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ALGEBRAS DEFINED BY EQUATIONS

PETER M. HIGGINS AND MARCEL JACKSON

Abstract. We show that an elementary class of algebras is closed un-
der the taking of homomorphic images and direct products if and only
if the class consists of all algebras that satisfy a set of (generally si-
multaneous) equations. For classes of regular semigroups this allows an
interpretation of a universal algebraic nature that is formulated entirely
in terms of the associative binary operation of the semigroup, which
serves as an alternative to the approach via so called e-varieties. In
particular we prove that classes of Inverse semigroups, Orthodox semi-
groups, and E-solid semigroups are equational in our sense. We also
examine which equations are valid in every semigroup.

1. Introduction

Groups may be characterized in terms of their binary operation alone as
they form the class of semigroups that are both left and right simple, which
is to say that a semigroup S is a group if and only if aS = Sa = S for all
a ∈ S. Since this introduces the theme of the paper, let us observe that the
given pair of conditions on S may be expressed by saying that the equations
ax = b and ya = b are always solvable in S, meaning that the class G of all
groups is de�ned within the class of semigroups by the equations:

G: (∀a, b ∈ S) (∃x, y ∈ S) : (ax = b) ∧ (ya = b). (1)

A second observation is that G is a class of semigroups closed under the op-
erations H and P, which are respectively the taking of homomorphic images,
and the taking of direct products, but G is not closed under the taking of
subsemigroups, so that G does not constitute a semigroup variety. Many fun-
damental semigroup classes are {H,P}-closed classes in this way and we may
easily identify natural equational bases, as we show in Section 2. In general
we will use the phrase equation system in preference to simply equation, to
allow for the fact that they are typically systems of simultaneous equations
(grouped by conjunction) and that we allow arbitrary quanti�cation. This
also avoids confusion with the common use of �equation� synonymously with
�identity� in the context of varieties. Nevertheless, we allow equational basis

to refer to any family of equation systems that characterise a class.
In Section 3 we give a fundamental model theoretic theorem (originally

noted, though not explicitly proved, by Keisler [12]) underlying this idea,
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2 PETER M. HIGGINS AND MARCEL JACKSON

which is that an elementary class C of algebras is {H,P}-closed if and only
if C consists of all algebras for which there exist solutions to a certain set of
equation systems. The reverse direction is clear but the forward implication
is a consequence of Lyndon's Positivity Theorem (see [14] or Corollary 8.3.5
of [10]). In Section 4 we �nd equational bases for the {H,P}-classes of In-
verse semigroups, Orthodox semigroups, and E-solid semigroups (semigroups
whose idempotent generated part is a union of groups). Section 5 compares
our approach to that of e-varieties when applied to classes of regular semi-
groups. The �nal section is on equation systems that are universally solvable
in any semigroup.

General background on semigroup theory will be assumed. We direct the
reader to the books [4, 9, 11, 13] and our textual source for universal algebra
is [2]. Standard location theorems for Green's relations and properties of
regularity will often be used without further comment. The symbol S stands
for a semigroup and we denote the set of idempotents of S by E(S) or
sometimes simply by E. We write V (A) to denote the set of inverses of
members of the subset A of S. One fact drawn upon in Section 4 is that in a
regular semigroup S, V (En) = En+1, from which it follows that the core of
S, which is the idempotent generated subsemigroup 〈E〉 of S, is itself regular
(see Fitzgerald [5]).

2. Examples of equational bases for {H,P}-classes of
semigroups

In the following, S always denotes a semigroup, and unless otherwise
stated, quanti�cation is over elements of S.

Example 2.1. (i) Reg, the class of all regular semigroups may be de-
�ned by the single equation a = axa, which is to say

Reg: (∀a) (∃x) : axa = a. (2)

The classes of Completely regular semigroups, Semilattices of groups, and
of Completely simple semigroups may each be de�ned within the class of
regular semigroups by one additional equation.

(ii) CR, the class of all completely regular semigroups (unions of groups)
has an equational basis in our sense given by:

CR : (∀a) (∃x) : (a = axa) ∧ (ax = xa) (3)

for if S ∈ CR then for any a ∈ S we take x as the group inverse
of a in order to satisfy the equation system. Conversely, given that
S satis�es this equation system we have that y = xax ∈ V (a) and
ay = axax = ax = xa = xaxa = ya. But then we have a H y
as a = a2y = ya2 and y = y2a = ay2, so that Ha is a group and
therefore S is a union of groups.

(iii) The class SL of all semilattices of groups may be de�ned by:

SL : (∀a, b) (∃x, y) : (a = axa) ∧ (ab = bya). (4)
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To see this, given that S ∈ SL then the �rst equation is satis�ed by
regularity. Now Hab = Hba = H, a group with identity e say. Hence
be, ea ∈ H so we put y = e(be)−1ab(ea)−1e (where inversion is in the
group H) and then

bya = be(be)−1ab(ea)−1ea = e(ab)e = ab.

Conversely if S satis�es the given equations then S is certainly reg-
ular. Take a ∈ S, e ∈ E(S). Then there exists y ∈ S such that
ae = eya, whence eae = e2ya = eya = ae. Similarly there exists
z ∈ S such that ea = aze, whence eae = aze2 = aze = ea. Therefore
ae = eae = ea, which shows that idempotents are central and we
conclude that S is a semilattice of groups.

We note also that Theorems 5.1 and 5.2 of [15] show that the
second equation of (4) taken over S1 characterises semigroups in
which H is a congruence such that S/H is commutative.

(iv) The class CS of completely simple semigroups is de�ned by:

CS : (∀a, b) (∃x, y) : (a = axa) ∧ (a = abay). (5)

For if S is a completely simple semigroup then S is certainly regular
and since for any a, b ∈ S we have a H aba, it follows that there are
always solutions to the second equality in (5) as well. Conversely,
given that S satisfes the equation system we see that S is regular
while the second equality in (5) implies that a ≤J b is true for all
a, b ∈ S and so S is simple. Suppose that e ≤ f holds in the natural
partial order of the idempotents of S so that e = ef = fe = fef .
Taking a = f and b = e in the second equation gives us f = fefy =
ey, and so e = ef = e2y = ey = f . It follows that each idempotent
f ∈ E(S) is primitive and therefore S is indeed completely simple.

We adopt the convention in our equations that letters taken from the front
of the alphabet, a, b, c are parameters, which means they are quanti�ed by
a ∀ symbol, while x, y, z denote variables, meaning that they are quanti�ed
by the symbol ∃.

We may sometimes abbreviate certain collections of equalities by expres-
sions that are shorter and the meaning of which is clearer. For example,
x ∈ V (a) is equivalent to (a = axa) ∧ (x = xax). However, if the equali-
ties required are simultaneous, meaning that they contain common variables,
these abbreviations may not su�ce and the equations may need to be listed
explicitly to convey the required duplication of variables between equations.
However the equations ((∃x) (∀a) : ax = xa = a) may be shortened to x = 1
and similarly ((∃x) (∀a) : ax = xa = x) can be written as x = 0. When
dealing with long strings it is sometimes convenient to write the equation
w = w2 as w ∈ E, although this is an abuse of notation as w is a word in a
free semigroup pre-image of S while E = E(S). Another example we shall
make use of is to write w ∈ G to indicate that w belongs to a subgroup of S.
The pair of equations (∃x) : (x ∈ V (w)) ∧ (wx = xw) is equivalent to the
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pair of conditions that x is an inverse of w and Hw = Hx is a group H -class.
In this way the class CR of completely regular semigroups may now simply
be expressed by (∀a)(a ∈ G).

Example 2.2. (i) Let IG be the class of all semigroups S for which
each element has an inverse that lies in some subgroup of S: IG may
be captured as the conjunction of equational properties as described
above:

IG : (∀a) (∃x, y) : (x ∈ V (a)) ∧ (x H y) ∧ (y ∈ E(S)).

We note that expressions such as x H y may be expressed by equa-
tions but that in general these are equations over S1 rather than S.
In the sequel it will be seen that, on some occasions, this is a signi�-
cant distinction although that is not so in the presence of regularity
(as we have in this example) and so the relevant equations can indeed
be taken over S.

