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object localization from video
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Abstract
Estimating scene depth, predicting camera motion and localizing dynamic objects from monocular videos are fundamental
but challenging research topics in computer vision. Deep learning has demonstrated an amazing performance for these
tasks recently. This article presents a novel unsupervised deep learning framework for scene depth estimation, camera
motion prediction and dynamic object localization from videos. Consecutive stereo image pairs are used to train the
system while only monocular images are needed for inference. The supervisory signals for the training stage come from
various forms of image synthesis. Due to the use of consecutive stereo video, both spatial and temporal photometric
errors are used to synthesize the images. Furthermore, to relieve the impacts of occlusions, adaptive left-right consistency
and forward-backward consistency losses are added to the objective function. Experimental results on the KITTI and
Cityscapes datasets demonstrate that our method is more effective in depth estimation, camera motion prediction and
dynamic object localization compared to previous models.
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Introduction

Understanding the structure of a three-dimensional (3D)

scene from videos is a key problem in computer vision. Most

natural scenes are divided into two categories: static scenes

such as roads and trees and dynamic scenes such as cars,

pedestrians and so on. The static scene of an image can be

inferred by the corresponding depth image and camera

motion while the dynamic objects can be localized with

optical flow. Therefore, localizing dynamic objects with

optical flow is likewise a fundamental content in scene per-

ception. As important components of 3D scene perception,

depth estimation, camera motion prediction and dynamic

objects localization play crucial roles in various fields, such

as autonomous vehicles, robotics vision research and

simultaneous localization and mapping systems (SLAM).

Traditional methods1 tackle depth estimation and cam-

era motion as geometry-related computing issues between

consecutive frames directly. Even though more efficient

methods2 have been proposed, the basic reliance on high-
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quality features limits their applications in non-static

scenes. Optical flow3 reflects the motion information of

dynamic objects by drawing precise pixel-wise features,

so it has been widely used in dynamic objects localization.

However, one of the basic premises of traditional optical

flow methods is that there is an invariant illumination

between consecutive frames.

To overcome the limitations of traditional methods,

deep learning models4 have been extensively studied for

these tasks. The existing supervised learning models5 have

performed well in these tasks. However, the need for data-

sets with ground truth, which is expensive to obtain, limits

the applications of these supervised learning methods. In

contrast to supervised efforts, unsupervised methods6 that

do not rely on any geometric models or ground truth have

become an interesting topic.

This article proposes an unsupervised framework to

estimate scene depth, camera motion and optical flow.

Stereo videos are required as the input to the networks

during training and only monocular images are needed

during testing. The signal supervision comes from various

forms of image synthesis which are based on the epipolar

geometric constraint. Benefitting from the use of stereo

videos during training stage, both spatial consistency

between the left and right images and the temporal photo-

metric warp deviations between consecutive frames can

be utilized.

Most natural scenes consist of static scenes and

dynamic objects. The projection from a static 3D scene

to an image is solely computed by the image’s depth

information and its corresponding camera motion. Yet for

dynamic objects, the projection mainly depends on the

relative motion between objects and the camera. Due to

the characteristics of large displacement and the disar-

rangement of moving objects, optical flow is a great

option for dynamic object localization. We use scene

depth, camera pose and stereo videos as the input to con-

struct a flow convolutional neural network (CNN). A flow

consistency loss between the forward and backward

images is added to the objective function. The use of CNN

establishes the direct correspondence between the input

data and the results, which overcomes the shortcomings of

the traditional optical flow estimation methods.

The main contributions of the model are three-fold:

1. An unsupervised framework for depth estimation,

camera motion prediction and dynamic object loca-

lization simultaneously is presented.

2. The left-right consistency loss between the stereo

images and the forward-backward optical flow con-

sistency loss between the frames of stereo videos

are added to the objective function.

3. A novel flow CNN is constructed to localize the

moving objects and outliers in monocular

videos.

Related works

Depth estimation, camera motion prediction and dynamic

object localization are critical for autonomous driving plat-

forms, and robot navigation and manipulation. Growing

interests are intrigued in these tasks; here we give a brief

introduction of the related works.

Depth estimation based on CNN

To the best of our knowledge, the first deep CNN for depth

estimation was proposed by Eigen et al.,5 and then in the

next year, they updated the networks for multiple tasks.7

Laina et al.8 established a fully CNN to construct the

correspondence between the input and depth images.

Liu et al.9 proposed a framework which combined a CNN

with a continuous conditional random field to estimate the

scene depth. These supervised methods have achieved

adequate results, but the need for ground truth severely

limits their applications.

In contrast to supervised efforts, unsupervised methods

have attracted more attention because they do not rely on

ground truth. The first unsupervised deep CNN model used

stereo image pairs which have a known camera baseline to

train the network.10 The authors explicitly generated an

inverse warp of one image of a random stereo image pair,

then they used the predicted depth map to reconstruct the

other image, with the difference between the synthesized

and input images used to replace the ground truth. A similar

work was proposed by C. Godard et al.11 Unlike the above

methods, some researchers12 have used monocular videos

as input to achieve depth estimation, considering the pro-

cessing speed for real-time inference, such as mounted on

an embedded platform. To estimate the scene depth on an

embedded platform, a real-time monocular model13 for

depth estimation was proposed.

