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ABSTRACT 

 

The growing use of wireless health data transmission via Internet of Things is significantly beneficial to the 

healthcare industry for optimal usage of health-related facilities. However, at the same time, the use raises 

concerns of privacy protection. Health-related data are private and should be suitably protected. Several 

pathologies, such as vocal fold disorders, indicate high risks of prevalence in individuals with voice-related 

occupations, such as teachers, singers, and lawyers. Approximately, one-third of the world population suffer 

from the voice-related problems during the life span and unauthorized access to their data can create 

unavoidable circumstances in their personal and professional lives. In this study, a zero-watermarking 

method is proposed and implemented to protect the identity of patients who suffer from vocal fold disorders. 

In the proposed method, an image for a patient’s identity is generated and inserted into secret keys instead 

of a host medical signal. Consequently, imperceptibility is naturally achieved. The locations for the 

insertion of the watermark are determined by a computation of local binary patterns from the time–

frequency spectrum. The spectrum is calculated for low frequencies such that it may not be affected by 

noise attacks. The experimental results suggest that the proposed method has good performance and 

robustness against noise, and it is reliable in the recovery of an individual’s identity.   
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1. INTRODUCTION 

Recent developments in the area of the Internet of things (IoT) and signal processing technologies have 

significantly assisted the healthcare industry in remote data collection and processing. In fact, rapid progress in IoT 

has made the building of smart homes and cities a reality [1]. With the smart facilities provided in smart homes and 



 

 

cities, healthcare has become an important service not only for providing health-related facilities without visiting 

hospitals but also for the optimal use of health resources. In the coming decades, the continuous occupation of beds 

in hospitals and medical staff, including doctors and paramedics with other resources of healthcare, will be a 

significant challenge, especially in countries with a large population of senior citizens [2]. The risk of health-related 

predicaments grows with age. However, several ailments can develop at any stage during life, and vocal fold 

pathologies are examples of such ailments. Statistics from a recently developed voice pathology database shows that 

the average age for various vocal fold disorders is 12–48 years [3]. In another voice disorder database, the age of 

patients who are suffering from such disorders is 21–58 years [4, 5]. Any person can be affected by a vocal fold 

disorder. However, professional users of voice indicate more risks of the prevalence of such health concerns [6]. Vocal 

fold disorders can appear because of vocal misuse, including yelling, excessive talking, screaming, and crying. Other 

factors, such as poor hydration, medication, alcohol consumption, and smoking, also contribute to the development of 

vocal fold disorders [7]. These factors directly affect the vocal folds and cause abnormal vibrations in them during 

voice production, thereby affecting voice quality [8].   

 

A person can evaluate their voice for the presence of vocal fold disorders by sending their voice recording to 

healthcare staff via wireless communication for offline diagnosis. The clinical appraisal, also known as subjective 

assessment, can be conducted with the help of an endoscopic examination of vocal folds and different acoustic and 

perceptual measurements. Different techniques, such as Consensus Auditory–Perceptual Evaluation of Voice and 

Grade, Roughness, Breathiness, Asthenia, Strain scales are used for perceptual assessment [9]. Clinicians use these 

techniques frequently in practice, but several limitations occur because of the subjective nature of assessment. The 

limitations may be practitioners’ experience and area of expertise, type of dysphonia rating scale, and the degree of 

vocal fold disorder [10]. Moreover, human error cannot be neglected during subjective assessment. In addition, certain 

visualization tools, such as video laryngostroboscopy (LSC), are also used in the detection of vocal fold disorders by 

inspecting vocal fold vibration [11]. The subjective interpretation of LSC examination results strongly depends on the 

area of specialization and professional expertise of an examiner; thus, LSC examination presents limitations. 

Therefore, rating scales were introduced in [12, 13]. However, no standard approach is available for LSC examination 

because of dependency on various factors, such as pitch estimation, periodicity, and sustained phonation frequency 

[14]. Moreover, videoendoscopic high-speed imaging and videokymography have shown more accurate performance 

than video LSC [15]. The progress of such approaches is promising [16, 17]. However, expensive equipment and 

intensive labor in performing data analysis may be the reasons that practitioners and investigators hesitate to adopt 

these new methods [18]. These limitations of subjective methods can be overcome by an automatic assessment of 

vocal fold disorders. 

 

Various methods for the automatic detection of vocal folds have been reported in the literature in response to the 

various limitations of subjective evaluation [19–22]. These automatic methods, together with cloud or edge 

computing, can also be used for real-time detection of vocal fold disorders. Automatic methods do not require huge 

or big data to generate the acoustic model of normal and disordered persons for the training of classifiers. Only a 

reasonable amount of data, such as a few hundred speech signals, are sufficient for training. Once the classifier is 

trained, these automatic methods indicate capabilities to process big data for the detection of vocal folds reliably and 

with high accuracy. 

