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ABSTRACT 

The growing population of senior citizens around the world will appear as a big challenge in the future and 
they will engage a significant portion of the healthcare facilities. Therefore, it is necessary to develop intelligent 
healthcare systems so that they can be deployed in smart homes and cities for remote diagnosis. To overcome the 
problem, an intelligent healthcare system is proposed in this study. The proposed intelligent system is based on the 
human auditory mechanism and capable of detection and classification of various types of the vocal fold disorders. 
In the proposed system, critical bandwidth phenomena by using the bandpass filters spaced over Bark scale is 
implemented to simulate the human auditory mechanism. Therefore, the system acts like an expert clinician who 
can evaluate the voice of a patient by auditory perception. The experimental results show that the proposed system 
can detect the pathology with an accuracy of 99.72%. Moreover, the classification accuracy for vocal fold polyp, 
keratosis, vocal fold paralysis, vocal fold nodules, and adductor spasmodic dysphonia is 97.54%, 99.08%, 96.75%, 
98.65%, 95.83%, and 95.83%, respectively. In addition, an experiment for paralysis versus all other disorders is 
also conducted, and an accuracy of 99.13% is achieved. The results show that the proposed system is accurate and 
reliable in vocal fold disorder assessment and can be deployed successfully for remote diagnosis. Moreover, the 
performance of the proposed system is better as compared to existing disorder assessment systems.   
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I. INTRODUCTION 

Due to rapid growth in information and communication technologies, the building of smart homes and cities 
becomes a reality. Smart homes and cities take the home and living experience to the next level. One of the major 
reasons for the development of smart homes and cities is to provide the efficient and cost-effective healthcare 
facilities.  According to the American Association of Retired Persons [1],  85% of senior citizens want to stay at 
home for the treatment as long as the facilities are available. Of concern is that a large population around the world 
is aged 60 years or above.  In the report of the United Nations on world population aging which was published in 
2015 [2], it is mentioned that around 900 million people around the world are 60 years of age or above. This 
population will rise to 1402 million until 2030. Such a large population will occupy a significant portion of the 
health facilities in the hospitals. This situation can be avoided by building smart homes and cities, where automatic  
 



 
Figure 1. An illustration of an IoT-based smart city [3]. 

 

diagnosis systems will be a critical component [4-8].  The automatic healthcare systems recieve the data through the 
Internet of Things (IoT) and transmit it for the evaluation. 
 
In smart cities, the IoT gathers a huge quantity of data and it can be processed by using automatic assessment 
systems [5]. A high-level illustration of an IoT-based smart city is depicted in Fig. 1. However, the increasing use of 
wireless transmission of health-related data raises the concern of data protection and authenticity. The medical data 
of an individual may be secured such that unauthorized access to the data could be denied. Only authorized 
healthcare staff may access the data to ensure the privacy of an individual’s identity. A framework for a privacy-
protected healthcare is shown in Fig. 2.  
 
The main goal of this study is to develop a detection and classification system for vocal fold disorders which can be 
deployed in smart homes and cities for automatic diagnosis. A voice disorder affects the vocal folds and makes the 
vibration of the vocal folds abnormal. The characteristics of various voice disorders such as vocal fold nodules, 
cysts, and paralysis are presented in [9]. Due to irregular vibrations, the vocal folds exhibit incomplete closure or 
tight closure, which makes the voice breathy, weaker, strained, and harsh. The abnormal behavior of the vocal folds 
disturbs voice patterns and therefore the speech signal of a disordered person becomes more transient and noisy 
compared to that of a normal person [10]. A large number of populations around the world suffer from different 
kinds of voice disorders. According to the National Institute on Deafness and Other Communication Disorders, 
approximately 17.9 million people suffer from voice problems [11]. Around 700 cases of voice complications per 
year are observed in Riyadh, Saudi Arabia. More than 15% of the people visiting King Abdul Aziz University 
complain about voice problems [12]. Various types of voice disorders are described as follows. 
 