Camera motion prediction

Inferring camera motion from monocular videos is also a

fundamental question in scene perception. The most

famous algorithm of camera motion prediction is simulta-

neous localization and mapping.2 However, SLAM is

developed under a standard process14 including feature

extraction, description matching, motion prediction, and

so on. The multi-stages process must be designed carefully.

Wang et al.15 presented a novel framework based on deep

recurrent neural network for camera motion prediction

from monocular video. Li et al.16 used stereo video as the

input data to train the CNNs to estimate the scene depth and

camera motion in an unsupervised strategy. Similar to Li’s

work, Zhan et al.17 added the deep feature reconstruction to

the objective function to estimate the scene depth and cam-

era motion jointly. In addition, there are some unsupervised

methods12 using monocular video to train CNN models to

achieve depth maps and camera poses. Recently, generative
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adversarial networks were demonstrated for depth estima-

tion and camera motion prediction. A stacked generative

adversarial network18 was proposed to improve the accu-

racy in estimating depth and camera pose.

Dynamic objects localization based
on optical flow

A natural scene is comprised of the static scene and

dynamic objects. The technology of dynamic object loca-

lization has wide applications, including self-driving plat-

forms and localization and navigation systems.

Meister et al.19 proposed an unsupervised learning

framework for optical flow estimation, which is based on

a bidirectional census loss function. Jason J. et al.20 com-

bined a photometric constancy to construct an unsupervised

framework for optical flow estimation. SfM-Net21 is a

semi-unsupervised geometry-aware neural network that

uses monocular video as input. It was trained to extract the

3D structure, segmentation and moving objects. But this

method needs human annotations of the real videos for

optical flow and object motion computation. Yin et al.22

proposed an unsupervised framework to predict scene

depth, optical flow field and camera pose simultaneously.

This method was a two-stage framework which uses mono-

cular video as the input data to complete the above three

tasks. DF-Net23 uses unlabelled video sequences to esti-

mate the single-view depth and optical flow, and a geo-

metric consistency was introduced to the objective

function as additional supervisory signals.

Method

This section describes our unsupervised framework in

detail. A novel objective function is introduced which is

equipped with left-right and forward-backward consis-

tency check. We use stereo video for training, then the

model that is generated can be used in testing with mono-

cular video as input.

Overview of our method

The proposed unsupervised framework is composed of

three parts: depth CNN, pose CNN and flow CNN. Loss

parts of the objective function come from the three CNNs.

The similarity in image appearance is selected to construct

the key supervisory signal. During training, we use dispar-

ity maps instead of depth maps. The overview illustration is

shown in Figure 1.

As shown in Figure 1, the depth CNN for inferring the

scene disparity map is an encoder-decoder structure. The

pose CNN uses disparity maps generated from the depth

CNN as part of its input to deduce the camera motion,

which is a 9 � 9 homogenous transformation matrix. Then,

the flow CNN uses the output of above CNNs and the

original stereo videos to localize the dynamic objects

through the optical flow fields.

Disparity maps, camera poses and optical flow fields

for dynamic objects are regressed separately and fused to

produce the final objective function. In addition, left-right

and forward-backward consistency checks are added to

the objective function which achieves impressive perfor-

mance. More importantly, stereo video overcomes the

Figure 1. Overview of our model.
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disadvantage of the scaling ambiguity of monocular

videos. In the inference process, we can use a single image

as input to obtain the depth map, camera motion and the

location of the dynamic objects.

Scene depth estimation

The most important geometric constraint of our supervi-

sory signal for the depth CNN comes from the image

synthesis. We select a stereo image pair that extracted

from stereo videos as a training sample. The binocular

camera baseline b and focal length f are known. We

denote the stereo image pair as I l; I r
� �

, the pixel-wise

scene depth d and the pixel-wise disparity D can be trivi-

ally transformed by d ¼ bf =D.

The key point of our depth CNN is to learn a function

which synthesizes the image from its corresponding dis-

parity image and the other image of the stereo images,

then the difference between the input and synthesized

images is used to construct the supervisory signal (as

shown in Figure 2). Specifically, we suppose that Dl is

the generated disparity image corresponding the left input

image Il, therefore the synthesized image ~I l can be com-

puted by ~I l ¼ Gr!lðI r;DlÞ, where Gr!l means the

function that computes the left synthesized image from

the right image based on the geometric constraints.

Similarly, the right synthesized image can be obtained

by ~I r ¼ Gl!rðI l;DrÞ. The image synthesis process is

used to construct the supervisory signal instead of the

ground truth.