(ii) By the class Cr of cryptogroups is meant those semigroups S that
are completely regular and for which H is a congruence (so that
CS ⊆ Cr). The class Cr is de�ned by the CR equations (3) together
with the equation systems de�ned by ab H axb and ba H bxa:

Cr : (∀a, b) (∃x) :

(a = axa) ∧ (ax = xa) ∧ (ab H axb) ∧ (ba H bxa). (6)

For supposing that S is a cryptogroup then S is completely regular
and since H is a congruence and a H ax (as ax = xa) it follows that
the additional equations are also satis�ed. Conversely if S satis�es
our equations then S is certainly a union of groups. Suppose that
a H c in S. Then e = ax = xa is the idempotent in the class
Ha = Hc. By the same token there is a solution y say to the given
equations so that c = cyc and cy = yc = e. It then follows from the
third equation in (6) that for any b ∈ S we have ab H eb H cb,
so that H is a right congruence, and by symmetry we obtain that
H is also a left congruence, and therefore H is a congruence on S,
which is to say that S is a cryptogroup.

Example 2.3. (i) Semigroups with a right identity (resp. right zero) are
de�ned by the equation

(∃x) (∀a) : ax = a (resp. ax = x). (7)

We also have of course the left and the two-sided versions of these,
the two-sided cases respectively being the classes of Monoids (M),
and Semigroups with zero. In accord with the comment above, we
may express these respectively via the equations x = 1 and x = 0.
We do however explicitly call attention to this equational basis for
M :

M: (∃x) (∀a) : ax = xa = a. (8)
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The order of the logical quanti�ers ∀ and ∃ in the equation systems
of (1) to (6) is ∀ . . . ∃ . . . whereas in (7) and (8) the order is reversed.
What is moreM cannot be represented by an equational basis of the
form ∀∗ ∃∗ (meaning any, possibly 0, number of ∀ followed by any,
possibly zero, number of ∃) because any class de�ned in that way
is closed under the taking of unions of ascending chains of algebras
(this is the easy half of the Chang-�os-Suszko Preservation Theorem;
see [3, Theorem 5.2.6]). However, this is not true of M as may be
seen by considering the semilattice represented by the chain E of the
integers with the standard ordering. Observe that E is the union of
the ascending sequence of sub-chains Ei = {e−i < e−i+1 < · · · <
ei−1 < ei} (i ≥ 1). Each Ei is a monoid with zero, with identity
element ei and with zero element e−i but the union E of these chains
is a semilattice with no identity element and no zero. In particular,
E is not a monoid.

(ii) The class J of simple semigroups (semigroups with a single J -class)
is de�ned by the condition that for all a, b ∈ S there are solutions
x, y ∈ S1 to the equation a = xby. In those circumstances however,
by replacing b by aba we may �nd solutions u, v ∈ S1 such that
a = (ua)b(av) so that x = ua and y = av furnish solutions x, y ∈ S
that satisfy our equation a = xby. In summary we have the following
equational basis for J :

J -simple semigroups: (∀a, b) (∃x, y) : a = xby. (9)

By a similar argument, the class R of right simple semigroups

(aS1 = S for all a ∈ S) has equational basis (∀a, b) (∃x) : a = bx.
The dual comment applies to the class L of left simple semigroups,
while the class of H-simple semigroups is of course the class G of all
groups.

(iii) Semigroups with a maximum J -class. The two element null semi-
group N has a maximum J -class, but its square N × N does not,
so the class of semigroups with maximum J -class is not P-closed.
It turns out that this example is the main obstacle to being {H,P}-
closed, as arguments similar to those in part (ii) show that the fol-
lowing properties are equivalent for a semigroup S:
• S has a maximum J -class J and the Rees quotient S/(S − J)
is not a null semigroup;
• S has a maximum J -class J and S/(S − J) is not isomorphic
to N ;
• S satis�es equation (10):

(∃y) (∀a) (∃x, z) : (a = xyz). (10)

Equation (10) has a sequence of three alternating quanti�er types,
and we now show that this is necessary. By the Chang-�os-Suszko
Preservation Theorem, it su�ces to show that there is a subsemi-
group chain A1 ≤ A2 ≤ . . . such that each Ai satis�es Equation (10)
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and such that
⋃

j≥1Aj fails Equation (10), and a subsemigroup chain

B1 ≤ B2 ≤ . . . with each Bi failing Equation (10), but such that⋃
j≥1Bj satis�es Equation (10). For the semigroups Ai we may use

the semigroups Ei of Example 2.3(i): the union E fails (10). For Bj ,
we begin by considering the denumerably generated combinatorial
Brandt semigroup Bω, whose set of elements is {0} ∪ {(i, j) | i, j ∈
ω = {0, 1, 2, . . . }} with 0 acting as a multiplicative zero element and
with multiplication

(i, j)(k, `) =

{
(i, `) if j = k

0 otherwise.

For each i = 1, 2, 3, . . . , choose Bi to be the subsemigroup of Bω on
the set {0} ∪ {(j, k) | 0 ≤ j, k ≤ i − 1} ∪ {(i, i)}, with two maximal
J -classes, which are {(i, i)} and S \ ({0} ∪ {(i, i)}). Then each Bi

fails (10), yet the union is Bω, which has a single maximum J -class,
satis�es (10).

(iv) A non-example: D the class of bisimple semigroups. The distinc-
tion between solutions of equations over S and over S1 is important
however when it comes to D , for it is unique among the �ve Green's
relations in that the class of D-simple (bisimple) semigroups is closed
under H but not P. Bisimple semigroups are de�ned by the following
triple disjunction of equational bases:

(∀a, b) (∃t, u, v, x, y) :(
(a = tu) ∧ (t = av) ∧ (t = xb) ∧ (b = yt)

)
∨
(
(a = xb) ∧ (b = ya)

)
∨
(
(a = bx) ∧ (b = ay)

)
. (11)

For suppose that S satis�es (11) and let a, b ∈ S. If the �rst equation
system in (11) applies to a and b then a R t L b, while the second
and third sets imply that a L b and a R b respectively. In any
event it follows that S is bisimple. Conversely let S be any bisimple
semigroup and let a, b ∈ S. Then there exists t ∈ S such that
a R t L b and so we may satisfy the �rst equation system in (11)
for a and b unless a = t or t = b. If we have that a = t 6= b, then
a L b and the second equation system in (11) is solvable. Dually,
if b = t 6= a then a R b and the third equation system in (11)
can be solved for a and b. Finally consider the case where a = b.
Clearly we may assume that |S| ≥ 2 in which case either |Ra| ≥ 2
or |La| ≥ 2. By symmetry, we need deal only with the �rst case
from which it follows that ∃x ∈ S such that ax = a whence the third
equation system in (11) is then satis�ed. Therefore if S is bisimple
then S satis�es (11). It follows that the class of bisimple semigroups
is closed under the taking of homomorphic images but, as we now
show, not under the taking of direct products. For this reason, it is
not possible to remove the conjunctions in (11). (However, the �rst
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equation system of (11) does su�ce if we allow ourselves solutions
over S1 rather than just S.)

Let X be a countable in�nite set. The Baer-Levi semigroup B is
the subsemigroup of the full transformation semigroup TX consisting
of all one-to-one mappings α : X → X such that |X \ Xα| is in�-
nite. It is well known and easily veri�ed that B is R-simple, right
cancellative, and idempotent free; in consequence B is L -trivial.
In particular it follows that there are no factorizations of the form
a = ta in B (as then ta = t2a whence t = t2 by right cancellativity)
or what is the same, a 6∈ Ba for all a ∈ B. Therefore B is an example
of a bisimple semigroup that satis�es the third equation set in (11)
but not the other two sets. Its left-right dual, B∗, will by symme-
try also be bisimple and satisfy the second equation set in (11) but
not the other two. (As another example of a semigroup that is left
simple, left cancellative, idempotent free and hence R-trivial, take
the semigroup S of all surjections on X for which every kernel class
is in�nite.) The semigroup B × B∗ is then an example of a direct
product of two D-simple semigroups that is not itself D-simple: in-
deed B ×B∗ is D-trivial (but J -simple), by virtue of the following
observation.

Proposition 2.4. Let S (resp. T ) be a semigroup that satis�es the

condition that for all a ∈ S, a 6∈ Sa (resp. for all b ∈ T, b 6∈ bT ).
Then S × T is D-trivial.