Vocal fold polyps are fluid-filled lesions that appear on the free edge of the vocal folds, and the main reason for 
their occurrence is the abuse of the voice. Polyps resemble a blister; they are reddish in color. Polyps are associated 
with frequent breaks in singers, earlier vocal fatigue, and worsening dysphonia [13]. Several factors can contribute 
to the formation of vocal fold polyps, such as allergies, nicotine, and voice trauma [14]. Vocal fold polyps usually 
occur in adult men who use their voices excessively; these patients also have a high risk of vocal fold nodules and 
cysts [15]. 
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Figure 2. A framework for the privacy protected healthcare system. 

 
Keratosis appears due to the presence of abnormal cells (white plaques) on the vocal folds [16]. This lesion is 

pre-cancerous but can turn into cancer in the case of negligence. Keratosis disturbs the normal vibration of the vocal 
folds and causes hoarseness. The main reason for the development of keratosis is smoking, the excessive use of the 
voice, and environmental pollutants. Gastroesophageal reflux disease may also be a reason to produce abnormal 
changes in cells [17]. Keratosis may be unilateral or bilateral and usually symmetric in nature. This lesion has more 
tendency to prevail in men than in women. 

 
Vocal fold paralysis occurs due to the malfunctioning of one or both vocal folds when they open and close 

improperly. Unilateral vocal fold paralysis is a common disorder; however, bilateral vocal fold paralysis is rare and 
life-threatening. One of the main reasons for vocal fold paralysis is an injury to the recurrent laryngeal nerve [18]. 
This nerve controls the motion of the vocal folds. Vocal fold paralysis can also occur due to injury to the chest, neck, 
or head; thyroid or lung cancer; and tumors on the chest, neck, or skull base. 

 
Vocal fold nodules [19] occur as bilateral symmetric swelling located at the junction of the anterior and mid-third 

part of the vocal folds. This is the point of the maximal shearing and collision forces between the folds. Usually, 
nodules affect adult women and male adolescents and can vary in color, size, and symmetry. Common symptoms of 
nodules are hoarseness, breathiness, and vocal breaks. Vocal fold nodules are common among persons who use their 
voices chronically such as teachers, stock traders, and singers. 

 
Spasmodic dysphonia is a neurological disorder that affects the muscle of the human voice box (larynx) [20]. In 

spasmodic dysphonia, when air pressure from the lungs vibrates the vocal folds, a voluntary movement inside the 
muscles of the vocal folds (called spasms) is produced, which affects the vibration of the vocal folds. Adductor 
spasmodic dysphonia is a type of spasmodic dysphonia in which spasms cause the vocal folds to slam together and 
stiffen [21]. Vocal folds experience difficulty in vibration due to these spasms; therefore, a person feels a problem in 
voice production. Usually, words are cut off or harder to start due to these muscles. Adductor spasmodic dysphonia 
makes the voice of a person pressed, strangled, strained, and full of effort. 



 
Screening a disorder in the initial stage may reduce health complications, and a person can visit a respective 

medical specialist to cure voice complications. Most voice disorders occur due to the excessive use of the voice. 
Therefore, people involved in the professions of teaching [22], singing, and stock markets have a high risk of voice 
disorders. In the USA, the prevalence of voice disorders in teachers is 57.7% during their lifetime, and for other 
professions, it is 28.8% [23]. The intelligent systems for detection and classification of vocal fold disorders can be 
developed for the early screening so that the patients can avoid the sever circumstance caused by negligence and 
delay in diagnosis.  

 
Most of the existing intelligent systems are developed to detect the vocal fold disorders [24-28]. The system 
developed in [24] is implemented by using shimmer, jitter and signal-to-noise ratio. The obtained accuracy of the 
system is 80.3%, which is not good. The reason is the dependency of the features on fundamental frequency (F0), 
and the estimation of F0 is itself a challenging task because disordered speech signals are aperiodic in nature [29-
31]. The detection system developed in [25] also based on F0-dependent features, and the obtained accuracy is again 
very low, i.e., 70%. Another detection system based on F0-dependent features and cepstral coefficients is developed 
in [26].  The achieved accuracy of the system is 91.32%, which is comparatively better. A disorder detection system 
based on multiresolution analysis of the normal and disordered signal is developed in [27]. Various frequency 
regions of speech signals are investigated by using discrete wavelet transformation and fractal dimensions to 
determine the frequencies that can contribute significantly to the detection of disorders. The highest obtained 
accuracy is 92.45%. Moreover, a software for the screening of dysphonic patients is developed in [28]. The 
developed software differentiates between normal and disordered subjects by analyzing the recurrence plots of the 
speech signals with local binary pattern (LBP) operator. The maximum obtained detection accuracy of the software 
is 97.73%. These existing systems only determine the presence of disorders but cannot differentiate among various 
types of the vocal fold disorders. 
 