 

In both situations, diagnosis is either offline or in real time. The privacy of a person is a prime concern. The term 

privacy does not have a single interpretation, and its meaning usually depends on the scenario. Westin defines privacy 

as the claim of an individual to determine what information about himself or herself should be known to others [23]. 

Depending on usage, privacy was defined in six different manners in [24]. One of these definitions is “secrecy – the 

concealment of certain matters from others.” The breach of the identity of a person not only affects their personal life 

but can also disturb their professional life. Such a breach may create severe circumstances and can ultimately result 

in job loss. This study aims to protect the privacy of persons suffering from a vocal fold disorder by proposing and 

implementing a new method of zero-watermarking for medical signals. 



 

 

 

Watermarking has been widely used for data concealment to protect and authenticate audio [25]. Watermarking 

ensures the protection and authentication of the identity of a person that is embedded into the host audio. Although 

the use of watermarking in medical images has been extensively studied [26–30], no significant work has been 

reported for medical speech signals. Only a few studies have been conducted for privacy protection using medical 

speech signals. In one study [31], the authors claimed that imperceptibility was achieved after the insertion of 

watermark in a speech signal. However, the inserted watermark changed the characteristics of the speech signal, 

thereby affecting the diagnosis of a disorder. To avoid the effect of a watermark in a medical speech signal, the other 

possibility is the insertion of the watermark in a secret key instead of the host medical signal. This approach is called 

zero-watermarking. In this approach, a significant challenge is to extract the suitable features of the medical signal 

such that a secret key containing the watermark can be generated by their use. Given the extraction of such features 

from the signals, privacy protection in medical audio signals via zero-watermarking is a difficult task. A disorder 

detection system uses normal and disordered signals as input. Therefore, extracted features should be robust such that 

both types of signal may have them. Otherwise, insertion of a watermark will not be possible in both types of signals. 

 

A zero-watermarking algorithm for medical speech signals was proposed in [32, 33]. The identity of a patient is 

encrypted via visual cryptography before watermarking. The encrypted identity is inserted using the features of the 

signal in the time domain. With the use of zero-watermarking, imperceptibility is naturally achieved, and the 

experimental results indicated that the insertion and extraction processes of the developed method are reliable. One of 

the limitations of these studies is that the dimensions of the secret share are generated via visual cryptography. The 

dimension of each share is equivalent to the original identity. Thus, double capacity is required if two secret shares 

are generated. In another study, a zero-watermarking method for privacy protection in telemedicine was provided [34]. 

The identity of a patient is directly embedded using the characteristics of the signal. The speech signal used for the 

study contains running speech. Therefore, a voice activity detection (VAD) module is implemented to detect unvoiced 

frames for reliable insertion of identity. However, VAD is itself a difficult task, especially in case of disordered signals 

[35]. 

 

In this work, a new zero-watermarking method for privacy protection is proposed and implemented. The technique 

inserts a watermark, an identity of a person, in an audio signal. The identity is in the form of an image. After watermark 

insertion, speech signals are not distorted because the identity is inserted in a secret key instead of the host signal. 

Therefore, identity insertion does not affect the result of the detection of vocal fold disorders. Usually, a watermarking 

algorithm is evaluated on the basis of imperceptibility and robustness. Imperceptibility describes that the perceived 

quality of a speech signal should not be degraded after insertion of the watermark. In the proposed method, 

imperceptibility is naturally achieved. Various experiments are performed to ensure that no clue of an individual’s 

identity is present after embedding in the secret key and thus ensure the robustness of the proposed zero-watermarking 

technique. Experimental results indicate that the proposed method is reliable in the extraction of identity and only 

authorized healthcare staff can extract identities with the relevant secret information. 

 

The remainder of the paper is organized as follows. Section 2 describes the procedure for the computation of the 

time–frequency spectrum for the insertion of the watermark and generation of a chaotic sequence via a logistic map. 

In addition, this section presents the embedding and extraction processes of the proposed zero-watermarking method. 

Section 3 provides details of the vocal fold disorder detection system and shows the baseline results. Section 4 reports 

the evaluation of the proposed zero-watermarking method and the robustness of the technique against noise. Finally, 

Section 5 presents the conclusions. 

  

  



 

 

2. PROPOSED ZERO-WATERMARKING METHOD 

The identification of suitable locations for the insertion of a watermark for identity protection is crucial. The locations 

should be stable and provide sufficient space for the watermark. To determine such locations, the time–frequency 

spectrum for low frequencies is computed in this study. Moreover, the patterns in the spectrum are analyzed via the 

local binary pattern (LBP) operator, and histograms are used to represent the occurrence of the obtained LBP codes. 

In addition, randomness in the proposed zero-watermarking method is created by using a chaotic system, which 

provides deterministic randomness and can be regenerated by using the same initial conditions. This section also 

provides the embedding and extraction steps of the watermark in detail. 

2.1 Low-frequency Regions in Medical Signals 

The privacy of an individual is protected by inserting the subject’s identity using the zero-watermarking method. 

