi < 1 for all i > j.
2. The choices qi and μi are sequentially rational under σ .
3. The probability qi (h) ≤ q̄ for all i ≥ j where only the unbiased action has been played in history h and h is a history which has 

positive probability under σ .
4. The communication strategy μi entails truthful communication in each period N > i ≥ j.
5. The total probability of playing the biased action in periods N through j is equal to p.
6. The γi implied by τi is equal to zero for all periods i < j.

Then C S
N− j+1(σ ) ≥ C S

N (σ ∗) where the initial reputation is equal to p.

Proof. We will prove this for the case where the period where p j = 1 is taken as period 1. This is without loss because we 
can take N∗ = N − j + 1. Moreover, a simple calculation shows C S

N− j+1 (σ ∗) ≥ C S
N (σ ∗).

The assessment σ that satisfies 1-6 is feasible for the following minimization problem.

min
q,γ

γ1b2q1

N∏
j=2

(1 − q j) +
N∑

i=2

(qi

N∏
j=i+1

(1 − q j))(b
2(

i∑
j=1

γ j) + 1

4
(

i−1∑
j=1

γ j)) + 1{qN>q̄}γN
1

4

Subject to

4b2
i∑

j=2

γ j ≤
i−1∑
j=1

γ j for all i > 1 (8.1)

(4b2
i∑

j=2

γ j −
i−1∑
j=1

γ j)qi = 0 for all i > 1 (8.2)

qi ≤ q̄ for all i < N (8.3)
N∑

i=1

(qi

N∏
j=i+1

(1 − q j)) = p (8.4)

N∑
j=1

γ j = 1 (8.5)

γ j ≥ 0 (8.6)

q j ≥ 0 (8.7)

In the optimization above γi = ∏N
j=i+1 δ j+1(1 − δi) and qi is the total probability of playing the biased action in periods i

and 1{qN >q̄} is the indicator function which is equal to one if qN > q̄ and zero otherwise. The objective function is the total 
cost of the sender under the assumption that the sender communicates truthfully in every period except possibly period N .

Constraint (8.1) states that playing the biased action is at least as costly as the unbiased action in every period except 
the last, i.e.,∑i

j=2 γ j∑i
j=1 γ j

b2 ≤
∑i−1

j=1 γ j∑i
j=1 γ j

1

4

canceling
∑i

j=1 γ j from both sides we obtain the constraint. This constraint must hold, because if it did not, then the 
receiver would play the biased action with probability one in that period. However, then the probability of playing the 
unbiased action would exceed q̄ in that period. This would however contradict step 2.

Constraint (8.2) says that Constraint (8.1) can only hold strictly in periods where the receiver plays the biased action with 
probability zero. Constraint (8.3) says that the receiver must play the biased action with probability at most q̄. This follows 
from step 1. Constraint (8.4) says that the biased type eventually plays the biased action. Therefore, the total probability of 
the biased action is at least equal to the prior probability that the sender faces a biased receiver.

The optimization problem above is feasible because the assessment that we constructed satisfies all of the constraints. 
Moreover, the constraint set is compact. Therefore, the optimization problem admits a solution. Below we argue that our 
assessment solves the problem and therefore is sender optimal.

We argue that Constraint (8.1) holds with equality for all i > 1 in any solution to the optimization problem. Suppose that 
4b2 ∑i

j=2 γ j <
∑i−1

j=1 γ j for some i < N and suppose that i is the largest index where this constraint does not hold with 
equality. This implies that qi = 0 because of the second constraint.
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We show that if we increase γi by 	 to γ̂i so that the ith constraint binds, decrease γi+1 by 	 to γ̂i+1, set q̂i = qi+1, 
and q̂i+1 = 0 and leave all other variables unchanged, then all the constraints continue to hold. However, we show that this 
new feasible choice has strictly lower cost and dominates the old plan.

Let

	 = (

i−1∑
j=1

γ j)
1

4b2
− (

i∑
j=2

γ j).

This choice of 	 ensures that the ith constraint binds with equality. Note that

γi+1 = γi

4b2
+ (

i−1∑
j=1

γ j)
1

4b2
− (

i∑
j=2

γ j)

= γi

4b2
+ 	 > 0.