In [32], a system for the classification of various types of disorders is developed by using Mel-frequency cepstral 
coefficients (MFCC). Three types of vocal fold disorders vocal fold nodules, vocal fold edema, and unilateral 
paralysis are considered to develop the system. The obtained accuracy is 66% for the Gaussian mixture model 
(GMM) and 69% for the support vector machine (SVM). The results show that the performance of the system is not 
satisfactory. Moreover, some systems exist in the literature that can perform both types of tasks, disorder detection as 
well classification [33, 34]. The diagnosis of disorders in such systems based on the decision of automatic classifier 
but they do not provide any visual indication for the presence of voice disorders. The user of an automatic system can 
diagnose the disorder more accurately and reliably if it is supported by a clear visual indication.                
 

In this study, an intelligent vocal fold disorder assessment system is proposed which can perform both types of 
tasks, disorder detection and classification. In addition, the proposed system provides a clear visual indication for the 
presence of vocal fold disorders. Similar to the human auditory system, the developed system detects and classifies 
disordered and normal samples by using the principle of the human auditory system. The structure of the human ear is 
such that it can differentiate frequencies of speech or voice signals. The inner ear has a spiral cochlea, which is 
surrounded by the basilar membrane. The higher frequencies are observed with the excitation at the basal turn, while 
the lower frequencies are observed towards the apex of the cochlea [35]. Each region of the basilar membrane acts 
like a band-pass filter, and the width of the filter follows the critical bandwidth of the human hearing perception. In 
this study, the phenomena of critical bandwidth is implemented by using the bank of bandpass filters spaced over 
Bark scale. As compared to the Mel scale, the Bark scale reduces the linearity. The detection and classification results 
of the proposed systems are good and better than the existing systems. 

 
The restof the paper is structured as follows. Section 2 describes the proposed automatic detection and classification 

system. The experiments for disorder detection and classification are provided in Section 3. The analysis of the 
proposed method is presented in Section 4. Finally, Section 5 draws some conclusions. 



 

II. MATERIALS AND METHODS 

Speech features to perform disorder detection and classification are extracted through acoustic analysis of speech 
signals in this study. Then, these extracted features are used with GMM to develop the proposed system. A publicly 
available voice disorder database is considered to evaluate the proposed system.   
 

A. Material 
To evaluate the performance of the proposed intelligent system for the detection and classification of voice disorders, 
the Massachusetts Eye & Ear Infirmary (MEEI) voice disorder database is considered. The database is recorded at the 
MEEI voice and speech laboratory [36] and has been used in the number of studies [33, 37-41]. The MEEI database 
contains 710 voice samples. It contains 53 samples of normal subjects and 657 samples of pathological subjects 
suffering from more than 100 types of voice disorders. The pathological data are recorded by patients suffering from a 
variety of voice disorders. Patients were asked to produce a sustained vowel /ah/, which was recorded at a 25 kHz 
sampling frequency with a bit rate of 16-bit. Some of the samples were recorded at 50 kHz; therefore, these samples 
are down-sampled to 25 kHz before performing the acoustic analysis. The normal data were recorded by the people 
who do not have any history of voice problems. The duration of the sustained vowel for a patient is one second, and 
that is three seconds for a normal subject. The possible reason for the shorter duration of the signal is that the patients 
cannot hold the breath for a long duration due to the pain he or she is suffering from.  All samples of the MEEI 
database are used in the acoustic analysis to extract the speech features.  
 