Proof. We �rst check that S×T is right trivial. Suppose that (a, b) R
(c, d) say. Then either (a, b) = (c, d) or there exists (x, y), (u, v) ∈
S × T such that (a, b)(x, y) = (ax, by) = (c, d) and (c, d)(u, v) =
(cu, dv) = (axu, byv) = (a, b). But then we have t = yv ∈ T and
b = bt, contradicting that b 6∈ bT . Therefore it follows that S × T is
right trivial. By symmetry it follows that S × T is also left trivial
and hence S × T is D-trivial. �

(v) Another non-example, this time in the signature of rings with iden-
tity, {+,−, ·, 0, 1}. Let F be any uncountable �eld such as the reals
or complex numbers. The closure of {F} under taking H and P is
equal to HP(F ) by the well known class operator inequality HP ≥ PH
(see [2, Lemma II.9.2] for example). However it cannot be charac-
terised by any set of equation systems, nor indeed by any set of �rst
order sentences, as such a class that is closed under HP is then an
elementary class. However, we will show that all nontrivial mem-
bers of HP(F ) have cardinality at least equal to |F | > ℵ0, whereas
the Downward Lowenheim-Skolem-Tarski Theorem (see [3, Corol-
lary 2.1.4] for example) shows that, in a countable signature, any
elementary class with an in�nite model has a model of denumerable
cardinality. It follows that HP(F ) cannot be closed under taking
elementary embeddings.
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Now there is a natural embedding of F into any nonempty power of
itself FS , namely that which assigns each f ∈ F to the corresponding
constant mapping f : s 7→ f in FS . Let F be the image of F under
this embedding. We claim that if two distinct elements of F are
in the kernel of a homomorphism φ from FS , then φ is a trivial
homomorphism collapsing all of FS . To this end, assume f 6= g in F
and φ(f) = φ(g). There is no loss of generality in assuming that f is

1 and g is 0, as we may otherwise replace f by (f − g)−1(f − g) and
g by 0. Then for any x ∈ FS we have φ(x) = φ(1x) = φ(1)φ(x) =
φ(0)φ(x) = φ(0x) = φ(0) as required. This completes the argument,
as either ℵ0 < |F | ≤ |φ(FS)| or |φ(FS)| = 1.

(vi) Let RG denote the class of right groups, by which we mean semi-
groups that are right simple (aS = S) and left cancellative ((ab =
ac)→ (b = c)). Another characterization of RG is the class of semi-
groups for which there is always a unique solution to the equation
ax = b (a, b ∈ S). The solvability of the equation ax = b how-
ever does not in itself imply uniqueness: the Baer-Levi semigroup is
an example of a right simple, right cancellative semigroup in which
the equation ax = b always has in�nitely many solutions. However
right groups are also characterized as those semigroups that are right
simple and contain an idempotent (see [4] for details) and as such
the class is determined by the availability of solutions to a pair of
equations:

RG: (∀a, b) (∃x, y) : (ax = b) ∧ (y = y2). (12)

(vii) Any variety V of semigroups (a class closed under the operators H, P,
and S, the taking of subalgebras) is, by Birkho�'s theorem, de�ned
by some countable set of identities, which are equations that may be
expressed without the use of the existential symbol ∃. The following
easy proposition is indicative of the kind of result that our approach
leads to: it shows for example that the equation systems holding in a
variety V are precisely those holding on the denumerably generated
V-free algebra (precisely as is the case for identities).

Proposition 2.5. Let K be a class of algebras in a countable signature that

is de�ned by a family of equation systems. Then K is a variety if and only

if K contains the denumerably generated HSP(K)-free algebras.

Proof. The forward direction is trivial. Now assume that the denumerably
generated HSP(K)-free algebras lie in K. Then as H(K) = K it follows that
K contains all countably generated members of HSP(K). However as K is
de�ned by a family of equation systems it is an elementary class (de�n-
able in �rst order logic) and hence is determined by its countably generated
members. As these coincide with HSP(K) it follows that HSP(K) = K. �
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(viii) The dual idea to that which arises in (vii) is of a class de�ned by an
equation system that is free of the symbol ∀. For example the class:

Id : (∃x) : x = x2. (13)

is the class of all semigroups S with idempotents, which is to say
that E(S) 6= ∅. We note that Id is the minimum semigroup class
of this kind as any semigroup S with an idempotent e satis�es every
equation p = q that is free of the ∀ quanti�er as is seen by acting the
substitution x → e on each variable x of p = q. We return to this
topic in Section 6.

3. The equational representation theorem for {H,P}-classes

A formula of the predicate calculus is in prenex form if it is written as a
string of quanti�ers (referred to as the pre�x ) followed by a quanti�er-free
part (referred to as the matrix ). An equation system, as informally described
in Section 2, is a sentence in prenex form, whose matrix is a conjunction of
atomic formulas. Familiar examples include identities (universally quanti�ed
equation systems) and primitive positive sentences (existentionally quanti-
�ed equation systems). When the quanti�ers are all universal, we also refer
to a ∀1 equation system, while a primitive positive sentence will be referred
to as a ∃1 equation system. In general, we let a ∀i+1 equation system denote
an equation system in which the leftmost quanti�er is ∀, and there are i
alternations of quanti�ers; the de�nition of an ∃i+1 system is dual.

We note that in the case of ∀1 equation systems, we may use the property(
(∀x)φ(x) ∧ ψ(x)

)
↔
(
(∀x)φ(x)) ∧

(
(∀x)ψ(x)

)
in order to remove conjunctions (in favour of sets of quanti�ed atomic formu-
las), however this is not in general true once existentially quanti�ed variables
are present. Equation systems are exactly the positive (that is, negation-free)
Horn sentences (sentences with at most one positive literal or atom).

The following theorem is an extension of Lyndon's Positivity Theorem
(see [14], or [10, Corollary 8.3.5]), and applies in all signatures, including
those involving relations. In the case of relations, by a homomorphic image

of a structureA, we mean any structureB for which there is a homomorphism
from A onto B; the homomorphism does not necessarily map the relations on
A onto those of B. The result is in the style of the many classical preservation
theorems of model theory, though does not appear to have been included in
standard references such as [3] and [10], nor in other surveys such as [16].
In revision of this manuscript however, the authors have discovered that the
result is noted in Keisler [12] (see un-numbered remark on page 322). A
proof idea is alluded to there (speci�cally, relating to the proof of Theorem 2
of Bing [1]), but we feel that the reader will appreciate the transparent
inductive argument presented here in full.

Theorem 3.1. An elementary class equals the class of models of some family

of equation systems if and only if it is closed under taking homomorphic
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images of direct products. If the elementary class is the model class of a

single sentence, then it is a class of models of a single equation system.

Proof. One direction is easy: equation systems are preserved under direct
products and under homomorphic images. Note also that equation systems
are examples of �rst order sentences, so such a class is automatically an
elementary class and the initial assumption of the theorem is redundant. We
now must show that if K is an elementary class closed under taking surjective
homomorphic images and direct products, then it can be axiomatised by a
family of equation systems. Our method of proof will automatically derive
the second statement in the theorem. As K is an elementary class closed
under taking homomorphic images, a version of Lyndon's Positivity Theorem
applies to show that K is the class of models of a set Σ of positive sentences
(see [3, Theorem 3.2.4] or [10, Exercise 8.3.1]). It now remains to show that
disjunctions can be removed from the sentences in Σ.

Consider a sentence ρ ∈ Σ; we assume that ρ is a ∀k sentence, for, if we are
given a ∃k sentence, we may augment ρ with the initial condition (∀a), where
a is a symbol that does not appear elsewhere in Σ, and so replace ρ with an
equivalent ∀k+1 sentence. Therefore we may take it that the quanti�er Qt is
∀ if t is odd and ∃ if t is even (1 ≤ t ≤ k). We may write our sentence as:

ρ = (∀x1,1 . . . ∀x1,n1)(∃x2,1 . . . ∃x2,n2) . . . (Qkxk,1 . . . Qk xk,nk
)

ρ(x1,1, . . . x1,n1 , x2,1, . . . , x2,n2 , . . . , xk,1 . . . , xk,nk
).