Hence, γ̂i+1 > 0. Also, note that the i + 1st constraint now holds strictly. This is because

(γ̂i+1 + γ̂i)b
2 + b2

i−1∑
j=2

γ j = b2
i+1∑
j=2

γ j

≤ 1

4

i∑
j=1

γ j

= 1

4
γi + 1

4

i−1∑
j=1

γ j

<
1

4
γi + 1

4
	 + 1

4

i−1∑
j=1

γ j

= γ̂i
1

4
+ (

i−1∑
j=1

γ j)
1

4

Also, all constraints j > i + 1 continue to hold with equality:

b2
j∑

k=i+2

γk + (γ̂i+1 + γ̂i)b
2 + b2

i−1∑
k=2

γk = b2
j∑

k=2

γk

= 1

4

j−1∑
k=1

γk

= 1

4

j−1∑
k=i+2

γk + 1

4
(γ̂i+1 + γ̂i) + 1

4

i−1∑
j=1

γ j

Note that this new strategy entails strictly less cost for the sender. This is because we have decreased δi and the sender’s 
cost is decreasing in δi . See the proof of Step 2 for an argument. However, this contradicts the assertion that the initial plan 
solved the optimization problem. Therefore this line of reasoning establishes that all the such constraints must hold with 
equality in the optimal solution.

In period N if the Constraint (8.1) holds as an inequality, then qN = 0 and therefore the miscommunication cost in period 
N is equal to zero. However, in this case the sender’s cost is again decreasing δN and therefore it is possible to decrease δN

to decrease cost. Moreover, decreasing δN does not affect any of the subsequent such constraints.
If all such constraints hold with equality, then we have γi = ∏N

j=i+1 δ∗
j+1(1 − δ∗

i ) in the optimal solution. This follows 
immediately from the construction of the sequence {δ∗

i }.

Given that we have γ = ∏N
j=i+1 δ∗

j+1(1 − δ∗
i ), we now show that qi = q∗

i . Note that we can move mass from any period 
i to any other period j because the Constraints (8.1) hold with equality. First note that 

∑N
i=1(qi

∏N
j=i+1(1 − q j)) = p =∑N

i=1(q
∗
i

∏N
j=i+1(1 − q∗

j )), i.e., constraint (8.4) holds with equality, because otherwise the total cost can be reduced by 
decreasing the probability qi in some period i.
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Suppose that there exists a period i such that qi > q∗
i and let i be the largest such period. Then, by the construction of 

the sequence of q∗
i , there must exist a period j < i where q j < q∗

j = q̄. However, then the sender’s cost can be reduced by 
decreasing qi and increasing q j by ε > 0 sufficiently small.

Suppose that there is a period i such that 0 ≤ qi < q∗
i and let i be the smallest such period. Note that i < N by con-

struction because otherwise we would have 
∑N

i=1(qi
∏N

j=i+1(1 − q j)) < p which would violate constraint 4. This implies by 
construction that 1) q∗

i > 0 and 2) q∗
j = q̄ for all j < i. However, q j ≤ q̄ for all j < N because of Constraint (8.3) of the opti-

mization problem. Therefore, q j = q∗
j for all j < i. Also we know that 

∑N
i=1(qi

∏N
j=i+1(1 − q j)) = p. This implies that, there 

must be a period k > i such that qk > q∗
k . However, then the sender’s cost can be reduced by decreasing qk and increasing 

qi by ε > 0 sufficiently small. �
Lemma 8. If σ is sender-optimal, then the total probability that the receiver plays the biased action is at most q̄ for any i < N after 
any history where only the unbiased action has been observed. Therefore, if σ is sender-optimal, then qN(p) ≥ q∗

N (p).

Proof. The assertion is automatically true if b ≤ 1/2. Assume that b > 1/2. On the way to a contradiction, suppose that 
there is a period i < N where the receiver plays the biased action with strictly higher probability than q̄ under σ . We argue 
below that the receiver plays the biased action with probability q j = p > q̄ in period N under σ .