The reconstruction loss between the synthesized and

input images can be represented by

Ll
ap ¼

X
s

a
�

1� SIMMðI l; ~I lÞ
�
=2

þð1� aÞjjI l � ~I l jj1

0@ 1A ð1Þ

where s denotes the scale, SIMMðÞ24 is a function which

can measure the structural similarity of two images, and a
is the weight parameter to measure the influence between

the difference in image appearance and the regularization

part.

Considering the fact that depth discontinuities often

exist at the image edges, and furthermore, to preserve the

sharp details, we also add an edge smoothness to the objec-

tive function with the use of the disparity map gradients.

The edge-aware smoothness term of the left disparity map

is as follows

Ll
Ds ¼

X
s

j@Dl=@xj � expð�jj@xI ljj1Þþ
j@Dl=@yj � expð�jj@yI ljj1Þ

 !
ð2Þ

The difference in appearance and the edge-aware

smoothness term of the right is similar to that of the left,

and we denote them as Lr
ap and Lr

Ds.

The depth CNN produces the left and right disparity

maps simultaneously. To improve the estimated disparity

maps’ accuracy, we introduce a left-right consistency loss

based on the similar geometric constraints, which is the

above image reconstruction process just used.

The same image synthesis function including Gr!l and

Gl!r are chosen for disparity map reconstruction. The

synthesized disparity map from left disparity to the right

is Dl!r ¼ Gl!rðDl;DrÞ, and the synthesized disparity map

from right disparity to the left is Dr!l ¼ Gr!lðDr;DlÞ, and

the left-right consistency loss of the stereo image pair Ll�r

can be formulated as

Figure 2. Structure of our depth CNN’s loss function. It consists of image synthesis error for estimating the scene disparity map and
the left-right consistency for checking the quality of the synthesized disparity maps. CNN: convolutional neural network.
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Ll�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDl!r � Dr!lÞ2

q
ð3Þ

The final loss function of depth CNN becomes

Ldepth ¼ l1ðLl
ap þ Lr

apÞ þ l2ðLl
Ds þ Lr

DsÞ þ l3Ll�r ð4Þ

where l1, l2 and l3 are the weight parameters.

Camera pose prediction

The loss for the pose CNN is constructed according to the

temporal photometric error between stereo videos. The left

and right monocular image sequences of the stereo video

are considered, respectively. The supervisory signal of the

pose CNN comes from image synthesis, and the scene

depth and camera pose are essential to any loss function

of our CNNs. Thus, we train the depth and pose CNN

simultaneously and used them separately.

During training, stereo images sequences, which are set

at a length of five frames, are selected as the training sam-

ple. The temporal photometric loss can be calculated from

the stereo videos. Similar to the depth CNN, the projective

photometric error of two consecutive images is employed

instead of ground truth to construct the loss function. Dur-

ing testing, we fix the parameters of the pose CNN to

predict the camera’s 6-DoF transformation.

The left image sequence is denoted as ðI l
1; I

l
2; I

l
3; I

l
4; I

l
5Þ.

The middle image of this sequence I l
3 is selected as the

target frame I l
t, and the rest frames of this sequence are the

source frames.

We synthesize the left target frame ~I l
t from the source

frames I l
nðn ¼ 1; 2; 4; 5Þ based on the geometric con-

straints ~I l
t ¼ KTs!tD

l
tK
�1I l

n, where K is the camera intrin-

sic matrix, T s!t is the camera motion from the source

frames to the target frame, and Dl
t is the disparity map. The

camera motion and the disparity image are generated by the

pose and depth CNNs, respectively. The architecture of

camera motion prediction is shown in Figure 3. From

Figure 3, we can see that depth estimation and pose

prediction are two complementary processes. The loss

functions of the depth and pose CNNs all require disparity

maps and the camera motions to synthesize the images.

Hence, we cannot compute only one monocular image

sequence of the stereo video.

The loss function of the pose CNN is similar to that of

the depth CNN. The difference in frame appearance

between the target and source frames of the left sequence

is as follows

Ll
f ap ¼

X
s

b
�

1� SðI l
t;

~I l
t Þ
�
=2

þð1� bÞjjI l
t � ~I l

t jj1

0@ 1A ð5Þ

where b is a weight parameter.

The difference in frame appearance of the right

sequence is similar to that of the left sequence, and we

denote it as Lr
f ap.

The final loss function of the pose CNN becomes

Lpose ¼ Ll
f ap þ Lr

f ap ð6Þ

The loss function for the static scene combines the

spatial loss which comes from the depth CNN and the

temporal loss which comes from the pose CNN together.

Previous approaches such as SfMLearner12 and GeoNet22

used monocular videos as input to train the networks, even

though we use stereo videos as input to learn the net-

works’ parameters, there is no essential distinction

between our method and previous approaches. Hence, the

improvement in the camera motion prediction compared

with previous methods is mainly attributed to the high-

precision depth map.