Watermark insertion and extraction are two vigorous processes in the proposed method, and they are important for 

accurate insertion and recovery of the watermark. The watermark in the proposed method is inserted in the low-

frequency spectrum of audio. The low-frequency regions of an audio exhibit constant behavior and contain only small 

variations. Therefore, these regions are stable for watermark insertion. 

 

The time–frequency spectrum that contains low frequencies is obtained by applying discrete Fourier transformation 

(DFT) on an audio A. The DFT is computed by using the fast Fourier transformation algorithm, thereby reducing the 

complexity of DFT from O(n2) to O(n logn). Then, the obtained spectrum is passed through triangular Mel-spaced 

bandpass filters. The Mel-scale filter bank is defined as 
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where z = 1, 2, 3, …, L-1; L denotes the length of the ith frame of audio A. 

 

The frequencies for the bandpass Mel-spaced filters are calculated by using Eq. (2), where ρ represents the frequencies 

in Hertz (Hz) and ψ stands for the corresponding frequencies in the Mel scale.  
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Then, center frequencies of the bandpass filters are computed by using Eq. (3). 
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where ψmax and ψmin are maximum and minimum frequencies in the Mel scale, respectively, and correspond to the 

maximum and minimum frequencies ρmax and ρmin in Hz, respectively. In addition, the number of Mel-scale bandpass 

filters is denoted by M.  

 

All signals of the voice disorder database are down-sampled to 25 KHz before finding the low-frequency regions. 

Therefore, the maximum usable frequency in each audio signal is 12.5 KHz. To obtain the low-frequency regions, the 

minimum and maximum frequencies, ρmin and ρmax, respectively, are adjusted to 100 and 500 Hz, respectively. 

Moreover, M=24; thus, the number of bandpass filters in the Mel-spaced filter bank is 24. The computed time–

frequency spectrum that contains low-frequency regions are shown in Figs. 1(a) and 1(b) for normal and disordered 

persons, respectively. 

 

 

(a) (b) 

Figure 1: Low-frequency spectra for two different audio samples: (a) CEB1NAL - normal person, (b) NMC22AN - 

disordered person. 

  

The patterns in the computed low-frequency region are investigated by applying a two-dimensional LBP operator. 

The LBP operator divides the region into 3 x 3 blocks. Each element of the time–frequency spectrum is considered a 

central element of the block, and it is replaced by the calculated LBP codes. To obtain the LBP code for a block, the 

center element is compared with all eight neighbors of the 3 x 3 block. If a neighbor is greater than or equal to the 

center element, then the neighbor is replaced by 1; otherwise, it is 0. This code is referred as sign LBP code [19]. 

Thus, an 8-bit binary digit is obtained, and the corresponding decimal number represents the required LBP code. The 

histograms obtained by applying the two-dimensional LBP operator for the time–frequency spectra are shown in Fig. 

2. The figure shows that only few LBP codes are repeating. For instance, in Fig. 2 (a), occurrences of LBP codes 0, 

85, 95, 245, and 255 are 445, 5238, 1746, 2328, and 0, respectively; by contrast, the same LBP codes in Fig. 2(b) are 

repeated 140, 0, 0, 0, and 3072 times, respectively. These codes provide sufficient space for watermark insertion. The 

occurrences of the total number of LBP codes vary in both histograms because of the varying durations of the audio 

signal. The duration of the recorded sample for the normal person is 3 s in the voice disorder database, while that for 

the disordered person is only 1 s.  
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To secure the identity of a person, the randomness in the insertion of the watermark is crucial. In this study, the 

randomness is attained via chaotic theory, and it generates random sequences deterministically.  

 

(a) (b) 

Figure 2: Histograms representing patterns for (c) CEB1NAL (normal person) and (b) NMC22AN (disordered 

person). 

 

2.2 Chaos and Logistic Map 

Chaos represents a state of randomness that is not merely a disarray. In fact, the randomness of a chaotic system is 

deterministic and can be obtained by using the same initial conditions. However, a slight change in the initial condition 

results in a highly different sequence [36, 37]. Despite the deterministic simplicity over time, chaos theory can produce 

wildly unpredictable and divergent behavior because of such sensitivity [38]. Defining chaos completely is difficult. 

According to Williams Garnett, “chaos is sustained and orderly-looking long-term evolution that satisfies certain 

special mathematical criteria and that occurs in deterministic nonlinear systems” [39]. 

 

 In this study, a chaotic sequence is generated by using a logistic map, a degree 2 polynomial mapping given by 

Eq. (4).   
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where system parameter μ ∈ [0, 4] and initial condition R0 ∈ (0,1). In the logistic function, a difference equation treats 

time as continuous. By contrast, in the logistic map, the difference equation examines discrete time steps [40, 41]. The 

logistics map is known as such because it maps the population value at the present time to the population value at the 

next time step. 