To see this, note that in period i + 1 the receiver’s cost from playing the biased action is δi
4 + (1 − δi)x. The receiver’s 

cost from playing the unbiased action is (1 − δi)(x + b2) + δi
4 where the continuation payoff is δi

4 because the sender’s 
communication is uninformative in period i and the receiver plays the biased action with positive probability. Therefore, the 
biased receiver will play the biased action with probability one in period i + 1. Working in this manner recursively, we find 
that the receiver will play the biased action with probability one in each period j > i, i.e., q j = p j .

We now argue that assessment σ ∗ entails strictly lower cost than σ . The cost under σ is at least

C S
N(σ ) ≥ p(

1

4
+ b2).

In contrast, the cost in assessment σ ∗ is at most

C S
N(σ ∗) ≤ q(b2 + 1

4
) + (1 − q)((1 − δ)

1

4
+ δ

p − q

1 − q
b2),

where p−q
1−q = q̄. Hence,

p(
1

4
+ b2) − C S(σ ∗) ≥ (p − q)(b2 + 1

4
) − (1 − q)((1 − δ)

1

4
+ δ

p − q

1 − q
b2)

= (p − q)
1

4
+ (p − q)b2(1 − δ) − (1 − q)(1 − δ)

1

4

= (p − q)
1

4
+ q̄(1 − q)b2(1 − δ) − (1 − q)(1 − δ)

1

4

≥ (p − q)
1

4
+ (

b

2
− 1

4
)(1 − q)(1 − δ) > 0.

To complete the proof, note that qN(p) ≥ q∗
N (p) is automatically true if q∗

N = 0. If q∗
N (p) > 0, then q∗

i (hi) = q̄ in any sub-
sequent period where hi is any history on the equilibrium path where only the unbiased action has been observed. If 
qN(p) < q∗

N (p), then there must exist a history on the equilibrium path hi where only the unbiased action has been played 
such that qi (hi) > q̄. However, then the sender communicates no information in period i < N leading to a contradiction. �
Lemma 9. Fix an assessment σ . Let period m∗ ≥ 1 be such that pm∗ = 1 under σ . The assessment σ is sender optimal only if the 
miscommunication costs are equal to zero in every period m∗ ≤ i < N and if γm∗ = 0 for all i < m∗ under σ .

Proof. Suppose m∗ = 1. We come back to the case where m∗ > 1 at the end of the proof.
On the way to a contradiction, suppose that there are information costs x j > 0 in some period j < N in a sender-optimal 

assessment σ which satisfies Property 1 and 2 after an history where only the unbiased action has been observed. Under 
this hypothesis, we show that there is an assessment σ ′ , which satisfies Property 1 and 2 and has strictly lower costs for 
both the sender and the receiver than assessment σ . In this new assessment the sender communicates truthfully in each 
period except possibly period N after observing the unbiased action. This is incentive compatible because we have qi ≤ q̄ in 
every period i < N by assumption.

Case 1. Suppose that qN ≤ q̄. Then the sender communicating truthfully in period N is incentive compatible
Let N > j∗ ≥ 1 be a period such that there are miscommunication costs in this period and no information costs in any 

period i ∈ { j∗ − 1, ..., 1}. Period j∗ is well defined since we allow for j∗ to equal one. In any period i > j∗ the following 
inequality holds
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δi
1

4
≥ (1 − δi · · · δz+1)b

2 +
i−1∑
k=z

(
∏i

l=k+1
δl)(1 − δk)xk + 1

4
δz,

where z < i is any period in which the receiver plays the biased action with positive probability. Such a period z must 
exist because the receiver will play the biased action with probability one in the last period of the game. The sum ∑i−1

k=z(
∏i

l=k+1 δl)(1 − δk)xk ≥ 0 is the total miscommunication costs that the receiver incurs in the posited equilibrium in 
the periods {i − 1, ..., z}. The inequality holds because the receiver must prefer to play the unbiased action until period z
and then switch to the biased action in period z. Moreover, note that in any period i > j where the receiver plays a mixed 
strategy the inequality holds with equality.

In the assessment that we construct, we leave the δi ’s unchanged in any period i ≤ j and in any period in which the 
receiver plays the unbiased action with probability one. In this new assessment, the sender communicates truthfully in each 
period i < N .