B. Acoustic Analysis of Speech Signals 
Speech varies quickly over time, and the analysis becomes difficult due to its dynamic nature.  Therefore, it is 
necessary to divide the whole speech signal into short frames for accurate decision. In this study, each speech signal 
is partitioned into frames of 256 samples. Partitioning of the speech signal into short frames makes the signal 
stationary. Moreover, each current frame has 50% overlap with the previous frame to avoid the loss of information 
at the endpoints. In addition, endpoints of frames cause spectral leakage during the implementation of Fourier’s 
transformation (FT). This problem can be avoided by tapering the ends of each frame to zero, and it can be done by 
multiplying the frames with the hamming window h(n) [42]. Furthermore, application of the hamming window 
ensures the continuity between frames of a signal. The window is given by Eq. (1), where N represents the number 
of samples in each frame. 

 

 
 

Figure. 3. The steps of acoustic analysis for extraction of the feature FCB. 
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The block diagram to perform the acoustic analysis for extraction of features is shown in Fig. 3. The extracted 
features are based on the phenomena of critical bandwidths, and they are referred as FCB. The next step in the 
calculation of FCB, after hamming window, is the implementation of FT to transform the speech signal from the time 
domain to the frequency domain. FT provides the information of energy in each frequency element, and the output 
after applying FT on a speech signal is known as a spectrum. The spectrum of a normal and disordered subject is 
depicted in Fig. 4. It can be noticed in Fig. 4(a) that the energy is contained in the lower frequency components of the 
spectrum for normal persons. On the other hand, the energy in the spectrum of the disordered patients is spread over 
all frequency components as shown in Fig. 4(b). 
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Figure 4. Spectrums of speech signals (a) Normal (b) Disordered. 
 
 

The human ear does not perceive frequencies in a linear way. The ear has more capability to differentiate between 
lower frequencies than the higher frequencies. Therefore, each frame of the spectrum is passed through a band-pass 
filter to simulate the human hearing system. The bandwidth of each band-pass filter is referred as a critical bandwidth. 
In this study, 29 band-pass filters are used. The filters are determined by applying Bark scale proposed by Zwicker 
[43]. According to this scale, the bandwidth is linear up to 500 Hz, and then, increased by 20% of the center 
frequency of a band above 500 Hz. The scale is given by Eq. (2), where z represents the frequency in Hz and B 
stands for corresponding frequency in Bark scale.  
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 After applying the critical band-pass filter, the required features FCB are obtained. Then, FCB is given to a GMM 
based classifier for automatic detection and classification of voice disorders.   

 



C. Development of Automatic Classifier 
The features FCB are computed from all normal and disordered speech signals one by one. For each signal, the 
dimension of the computed features FCB is R x S. The parameters R and S represent the number of the frames in a 
speech signal and bandpass filters, respectively. For instance, if the duration of a speech signal is one second and the 
sampling frequency is 25 kHz, then the dimension of FCB will be 194x24 and interpretation of such a 
multidimensional features is impossible by the human mind. Therefore, a pattern recognition phase becomes 
necessary to find the trend in the computed features. In this study, we have two major tasks. The first task is a 
differentiation between normal and disordered signals, and the second task is a classification of different types of 
voice disorders. In both types of tasks, the most crucial thing is the extraction of patterns from features that is 
achieved by developing an automatic classifier. 
 

A state-of-the-art clustering technique of pattern recognition is implemented to develop the classifier. This 
clustering technique is GMM [44], and it has been used in many scientific disciplines [45-47]. GMM is used to 
generate acoustic models for speech signals of various classes by using the computed features FCB. GMM is 
preferred over other clustering techniques such as k-means algorithm [48]. K-means is based on hard assignments in 
which each data point belongs to one cluster, while GMM assumes that a data point can belong to different clusters 
where the probability for each cluster is different. However, to develop the acoustic model in this study, k-means is 
used to initialize the parameters of GMM. Moreover, these parameters are estimated and adjusted by using the 
expectation-maximization (EM) algorithm [49]. The tuned parameters provide acoustic models with maximum log-
likelihood (LL).  