 

The behavior of Eq. (4) varies for the different values of the μ. When μ is between 0 and 1, the population vanishes 

ultimately regardless of the value of the initial population. For μ ∈ (1, 2), the population approach to the value (μ-1)/ 

μ in a quick time duration is irrespective of the value of the initial population. By contrast, the logistic map behaves 
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chaotically for μ ∈ (3.5699456, 4] [42]. The logistic map with initial condition R0 = 0.5 and system parameter μ = 3.7 

and 3.716 are plotted in Fig. 3(a) with 200 iterations; i.e., r = 200. This figure also emphasizes the difference in 

population for μ = 3.7 and μ = 3.716. A small difference of 0.016 in μ generates significantly diverse sequences. For 

further analysis, autocorrelation of both logistic maps, the first with μ = 3.7 and the second with μ = 3.716, are plotted  

 
(a) 

 
(b) 

 
(c) 

Figure 3: (a) Difference between two logistic maps (b) Autocorrelation of the first logistic map with parameters R0 = 
0.5 and μ = 3.7 (c) Autocorrelation of the second logistic map with parameters R0 = 0.5 and μ = 3.716. 

 

in Figs. 3(b) and 3(c), respectively. The figures show that the logistics maps generated by a small change in system 

parameter μ are statistically uncorrelated. 
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2.3  Embedding Process 

The process for the insertion of the identity of a person is shown in Fig. 4 and implemented through the following 
steps. 

1. We generate an image I for the identity of an individual with the dimension I1 x I2 to watermark the host 

medical signal A. 

2. We divide the host signal A into overlapping frames a1,a2,a3,…,af, where the length of each frame is L. Then, 

we compute the time–frequency spectrum S in the range 100–500 Hz by using the Mel-spaced bandpass filter 

bank, as described in Section 2.1, to identify the locations for watermarking. The dimension of the obtained 

spectrum is t x q, which indicates that the spectrum has t frames and q bandpass filters.  

3. We segment spectrum S into blocks B1, B2, B3, … , Bl, which are of size 3 x 3, to compute the LBP codes. 

4. Using the computed LBP codes, we generate an index key X by using the criteria given in Eq. (5). The index 

key X contains the locations of following blocks, where (i) the center element is smaller than all  

 

 

Figure 4: Process for watermark embedding. 



 

 

neighbors, i.e., 11111111 (say C1); (ii) the center element is greater than all neighbors, i.e., 00000000 (say 

C2); (iii) the center element is smaller than odd neighbors and greater than even ones, i.e., 01010101 (say 

C3); (iv) the center element is smaller than the first four neighbors such that 01011111 (say C4); and (v) the 

center element is smaller the last four neighbors such that 111110101 (say C5). In each code, C1, C2, C3, 

C4, and C5, the bit at the extreme right represents the first neighbor.  
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 where b(T,Q) is the center element of a block. 

5. We compute chaotic sequence R by using Eq. (4) with the initial conditions R0 and μ. These conditions vary 

from signal to signal. The dimension of the sequence R is equivalent to the number of locations in X. The 

initial conditions of the generated sequence are known only to the sender and the intended receiver. Given 

that a small change in the initial conditions creates an entirely different sequence, no other individual will be 

able to generate the same sequence. 

6. An intermediate key P is produced by obtaining the binary pattern P, which is given by Eq. (6). 
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7. We create a watermark key K by using Eq. (3) and then conduct an XOR operation between the identity I of 

an individual and the intermediate key P. 

K I P= ⊕      (7)  

Two keys, the index key X and watermark key K, and the initial conditions of the chaotic system must be transmitted 

via a secure channel to the healthcare staff with a corresponding speech signal. 
 

 

2.4 Extraction Process 
 

A block diagram of the extraction process is shown in Fig. 5, and the identity of an individual is recovered via 

the following steps. 

 

1. We partition the watermarked audio Ã into frames of length L to compute the time–frequency spectrum S̃ of 

dimension t x q by using the Mel-spaced bandpass filter bank that is in the range of 100–500 Hz, as described 

in Section 2.1. The variables t and q represent the number of frame and bandpass filters in the spectrum S̃. 

2. We compute the LBP codes for the blocks B̃ of size 3 x 3, whose locations (T,Q) are provided by the index 

key X; i.e., LBP(B̃(Xi)), where T = 2,3,4,…,t and Q = 2,3,4,…,q-1. 

3. We generate chaotic sequence R with the same initial conditions and determine the binary pattern P̃ by using 

the relation provided in Eq. (8). 
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Figure 5. Process for watermark extraction. 
 

 

4. We perform the XOR operation between the computed binary pattern P̃ and the watermark key K for the 

recovery of the individual’s identity Ĩ by using Eq. (9). 

I K P= ⊕% %      (9) 

After Step 4, the individual’s identity Ĩ is recovered from signal Ã, which was inserted in the medical signal A during 

the embedding process.  

 

In the healthcare system, observing diagnosis accuracy is important. Therefore, a vocal fold disorder detection 

system is developed to obtain the baseline result for the detection of such disorders. 
 