Moreover, there is no loss of generality in assuming that k is even, as we
may, if necessary, append a �nal (∃x) quanti�er, where the symbol x does
not appear elsewhere in Σ, giving an equivalent sentence. We assume that the
matrix of ρ is written as a �nite conjunction of disjunctions; say

∧
1≤i≤m γi,

where each γi is a �nite disjunction:

γi = αi,1 ∨ · · · ∨ αi,ri

where each αi,j is an atomic formula involving some subset of the full set of
variables x1,1, . . . , xk,nk

. If ri = 1 for i = 1, . . . ,m then there is nothing to
prove. Otherwise, if there is i such that ri ≥ 2, we shall show that there
is a j ∈ {1, . . . , ri} such that the conjunct γi may be replaced by the single
atomic formula αi,j . Repeating this for each conjunct will see us arrive at
the desired ∨-free sentence. The quanti�ers remain unchanged throughout.

Without loss of generality then, we may assume that ri ≥ 2 for some i.
For each j = 1, . . . , ri let ρj be the result of replacing γi by αi,j in ρ. Note
that ρj ` ρ so that the class of models satis�ed by (Σ ∪ {ρj}) \ {ρ} is a
subclass of K. We wish to show that there is some j such that the reverse
containment holds.

Assume by way of contradiction that no such j exists. In this case, for
each j ∈ {1, . . . , ri} there is a model M j ∈ K such that ρj fails in M j . We
will now use the fact that M := Π1≤j≤riM j ∈ K and so M |= ρ in order to
produce the required contradiction.
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For each j: as M j 6|= ρj there is an n1-tuple a1,1,j , . . . , a1,n1,j such that

M j 6|= (∃x2,1 . . . ∃x2,n2) . . . (∃xk,1 . . . ∃xk,nk
)

ρj(a1,1,j , . . . , a1,n1,j , x2,1, . . . , x2,n2 , . . . , xk,1, . . . , xk,nk
),

where the �nal block of quanti�ers is ∃, from our convention that k is even.
Equivalently

M j |= (∀x2,1 . . . ∀x2,n2) . . . (∀xk,1 . . . ∀xk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , x2,1, . . . , x2,n2 , . . . , xk,1, . . . , xk,nk
). (14)

Now let a1,1, . . . , a1,n1 ∈M be the ri-tuples formed from these violating
tuples from each M j , which is to say that

a1,l(j) = a1,l,j (1 ≤ l ≤ n1). (15)

Now M � ρ, and so there exist elements a2,1, . . . , a2,n2 ∈M such that

M � (∀x3,1 . . . ∀x3,n3) . . . (∃xk,1 . . . ∃xk,nk
)

ρ(a1,1, . . . , a1,n1 , a2,1, . . . , a2,n2 , x3,1, . . . , x3,n3 , . . . , xk,1, . . . , xk,nk
). (16)

We continue inductively in this way and assume that for some t ≥ 1, for
each j ∈ {1, . . . , ri} there exists elements

a1,1,j , . . . , a1,n1,j , . . . , a2t−1,1,j , . . . , a2t−1,n2t−1,j ∈M j

such that

M j � (∀x2t,1 . . . ∀x2t,n2t) . . . (∃xk,1 . . . ∃xk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , . . . , a2t−1,1,j , . . . , a2t−1,n2t−1,j ,

x2t,1, . . . , x2t,n2t, . . . , xk,1, . . . , xk,nk
). (17)

And with

am,l(j) = am,l,j (1 ≤ l ≤ np) (1 ≤ p ≤ 2t− 1) (18)

there exist elements a2t,1, . . . , a2t,n2t ∈M such that with

M � (∀x2t+1,1 . . . ∀x2t+1,n2t+1) . . . (∃xk,1 . . . ∃xk,nk
)

ρ(a1,1, . . . , a1,n1 , . . . , a2t,1, . . . , a2t,n2t , x2t+1,1, . . .

. . . , x2t+1,n2t+1 . . . , xk,1, . . . , xk,nk
). (19)

The base t = 1 case of (17), (18), and (19) is given by (14), (15) and (16)
respectively. We now verify that we may increment each of the three parts
of the inductive hypothesis, they being (17), (18), and (19), from t to t+ 1
and thereby continue the induction.

We use (19) to project from M to each M j by making substitutions
in (17):

x2t,1 7→ a2t,1,j = a2t,1(j), . . . , x2t,n2t 7→ a2t,n2,j = a2t,n2(j). (20)
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Then from (17) we have:

M j � (∃x2t+1,1 . . . ∃x2t+1,n2t+1) . . . (∃xk,1 . . . ∃xk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , . . . , a2t,1,j , . . . , a2t,n2t,j ,

x2t+1,1, . . . , x2t+1,n2t+1, . . . , xk,1, . . . , xk,nk
). (21)

Substituting witnesses x2t+1,l,j 7→ a2t+1,l,j (1 ≤ l ≤ n2t+1) in (21) then
increments (17) from t to t+ 1:

M j � (∀x2t+2,1 . . . ∀x2t+2,n2t+2) . . . (∃xk,1 . . . ∃xk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , . . . , a2t+1,1,j , . . . , a2t+1,n2t+1,j ,

x2t+2,1, . . . , x2t+2,n2t+2, . . . , xk,1, . . . , xk,nk
). (22)

Next we put a2t+1,l(j) = a2t+1,l,j (1 ≤ l ≤ n2t+1), which, together with (20),
increments (18) from t to t+ 1. Finally, by (19) we may substitute in M :

x2t+1,1 7→ a2t+1,1, . . . , x2t+1,n2t+1 7→ a2t+1,n2t+1 ,

and call up witnesses:

x2t+2,1 7→ a2t+2,1, . . . , x2t+2,n2t+2 7→ a2t+2,n2t+2

such that

M � (∀x2t+3,1 . . . ∀x2t+3,n2t+3) . . . (∃xk,1 . . . ∃xk,nk
)

ρ(a1,1, . . . , a1,n1 , . . . , a2t+2,1, . . . , a2t+2,n2t+2 ,

x2t+3,1, . . . , x2t+3,n2t+3 , . . . , xk,1, . . . , xk,nk
) (23)

which increments (19) from t to t+ 1, and so the induction continues. This
recursive procedure eventually yields a tuple

ā = (a1,1, . . . , a1,n1 , . . . , ak,1, . . . , ak,nk
) (24)

such that M � ρ(ā) but for each j, (1 ≤ j ≤ ri), M j � ¬ρj(āj), where
āj represents the tuple obtained from (24) by projecting onto the jth co-
ordinate:

āj = (a1,1,j , . . . , a1,n1,j , . . . , ak,1,j , . . . , ak,nk,j).

Now for all i′ = 1, . . . , k, we have that γi′(ā) is true in M and also γi′(āj)
holds in each M j . Now M j � ¬ρj(āj) and for i′ 6= i the conjunct γi′ appears
in ρj ; as we have noted, M j � γi′(āj), and so it follows that αi,j(āj) must
be false in M j . But as γi(ā) is true in M , there must exist j ∈ {1, . . . , ri}
with αi,j(ā) true. But then, we obtain the contradiction that αi,j(āj) is true
in M j . Arrival at this contradiction completes the proof. �

Because the class operators H and P are related in composition by PH ≤
HP, Theorem 3.1 can be re-expressed as stating that an elementary class K
is de�nable by an equation system if and only if K = HP(K). If we wish to
drop the assumption that K is an elementary class, we need more care. Ele-
mentary classes are those closed under taking ultraproducts and elementary
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embeddings, however in the presence of H and P, we may ignore ultraprod-
ucts because they are particular cases of applications by HP. We cannot
however ignore elementary embeddings, as Example 2.3(v) demonstrates.
Thus Theorem 3.1 can be rephrased as �a class K is the class of models of

some equation systems if and only if it is closed under E, H and P�, where
E denotes closure under taking elementary embeddings. In addition to the
aforementioned containment PH ≤ HP, it is possible to show that HE ≤ EHP,
which points toward the composite EHP as being a single closure operator
equivalent to iterated closure under combinations of E, H and P. Unfortu-
nately the authors are not aware of a useful containment between PE and
EHP. We refer simply to {E,H,P}-closed classes and even {E,H,P}-classes,
though {E,H,P}∗-closed may be more technically correct. An interesting
consequence of Theorem 3.1 is that all equationally de�ned classes arise as
reducts of varieties. This is of course well-known for inverse semigroups and
groups (as semigroups), but is not otherwise immediately obvious for other
{E,H,P}-classes.