 

FCB Features of all 
Normal and Disordered 

Signals

Gaussian Mixture Model

Class 1 Class 2

Generated Acoustic Models

FCB Features of an 
Unknown Signal

Log-Likelihood 
(LL)

K-means 
Algorithm

EM 
Algorithm

Output
Class with 

maximum LL
 

 

Figure 5. Block diagram for the proposed detection and classification system. 
 

The developed automatic classifier, shown in Fig. 5, is used to generate the proposed detection and classification 
system for voice disorders. The proposed system consists of two major steps. The first step is the training of the 
system, and the second step is testing of the system. In the training step, the proposed system extracts the FCB 



features from all normal and disordered signals. Then, the FCB features are given to GMM for generation of acoustic 
models for each class. During the testing phase, these generated models are compared with the FCB features of an 
unknown signal and LL of the test signal is computed with each model. The model having maximum LL will be the 
class of the test utterance. In this way, the proposed system determines the types of voice disorders.   

 

III. EXPERIMENTAL SETUP AND RESULTS  

The proposed detection and classification system is evaluated by conducting many different types of experiments. 
To obtain the reliable results, the proposed system is tested with every single voice sample of the MEEI database. 
For this, we have used a three folds cross-validation approach. In this approach, the MEEI database is partitioned 
into three disjoint subsets. The system is tested with one of the subsets, while the remaining two are used for the 
training of the system. To report the results of the proposed system, various measures are considered. These 
measures are sensitivity, specificity, accuracy, and area under the receiver operating characteristic (ROC) curve. The 
sensitivity is a ratio between correctly identified disordered signals and the total number of voice disordered signals. 
The specificity is a ratio between correctly identified normal speech signal and the total number of normal speech 
signals. The accuracy of the system describes that how many speech signals are correctly identified from the total 
number of normal and disordered signals. These performance measures are computed by the relations given in Eq. 
(3)-(5). Moreover, ROC curve graphically shows the performance of a binary classifier. If the area under the ROC 
curve (AUC) is close to one, it means the results of the system are reliable.  
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where True Disordered represents that a disordered signal is also identified as a disordered signal by the system, 
False Healthy means that a disordered signal is identified as a healthy signal by the system, True Healthy denotes that 
a healthy signal is also identified as a healthy signal by the system, False Disordered means a healthy signal detected 
as a disordered signal by the system, and Total Number of Samples stands for the total number of healthy and 
disordered samples. 
 

Another set of features is extracted from the FCB by computing their first order derivatives to observe the variation 
in frequency over time. These features are referred as delta features of the FCB and calculated by using Eq. (6). The 
derivative is calculated with the regression window of length W. Moreover, CT,F represents the component of the FCB 
at the Tth frame and the Fth band-pass filter in Eq. (6). 
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During extraction of FCB features, the phenomena of critical bandwidth to simulate the human hearing system is 
applied by using 29 band-pass filters, i.e., F=29. Therefore, the number of coefficients in the FCB for each frame is 
29. The linear regression with W=5 is computed for the FCB by using Eq. (6). The regression provides 29 more 
coefficients. The combination of FCB and its derivative is represented by the FCBD. The number of coefficients in 



the FCBD is 58. The other parameters of the systems are: the duration of each frame is 256, the current frame 
contains the 50% of the samples from the previous frame, and the numbers of points in hamming window and FT are 
256.   

 

A. Detection Results for Voice Disorders 
For voice pathology detection, the experiments are conducted by using both types of features, FCB and FCBD. The 
experimental results for the detection of voice disorders with the FCB are provided in Table 1. These results are 
obtained with various numbers of Gaussian mixtures, i.e., 8, 16, 32 and 64. The maximum accuracy is obtained with 
32, and this is 99.45%. Moreover, detection experiments with the FCBD are also performed by using the same 
numbers of Gaussian mixtures, and the results are presented in Table 2. The highest obtained accuracy with the 
FCBD is 99.72% with 64 mixtures. The obtained accuracy with 2 and 4 Gaussian mixtures was not good as compared 
to 8 mixtures. Therefore, these results are not listed in Table 1 and 2. In addition, Gaussian more than 64 do not 
provide a significant improvement in the accuracy. Therefore, these results are also not provided in Table 1 and 2. 
 