Let i1 > j∗ be the first period where the receiver plays a mixed strategy and choose δ̂i1 such that

ˆδi1

1

4
= (1 − ˆδi1δi1−1 · · · δ2)b

2.

Note that ˆδi1 < δi1 . We now show that for any period k > i1, the receiver strictly prefers to play the unbiased action. For 
any period k > i1, the receiver would weakly prefer to play the unbiased action with probability 1 until period i1, then play 
the biased action in period i under the posited equilibrium σ . More precisely,

δk
1

4
≥ (1 − δk · · · δk−1δi1+1)b

2 + X + δi1

1

4
where X denotes the total miscommunication costs in periods {k − 1, ..., i1}. Therefore, in the equilibrium without miscom-
munication costs we find that,

δk
1

4
> (1 − δk · · · δk−1δi+1)b

2 + δ̂i1

1

4

because ˆδi1 < δi1 . Suppose that k is a period where the receiver plays a mixed strategy. Recall that we leave δi ’s are un-
changed in any period i < k where the receiver plays the unbiased action with probability one, further suppose that δ̂i < δi

in any period i < k where the receiver plays a mixed strategy which leaves the receiver is indifferent in period i given the 
new choice of δ’s. Note that the above argument implies that

δk
1

4
> (1 − δk · · · δk−1δi+1)b

2 + δ̂i
1

4
.

Pick δ̂k such that

δ̂k
1

4
= (1 − δ̂k · · · δk−1δi+1)b

2 + δ̂i
1

4

and note that δ̂k < δk . Choosing δ’s in this manner ensures that the receiver is indifferent in any period that he plays a 
mixed strategy and prefers the unbiased action in any period where he plays the unbiased action with probability one. Also 
note that δ̂i ≤ δi in any period i.

If we leave everything else in the assessment σ unchanged, decreasing the δ’s in the way described above, and have the 
sender communicate truthfully in each period, then we obtain a new equilibrium where all miscommunication costs have 
been eliminated and which satisfies Property 1 and 2. In this new assessment, the sender’s costs have strictly decreased. To 
see this first note that eliminating miscommunication costs without changing the δi ’s strictly decreases the sender’s cost. 
Moreover, in any period where there are no miscommunication costs, the sender’s continuation cost is strictly increasing 
in δ. This is because the sender’s continuation cost in any period i < N is given by qi

[
(1 − δi)b2 + δi(b2 + 1/4)

] + (1 −
qi)δi C S

i−1(σ |hi−1) and the fact that C S
i−1(σ |hi−1) ≥ 0 implies that this expression is strictly increasing in δ. If the sender 

communicates truthfully in period N , then this argument is also true for period N . Therefore, the original σ could not have 
been a sender-optimal equilibrium.

Case 2. Suppose that qN > q̄ and the sender does not communicate truthfully under σ .
If N − 1 is a period where the receiver plays a mixed strategy and qN−1 = q̄, then C S

N−1(σ |hN−1) ≥ 1/4 and the sender’s 
cost in period N is again strictly increasing in δ. This is because

C S
N−1(σ |hN−1) ≥ q̄b2 = b

2
≥ 1

4

If the sender’s costs are increasing in δ under the new assessment σ ′ , then we are done by the reasoning above. Assume 
that the sender’s costs are decreasing in δ under the new assessment σ ′ and alter σ ′ in the following way:

Assume either that Case 2a) N − 1, is a period where the receiver plays a mixed strategy and qN−1 < q̄, or Case 2b) If 
N − 1 is a period where the receiver plays the unbiased action with probability 1.
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Case 2a) If N − 1, is a period where the receiver plays a mixed strategy and qN−1 < q̄, then increase qN−1 and decrease 
qN until either qN−1 = q̄ or qN ≤ q̄. Note that we can move mass from qN to qN−1 until qN−1 reaches q̄. If the mass at 
qN dips below q̄ before qN−1 increases to q̄ we can stop and allow the sender to communicate truthfully also in period N . 
However, if the sender communicates truthfully in period N , then case 1 implies that σ cannot be sender optimal. If on the 
other hand qN−1 = q̄, then the reasoning in the previous paragraph implies that σ cannot be sender optimal.