The class of reducts of a variety is always closed under ultraproducts and
direct products, but in general need not be closed under taking homomor-
phic images, nor subalgebras, nor even elementary embeddings. There are
plentiful easy examples demonstrating the failure of the �rst two of these
closure properties. For the case of elementary embeddings, we observe that
real vector spaces form a variety (with vector addition as binary and R-many
unary operations for scalar multiplication). The class of reducts to the empty
signature has no countably in�nite members, and hence is not an elementary
class. When the class of reducts of members of a variety is closed under H
and E (as they are for groups and inverse semigroups), then Theorem 3.1
shows that the class is de�nable by the equation systems. We now show a
converse to this statement.

Theorem 3.2. Let L be a signature and K an {E,H,P}-closed class of

L -structures. Then K is the class of reducts of a variety V in a signature

extending L . If K is �nitely axiomatisable in �rst order logic, then V can

be chosen to be �nitely based and have only �nitely many new operations in

comparison to K.

Proof. As K is closed under taking homomorphic images, direct products and
elementary embeddings, it can be axiomatised by a family of equation sys-
tems by Theorem 3.1. If K is �nitely axiomatisable in �rst order logic, then
the Completeness Theorem for �rst order logic ensures that it can equiva-
lently be axiomatised by a �nite family of equation systems. We now explain
how to replace each equation system in the family of equation systems by
an identity in some extended signature. A �nite number of new operations
is added for each equation system, so that if the family of equation systems
de�ning K is �nite, then so also will the resulting variety (after all equation
systems are replaced) be �nite.
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Consider a signature L and a sentence (∀~x) (∃y)φ(~x, y) in L , where ~x
abbreviates x1, . . . , xn (for some n, possibly 0) and where φ(~x, y) may con-
tain other quanti�ed variables that are not displayed. Let f be a new n-
ary operation symbol. It easily veri�ed that the models of (∀~x) (∃y)φ(~x, y)
are precisely the L -reducts of models of (∀~x)φ(~x, f(x1, . . . , xn)). Indeed, if
M |= (∀~x) (∃y)φ(~x, y) then we may expand the signature L of M to include
f by de�ning f at each tuple ~a ∈ Mn to be any witness x to (∃x)φ(~a, x).
This expansion of M is not necessarily unique, but all such expansions are
models of (∀~x)φ(~x, f(x1, . . . , xn)). Conversely the L -reduct of any model N
of (∀~x)φ(~x, f(x1, . . . , xn)) will be a model of (∀~x) (∃y)φ(~x, y), as the value
of f at any tuple ~a ∈ Nn provides the witness x required in (∃x)φ(~a, x). This
process is known as Skolemisation; see [3, �3.3] or [10, �3.1] for example. An
application Skolemisation to an equation system produces an equation sys-
tem with one fewer existential quanti�ers. Repeated applications eventually
yield an equation system without any existential quanti�ers. Such an equa-
tion system is a �nite set of identities. �

As a �rst example, Skolemising the de�ning equation (∃x)(∀a) : xa =
ax = a for monoids (as semigroups), we introduce a nullary operation e to
replace x to obtain (∀a) : ea = ae = a, the familiar de�nition as a semigroup
with constant. As a second example, we consider the result of applying
Skolemisation to the de�nition (1) for the class of groups as semigroups.
The given sentence is (∀a∀b)(∃x∃y) : (ax = b) ∧ (ya = b). Skolemising
once (using the symbol \ for the introduced Skolem function) we obtain
(∀a∀b)(∃y) : a(a\b) = b∧ya = b, and then a second time (using /) we obtain
(∀a∀b) : a(a\b) = b∧ (b/a)a = b (note that b/a might have more consistently
been written as a/b, however it is immediately clear that the required value
is the element ba−1). Thus groups (as semigroups) are the class of reducts of
the variety with two additional binary operations \, / de�ned by the identi-
ties a(a\b) = b and (b/a)a = b in addition to associativity of the semigroup
multiplication.

4. Equational bases for e-varieties of semigroups

The theory of semigroup e-varieties was devised by T.E. Hall [8] and oth-
ers in order create an interface between the theory of regular semigroups and
universal algebra. The theory endows {H,P}-closed classes of regular semi-
groups with the structure of a varietal type through introduction of unary
operations corresponding to choices of inverses for elements of the regular
semigroups involved. From Section 3 we know that we may, at least in prin-
ciple, represent such classes by equational bases using only the associative
binary operation with which the semigroup is naturally endowed. We shall
henceforth refer to these as {E,H,P}-bases, indicating that they determine
a de�ning set of equations for a class that is closed under E, H and P.

Three fundamental classes that form e-varieties are the classes I of all
inverse semigroups, O of orthodox semigroups, and ES of so-called E-solid
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semigroups. In this section we obtain �nite equational bases for these bench-
mark e-varieties. The bases each involve choosing inverses for two arbitrary
members a, b ∈ S and adjoining a second set of equations that ensure that
all products of the associated idempotents of a certain length (length 3 for
ES and for O, and 2 for I) have a particular property associated with the
class (are group members for ES, are idempotents for O, and commute with
one another in the case of I).

We begin with the equational basis problem for the class ES of all E-solid
semigroups, which are those regular semigroups S that satisfy the solidity

condition that for idempotents e, f, g ∈ E(S)

e L f R g → ∃h ∈ E(S) : e R h L g. (25)

Note that O ⊆ ES and ES ∩ IG = CR. We make use of the fact, taken
from [7], that a semigroup S is E-solid if and only if S is a regular semi-
group for which the idempotent-generated subsemigroup 〈E(S)〉 is a union
of groups.

The equational basis that we use here for the class of E-solid semigroups
consists of the following equations:

(∀a, b) (∃x, y, z1, z2, · · · , z64) : x ∈ V (a) ∧ y ∈ V (b)

∧ z1 ∈ V (ax · ax · ax) ∧ z1(ax · ax · ax) = (ax · ax · ax)z1

∧ z2 ∈ V (ax · ax · xa) ∧ z2(ax · ax · xa) = (ax · ax · xa)z2

...

∧ z64 ∈ V (yb · yb · yb) ∧ z64(yb · yb · yb) = (yb · yb · yb)z64 (26)

where the last 64 lines run over all products of three (not necessarily distinct)
members of the set F = {ax, xa, by, yb}. There are redundancies here as
some subsets of the collection are adequate equational bases for the class of
E-solid semigroups but the above array is convenient for the uniformity of
presentation that it o�ers. We may express this more succintly however by
writing this basis as follows:

(∀a∀b) (∃x∃y) : (x ∈ V (a)) ∧ (y ∈ V (b)) ∧ (p ∈ G).

where p denotes the product g1g2g3 for g1, g2, g3 ∈ F .
A basic theorem of semigroups due to Miller and Cli�ord [4] is that in

any semigroup S, if x L a R y with a a member of a subgroup of S then
x R xy L y, or in other words xy ∈ Rx ∩ Ly. This fact will be used
frequently in the proofs of this section without further reference.

Theorem 4.1. The class ES of all E-solid semigroups S is the {E,H,P}-
class with {E,H,P}-basis:

(∀a, b) (∃x, y) : (x ∈ V (a) ∧ y ∈ V (b)) ∧
∧

p=g1g2g3

(p ∈ G) (27)

where g1, g2, g3 ∈ F = {ax, xa, by, yb}.
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Proof. If S is E-solid, then S is regular and so the �rst part of (27) holds:
for every a, b we can �nd x ∈ V (a) and y ∈ V (b). Moreover, since 〈E(S)〉
is a union of groups, for any product p of idempotents, we have that the
condition p ∈ G is satis�ed. Thus, since F = {ax, xa, by, yb} ⊆ E(S), it
follows that the whole equation system (27) holds.

Conversely, suppose that S satis�es the equation system (27); the �rst
conjuncts of (27) ensure that S is regular. Take a, b ∈ E(S) and take wit-
nesses x, y ∈ S for satisfaction of (27). Since x = xax = xa · ax ∈ F 2 ⊆ F 3,
(27) tells us that Hx is a group and x ∈ E(S). Moreover ax · xa = axa = a.
Similarly, Hy is a group, y ∈ E(S), yb · by = y and by · yb = b.