 

3. BASELINE RESULTS FOR DISORDER DETECTION 

 A reliable healthcare system may protect the identity of a person and provide correct decisions for the presence of 

an illness. In any type of healthcare system, the first preference is the accurate diagnosis of disease, which should not 

be compromised for privacy protection. In this work, an automatic vocal fold disorder detection (AVDD) system is 

implemented to discriminate between normal and disordered speech signals. The AVDD system aims to obtain 



 

 

baseline results for the proposed privacy-protected healthcare system. The results will be used to observe the effect of 

zero-watermarking on a speech signal. 

The AVDD system comprises two important components: (1) speech feature extraction method and (2) pattern-

matching technique. Both components are crucial for the accurate differentiation of normal and disordered signals. 

Generally, speech feature extraction methods fall into two categories, namely, those based on the human voice 

production system and those based on the human auditory perception system. Linear prediction coefficients (LPC) 

and LPC-based cepstral coefficients (LPCC) belong to the first category. By contrast, Mel-frequency cepstral 

coefficients (MFCC) belong to the second category and have indicated great success over LPC and LPCC in various 

speech-related applications, including voice disorder detection [32]. Therefore, state-of-the-art speech features 

(MFCC) are applied for the extraction of speech features from both signal types. MFCC provides multi-dimensional 

feature vectors that cannot be interpreted by the human mind. Therefore, the pattern-matching phase is essential in 

determining the trend in a speech signal. 

In this work, pattern matching is performed by implementing a machine learning technique, which performs better 
do statistical approaches. Machine learning techniques do not make strict assumptions about data and instead learn to 

represent complex relationships in a data-driven manner. A state-of-the-art machine learning technique, the Gaussian 
mixture model (GMM) [43, 44], is used to develop the AVDD system and has been successfully and widely used in 
different scientific areas. The basis for using GMM is that the distribution of feature vectors obtained from MFCC can 

be modeled by a mixture of Gaussian densities. GMM [45] uses a K-means algorithm to initialize the parameters. 

Moreover, these parameters are estimated and tuned by the well-known expectation maximization algorithm [46] to 

converge to a model, thereby providing a maximum log-likelihood value. 

The implemented GMM is vital for both phases of the developed AVDD system. The first phase is the training 

phase, and the second is the testing phase. In the first phase, the computed MFCC features are inputted into the GMM 

for the generation of acoustic models for each type of speech signal, i.e., one acoustic model for normal signals and 

another for disordered signals. Once the models are generated, an unknown speech signal is compared with both 

generated models during the testing phase to compute the log-likelihood for decision. The unknown signal having 

maximum log-likelihood with a model is deemed the type of that signal. If the log-likelihood of an unknown signal is 

greater for the model of the normal signal, then the type of the signal is normal; otherwise, the type of signal is 

disordered. 

To obtain the baseline results for the AVDD system, the normal and disordered speech signals are taken from the 

MEEI voice disorder database [4, 47] which is recorded at the Massachusetts Eye & Ear Infirmary laboratory. The 

MEEI database is recorded at sampling frequencies of 25 and 50 KHz. Therefore, all normal and disordered signals 

are down-sampled to 25 KHz to obtain a unique sampling frequency for all signals. In this study, a subset of the MEEI 

database represented by MEEIsub is used to perform the experiments, and it has been used in many voice disorder 

detection and classification systems [32, 48]. The distribution of normal and disordered speech signals in the MEEIsub 

is provided in Table 1. 

One of the reasons of using MEEIsub is that the age range of both genders for normal and disordered subjects is 

nearly similar. Moreover, the age and gender of both types of subjects are evenly distributed, and various disordered 

are considered in it [5]. Overall, the MEEIsub contains 226 signals, namely, 173 disordered and 53 normal signals. 

Among the 173 disordered signals, 70 signals are recorded by male speakers and the remaining 103 are recorded by 

female speakers. In case of normal signals, the samples recorded by male and female speakers in MEEIsub are 21 and 

32, respectively. 

 

 

 



 

 

Table 1. Distribution of normal and pathological samples in MEEIsub [5] 

Subjects Gender 
Number of 

Samples 

Mean Age 

(Years) 

Age Range 

(Years) 

Standard 

Deviation 

(Years) 

Pathological 
Male 70 41.7 26–58 9.4 

Female 103 37.6 21–51 8.2 

Normal 
Male 21 38.8 26–59 8.5 

Female 32 34.2 22–52 7.9 

The baseline results of the developed AVDD system are reported by using three performance measures. The first 

measure is sensitivity (SNY), which provides the detection rate of the accurately detected disordered signals. The 

second measure is specificity (SPY), which provides the detection rate of accurately detected normal signals. The third 

measure is accuracy (ACY), which provides the detection rate of all truly detected normal and disordered signals from 

the entire dataset. The relations used to compute these measures are provided in Eqs. (10)–(12). 

