Research Repository

Crowding in humans is unlike that in convolutional neural networks

Lonnqvist, Ben and Clarke, Alasdair DF and Chakravarthi, Ramakrishna (2020) 'Crowding in humans is unlike that in convolutional neural networks.' Neural Networks, 126. 262 - 274. ISSN 0893-6080

[img] Text
LonnqvistClarkeChakravarthi2019Revision.pdf - Accepted Version
Restricted to Repository staff only until 27 March 2021.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (6MB) | Request a copy
[img]
Preview
Text
1903.00258v2.pdf - Submitted Version

Download (6MB) | Preview

Abstract

Object recognition is a primary function of the human visual system. It has recently been claimed that the highly successful ability to recognise objects in a set of emergent computer vision systems---Deep Convolutional Neural Networks (DCNNs)---can form a useful guide to recognition in humans. To test this assertion, we systematically evaluated visual crowding, a dramatic breakdown of recognition in clutter, in DCNNs and compared their performance to extant research in humans. We examined crowding in three architectures of DCNNs with the same methodology as that used among humans. We manipulated multiple stimulus factors including inter-letter spacing, letter colour, size, and flanker location to assess the extent and shape of crowding in DCNNs. We found that crowding followed a predictable pattern across architectures that was different from that in humans. Some characteristic hallmarks of human crowding, such as invariance to size, the effect of target-flanker similarity, and confusions between target and flanker identities, were completely missing, minimised or even reversed. These data show that DCNNs, while proficient in object recognition, likely achieve this competence through a set of mechanisms that are distinct from those in humans. They are not necessarily equivalent models of human or primate object recognition and caution must be exercised when inferring mechanisms derived from their operation.

Item Type: Article
Uncontrolled Keywords: convolutional neural networks, object recognition, crowding
Divisions: Faculty of Science and Health > Psychology, Department of
Depositing User: Elements
Date Deposited: 25 Mar 2020 11:26
Last Modified: 07 Jun 2020 20:15
URI: http://repository.essex.ac.uk/id/eprint/27160

Actions (login required)

View Item View Item