Case 2b) If N − 1 is a period where the receiver does not play a mixed strategy, then

δN−1
1

4
> (1 − δN−1 · · · δi+1)b

2 + δ̂i
1

4

this is because under the assessment σ ′ playing the unbiased action in each period is sequentially rational for the receiver. 
Moreover,

δN
1

4
> (1 − δNδN−1 · · · δi+1)b

2 + δ̂i
1

4

The cost is given by

C S(σ ′) = qN

(
1

4
+ b2

)
+ (1 − qN)

(
(1 − δN)

1

4
+ δNδN−1C S

N−2(σ
′)
)

.

The fact that the cost is decreasing in δ implies that δN−1C S
N−2(σ

′) < 1
4 , therefore the cost is decreasing in for all δ′

N−1 ≤
δN−1

Suppose that δN
1
4 < (1 − δN δ̂N−1 · · · δi+1)b2 + δ̂i

1
4 . Then, there is δ̂N−1 < δ∗

n−1 < δN−1 such that δN
1
4 < (1 − δNδ∗

N−1 · · ·
δi+1)b2 + δ̂i

1
4 . Picking the period N − 1’s delta equal to δ∗

N−1 leaves δN−1 unchanged but lowers cost in all subsequent 
periods. Hence improves upon assessment σ .

Suppose on the other hand δN
1
4 ≥ (1 − δN δ̂N−1 · · · δi+1)b2 + δ̂i

1
4 . Then picking δ̂N and δ̂N−1 and then increasing qN−1 and 

decrease qN until either qN−1 = q̄ or qN ≤ q̄ reduces cost by the reasoning given in case 2a).
Suppose now that m∗ > 1
Let i be the smallest period where pi < 1. If i = N , then the cost under σ ∗ is lower than the cost under σ implying that 

σ is not sender optimal.
Suppose that i < N . Create a new assessment σ ′ by deleting all the miscommunication costs as in step 2. In the new 

assessment σ ′ set period i as the last period, i.e., set γi = ∑i−1
j=1 γ j and set γ j = 0 for j < i. This reduces the cost for the 

sender by δi
1
4 because the biased receiver plays the biased action in all periods i through 1. In period any k we have the 

following:

δk
1

4
> (1 − δk · · · δk−1δi+1)b

2 + δi+1C R
i (σ ′) = (1 − δk · · · δk−1δi+1)b

2,

because C R
i (σ ′) = 0 under the new assessment. Therefore, the above logic can now be used to ensure all incentive con-

straints are satisfied while at the same time reducing the sender’s cost. �
Lemma 10. Suppose that the sender chooses δ, then the assessment σ ∗ is sender-optimal.

Proof. If an assessment is sender optimal, then it satisfies the conditions 1-6 outlined in Lemma 7 by Lemmata 8 and 9. 
Therefore, Lemma 7 shows that σ ∗ is sender optimal. �
Lemma 11. Suppose that the receiver chooses δ, then the assessment σ ∗ is sender-optimal.

Proof. Let σ be an assessment where the sender and receiver separate and choose different δN s in period N . The sender’s 
payoff after any δN in the support of the biased receiver is equal to 1

4 + b2 because the sender’s belief that the receiver is 
equal to one after observing any such δN , therefore the sender is unable to communicate any information in any subsequent 
period and the biased receiver plays the biased action in every period. Hence, the sender’s cost under σ is at least p 

( 1
4 + b2

)
which strictly exceeds the sender’s cost under σ ∗ .

Let σ be an assessment where the biased and unbiased receiver pool and choose the same δ after any history on the 
equilibrium path where only the unbiased action has been observed. In this case the argument given for Lemmata 7, 8 and 
9 together imply that the cost under σ ∗ is lower than the cost under σ .