A comparison between the accuracies of the FCB and FCBD for the different number of Gaussian mixtures is 
depicted in Fig. 6. The best detection rate is almost the same for the FCB and FCBD. However, the result of the FCB 
is better than that of the FCBD as it is obtained with fewer features and Gaussian mixtures. Fewer coefficients and 
Gaussians mixtures mean fewer computations and less running time. It can be observed from Table 1 and Table 2 that 
the standard deviation (STD) among the accuracy of the three folds decreased as the number of mixtures increased. 
This means the results obtained with higher numbers of Gaussian mixtures are more reliable. 

Table 1. Voice disorder detection results for the FCB 

Number of 
Gaussians 

FCB 

Sensitivity Specificity Accuracy ± STD AUC 

8 96.4 91.7 95.95 ± 1.2 0.9815 

16 97.3 94.5 97.26 ± 1.0 0.9863 

32 99.6 98.3 99.64 ± 0.8 0.9925 

64 98.2 95.6 97.91 ± 0.7 0.9974 

 
Table 2. Voice disorder detection results for the FCBD 

Number of 
Gaussians 

FCBD 

Sensitivity Specificity Accuracy ± STD AUC 

8 93.6 90.1 93.56 ± 1.1 0.9579 

16 94.9 91.2 94.83 ± 0.9 0.9669 

32 95.9 93.4 95.85 ± 0.7 0.9799 

64 99.6 98.9 99.72 ± 0.5 1 

 
 



 
 
 

Figure 6. Comparison between accuracies of the FCB and FCBD. 
 
The results of the disorder detection of the proposed system are very good. The overall highest accuracy 99.72% has 
an STD equal to 0.5 and AUC equivalent to 1. The small STD of 0.5 among accuracies of different folds suggests that 
the accuracy of the system does not change by changing the training and testing samples. Hence, the system is robust 
against the training and testing samples. In addition, the maximum AUC of 1 indicates that the system is stable in the 
detection of disorders and can be used reliably for remote diagnosis of the vocal fold disorders. 
 
   

B. Classification Results for Voice Disorders 
 We have used the same setup for the classification of voice disorders as was used in [33, 34]. By using the same 
experimental setup, we will be able to compare the results of our proposed system with the existing systems of [33, 
34]. The list of the experiments for the classification of voice disorders is given in Table 3. In the experiments, only 
those disorders that have at least 20 voice samples in the MEEI disorder database are considered. Those disorders 
are vocal fold polyp, keratosis, vocal fold paralysis, vocal fold nodules, and adductor spasmodic dysphonia. The 
number of samples for each experiment are mentioned in Table 3. It can be noted that the number of samples for 
polyp in experiment Ex1 is 20, while in Ex2 it is 17. The reason is that in Ex2, three patients suffer from polyp and 
keratosis at the same time. Therefore, these samples are excluded because they cannot be used for the classification 
of polyp and keratosis. The names of all voice disorder files used in this study are mentioned in Appendix A of [33]. 
 

In each experiment, a binary classification is performed. For example, in Ex1, the classification is performed 
between polyp and adductor. In all experiments, the first disorder is considered a positive class and the second 
disorder is considered a negative class. For Ex1, polyp is a positive class and adductor is a negative class. All 
classification experiments are carried out by using the FCB and FCBD. The experiments for the classification of 
polyp with adductor, keratosis, and nodules are conducted with 4, 8, and 16 mixtures. However, only the best results 
are reported in Table 4. The best obtained accuracy with the FCB for polyp vs. adductor is 96.83%, polyp vs. 
keratosis is 98.58%, and polyp vs. nodules is 96.14%. Moreover, the highest classification accuracy with the FCBD 
for polyp vs. adductor is 97.54%, polyp vs. keratosis is 99.08%, and polyp vs. nodules is 96.75%. 
 