 = 
true positive

100
true positive + false negative

SNY ×    (10) 

 

 = 
true negative

100
true negative + false positive

SPY ×    (11) 

 

 = 
truely detected signals

100
total number of signals

ACY ×     (12) 

 

Here, true positive means that the AVDD system detects a disordered signal as a disordered signal, true negative 

means that the AVDD system detects a normal signal as a normal signal, false negative means that the AVDD system 

detects a disordered signal as a normal signal, and false positive means that the AVDD system detects a normal signal 

as a disordered signal. All results provided in Table 2 are obtained by a five-fold cross-validation technique. The 

results listed in Table 2 are averaged over five folds, and the standard deviation (SD) is listed to show the variation of 

the measures among the folds. 

 

Table 2. Baseline results of developed AVDD system 

Number of 

Gaussians 

Sensitivity 

SNY±SD 

Specificity 

SPY±SD  

Accuracy 

ACY±SD 

2 89.56 ± 3.4 84.91 ± 5.1 88.49 ± 3.3 

4 94.2 ± 2.9 86.91 ± 8.5 92.47 ± 1.2 

8 94.22 ± 2 79.27 ± 8 90.71 ± 0.9 

16 96.52 ± 1.3 73.82 ± 9.8 91.15 ± 2.7 

32 97.68 ± 1.3 50.91 ± 10.3 86.72 ± 2.2 

Various experiments are conducted for the detection of vocal fold disorders by using a different number of Gaussian 

mixtures, such as 2, 4, 8, 16, and 32. The maximum obtained accuracy is 92.47%, and it is achieved by using four 

Gaussian mixtures. The corresponding SNY and SPY is 94.2% and 86.91, respectively. 



 

 

The obtained baseline results provide a platform from which to observe the effect of insertion and extraction of the 

watermark using the proposed method. To do so, the accuracy of the disordered detection system is computed after 

the insertion and extraction of the watermark from the host signal. 

 

4. EVALUATION OF PROPOSED ZERO-WATERMARKING METHOD 

Different experiments are performed to observe the performance of the proposed zero-watermarking method. Only 

authorized access with relevant secret keys can disclose the identity of an individual. Moreover, the proposed method 

is tested against noise attacks. 

 

4.1.     Embedding Reliability  

 During the embedding process, the proposed zero-watermarking method hides the identity of a person and 
generates secret keys, namely, index key X and watermark key K. These generated keys are transmitted to the 

healthcare staff with the corresponding speech signals for diagnosis of the vocal fold disorders. The identity of the 

person cannot be disclosed without access to the secret keys. For identity recovery, authorized staff computes the 
speech features. Then, transmitted keys help extract the identity of a person. 

 To observe the reliability of the embedding process of the proposed method, all samples of the MEEIsub given in 
Table 1 are used for identity insertion. In MEEIsub, the signals of normal subjects are labeled with a string suffixed by 

NAL such as AXH1NAL and EDC1NAL. By contrast, the labels of disordered signals are suffixed by AN, such as 
AXT13AN and CAC10AN. In this study, black-and-white images are created by using the labels of signals, which 

are strings of seven alphanumeric characters. These created images are considered watermarks and embedded in 

medical signals by using the proposed zero-watermarking method. 

 In the proposed technique, the watermark is embedded in watermark key K instead of the host audio A. This key 

is produced by performing an XOR operation between the patient identity I and the generated binary pattern P during 
the embedding process. An identity of an individual (GZZ1NAL) and the embedded watermark by using the proposed 

method is shown in Fig. 6. 

  

(a) (b) 

Figure 6: (a) Identity of an individual and (b) embedded watermark.  

 Figure 6 shows that no information regarding the identity of an individual is visible through the embedded 

watermark. The difference between the two images, given in Fig. 6, can be found by calculating the bit-error rate 

(ERR) and peak signal-to-noise ratio (PSNR). The metrics ERR and PSNR are defined in Eqs. (13) and (14) and used 
to obtain the differences between two images objectively. ERR refers to the bits that are present in the embedded 
watermark but do not exist in the recovered watermark at the corresponding positions. Moreover, in Eq. (14), im1 and 

im2 represent the original identity of a person and embedded watermark, respectively, and BPS signifies the number 
of bits in each pixel of the image.  
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  The ERR between the original identity and the embedded watermark is 53.57%. Thus, more than 50% mismatch 
occurs between the bits of the original identity and the embedded watermark. Guessing the identity of an individual 

is impossible. The high percentage of the ERR ensures that the embedding process of the proposed method is reliable. 
Meanwhile, the value of the second metric PSNR used to measure the difference between the original identity and the 

embedded watermark is 2.71 dB. Two images are considered close to each other if the PSNR is above 20 dB. In the 
case of 50 dB, the images are nearly similar. For the images given in Fig. 6, the PSNR is close to zero; thus, the images 

are entirely different and identity breach is impossible. The second metric also strengthens the reliability of the 
embedding process. 

 Similarly, for all signals of MEEIsub, ERR and PSNR are computed to observe the difference between the original 

identities and the embedded watermarks. The ERR and PSNR for all normal and disordered signals are shown in Figs. 
7(a) and 7(b), respectively. The ERR for all signals is more than 50%, and the PSNR values are close to zero. 