In addition, the reason for the five-frame structure is to

compare with previous algorithms. The most famous

Figure 3. Architecture of the camera motion prediction process. It consists of disparity maps generated by depth CNN and the camera
motion from source frames to the target frame generated by the pose CNN. The input image sequence including five frames, and the
target frame is the third frame of the sequence. CNN: convolutional neural network.
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model, monocular ORB-SLAM,2 has two variants which

are full ORB-SLAM and short ORB-SLAM. Full ORB-

SLAM uses all frames of the dataset to estimate the camera

motion. Short ORB-SLAM uses 5-frame snippets for esti-

mation. The depth and pose CNNs use iterative calculation

so that a training sample can only be composed of several

frames. To compare our model with short ORB-SLAM, the

length of each training sample is five, and the same struc-

ture is set by previous deep models.22,25

Dynamic object localization

Motion is a fundamental property of any scene. Optical

flow reflects the motion of two-dimensional (2D) pixels

and scene flow reflects the motion of 3D points in a scene

in practice. The scene motion can be obtained through the

optical flow between the consecutive frames of a video.

The projected 2D images corresponding to 3D scenes in

practice comprise two parts: the static structure which

determined by the depth image and camera motion, the

dynamic objects mainly determined by the relative motion

between the objects and the camera. The purpose of optical

flow is to compute the 2D image change which is caused by

the relative motion. However, it is hard to obtain the

desired results which are determined by two variables.

The above depth and pose CNNs achieved the basic

spatial geometric information of a scene, but they treat

dynamic objects as static views. Moreover, possible occlu-

sions and outliers exist in the stereo image pairs, or the

monocular image sequences affect the accuracy of the

method inevitably. To solve the above problems, we pro-

pose the flow CNN to establish a direct corresponding

relationship between an image and the optical flow map.

Optical flow can fully exploit the unconstrained motion,

while scene depth and camera motion can develop the fun-

damental geometric structure of the static scene. This phe-

nomenon enables us to make full use of the combination of

the depth CNN, the pose CNN and the flow CNN. The

input data of our flow CNN is composed of the original

stereo videos and the results which are generated by the

depth and pose CNNs. Therefore, 3D scene perception of

the static scene gives the flow CNN a good beginning.

The proposed framework is a two-stage course. The first

stage trains the depth and pose CNNs, and then fixes the

parameters of these two networks for the next stage. The

second stage only trains the flow CNN. As a result, the flow

CNN only learning the residual flow which is solely caused

by the dynamic objects or outliers of the static scene. We

also train the flow CNN without the fixed depth and pose

CNNs, but the results are inferior to the results of the two-

stage strategy.

As illustrated in Figure 4, our flow CNN takes advan-

tage of the output from the static scene synthesis and learns

the corresponding optical flow fields. The final full optical

flow consists of the static and residual optical flow. The key

component of the flow CNN is a differentiable optical flow

renderer which reconstructs the optical flow field. We

denote ðI l
1; I

l
2; I

l
3Þ as the left image sequence with the sec-

ond frame I l
2 as the target frame I l

t, and the rest of this

image sequence are the source frames. For static scenes,

the static optical flow can be calculated by the correspond-

ing scene depth and camera motion, which are obtained

from the depth and pose CNNs. The static optical flow can

be computed as follows

Flow
rigid
t!s ¼ CðDt; Tt!s;KÞ

Flow
rigid
s!t ¼ CðDs; Ts!t;KÞ

ð7Þ

where Dt and Ds are the disparity maps corresponding to

the target and source images, respectively, Tt!s is the cam-

era motion from the target frame to the source frame, T s!t

is the camera motion from the source frames to the target

frame. They are obtained by the depth and pose CNNs,

respectively. Cð�; �Þ is a computing function.

Based on the static optical flow, we can reconstruct the

target frames from the source frames and vice versa, and

the formulas are as follows

Figure 4. Architecture of our flow CNN’s loss function. It consists of optical flow map synthesis error for estimating the optical flow
and a left-right consistency part for checking the quality of the synthesized optical flow maps. CNN: convolutional neural network.
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I l
rigid t ¼ FðI l

s;Flow
rigid
t!s Þ

I l
rigid s ¼ FðI l

t;Flow
rigid
s!t Þ

ð8Þ

where Fð�; �Þ is the image synthesis function, t! s means

from target frame to source frame and s! t means from

source frames to target frames.

Then, we use the original image sequence and the

synthesized image sequence I l
f t, I l

f s as the flow CNN’s

input data. This strategy makes full use of the static scene

geometric constraints, which we have already completed in

previous CNNs actually. It gives us a good start for the flow

CNN, so the flow CNN can localize dynamic objects

through the residual optical flow with more concentration.