Suppose that supp [τ ] = {
δN , δ′

N

}
. Note Pr (δN ) p (δN ) + (1 − Pr (δN )) p 

(
δ′

N

) = p.
Case 1. q∗

N (p) ≤ q̄. Lemmata 7, 8 and 9 together imply that

C s
N (σ |δN) ≥ C s

N

(
σ ∗|p (δN)

)
C s

N

(
σ |δ′

N

) ≥ C s
N

(
σ ∗|p (

δ′
N

))
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If q∗
N (p) ≤ q̄, then

Pr (δN) C S
N

(
σ ∗|p (δN)

)+ (1 − Pr (δN)) C S
N

(
σ ∗|p (

δ′
N

)) ≥ C S
N

(
σ ∗|p) .

Therefore,

C s
N (σ ) = Pr (δN) C S

N (σ |δN) + (1 − Pr (δN)) C S
N

(
σ |δ′

N

) ≥ C S
N

(
σ ∗|p) .

Case 2. q∗
N (p) > q̄, q∗

N (p (δN )) > q̄ and q∗
N

(
p
(
δ′

N

))
> q̄. Lemmata 7, 8 and 9 together imply that

C s
N (σ |δN) ≥ C s

N

(
σ ∗|p (δN)

)
C s

N

(
σ |δ′

N

) ≥ C s
N

(
σ ∗|p (

δ′
N

))
If q∗

N (p) > q̄, q∗
N (p (δN )) > q̄ and q∗

N

(
p
(
δ′

N

))
> q̄, then

Pr (δN) C S
N

(
σ ∗|p (δN)

)+ (1 − Pr (δN)) C S
N

(
σ ∗|p (δN)

) ≥ C S
N

(
σ ∗|p) .

Therefore,

C s
N (σ ) = Pr (δN) C S

N (σ |δN) + (1 − Pr (δN)) C S
N (σ |δN) ≥ C S

N

(
σ ∗|p) .

Case 3. q∗
N (p) > q̄, q∗

N (p (δN )) ≤ q̄ and q∗
N

(
p
(
δ′

N

))
> q̄.

C s
N (σ |δN) = (1 − δN) cN + qN

(
δN

1

4
+ b2

)
+ δN (1 − qN) C s

N−1 (σ |p (hN))

The fact that q∗
N

(
p
(
δ′

N

))
> q̄ implies that the biased receiver’s cost after such a δ′

N is equal to 1/4. Hence, after any δN in 
the support of τ ,

(1 − δN) cN (δN) + δN
1

4
≥ 1

4
.

Therefore, cN (δN ) ≥ 1
4 and we have

C s
N (σ |δN) = (1 − δN)

1

4
+ qN

(
δN

1

4
+ b2

)
+ δN (1 − qN) C s

N−1 (σ |p (hN))

Case 3 a). Suppose that δN < δ∗
N .

The fact that q∗
N (p (δN )) ≤ q̄ and Lemmata 7, 8 and 9 together imply that

qN

(
δN

1

4
+ b2

)
+ δN (1 − qN) C s

N−1 (σ |p (hN)) ≥ δ∗
N C s

N−1

(
σ ∗|p (δN)

) = C s
N

(
σ ∗|p (δN)

)
Hence,

C s
N (σ |δN) ≥ (1 − δN)

1

4
+ δ∗

N C s
N−1 (σ |p (δN))

>
(
1 − δ∗

N

) 1

4
+ C s

N

(
σ ∗|p (δN)

)
Moreover, Lemmata 7, 8 and 9 together imply that

C s
N

(
σ |δ′

N

) ≥ C s
N

(
σ ∗|p (

δ′
N

))
If q∗

N (p) > q̄, q∗
N (p (δN )) ≤ q̄ and q∗

N

(
p
(
δ′

N

))
> q̄, then

Pr (δ = δN)

(
C S

N

(
σ ∗|p (δN)

)+ 1

4

(
1 − δ∗

N

))+ (
1 − Pr

(
δ′

N

))
C S

N

(
σ ∗|p (

δ′
N

)) ≥ C S
N

(
σ ∗|p) .