Therefore,  

   
(a) (b) 

Figure 7: (a) ERR for all speech signals of MEEIsub, (b) PSNR for all speech signals of MEEIsub. 

the proposed zero-watermarking method securely protects the identity of a person during the embedding process. 

 

4.2       Extraction Reliability   
 

The extraction of a patient’s identity should be revealed only using the relevant secret keys and the initial conditions 
of the chaotic system. The extraction process cannot be considered reliable if the secret key of one patient discloses 

the identity of other patients. To observe the extraction reliability of the proposed zero-watermarking method, we 
attempt to reveal the identity of a person by using the secret information of the other patients. The EER and PSNR 
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between the original identity and the extracted identity computed using irrelevant secret information are depicted in 
Fig 8. 

 

Figure 8: PSNR and EER with use of irrelevant information for identity disclosure of patient. 

 In Fig. 8, we attempt to reveal the identity of a person GZZ1NAL by using the information of 10 other persons. 
The experimental results show that when the information of 10 irrelevant people is used to access the identity of 
GZZ1NAl, the obtained PSNR is close to zero and the EER is above 70%. The low values of PSNR suggest that the 

original identity and the recovered identities with irrelevant information are significantly different. Similarly, the high 

EER values between the original identity and the recovered identities obtained using irrelevant information indicate 

that the recovered identities are entirely different from the original identities. Analysis of both metrics indicates that 
the proposed method reveals the identity of a person only when the secret information of the relevant person is 
available. 

 We must also investigate the proposed method for identity extraction with the relevant secret key. The recovered 

identities with the relevant secret information should be compared with the corresponding original identities to observe 

the similarity between them. Figure 9 shows the embedded and recovered identity of GZZ1NAL using the relevant 
secret keys and the initial conditions. The recovered identity is not distorted and is similar to the original identity 

shown in Fig. 6(a). The extraction of identity without distortion shows that the EER and PSNR between the original 

and recovered identities are 0% and infinity (Inf), respectively. These values indicate that the identity is recovered 
perfectly. 

  

(a) (b) 

Figure 9: Extraction of identity with relevant information: (a) embedded identity, (b) recovered identity. 

 Experiments are performed to extract the identity of all signals of MEEIsub with the relevant secret information 

generated during the embedding process, and both metrics are computed. The computed metrics for all signals are 
listed in Table 3.  

 The experimental results in Table 3 show that the computed metrics EER and PSNR are 0% and Inf, respectively, 
for all signals. Thus, the identities that use the relevant secret keys and initial conditions are recovered without any 

distortion. Hence, when secret keys of other speech signals are used to access the identity of an individual, the 
recovered identity does not disclose any information. The proposed method reveals the identity of a person only when 
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relevant secret keys are available. The proposed zero-watermarking method is reliable such that no unauthorized 
access to the individual’s identity is possible. 

Table 3: Comparison between original and recovered identities with relevant information for all signals in MEEIsub 

Metric 
Comparison between 

Original and Recovered Identities 

PSNR (dB) Inf 

EER 0% 

 The accuracy of the disorder detection system with the signal from which the identity is recovered must also be 

observed. Therefore, several experiments are performed to explore the effect of privacy protection on disorder 
diagnosis. The accuracy of the AVDD system with the recovered signals is listed in Table 4. 

 

Table 4. Results of developed AVDD system with recovered signals 

Number of 

Gaussians 

Sensitivity 

SNY±SD 

Specificity 

SPY±SD  

Accuracy 

ACY±SD 

2 88.56 ± 2.7 85.05 ± 4.6 88.23 ± 1.9 

4 95.4 ± 3.1 86.36 ± 7.9 92.85 ± 1.1 

8 94.78 ± 1.8 80.01 ± 6.9 91.10 ± 0.8 

16 96.31 ± 1.3 74.23 ± 7.9 91.74 ± 2.2 

32 97.16 ± 1.5 51.52 ± 9.5 87.09 ± 1.9 

The setup used for the experiment is the same as that used to obtain the baseline results in Section 3. The acquired 
results are similar to those that are attained with the original signals. However, a comparison of Tables 2 and 4 indicates 
a small variation between the disorder detection results of the original signal and the signals used for recovery. This 

variation is the effect of the cross-validation approach, which assigns the testing and training signals randomly each 

time. In Tables 2 and 4, the maximum achieved accuracy is obtained with four Gaussian mixtures, and these accuracies 

are 92.47 ± 1.2 and 92.85 ± 1.1. Therefore, the proposed privacy protection method does not affect the accuracy of 
the diagnosis system. 

 The proposed method is investigated in the following section for protecting the identity of a person in case of a 

noise attack.  

 

4.3       Robustness  

 
 A watermarking method is considered robust against noise if it can recover the identity of a person after the 

addition of noise in the watermarked audio. In case of a noise attack, the importance of the extracted feature can be 

realized. If extracted features are not robust against the attack, then the identity of a person will use the best method 
in this study such that they should not be affected by the noise attack. The features in the proposed method are extracted 

to determine the locations for insertion of the watermark. The features are vital in the embedding and recovery 

processes.  
 