The flow CNN generates residual optical flow Flowres
t!s

and Flowres
s!t, while the static optical flow is calculated by

the depth image and the corresponding camera motion, so

the full optical flow of the left image sequence is the sum-

mation of them

Flowfull
t!s ¼ Flow

rigid
t!s þ Flowres

t!s

Flowfull
s!t ¼ Flow

rigid
s!t þ Flowres

s!t

ð9Þ

The supervisory signal of our flow CNN is based upon

the difference between the synthesized frames and the input

frames. The synthesized frames are reconstructed by the

full optical flow, therefore we use the geometric constraints

of the static scene and the dynamic objects’ information to

construct our supervisory signal. Similar to formula (8), the

synthesized frames from the full optical flow are as follows

I l
full t ¼ FðI l

s;Flowfull
t!sÞ

I l
full s ¼ FðI l

t;Flowfull
s!tÞ

ð10Þ

The error difference between the input and synthesized

image sequences is

Ll
flow ¼

X
s

g
�

1� SðI l; I l
fullÞ
��

2

þð1� gÞjjI l � I l
fulljj1

0B@
1CA ð11Þ

where Il means the left original input image sequence

ðI l
1; I

l
2; I

l
3Þ, I l

full means the left synthesized image sequence

constituted of I l
full t, I l

full s, g is a weight parameter.

A training sample of the flow CNN consists of the stereo

imagesequence, so the loss functionof the right image sequence

is similar to Ll
flow, and we denote it as Lr

flow. Similar to formula

(2), we compute the smoothness loss of the optical flow for the

left and right image sequences. They are denoted as Ll
Df , Lr

Df .

Until now, the depth pose CNNs take advantage of the

image synthesis to construct the supervisory signal for the

static scene, with the flow CNN using the view synthesis as

a supervisory signal for dynamic objects. In addition, we

design a left-right consistency as part of the loss function

for the static scene. However, this loss part does not con-

sider the moving regions or outliers of the image. To

mitigate the adverse impact caused by the dynamic objects,

we proposed a forward-backward consistency loss part

which is based upon the full optical flow.

Only the target frames are used to design the forward-

backward consistency check. The full optical flow of the

target frame includes the rigid optical flow correspond-

ing to the static scene and the residual optical flow

corresponding to dynamic objects. Therefore, the full

optical flow is used to reconstruct the optical flow fields

of the left and right image sequences, respectively.

These synthesized optical flow fields take into consid-

eration all of the scene information so that the final

model can reduce the impact of moving objects and

occlusion effectively.

The image synthesis functions which come from for-

mula (10) are selected to construct the forward-backward

loss function. We use Flowfull
t!s and Flowfull

s!t to reconstruct

the corresponding optical flow fields as follows

~gFlowfull
s~t ¼ FðFlowfull

s~t ;Flowfull
s~t ÞgFlowfull

t~s ¼ FðFlowfull
t~s ;Flowfull

s~t Þ
ð12Þ

Then, left and right forward-backward consistency loss

can be defined based on the formula as follows

Lf b ¼ j gFlowfull
s~t � Flowfull

s!t j1þ

j gFlowfull
t~s � Flowfull

t!s j1
ð13Þ

With reference to formula (10), the synthesized opti-

cal flow field is reconstructed by the full optical flow,

which includes the information of dynamic objects or

occlusion. Therefore, the forward-backward consistency

loss can mitigate the influence of non-static motion and

occlusions. The final loss function of our flow CNN is

as follows

Lflow ¼ �1ðLl
flow þ Lr

flowÞ þ �2ðLl
Df þ Lr

Df Þ þ �3ðLl
f b þ Lr

f bÞ
ð14Þ

where �1, �2 and �3 are weight parameters.

The objective function

Monocular video has two inevitable defects. The first

defect is the unknown camera motion, and the other is the

ambiguity in scale. The use of stereo video during training

takes advantage of both spatial and temporal geometric

information to solve both of these problems. In the test

time, our model can estimate the scene depth, predict cam-

era motion and localize dynamic objects with only mono-

cular video as input. The key supervisory signal comes

from the image synthesis error while the smoothness of the

appearance acts as an auxiliary loss. Furthermore, the left-

right and forward-backward consistency checks are used to

encourage consistency in the spatial and temporal geo-

metric information.

Yang et al. 7



The final objective function in our model becomes

L ¼ s1Ldepth þ s2Lpose þ s3Lflow ð15Þ

where s1, s2 and s3 are weight parameters.

Experiments

Here, we evaluate our unsupervised framework for depth

estimation, camera motion prediction and dynamic objects

localization from monocular video. The KITTI26 and Citys-

capes27 datasets are used for training, testing and evaluat-

ing the generalization ability. Furthermore, we conduct an

ablation study on the proposed method to discuss the

effects of the left-right and forward-backward consistency

checks. We use the same split with5 to evaluate the depth

estimation performance. The KITTI odometry dataset is

used to evaluate the camera motion, the KITTI odometry

and flow2015 datasets are used to evaluate the optical

flow’s performance.

Network architecture and detail

For monocular depth estimation and dynamic objects loca-

lization, we construct an encoder-decoder architecture. Our

model is mainly based on ResNet50.28 The exponential

linear unit is used as activation function except for the

decision layers. For camera motion prediction, an encoder

architecture mainly based on modules that consist of con-

volutional layers and the rectified linear unit layers are

chosen to compute the camera pose.

