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Abstract 

Confidentiality of health information is indispensable to protect privacy of an individual. 

However, recent advances in electronic healthcare systems allow transmission of sensitive 

information through the Internet, which is prone to various vulnerabilities, attacks and may 

leads to unauthorized disclosure. Such situations may not only create adverse effects for 

individuals but may also cause severe consequences such as hefty regulatory fines, bad 

publicity, legal fees, and forensics. To avoid such predicaments, a privacy protected healthcare 

system is proposed in this study that protects the identity of an individual as well as detects 

vocal fold disorders. The privacy of the developed healthcare system is based on the proposed 

zero-watermarking algorithm, which embeds a watermark in a secret key instead of the signals 

to avoid the distortion in an audio sample. The identity is protected by the generation of its 

secret shares through visual cryptography. The generated shares are embedded by finding the 

patterns into the audio with the application of one-dimensional local binary pattern. The 

proposed zero-watermarking algorithm is evaluated by using audio samples taken from the 

Massachusetts Eye and Ear Infirmary voice disorder database. Experimental results 

demonstrate that the proposed algorithm achieves imperceptibility and is reliable in its 

extraction of identity. In addition, the proposed algorithm does not affect the results of disorder 

detection and it is robust against noise attacks of various signal-to-noise ratios. 

Keywords: E-Healthcare, privacy protection; zero-watermarking; visual cryptography; local 

binary pattern; MFCC; SVM  
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1 Introduction 

The idea of privacy protection has long been practiced in healthcare in paper form, in order to hide 

a patient’s information. A simple example is to store a patient’s record in lockers. Recent 

developments in the electronic healthcare (E-health) have contributed significantly by providing 

effective solutions in the form of healthcare information and diagnostic systems to yield 

complementary information for an accurate diagnosis as well as treatment plans [1-3]. Health 

information is classified as sensitive and therefore, protection of this information is always a top 

priority for patients and healthcare providers [4-6]. The healthcare systems store, manage, and 

transmit information related to the health of an individual electronically. This information may 

include personally identifiable information (PII) such as names, dates (birth, admission, discharge, 

death, and treatment), contact details, social security numbers, medical record numbers, photographs, 

fingerprints. Unauthorized disclosure of health PII may not only create adverse effects for patients but 

may also result in hefty regulatory fines, bad publicity, legal fees, and forensics for healthcare 

providers. For instance, vocal fold disorders degrade the quality of voice, and people involved in 

voice-related professions such as teachers and lawyers have a high risk of developing such disorders 

[7]. Unauthorized access to health information of teachers or lawyers may have a negative impact on 

their careers, especially when performed with malicious intent. Moreover, most countries have very 

strict policies and regulatory laws that holds healthcare providers accountable for any unauthorized 

disclosure of such sensitive information. Therefore, privacy of health information and diagnostic 

systems is indispensable. 

Recent advances in the Internet of Things (IoT) and cloud computing play a vital role in the 

development of smart environments [8] such as smart homes and smart cities [9] . The number of 

senior citizens around the world will increase to 10 million in the coming decade [10]. The count of 

senior citizens in Japan, for example, comprises a large portion of its population, as around 21% of 

the population is above 65 years, a figure that will grow to 40% by 2050 [11]. Likewise, in the United 

States [12] and Taiwan [13], the population of people older than 65 years is 13% and 11%, 

respectively. According to the American Association of Retired Persons [12], 85% of senior citizens  

like to stay in their homes for medical assistance as long as possible. To handle the situation, smart 

healthcare systems can be implemented to provide efficient and cost-effective solutions [14]. Various 

smart healthcare systems [15, 16] have been proposed for smart homes and cities, where IoT senses 

the data and transmits it for evaluation at a health center. The transmitted data at the health center 

might be changed deliberately or accidentally (i.e., unauthorized modification), which could result in 

a person getting an inaccurate diagnosis. If the person is normal and the diagnosis is positive, it will 

cause anxiety and mental stress, which ultimately creates a negative impact on their health. On the 

other hand, if a person is suffering from a disease and the diagnosis is negative, it will cause 

complications and even the risk of death. Moreover, if the diagnosis is accurate and somehow the 

health information is disclosed, the patient may face adverse consequences in their social life and/or 

professional career.  

Albeit, security and privacy are widely investigated in general [17-20], however, protection of 

IoT-based healthcare information is still in its infancy. Few recent studies have investigated different 

aspects of security and privacy in healthcare systems such as RFID [21]   , body area networks [22], 

and highlighted emerging issues and challenges [23, 24]. However, to the best of our knowledge, 

zero-watermarking for medical audio samples has never been employed. For example, a cloud-based 

healthcare framework is provided for the patients suffering from Parkinson’s disease in [25], and the 

problem of data integrity authentication is tackled by the insertion of watermark in the speech signals 

of disease patient [26]. Due to embedding of watermark in speech signals, the authors reported that 

imperceptibility is not ideal. Nevertheless, this problem can be avoided through zero-watermarking. 

Zero-watermarking [27, 28] has an advantage over conventional watermarking [29] since it uses 

signals’ features for watermarking. Unlike the traditional method, signals are not degraded as zero-



watermarking does not insert a watermark physically in a signal. In addition, the repercussions on the 

diagnosis accuracy after insertion of watermark and an attack on a watermarked signal is not 

investigated in [25]. It is very important because a privacy protected healthcare system without a 

trade-off between privacy and accurate diagnosis is inadequate. To avoid such predicaments, 

preventive controls must be implemented to ensure confidentiality and integrity of sensitive 

information. The main objective of this study is to design and implement a healthcare diagnostic 

system that protects a patient’s health information, whilst also detecting vocal fold disorders by 

evaluating the voice sample of a subject.  