 To observe the robustness of the proposed method, white Gaussian noise with SNR of 20 dB is added to the 
speech signal DWS1NAL. The speech signals without and with noise are shown in Fig. 10(a). Moreover, the time– 



 

 

 
(a) 

Spectrum without noise Histogram without noise 

  
Spectrum with 20 dB noise Histogram with 20 dB noise 

  
(b) (c) 

Figure 10: (a) Speech signal (DWS1NAl) with and without noise. (b) Spectrum of DWS1NAl with and without 

noise. (c) Histogram of DWS1NAl with and without noise. 
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Figure 11: Comparison of vocal fold detection for clean and noisy signals. 

frequency spectra with low-frequency regions are depicted in Fig. 10(b) for the signal with and without noise. Both 

spectra do not show any significant difference, thereby suggesting that the extracted features in the proposed method 

are robust against noise. Ultimately, the robustness of the proposed method against noise attacks is proven. Histograms 
for the noisy and clean signals are shown in Fig. 10(c). These histograms provide the frequency of the LBP codes, and 
they are unaltered for the clean and noisy signals. The identity of a person can be embedded and recovered reliably 

even in the case of a noise attack by using the proposed zero-watermarking method. 
 

 In addition, the effect on the detection of vocal fold disorder is analyzed by adding noise with SNR of 30, 20, and 
10 dB in all normal and disordered speech signals of MEEIsub. The results for the detection of vocal fold disorders 
without noise are presented in Table 2. The maximum obtained accuracy is obtained with four Gaussian mixtures. 

Therefore, for the noisy signals, the same number of Gaussian mixtures is used to obtain the SNY and SPY. A 
comparison between the SNY and SPY for the noisy and clean signals is shown in Fig. 11. SPY decreases with the 

increase in noise because the normal signals exhibit complex and transient behavior similar to disordered signals after 
the addition of noise. Therefore, the detection system AVDD detects the normal signals as disordered signals. Thus, 

the proposed method extracts the identity of an individual successfully from the signal even after a noise attack. By 
contrast, the detection system is unable to diagnose it correctly. 

 

4.4 Comparison  
 

 The method in [32, 33] provides dual protection for the identity of a patient. The identity of the patient is encrypted 

by using visual cryptography prior to watermarking. The limitation of this method is the generation of secret shares 
with a large dimension. For instance, the dimension of the original identity is 20 × 126, and two secret shares of 

dimensions double those of the original identity, i.e., 40 × 252, are generated. This process increases the size of the 
watermark by 800% from 2520 bits to 20160 bits. Sometimes, such capacity to insert such a large watermark capacity 

is not available in the signals [49]. In the proposed study, the identity is not dual-protected. However, the highest 

obtained EER under the use of irrelevant keys to recover the identity is better than in [32, 33]. The highest EER in this 
study is approximately 75%, and that for [32, 33] is 63%, thereby suggesting that the proposed method is reliable in 

the recovery of a patient’s identity. 

 In another study [34], a reliable method for the protection of patient information was presented. A zero-
watermarking approach is implemented for embedding and recovery of the identity. The method requires unvoiced 
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frames for identity insertion. The study concluded that voiced frames are not suitable for identity insertion. Therefore, 
unvoiced frames, which can be considered a region of interest (ROI), are determined by applying a VAD module. The 

detection of voice activity is itself a challenging task, especially in the case of dysphonic patients, as mentioned by 

Umapathy et al. in [35]. The reason for this situation is that speech signals of dysphonic patients contain more noise 

than do the signals of normal persons, and VAD in noisy signals indicates many limitations [50]. The false calculation 
of ROI may reveal the identity of a person, which is not desirable [51]. Therefore, we do not use any VAD module in 
the proposed method to make it accurate and reliable. 

 

5. CONCLUSIONS 

A zero-watermarking method is proposed and implemented in this study. The proposed method hides the identity 

of a patient in normal speech signals and those affected by vocal fold disorders. Low-frequency regions in the time–

frequency spectrum are computed for the insertion of the watermark because they are considered a stable part of a 

speech signal and are not considerably affected by noise. Given the use of the chaotic system, patient identity breach 

is impossible; a small change in the initial conditions generates an entirely different sequence. This characteristic is a 

strong and vital aspect of the proposed zero-watermarking method. Thus, the technique is reliable in the protection 

and recovery of identity. This method can be deployed confidently for the protection of patient identity in healthcare 

applications, in which data are transmitted via IoT, because the use of unauthorized access to disclose patient identity 

without relevant secret keys is not effective. In future work, the proposed method will be extended, and the identity 

of a patient can be embedded in the form of multiple secret shares. Patient identity will not be disclosed until all shares 

are available simultaneously. However, the generated secret shares should not increase the size of the watermark. 
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