 



Table 3. The list of experiments for the classification of disorders taken from [33, 34] 

Experiments Classification Number of Files 

Ex1 Polyp and Adductor Polyp: 20 and Adductor: 22 

Ex2 Polyp and Keratosis Polyp: 17 and Keratosis: 23 

Ex3 Polyp and Nodules Polyp: 19 and Nodules: 19 

Ex4 Adductor and Nodules Adductor: 22 and Nodules: 20 

Ex5 Adductor and Keratosis Adductor: 22 and Keratosis: 26 

Ex6 Keratosis and Nodules Keratosis: 26 and Nodules: 20 

Ex7 Paralysis and Others Paralysis: 71 and Others: 71 

 
 

Table 4. Classification results of polyp with adductor, keratosis, and nodules 

Performance 
Measures 

Polyp and Adductor Polyp and Keratosis Polyp and Nodules 

FCB FCBD FCB FCBD FCB FCBD 

Sensitivity 96.67 97.67 98.04 98.63 96.49 97.02 

Specificity 96.97 97.42 98.99 99.42 95.79 96.49 

Accuracy 96.83 ± 1.0 97.54 ± 0.9 98.58 ± 0.8 99.08 ± 1.1 96.14 ± 0.7 96.75 ± 1.2 

AUC 0.9808 0.9921 0.9963 1 0.9758 0.9995 

 

 

Table 5. Classification results of adductor with nodules and keratosis 

Performance 
Measures 

Adductor and Nodules Adductor and Keratosis 

FCB FCBD FCB FCBD 

Sensitivity 98.48 98.94 96.97 96.36 

Specificity 97.67 98.33 94.87 93.59 

Accuracy 98.10 ± 0.6 98.65 ± 1.2 95.83 ± 1.2 94.86 ± 1.6 

AUC 0.9810 0.9915 0.9745 0.9657 

 

Table 6. Classification accuracy for keratosis vs. nodules and paralysis vs. non-paralysis 

Performance 
Measures 

Keratosis and Nodules Paralysis and Others 

FCB FCBD FCB FCBD 

Sensitivity 97.44 96.54 98.59 99.20 

Specificity 96.67 95.50 98.12 99.06 

Accuracy 97.10±1.2 96.09±1.4 98.36 ± 0.7 99.13 ± 0.8 

AUC 0.9842 0.9810 0.9985 1 

 

The classification results of adductor with nodules and keratosis are presented in Table 5. The accuracy of 
adductor vs. nodules with the FCB is 98.10% and the FCBD is 98.65%. Furthermore, the accuracy of adductor vs. 



keratosis with the FCB is 95.83% and the FCBD is 94.86%. The results of keratosis with nodules and paralysis with 
all the other disorders are listed in Table 6. The best accuracy for keratosis vs. nodules is 97.10%, and paralysis vs. 
non-paralysis is 99.13%. 

  
 

 
Figure 7. ROC curves and AUC for all experiments of disorder classification (Ex1 to Ex7).  

 
It is very important for an automatic system to be reliable in the decision. To observe the reliability of the system for 
disorder classification, the AUC for all experiments is computed. For all classification experiments, the AUC is 
greater than 0.97, as shown in Fig. 7.  The AUC is close to 1 for all experiments which suggest that the proposed 
system is reliable in the classification of various types of disorders. Therefore, it can be inferred that the proposed 
system can be deployed in smart homes and cities used reliably for classification of disorder remotely. 
 

 

IV. DISCUSSION 

Voice pathologies appear on the surface of the vocal folds because of the excessive use of the voice, smoking, 
drinking alcohol, and dehydration. Due to these pathologies, vocal folds experience abnormal behavior in vibration 
and cannot be opened and closed at regular intervals. This behavior of the vocal folds produces weaker, breathier, 
harsh, and strained voices. The signals of such voices contain noisy components due to the disorder of the vocal folds. 
Therefore, these voices feel unpleasant to the human ear. This is the reason why the human hearing system is 
simulated in this study to differentiate between different types of disorders and normal subjects. 
 
To examine the speech signal produced by a normal and a disordered subject, an acoustic analysis is performed. The 
major component of the acoustic analysis is critical bandwidth phenomena, which simulate the human hearing 
system. The output of the acoustic analysis is the FCB and it is computed for each frame of the sample and 29 
features are extracted for each frame. The interpretation of multidimensional FCB is not possible by the human mind. 
Therefore, a pattern recognition phase by using GMM is introduced for automatic assessment of disorders and its LL 



values are used for the decision. The FCB with GMM provide quantitative analysis of the proposed system, and 
experimental results show that the system is accurate and reliable in the assessment of disorders.  
 