Our depth and flow CNNs use the same architecture. For

static region perception, these CNNs contain about 60 mil-

lion=trainable parameters; for dynamic objects localiza-

tion, the CNN contains about 30 million trainable

parameters. In the two stages, we use a single NVIDIA

GTX 1080Ti GPU with 600 and 800 thousand iterations,

respectively. The training time of static region perception

is about 27 h, then we fix the depth and flow CNNs’

parameters to train the flow CNN solely, the training time

of this stage is 17 h. During training we use the Adam

algorithm to optimize the network; the initial learning rate

is 0.0002 for the first half of the iterations, and we halving it

until the end. The Adam optimizer’s parameters are set as

b1 ¼ 0:9;b2 ¼ 0:999; E ¼ 10�8:

Monocular depth estimation

For depth estimation, we chose the KITTI raw dataset for

training and testing. It is captured by an autonomous driv-

ing platform around the mid-size city of Karlsruhe. It con-

tains 42,382 rectified stereo images that are 1243 � 375

pixels in size, captured from 61 scenes.

The testing split of Eigen et al.5 is used for evaluating.

During the training process, all visual-like frames are

excluded from the testing scenes, which are the same as

Zhou et al.12 Unlike previous unsupervised systems, our

method uses stereo image sequences for training but only

monocular image sequences are required for testing. Thus,

we capture 35,621 stereo images pairs from the ‘city’, ‘resi-

dual’ and ‘road’ categories to generate the stereo image

sequences for training (Zhou et al.’s article used about

71,242 monocular images to construct the training dataset).

The length of each sequence is three. At last, we resize the

stereo images to 416 � 128 pixels in size during training

and the output of our model is also 416� 128 pixels in size.

Table 1 provides the evaluated performance on the same

697 images as Eigen’s test split dataset. We use the same

performance measures as previous methods to judge the

depth estimation accuracy.

As shown in Table 1, the comparable algorithms trained

on the KITTI dataset include more than one data structure,

such as stereo image pairs (Garg et al.10), monocular videos

(Zhou et al,12 GeoNet,22 Wang et al.’s29) and binocular

videos (Li et al.’s,16 Zhang et al.’s17). Some qualitative

results are visualized in Figure 5.

Table 1. Monocular depth estimation results on the KITTI and Cityscapes datasets.

Method Super-vision

Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log10 d � 1.25 d � 1.252 d � 1.253

Eigen 1 Yes 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen 2 Yes 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu Yes 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Garg No 0.177 1.169 5.285 0.282 0.727 0.896 0.958
Zhou No 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Li’s No 0.183 1.730 6.570 0.268 – – –
Geonet No 0.155 1.296 5.875 0.233 0.793 0.931 0.973
Wang’s No 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Zhang’s No 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Ours (K) No 0.139 1.297 5.879 0.223 0.827 0.936 0.979
Ours (C) No 0.154 1.545 5.926 0.236 0.812 0.912 0.958
Ours (C þ K) No 0.126 1.122 5.301 0.204 0.845 0.944 0.983

K: KITTI dataset; C: Cityscapes dataset; C þ K: Cityscapes þ KITTI datasets.
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As shown in Figure 5, the input images are selected from

the KITTI raw dataset randomly. Quantitative results and

visualization comparison show that our model is effective,

especially in areas with a thinner structure such as a tree

trunk. In addition, to evaluate the model’s generalization

ability, we apply the model that trained on the KITTI þ
Cityscapes datasets to the testing set.

The Cityscapes dataset27 is a benchmark suite for pixel-

wise depth estimation and semantic labelling that contains

large stereo videos collected from 50 different cities in

Germany. All stereo images of the Cityscapes dataset are

selected for training.

The monocular depth results of the model trained on the

KITTI þ Cityscapes datasets significantly outperform the

previous unsupervised methods.12,22 The quantitative com-

parison of experiments with previous methods is made in

Table 1. The visualized results which are trained on the

KITTI dataset (K),26 Cityscapes dataset (C)27 and KITTI

þ Cityscapes datasets (K þ C)26,27 are shown in Figure 6.

In addition, obtaining 3D geometric information from a

2D image has a significant application in autonomous

robotic applications and self-driving technology. For

example, Tesla is trying to use cameras instead of Laser

radar for depth estimation. To test the inference perfor-

mance of our model with images in the actual scene, we

used a cell phone camera to collect some data ourselves as

input to the network.

As shown in Figure 7, we collected some data as input to

the depth CNN to estimate its depth information. Cars,

cyclists and some thin structures such as trees are visua-

lized precisely. Moreover, only a single image is required

for inference, and it is an impossible task for visual SLAM.

The results show the efficiency of our proposed model. We

believe this technology will be used for self-driving plat-

forms in the future.