Now suppose we have f ∈ E(S) such that a L f R b. We need to show
that a R g L b for some idempotent g, or equivalently that Ra ∩ Lb = Hab

is a group (refer to the D-class diagram below).

x xa xa · b
ax a a · yb

· · ·
f b by

yb · xa yb y

Observe now that xa · b = xa · by · yb so that Hxa·b = Rxa ∩Lb is a group.
It follows in turn that Ryb ∩ Lxa = Hyb·xa is also a group. Finally we infer
that Hab = Ha·yb = Hax·xa·yb is too a group, as required. �

Theorem 4.2. The class O of orthodox semigroups S is the {E,H,P}-class
with {E,H,P}-basis:

(∀a, b) (∃x, y) : (x ∈ V (a) ∧ y ∈ V (b)) ∧
∧

p=g1g2g3

(p ∈ E(S)) (28)

where g1, g2, g3 ∈ F = {ax, xa, by, yb}.

Proof. Clearly, since the members of F are idempotents, the equation system
(28) is satis�ed by any orthodox semigroup S. Conversely suppose that S
satis�es (28). Let a ∈ E = E(S) and take any b ∈ V (a). We shall show
that b ∈ E(S). Since in any regular semigroup V (E) = E2, it follows from
this that E = E2, which is to say that S is orthodox. With x, y witnessing
satisfaction of (28) for the chosen a, b, we have x = xax = xa · ax ∈ E,
from which it follows that ax · xa = axa = a. We have the following D-class
diagram, the remaining entries of which are explained below.

x xa xa · by
ax a ab aby

· · ·
ba b by
yba yb y

Since ba ∈ E(S) we have xa·by ∈ E(S) placed as shown; hence by·xa = ba.
Similarly since ab ∈ E(S) we have yb · a = yb · ax · xa ∈ E(S) as shown.
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Since a · yb = ax · xa · yb ∈ E(S) it now follows that a · yb = ab. Putting
these factorizations together yields:

b = b · ab = b · ayb = ba · yb = by · xa · yb ∈ E(S),

which completes the proof. �

Theorem 4.3. The class I of inverse semigroups S is the {E,H,P}-class
with {E,H,P}-basis:

(∀a, b) (∃x, y) : (x ∈ V (a) ∧ y ∈ V (b)) ∧
∧

g1,g2∈{ax,xa,by,yb}

(g1g2 = g2g1). (29)

Proof. Clearly any inverse semigroup satis�es (29) so only the converse is in
question. By the �rst part of (29) we have that S is regular so let us take
a, b ∈ E(S). (We require only three of the six equations speci�ed by the �nal
group of conjuncts in (29)). From (29) we obtain x = xax = xa·ax = ax·xa,
whence x = axa = a, and so a = a2 = ax. Similarly, b = yb. Then from (29),
ab = ax · yb = yb · ax = ba. Since S is regular and every pair of idempotents
of S commute, we have proved that S an inverse semigroup. �

Example 4.4. The products of length 3 in Theorems 4.1 and 4.2 cannot be
replaced by products of length 2 as in Theorem 4.3.

Proof. We demonstrate this by �nding an assignment of an inverse to each
member of a speci�c regular semigroup S in such a way that S satis�es the
length-two version of equation system (28):

(∀a, b) (∃x, y) : (x ∈ V (a) ∧ y ∈ V (b)) ∧
∧

p=g1g2

(p ∈ E(S)), (30)

where g1, g2 ∈ F = {ax, xa, by, yb}. However, S is not E-solid (and so also
not orthodox).

Let S be the 0-rectangular band with non-zero D-class D de�ned by the
�rst `eggbox' of the following three diagrams, where an asterisk denotes an
idempotent:

* * *
* *

* *
*

1
1

1
1

2 2 2
2 2

2 2
2

We see that S is regular but not E-solid since, for example, the entry
at position (2, 4) is not idempotent despite the presence of idempotents at
positions (2, 2), (3, 2), and (3, 4). We shall write (i, j) (1 ≤ i, j ≤ 4) to
denote the element of D in that corresponding position in the diagram. Let
a ∈ D. We shall choose x ∈ V (a) writing this selection in the form a → x.
We assign (1, 1) ↔ (2, 2), (1, 2) → (1, 2), (2, 1) → (2, 1), (3, 3) ↔ (4, 4),
(3, 4)→ (3, 4), (4, 3)→ (4, 3); (1, 3)↔ (4, 2), (1, 4)↔ (3, 2); (2, 3)↔ (4, 1),
(2, 4)↔ (3, 1).
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In the second diagram the idempotent products of the form ax or xa
(under the previous assignment) are indicated by the numeral 1, which are
all starred in the �rst diagram.

In the third diagram the non-zero products of pairs of idempotents of the
form ax or yb (a, b ∈ S) are indicated by the numeral 2. Since each instance
of the numeral 2 lies in a starred square in the �rst diagram, it follows that,
with the given assignment of inverses, S satis�es the equations of (30) but S
is not E-solid. Therefore the equational basis given by (30) does not imply
E-solidity. �

5. Comparing e-varieties to {E,H,P}-classes of regular

semigroups

As mentioned in the introduction, Hall [8] initiated the study of e-varieties
of regular semigroups, which are classes C of regular semigroups closed un-
der H, the taking of homomorphic images, P, the taking of direct products,
and Se, the taking of regular subsemigroups. In this section we look at the
connection between e-varieties and {E,H,P}-classes of regular semigroups.

Theorem 5.1. Any e-variety C of regular semigroups is an {E,H,P}-class
of regular semigroups but in general the converse does not hold.

Proof. Certainly C is a class of regular semigroups closed under the operators
H and P. Moreover, if S ∈ C and U is a subsemigroup that is elementarily
embedded in S then U is also regular as regularity is a �rst order property.
Therefore U ∈ C and so C is an {E,H,P}-class of regular semigroups.

It is easy to check that the classMR of all regular monoids is an {E,H,P}-
class that is not an e-variety but this example could however be accommo-
dated as an e-variety of regular monoids. For an example that is not a
monoid class and which involves equations only of the type ∀ · · · ∃, consider
the more general {E,H,P}-class:

LRreg : (∀a)(∃x, y) : a = axa = ya = ay.

Then LRreg is a class of regular semigroups but, as we shall verify, LRreg is
not closed under Se. First note thatMR ⊆ LRreg and in particular the full
transformation semigroup T3 ∈ LRreg. Next observe that the subsemigroup
U of T3 that consists of all mappings that are not permutations is a regular
subsemigroup of T3. Now take the mapping a ∈ U de�ned by the action
1 7→ 2 7→ 3 7→ 3 and suppose that y ∈ T3 is such that a = ay = ya.
Then since a = ay, y acts identically on the range of a so that 2y = 2
and 3y = 3. On the other hand, since a = ya we cannot have 1y > 1 for
then 1ya ∈ {2, 3}a = 3 6= 2 = 1a. Hence 1y = 1 and so y is the identity
mapping. In particular, y 6∈ U and therefore U 6∈ LRreg, thereby showing
that LRreg is not an e-variety, despite LRreg being an {E,H,P}-class of
regular semigroups. �
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The e-variety approach involves the introduction of a unary operation into
the signature of the algebra corresponding to arbitrary choices of inverses
for the members of the regular semigroup. Nonetheless, the bases involved
may sometimes be interpreted to provide bases for these e-varieties viewed
as {E,H,P}-classes. That approach works well in the cases of I, O, and
ES, the classes of inverse, orthodox, and E-solid semigroups respectively.
The following is an adaptation of the corresponding propositions of Hall [8,
Sections 4.2, 4.4, and 4.5]. The resulting bases are quite di�erent from those
provided in Theorems 4.1, 4.2, and 4.3; please note also Remark 5.3.

Theorem 5.2. Let C denote any {E,H,P}-class that admits the equations:

(∀a, b) (∃x, u, v) : x ∈ V (a) ∧ u ∈ V (a2) ∧ v ∈ V (b2). (reg)

Then any S ∈ C is regular and aua, bvb ∈ E(S). Furthermore the {E,H,P}-
classes I, O, and ES of inverse, orthodox, and E-solid semigroups respec-

tively are de�ned by the equation system (reg) together with the equations:

I : reg ∧ aua · bvb = bvb · aua; (31)

O : reg ∧ aua · bvb ∈ E; (32)

ES : reg ∧ aua · bvb ∈ G. (33)

Remark 5.3. The equation system (reg) is equivalent to the single regularity
equation (∀a)(∃x) : a = axa in that this equation and (reg) both de�ne the
same {E,H,P}-class, that being the class Reg of all regular semigroups. The
redundancies of (reg) however serve as a convenient presentational device.