A numerical value supported by a visual indication can enhance the accuracy of the diagnosis. Therefore, an 
intelligent system must be evaluated through qualitative analysis to observe its capability of decision without a 
classifier. To investigate the proposed system qualitatively, the computed FCB which can also be referred as auditory 
processed spectrum is plotted for disordered and normal subjects and shown in Fig. 8(a) and 8(b), respectively. It can 
be observed from Fig. 8(a) that the spectrum of the disordered subject experiences very frequent voice breaks due to 
the malfunctioning of the vocal folds. A significant difference between the spectrums of the disordered and normal 
subjects can be noted in the first 10 filters. It concludes that the visual clue provided by the acoustic analysis of the 
proposed system can be used for the assessment of disorders.  
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Figure 8. Energy contours in FCB for (a) pathological sample (b) normal sample. 
 

The acoustic analysis of the voice can be accomplished through different kinds of speech features. In some acoustic 
analyses, long-term features such as shimmer and jitter are used for the assessment of pathological data [50-52], while 
other analyses have used short-term features [33, 53]. Most of the long-term features depend on a precise valuation 
of the fundamental frequency, which is itself a challenging task [41], particularly in pathological data. Therefore, 
short-term features are preferable over long-term features to obtain good accuracy. In the proposed system, the FCB is 
determined by short-term acoustic analysis. 

 



 
 

Figure 9. Comparison of the proposed system with the existing systems. 
 

The setup for the classification of disorders is taken from [33, 34] to enable a comparison between our proposed 
system and the system presented in [33, 34]. The comparison is shown in Fig. 9. The accuracies of the systems [33, 
34] are obtained from the respective studies, while, the accuracies of our system are taken from Tables 4 to 6. The 
proposed system obtained an accuracy of 97.54%, 99.08%, 96.75%, 98.65%, 95.83%, 95.83%, and 99.13% for the 
experiments Ex1, Ex2, Ex3, Ex4, Ex5, Ex6, and Ex7, respectively. The performance of our proposed classification 
system is better than the existing system. 

 
The proposed intelligent system can contribute to healthcare industry significantly and has many potential 

applications. A large population around the world suffering from the vocal folds disorders which can be benefited 
from the proposed system. The general practitioner in the remote areas can use the system for early screening of the 
patients and can refer to a specialist for further consultation if the diagnosis of the system is positive. In addition, the 
proposed system can process the voice samples collected and transmitted by the IoT and retransmit the results of 
diagnosis. In this way, a patient can avoid the long waiting time and unwanted frequent visits to the hospitals and 
health centers.  
 

V.  CONCLUSION 

An intelligent healthcare system for detection and classification of the vocal fold disorders is proposed and 
implemented in this study.  The system can be installed in smart homes and cities for remote evaluation of voice 
samples. It can do the early screening of disorders to avoid the complications that may occur due to negligence or 
delay in diagnosis. The system computes the FCB features by using the critical bandwidth phenomena and gives to 
GMM based classifies for automatic decision. In addition, the FCB features provide the spectrums for the normal and 
disordered speech samples. The spectrum of a disordered subject highlights the voice breaks that occur due to vocal 
fold disorders. Normal and disordered subjects have significantly different patterns in the computed spectrums, 



especially in the lower filters. The best obtained accuracy for the detection of disorders is 99.72%. The proposed 
system not only provided the best accuracy but also presented a clear visual indication for the presence of voice 
disorders. Furthermore, a classification accuracy of 97.54%, 99.08%, 96.75%, 98.65%, 95.83%, 95.83%, and 99.13% 
is achieved to differentiate between vocal fold polyp, keratosis, vocal fold paralysis, vocal fold nodules, and adductor 
spasmodic dysphonia. The performance of the proposed system is compared with existing systems, and it is found 
better.  
 
The classification of disorders in the proposed system is binary in nature. The system determines the type of a 
disorder from two given disorders.  However, the system can be modified to determine a certain type of disorder 
when all disorders are given.  
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