Camera motion prediction

To evaluate the pose CNN’s performance, we used the

KITTI odometry dataset26 for training and testing. This

dataset consists of 22 stereo image sequences but only

00-10 sequences with ground truth trajectories. Consider-

ing only the sequences 00-10 of the KITTI odometry data-

set with ground truth trajectories, sequences 00-08 are used

for training and sequences 09-10 are used for testing. Some

other models such as SfMLearner12 and UnDeepVO16 use

the same splitting. In the process of training, the length of a

training sequence is set to be five and the size of each frame

captured from the stereo video is resized to 416 � 128

pixels. During testing, monocular video is used to evaluate

the performance, the sequence length and the frame size are

the same as those of the training process.

We compared the camera motion prediction of our

model with two monocular ORB-SLAMs2,30: The full

ORB-SLAM uses an entire sequence as input, and the short

ORB-SLAM only takes five frames as a testing sample. We

also compare our method with several representative unsu-

pervised deep learning models12,22 to measure the effect of

our method. All results are evaluated with five frames. The

absolute trajectory error2 is chosen as the metric. Quantitative

results are shown in Table 2.

Figure 5. Disparity images of (a) input image, (b) GT, (c) R. Garg, (d) GeoNet, and (e) ours.

Figure 6. Disparity images between the proposed model that trained on the KITTI dataset, the Cityscapes dataset and the KITTI and
Cityscapes datasets jointly: (a) input image, (b) GT, (c) K27, (d) C28, and (e) KþC27–28.
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Figure 8 gives the relative camera position of the cam-

era coordinate system. Five consecutive frames are used

as an input sample to the networks during training and

testing stages. The pose CNN outputs five consecutive

camera poses that correspond to the input frames. Each

five-camera pose sequence uses the first frame as the ori-

gin of coordinates of this five frames sequence. We com-

pared our methods with ground truth, Geonet and

SfMLeaner. The first column of the figure shows the rela-

tive camera motion in the x-axis and z-axis, respectively,

for image sequence 09, and the second column shows that

for image sequence 10.

As shown in Table 2, better performance is achieved by

our model in camera motion prediction than other mono-

cular methods even without scale pre-processing and post-

processing. In Figure 8, the relative camera pose of the

presented model is closer to the truth trajectories. In par-

ticular, for image sequence 09, it is almost the same as

ground truth. Moreover, we attempt to plot the absolute

camera trajectories of our model and several compared

methods, but the results cannot give an intuitive description

of the camera motion, as shown in Figure 9. We think the

reason is that each relative camera pose has a minor error

compared with the ground truth, the error of the absolute

trajectory increase with repeatedly inner products. Conse-

quently, we transform the absolute trajectory of the ground

truth to five relative camera poses to show the perfor-

mances of our model and some compared methods (as

shown in Figure 8).

The accuracy of the absolute camera trajectory of our

model is inferior to ORB-SLAM. The phenomenon is

caused by several reasons such as our neural networks use

mini-batch frames as input to train the model, and the lack

of relocalization and loop closing stages. Until now, for

absolute camera trajectory prediction, deep CNNs are still

falling behand SLAM algorithms.

Dynamic object localization

We choose the KITTI raw datasets for training, and the

KITTI flow2015 dataset is chosen for evaluation of the

dynamic object localization. These datasets consist of 200

training and testing scenes, respectively. In the testing pro-

cess, only monocular video is required. The corresponding

flow non-occlusion and occlusion datasets are also needed.

Optical flow represents the motion information of rela-

tive pixels. Because of the pixel-wise characteristics, it has

become an important technology for non-rigid pixel loca-

lization. General optical flow techniques compute the

dynamic objects without fully utilizing the geometric con-

straints of the static regions, which we have completed in

advance. The depth and pose CNNs compute the 3D scene

information of the static region, it gives a good starting

Figure 7. (a and b) Results of depth estimation.

Table 2. ATE on the KITTI 2015 odometry dataset.

Method Seq. 09 Seq. 10

ORB-SLAM (full) 0.014 + 0.008 0.012 + 0.011
ORB-SLAM (short) 0.064 + 0.141 0.064 + 0.130
SfMLearner 0.021 + 0.017 0.020 + 0.015
Geonet 0.012 + 0.007 0.012 + 0.009
Ours 0.010 + 0.005 0.012 + 0.007

ATE: absolute trajectory error; ORB-SLAM: ORB-simultaneous localiza-
tion and mapping systems.
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point for dynamic object localization. Based on the results

of these two CNNs, we fix the parameters of the depth and

pose CNNs, then we train the flow CNN (full-flow CNN)

to localize the dynamic objects and through the scene

optical flow. To verify the influence of static regions,

we also train the flow CNN (direct-flow CNN) directly

without any information on the depth and pose CNNs.

Figure 10 gives the results of the two flow CNN models.

The optical flow results which are generated by the direct-

flow and direct-flow CNNs are direct and residual results,

respectively. As shown in Figure 10, the residual results

give a more detailed structure of the optical flow

especially in the edge regions. However, in this view

synthesis process, some problems such as occlusions may

be unavoidable. To show the effectiveness of our forward-

backward consistency in mitigating these impacts, we

give the visualization results in Figure 11 with quantita-

tive results shown in Table 3.