Proof of Theorem 5.2. Any semigroup S satisfying (reg) is obviously regular.
What is more (aua)2 = a(ua2u)a = aua is idempotent, as is bvb (where, as
is clear, u, v are any witnesses to the existential quanti�ers in (reg)). If S is
inverse, then S satis�es (31) as idempotents commute, while if S is orthodox
then S satis�es (32). If S is E-solid then the product of idempotents lies in
a subgroup (as the core of S is a union of groups) and so (33) holds.

Conversely suppose that S satis�es (reg) and (31) so that S is regular and
take any a, b ∈ E(S). We then have,

ab = a2b2 = a2ua2 · b2vb2 = aua · bvb = bvb · aua = b2vb2 · a2ua2 = b2a2 = ba

and so idempotents commute in S, which is therefore an inverse semigroup.
Next assume that S is a (regular) semigroup satisfying (reg) and (32) and

once again take a, b ∈ E(S). Then

ab = a2b2 = a2ua2 · b2vb2 = aua · bvb ∈ E

and so S is orthodox.
Finally assume that S is a (regular) semigroup satisfying (reg) and (33).

Let a, e, b ∈ E(S) be such that a L e R b. Then

ab = a2b2 = a2ua2 · b2vb2 = aua · bvb ∈ G. (34)
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On the other hand ab ∈ Ra ∩ Lb and this together with (34) shows that
Ra∩Lb contains an idempotent f say, whence a R f L b, thus proving that
S is indeed E-solid. �

For any property T , a regular semigroup S is called locally T if for every
idempotent e ∈ E(S) the local subsemigroup eSe has property T . A regular
semigroup S is locally regular as for any a ∈ eSe, if x ∈ V (a) then exe ∈
V (a) ∩ eSe, as can be readily checked. We shall have need of the following
fact.

Lemma 5.4. ([7] and see [9, Ex. 1.4.11].) Let S be any semigroup and

suppose that e, f ∈ E(S) with e D f . Then the subsemigroups eSe and fSf
of S are isomorphic.

For a class of regular semigroups C, let Cloc denote the class of all reg-
ular semigroups S, the local subsemigroups of which lie in C. Theorem 5.5
below shows that if C is an {E,H,P}-class of regular semigroups then the
corresponding localised class, Cloc is likewise an {E,H,P}-class consisting of
regular semigroups and an equational basis for the latter may be derived,
in a systematic fashion, from any basis of the former. This corresponds to
Lemma 4.6.1 of [8].

In general, the class C′ of all semigroups S (whether regular or not) such
that eSe ∈ C (e ∈ E(S)) is not closed under H for by default every free
semigroup lies in C′ and so H(C′) is the class S of all semigroups. Hence
C′ is closed under H if and only if for all semigroups S and e ∈ E(S) we
have eSe ∈ C. This implies C ⊇ M, the class of all monoids. Since eSe is a
monoid with identity element e, the converse is also true. It follows that C′
is an {E,H,P}-class if and only ifM⊆ C, in which case C′ = S.

We now consider a typical {E,H,P}-class C consisting of regular semi-
groups. Let E = E(C) denote a set of equation systems that de�nes C. Let
E loc be the set of equation systems derived from E as follows. Fix symbols
A and X that do not occur in the sentences of E . For any letter p appearing
in E , let p′ denote AXpAX, and extend this to words w = p1 . . . pk in the
alphabet of E by letting w′ denote p′1 . . . p

′
k, and then to equation systems

ε by applying ′ to the words in each equality within ε. An equation system
ε : (Q1 . . . ) . . . (Qk . . . ) : (u1 = v1) ∧ · · · ∧ (ur = vr) becomes

ε′ : (∀A) (∃X ∈ V (A)) (Q1 . . . ) . . . (Qk . . . ) : (u′1 = v′1)∧· · ·∧(u′r = v′r). (35)

To construct E loc from E , we replace each equation system ε ∈ E by the
equation system ε′.

Theorem 5.5. Let C = C(E) be an {E,H,P}-class consisting of regular semi-

groups. Then Cloc = C(E loc). In particular, Cloc is also an {E,H,P}-class of
regular semigroups.

Proof. Consider an equation system ε from E :
(Q1 . . . ) . . . (Qk . . . ) : (u1 = v1) ∧ · · · ∧ (ur = vr).
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So ε′ is

(∀A) (∃X) : (X ∈ V (A)) ∧ (Q1 . . . ) . . . (Qk . . . ) : (u′1 = v′1) ∧ · · · ∧ (u′r = v′r).

Suppose that S ∈ Cloc. Let A ∈ S and X ∈ V (A) be arbitrary, and set
e = AX ∈ E(S). As eSe satis�es ε, and as each p ∈ eSe satis�es p = epe =
AXpAX, it follows immediately that S satis�es ε′.

Conversely, suppose that S ∈ C(E loc) and consider any ε ∈ E ; we are
required to show that eSe satis�es ε, for any choice e ∈ E(S). Let e ∈ E(S)
be arbitrary, and note that S satis�es ε′. Take A = e and let X ∈ V (A) be
the corresponding element of S that exists due to satisfaction of ε′. Now f =
AX is idempotent and each element p ∈ fSf satis�es p = fpf = AXpAX
so that fSf also satis�es ε. But e R f , so e D f , giving eSe ∼= fSf by
Lemma 5.4, showing that eSe satis�es ε, as required. �

6. Universally Satisfied Equations

Given an {E,H,P}-class C there are two natural tasks arising. The �rst
is the determination of an equational basis for C, which was the subject of
Sections 4 and 5. In this section we examine the other side of the coin,
which is the question of �nding all equations satis�ed by C. Here we shall
solve the latter problem for one class only, that being the class generated by
P = (Z+,+) and for equations of the type ∀ . . . ∃. As a corollary we obtain
a description of the class of equations without parameters solvable in every
semigroup.

We shall denote a typical semigroup equation as e : p = q where p, q ∈
FA∪X , the free semigroup on A ∪X, where A and X are disjoint countably
in�nite sets. Elements of A will follow instances of the ∀ quanti�er while
those drawn from X will follow the ∃ symbol. We shall denote the number
of instances of the letter y ∈ A ∪X in a word w ∈ FA∪X by |w|y, with the
length of w simply denoted by |w|. De�ne the content of w as the set

c(w) = {y ∈ X : |w|y ≥ 1}.

De�nition 6.1. An equation e : p = q (p, q ∈ FA∪X) is semigroup universal

if e is solvable in every semigroup S.

In this section we adopt the abbreviation that an equation is universal

if it is a semigroup-universal equation. This is is not to be confused with
�universally quanti�ed equation�, which in this article is referred to as an
�identity�.

We will make use of elementary results on subsemigroups of P . Our source
here is Chapter 2, Section 4 of the book by Grillet [6] who therein gives the
original sources of these and other related facts on numerical semigroups.

Theorem 6.2 (Proposition II.4.1 and Corollary 4.2 of [6]). (i) Let S be

a subsemigroup of P = (Z+,+). Then there exists a unique integer

d ≥ 1 such that S consists of multiples of d and S contains all su�-

ciently large multiples of d.
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(ii) A subsemigroup S of (Z,+) either contains only non-negative inte-

gers, or only non-positive integers, or is a subgroup of (Z,+). In the

latter case, S = dZ for some d ≥ 0.

W shall adopt the convention that gcd(0, 0, · · · , 0) = 0.

Corollary 6.3. Let m1, . . . ,mn ∈ Z with gcd(m1, . . . ,mn) = d. De�ne

S = S(m1, . . . ,mn) = {t1m1 + · · ·+ tmmn : ti ≥ 1 (1 ≤ i ≤ n)}.
Then S is a subsemigroup of (Z,+). Moreover if all the integers mi are

positive then S is a subsemigroup of P = (Z+,+) and further d is the unique

integer such that both the conditions that S ⊆ dZ+ and there exists k ∈ Z+

such that {da : a ≥ k} ⊆ S are satis�ed.