Therefore,

Pr (δN) C s (σ |δN) + (
1 − Pr

(
δ′ ))C S (

σ |δ′ ) ≥ C S (
σ ∗|p) .
N N N N N
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Case 3 b). Suppose that δN ≥ δ∗
N . If q∗

N (p (δN )) > 0, then q∗
N−1 (δN ) = q̄. Therefore,

C s
N (σ |δN) = (1 − δN)

1

4
+ qN

(
δN

1

4
+ b2

)
+ δN (1 − qN) C s

N−1 (σ |p (hN))

≥ (1 − δN)
1

4
+ δN C s

N−1

(
σ ∗|p (δN)

)
≥ (

1 − δ∗
N

) 1

4
+ δ∗

N C s
N−1

(
σ ∗|p (δN)

)
because q∗

N−1 (δN ) = q̄ implies that C s
N−1 (σ ∗|p (hN)) ≥ 1/4. Moreover,

C s
N

(
σ |δ′

N

) ≥ C s
N

(
σ ∗|p (

δ′
N

))
Hence,

Pr (δN) C s
N (σ |δN) + (

1 − Pr
(
δ′

N

))
C S

N

(
σ |δ′

N

) ≥ C S
N

(
σ ∗|p) .

Suppose that q∗
N (p (δN )) = 0 and q∗

N−1 (p (δN )) < q̄. Note that

C s
N (σ ) ≥ Pr (δN)

(
(1 − δN)

1

4
+ δN C s

N−1

(
σ ∗|p(δ′

N)
))+

(1 − Pr (δN))

((
1 − δ∗

N

) 1

4
+ q∗

N

(
p(δ′

N)
)(

δ∗ 1

4
+ b2

)
+ δ∗

N

(
1 − q∗

N

(
p(δ′

N)
))

C s
N−1

(
σ ∗| p(δ′

N) − q∗
N

(
p(δ′

N)
)

1 − q∗
N

(
p(δ′

N)
)

))

Let p1 be such that q∗
N−1(p1) = q̄. Note that q∗

N−1 (p (δN )) < q̄ implies that p1 > p (δN ). Pick p2 such that

Pr (δN) p1 + (1 − Pr (δN)) p2 = p.

The fact that q∗
N−1(p1) = q̄ and q∗

N−1(p2) = q̄, together imply that

(1 − Pr (δN))q∗
N(p2) = q∗

N(p).

Moreover,

Pr (δN)

(
(1 − δN)

1

4
+ δN C S

N−1

(
σ ∗|p(δ′

N)
))+

(1 − Pr (δN))

((
1 − δ∗

N

) 1

4
+ q∗

N

(
p(δ′

N)
)(

δ∗ 1

4
+ b2

)
+ δ∗

N

(
1 − q∗

N

(
p(δ′

N)
))

C s
N−1

(
σ ∗| p(δ′

N) − q∗
N

(
p(δ′

N)
)

1 − q∗
N

(
p(δ′

N)
)

))
≥

Pr (δN)

(
(1 − δN)

1

4
+ δN C s

N−1

(
σ ∗|p1

))+

(1 − Pr (δN))

((
1 − δ∗

N

) 1

4
+ q∗

N (p2)

(
δ∗ 1

4
+ b2

)
+ δ∗

N

(
1 − q∗

N

(
p(δ′

N)
))

C s
N−1

(
σ ∗| p2 − q∗

N (p)

1 − q∗
N (p)

))
≥

Pr (δN)

((
1 − δ∗

N

) 1

4
+ δ∗

N C s
N−1

(
σ ∗|p1

))+

(1 − Pr (δN))

((
1 − δ∗

N

) 1

4
+ q∗

N (p)

(
δ∗ 1

4
+ b2

)
+ δ∗

N

(
1 − q∗

N

(
p(δ′

N)
))

C s
N−1

(
σ ∗| p2 − q∗

N (p)

1 − q∗
N (p)

))
=

C s
N

(
σ ∗)

completing the argument. Although throughout the proof we have assumed that τ has a two point support, the argument 
follows without alteration for the case where τ ′s support is arbitrary by simply applying Jensen’s inequality. �

�
Proof of Proposition 1. Define D1 = 1, let a = 4b2 and note that δ∗

i , i = 2, . . . , N , is defined by the following system of 
equations:

δ∗
i = a

1 + aDi−1
(8.8)

Di = δ∗
i Di−1 (8.9)
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for all i = 2, . . . , N . This, in turn, can be reduced to the following difference equation with initial condition D1 = 1:

Di = aDi−1

1 + aDi−1
, i = 2, . . . , N. (8.10)