Figure 11 provides several examples of visual compar-

ison between results with and without forward-backward

Figure 8. (a to d) The relative camera trajectory.

Figure 9. (a and b) Absolute camera trajectory.
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consistency. These comparisons show that our forward-

backward consistency improves the effectiveness of the

algorithm. Even though this forward-backward consistency

has no significant improvement in visual effect, we can get

quantitative comparisons in Table 3.

To measure the model’s performance, we compare our

dynamic object localization results with GeoNet.22 The

end-point error is used over non-occluded regions and over-

all regions for quantitative comparisons. The same KITTI

stereo/flow split as GeoNet is used to achieve fair qualita-

tive and quantitative comparisons (as shown in Table 3).

The visual results are shown in Figure 12.

As a pixel-wise strategy, optical flow is a crucial strat-

egy to calculate the geometric relationship of pixels in non-

static regions. In this part, we establish the corresponding

relationship between scene flow and optical flow, then use

the flow CNN to localize the dynamic objects through the

optical flow. Even though the visual effect is not obvious,

dynamic object localization is a challenging problem and

we provide an important method for this topic.

Comparison of real-time performance

In robotic and autonomous vehicle applications, real-time

performance is crucial. We use one of the most famous

real-time methods which is ORB-SLAM2 as a baseline to

measure our model’s real-time performance. Moreover, we

also compare it with a deep CNN model.22 ORB-SLAM

includes multiple stages such as feature extracting, map-

ping and bundle adjustment. Only the depth information of

each feature point is generated by ORB-SLAM system, so

we use the processing time of the local mapping as depth

estimation stage.

During navigation process, the depth information of a

feature point is similar to that of an image pixel. The pro-

cesses of map point creation and local bundle adjustment

are 66.79 and 296.08 ms, the processing time of GeoNet

and our model are 15 and 25 ms, respectively. Even though

only the map point creation stage is used for comparison,

our model is faster than that stage.

The stage of camera motion prediction is corresponding

to the tracking stage of ORB-SLAM, which is composed of

ORB extraction, pose estimation and track local map. The

total time of the tracking stage is 30.57 ms and our model

only uses 4.5 ms to predict the camera pose. Only

Figure 10. Comparison of optical flow in (b) GT, (c) the direct method with the raw stereo image sequences as input, and (d) the
residual method with the raw stereo image sequences and the results of the static region as (a) input. GT: ground truth.

Figure 11. Comparison of optical flow in GT, results without and with forward-backward consistencies: (a) input image, (b) GT,
(c) result without f-b, and (d) result with f-b. GT: ground truth.

Table 3. Average EPE on the KITTI flow 2015 dataset over NOC
and ALL.

Method Dataset NOC ALL

FlowNet C þ S 8.12 14.19
FlowNet2 C þ T 4.93 10.06
GeoNet K 8.05 10.81
Direct result K 8.23 12.06
Result without f-b K 7.49 11.25
Final result K 6.45 9.87

NOC: non-occluded regions; ALL: overall regions.
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considering the pose of a single point, ORB extraction and

pose estimation takes 14.48 ms, which is slower than our

model.

However, during depth estimation and camera motion

prediction stages, our model is slower than GeoNet, the

reasons are as follows: (1) GeoNet uses a single TitanXP

GPU for testing and the GPU of ours is GTX 1080Ti, which

is behind TitanXP and (2) to improve the model’s accuracy,

we use stereo videos as input which make the configuration

is more complex than GeoNet. Though our model is slower

than GeoNet, the proposed model can meet the real-time

demand of robotics and autonomous vehicle application.

Conclusion

This article proposed an unsupervised learning algorithm to

estimate the scene depth, camera motion and optical flow.

The supervisory signal is constructed based on various for-

mats of multi-view image synthesis. Stereo videos are used

as input to the model to learn the CNNs’ parameters. In the

inference stage, we fix the learned parameters, and only

monocular videos are required. Compared to other unsu-

pervised approaches and several supervised methods, the

experiment results indicate that our method outperforms

the previous approaches. Understood as key problems in

3D scene perception, depth estimation, camera motion pre-

diction and dynamic objects localization are solved by the

proposed framework. Therefore, the presented method is

close to solving the fundamental problems of 3D scene

perception through an unsupervised strategy.

There are several subjects for future study. Firstly, the

training dataset gives the camera intrinsic matrix, which

constrains the use of random videos without camera cali-

bration previously. Secondly, to take advantage of the

results of the static region, we have to use a two-stage

process to localize the dynamics or occlusion. Lastly, the

results of dynamic object localization are fuzzy through the

optical flow.

In view of the above disadvantages, in the future, we

would like to construct a strict end-to-end framework to

localize the dynamic objects with great accuracy and

extend our model so that it can learn with random videos.
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