Proof. Clearly S is a subsemigroup of (Z,+). In the case where all the
mi ≥ 1, clearly S ⊆ P and by Theorem 6.2(i), there exists a unique positive
integer d1 that has both the properties that S ⊆ d1Z+ and there exists a
positive integer k such that d1a ∈ S for all a ≥ k . On the other hand d|s for
all s ∈ S so that S ⊆ dZ+. It follows that d|kd1 and d|(k+ 1)d1, whence d is
a factor of their di�erence, and so d|d1. On the other hand, for any 1 ≤ i ≤ n
we may write m1 + · · · + mn = pd1 and m1 + · · · + 2mi + · · · + mn = qd1
for some p < q ∈ Z+. Then we have mi = (q − p)d1 and so d1|mi for all
1 ≤ i ≤ n. Therefore d1|d = gcd(m1, . . . ,mn). We conclude that d1 = d. �

De�nition 6.4. Let e be of the form (∀a1, . . . , ak) (∃x1, . . . , xl) : p = q. Let
ri = |p|xi , si = |q|xi , pj = |p|aj , qj = |q|aj . We shall write ri − si as mi and
qj − pj as nj ; let d stand for gcd(m1, . . . ,ml) and d

′ for gcd(n1, . . . , nk).

Theorem 6.5. Let e : p = q be an equation written in the notation of De�ni-

tion 6.4. Then e : p = q is solvable in P if and only if for any given positive

integers ai (1 ≤ i ≤ k) there exist positive integers ti (1 ≤ i ≤ l) (depending
on the ai) such that:

l∑
i=1

timi =

k∑
i=i

aini,

which is equivalent to the statement that S(n1, . . . , nk) ⊆ S(m1, . . . ,ml).

Proof. In P , after a substitution xi → ti, our equation p = q takes on the
form:

(p1a1+ · · ·+pkak)+(r1t1+ · · ·+rltl) = (q1a1+ · · ·+qkak)+(s1t1+ · · ·+sltl)

⇔
k∑

i=1

(pi − qi)ai +
l∑

i=1

(ri − si)ti = 0

⇔
l∑

i=1

timi =

k∑
i=i

aini.

The integers ri − si = mi and qi − pi = ni, which are �xed and may be
negative, are determined by the equation e. It follows that e : p = q will
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be solvable in P if and only if every linear combination of the ni in positive
integers is a linear combination in positive integers of the mi, which is the
statement of the theorem. �

Theorem 6.6. Let e : p = q be an equation written in the notation of Def-

inition 6.4. Let d = gcd(m1, . . . ,ml) and d′ = gcd(n1, . . . , nk). Suppose for

some x, y ∈ c(pq), |p|x < |q|x and |p|y > |q|y. Then e : p = q is solvable in P
if and only if d|d′.

Proof. By hypothesis, some of the integers mi are positive and some are neg-
ative, from which it follows from Theorem 6.2(ii) that S1 := S(m1, . . . ,ml) =
d1Z for some d1 ≥ 1. Since d1 ∈ S1 it follows that d|d1. On the other hand,
by the argument in the proof of Corollary 6.3, d1|d also and therefore d1 = d
and so S1 = dZ.

For d′ 6= 0, d′|ni for all 1 ≤ i ≤ k and it follows that S(n1, . . . , nk) ⊆ d′Z.
On the other hand d′ = 0 if and only if ni = 0 for all 1 ≤ i ≤ k in which
case S(n1, · · · , nk) = 0 = d′Z.

Now suppose that d|d′ so that d′ = dy say. Then

S(n1, . . . , nk) ⊆ d′Z = dyZ ⊆ dZ = S(m1, . . . ,ml),

and so by Theorem 6.5, e is solvable in P .
Conversely suppose that emay be solved in P . By the argument of the �rst

paragraph of this proof and that of Corollary 6.3, it follows that S(n1, . . . , nk)
contains a set of the form ±{ad′ : a ≥ k} for some �xed positive integer k.
Take p to be a prime with p ≥ k + d. Then pd′ ∈ ±S(n1, . . . , nk). By
Theorem 6.5, pd′ ∈ S(m1, . . . ,ml) = dZ. We then have d|pd′. However
d and p are relatively prime (as p > d) and so d|d′, thus completing the
proof. �

Corollary 6.7. Let e : p = q be an equation without parameters. Let c(pq) =
{x1, . . . , xn}. Then e is universal if and only if either :

(i) |p|xi = |q|xi for all i = 1, 2, . . . , n or

(ii) for some x, y ∈ c(pq), |p|x < |q|x and |p|y > |q|y.

Proof. If (i) applies to e then for any semigroup S take s ∈ S and substitute

xi → s (1 ≤ i ≤ n) in e; this yields s|p| = s|q|, which is true in S as
|p| = |q| and therefore e is universal. Next suppose that (ii) holds. Then e
is equivalent in P to the equation e′ : pa = qa where a ∈ A is a parameter.
Since d′ = 0, the condition d|d′ holds whence it follows from Theorem 6.6
that e′ is solvable in P and therefore e is likewise. Now taking any s ∈ S we
have 〈s〉 is a homomorphic image of P and hence e is solvable in 〈s〉. Since
e has no parameters, any solution of e in 〈s〉 is also a solution of e in S and
therefore e is universal.

Conversely suppose that neither conditions (i) nor (ii) hold for e. Without
loss we may assume that |p| ≤ |q|. Suppose that for some i (1 ≤ i ≤ n)
|p|xi > |q|xi . Then, since |p| ≤ |q| it would follow that for some other
subscript j we would �nd that |p|xj < |q|xj , contradicting the assumption
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that condition (ii) does not hold. Therefore |p|xi ≤ |q|xi for all 1 ≤ i ≤ n.
Moreover, since condition (i) does not hold either, for at least one subscript
i the previous inequality is strict. Any substitution xi → ti (ti ∈ Z+) in P
therefore yields respective positive integers p′ and q′ say with p′ < q′. In
particular p′ 6= q′ and so that e cannot be satis�ed in P and therefore e is
not universal. �

Example 6.8. Let us consider

e : x91x
23
2 a

2
1a

13
2 a3 = x301 x

8
2a

11
1 a

7
2a

10
3 .

In additive notation, which is more �tting for P , our equation e takes the
form:

e : 9x1 + 23x2 + 2a1 + 13a2 + a3 = 30x1 + 8x2 + 11a1 + 7a2 + 10a3.

Here m1 = 9 − 30 = −21, m2 = 23 − 8 = 15, and d = gcd(m1,m2) = 3;
n1 = 11−2 = 9, n2 = 7−13 = −6, n3 = 10−1 = 9, and d′ = gcd(9,−6, 9) =
3. Then d = d′ so d|d′ and by Theorem 6.6, e is solvable in P . Particular
selections for a1, a2, and a3 lead to solvable linear diophantine equations in
the respective positive integer multipliers t1 and t2 of m1 and m2.

Example 6.9. The equation (again written additively):

e : 13x+ 24y + 2a+ 5b = 10x+ 16y + 13a+ 19b

is an instance in which each of the variables (x and y) occurs more often
on the left than they do on the right so that Theorem 6.6 does not apply.
Nonetheless Theorem 6.5 shows us that e is solvable in P . We have m1 =
13−10 = 3,m2 = 24−16 = 8, n1 = 13−2 = 11, n2 = 19−5 = 14. We note
that 34 = (6× 3) + (2× 8), 35 = (1× 3) + (4× 8), 36 = (4× 3) + (3× 8). It
follows that

{k ∈ Z : k ≥ 34} ⊆ {3t1 + 8t2 : t1, t2 ≥ 1} = S(m1,m2).

Now {11t1 + 14t2 : t1, t2 ≥ 1} ∩ {k ∈ Z : k ≤ 33} = {11 + 14 = 25} and
(3× 3) + (2× 8) = 25 ∈ S(m1,m2) also. Hence S(n1, n2) ⊆ S(m1,m2) and
so e is solvable in P .

For a particular instance we put a = 2 and b = 3 giving the diophantine
equation for the multipliers t1 and t2:

3t1 + 8t2 = (2× 11) + (3× 14) = 64;

hence 2t2 ≡ 1 (mod 3) so t2 = 2 + 3t, giving 3t1 + 8(2 + 3t) = 64, whence
3t1 = 48− 24t and so t1 = 16− 8t. Since t1, t2 ≥ 1, there are two solutions
given by t = 0, 1 which are respectively t1 = 16, t2 = 2 and t1 = 8, t2 = 5.
Substituting x = 16 and y = 2 yields a common value of 275 for both sides
of the equation e, while putting x = 8 and y = 5 gives 243 on each side.
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