Claim 5. Unique solution to the difference equation given in (8.10) is given by

Di = ai−1∑i−1
j=0 a j

(8.11)

Proof of Claim 5. Proof is by induction. D2 = a/(1 + a), so it is true for i = 2. Suppose now that it is true for 2 ≤ k ≤ N − 1. 
Then

Dk+1 = aDk

1 + aDk
=

a ak−1∑k−1
j=0 a j

1 + a ak−1∑k−1
j=0 a j

= ak∑k
j=0 a j

which establishes the claim. �
Substituting (8.11) into (8.8), we obtain

δ∗
i = a

1 + a ai−2∑i−2
j=0 a j

=
∑i−1

j=1 a j∑i−1
j=0 a j

. (8.12)

Claim 6.

γN−i = ai∑N−1
j=0 a j

, i = 0,1, . . . , N − 1. (8.13)

Proof of Claim 6. First, note that

γN = 1 − δ∗
N = 1 −

∑N−1
j=1 a j∑N−1
j=0 a j

= 1∑N−1
j=0 a j

Second, by definition γN−i = δ∗
Nδ∗

N−1 . . . δ∗
N−i+1(1 − δ∗

N−i) for any i = 1, . . . , N − 1. Again by definition Di = δ∗
i δ∗

i−1 . . . δ∗
2 , 

which implies that

δ∗
Nδ∗

N−1 . . . δ∗
N−i+1 = δ∗

Nδ∗
N−1 . . . δ∗

2

δ∗
N−iδ

∗
N−i−1 . . . δ∗

2
= D N

D N−i

Therefore,

γN−i = D N

D N−i
(1 − δ∗

N−i) =
aN−1∑N−1

j=0 a j

aN−i−1∑N−i−1
j=0 a j

(
1 −

∑N−i−1
j=1 a j∑N−i−1
j=0 a j

)
= ai∑N−1

j=0 a j

for any i = 1, . . . , N − 1. This proves the claim. �
It is now easy to show that growth rate of the importance parameter γ is a − 1 and that γN decreases in a. �

Proof of Proposition 2. Let the prior be p > q̄ and k the largest integer such that p > 1 − (1 − q̄)k−1. Assume that k ≥ 2. 
Theorem 1 and the discussion that follows it implies that, if N ≥ k, the cost of the sender is equal to

C S = (γ1 + · · · + γk−1)q̄b2 + γkqkb2 < q̄b2

since qk ≤ q̄. Cost when N < k, on the other hand, is at least q̄b2, because the total probability of the biased action is greater 
than or equal to q̄ in period N . This implies that it is strictly better to choose N ≥ k rather than N < k. Let W i = γ1 +· · ·+γi

and note that Wk = D N/Dk by definition. Since γk = Wk − Wk−1, cost can be written as
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C S = [Wk−1(q̄ − qk) + Wkqk]b2

= [δ∗
k (q̄ − qk) + qk] D N

Dk
b2.

Note that p ≤ 1 − (1 − q̄)k by definition of k. Therefore, if N ≥ k, then there is no cost of miscommunication in period 
N and hence the cost of the unbiased receiver is equal to zero while the cost of the biased receiver is δk/4 in the receiver-
optimal equilibrium. If N < k, however, there is a cost of miscommunication in period N , which implies that the cost of the 
unbiased receiver is (1 − δN ) /4 and the cost of the biased receiver is 1/4. Therefore, any N ≥ k minimizes the cost for the 
receivers. This implies that the cost of the receivers is (weakly) decreasing in N .

If k = 1 or p ≤ q̄, then the cost is equal to γ1 pb2 = D N pb2. Equation (8.11) implies that D N is strictly decreasing in N , 
which implies that the cost of the sender is decreasing N . Furthermore, if b > 1/2, then limN→∞ D N = 1 − 1/a > 0, which 
implies that the lower bound on the total cost is strictly positive. If b < 1/2, then limN→∞ D N = 0.

When k = 1 or p ≤ q̄, the cost of both types of the receivers in the receiver-optimal equilibrium is equal to zero, and 
hence it is constant in N . �
Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2020 .03 .001.
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