Vocal fold disorders or dysphonia can be defined as an alteration in the performance and 

production of the voice that may interfere with communication [30]. According to the medical 

dictionary [31], dysphonia is a difficulty in speaking, usually evidenced by hoarseness, which 

represents any deviation of voice quality as perceived by the self or others [32]. Dysphonia is caused 

by different reasons and people suffering from it are referred to as dysphonic patients. Generally, 

vocal misuse including yelling, excessive talking, screaming, and crying are all irritating forces at the 

contact place of two vocal folds. In addition, some other factors include poor hydration, medication, 

alcohol consumption, and smoking [33, 34]. Vocal fold disorders can be classified into different 

groups depending upon the causes of occurrence. Sometimes a vocal fold disorder can occur due to 

abnormal growth of tissues on the vocal folds, which are benign lesions [35] that are non-cancerous in 

nature. Vocal fold disorders may also appear due to nerve injury that controls the vibration of the 

vocal folds [36], with paralysis an example of such a disorder. Another type of disorder is Keratosis, 

which is considered to be a pre-cancerous lesion and occurs due to the presence of unusual cells on 

the vocal folds [32]. Moreover, adductor is a type of spasmodic dysphonia caused be neurological 

disorders [37]. Detection of vocal fold disorder can be carried out through subjective assessment by 

using endoscopic examination of the vocal folds and different perceptual measurements [38-40]. 

However, possibility of human errors cannot be ignored in the subjective assessment. Therefore, 

various systems has been proposed for the automatic detection of the vocal fold disorders [41-45]. 

Such systems are useful for the self-monitoring of the patients and avoid frequent unwanted visit to 

consultants or practitioners. Moreover, they can also be used to provide complementary information 

during subjective assessment to get accurate diagnosis.   

This paper presents a privacy protected healthcare system based on zero-watermarking algorithm. 

The proposed system mainly consists of two modules. In the first module, we propose a method for 

zero-watermarking to protect the identity of an individual. This is accomplished through visual 

cryptography by generating the two secret shares which must be available with the legitimate staff to 

reveal the identity of a patient. To embed identity’s secret shares into the voice samples, the proposed 

zero-watermarking method determines the characteristics of audio samples by applying the One-

Dimensional Local Binary Pattern (1D-LBP).  

The second module is responsible for the detection of vocal fold disorders and is developed by 

using the state-of-the-art feature extraction method, Mel-frequency Cepstral Coefficients (MFCC), 

and a supervised machine-learning algorithm, Support Vector Machine (SVM). In addition to the 

baseline results for the detection of vocal fold disorders, this module also observes effect on the 

diagnosis accuracy due to the watermarking and noise attack.  

The rest of the paper is organized as follows: Section 2 describes major components of both the 

modules in the proposed healthcare system. The proposed zero-watermarking algorithm, and process 

of embedding and extraction are explained in Section 3. Section 4 analyzes and compares the results 

of the proposed system with the relevant existing systems. The concluding remarks are presented in 

Section 5.  



2 Privacy Protected Healthcare System 

As described earlier, the proposed privacy protected healthcare system mainly features two 

modules i.e., privacy protection and vocal disorder detection (Figure 1). The former aims to protect 

privacy of an individual and it is implemented by using the proposed zero-watermarking algorithm 

which mainly consists of three components i.e., image generation for identity, shares generation by 

visual cryptography, extraction and selection of features for zero-watermarking. The vocal disorder 

detection system is designed for diagnosis and mainly consists of two components i.e., speech 

features, and pattern matching. The extracted speech features are MFCC, while, SVM is implemented 

for pattern matching. The following subsections describe each component of the developed system  
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Figure 1: Privacy protected healthcare system with the proposed zero-watermarking algorithm  

2.1 Generation of Image for Identity  

To generate image for subject’s identity (SID), the labels of speech signals of the voice disorder 

database are used.  The database is recorded at the Massachusetts Eye and Ear Infirmary (MEEI) 

voice and speech laboratory [46]. Each audio sample in the MEEI database is labeled with an 

alphanumeric string of seven characters that represent a subject’s identity (SID) (Fig. 2). The last part 

of the alphanumeric label for dysphonic and normal subjects is AN and NAL, which indicates that the 

subject is normal (Fig. 2(a)) and abnormal (Fig. 2(b)) respectively. The developed healthcare system 

generates secret segments of the SID image for privacy protection by embedding them as a watermark. 

 

  
(a) (b) 

 
Figure 2: Identity image of (a) dysphonic SID and (b) normal SID subjects. 

In addition, the proposed privacy protection healthcare system is implemented and evaluated by 

using the MEEI database and it has been used in a number of previous studies [41-45]. The database 

is recorded at two different sampling frequencies, 25 KHz and 50 KHz, with a 16-bit sampling rate. 

The sampling frequency of all normal subjects was 50 KHz. Therefore, to be consistent, all dysphonic 

patients who recorded at 50 KHz are included in this study. The total number of normal audio samples 

is 53, and 77 dysphonic samples were selected. The list of 77 dysphonic subjects is provided in 



Appendix A, in order to reproduce the results of this study. The selected subset of the MEEI database 

is labelled as MEEIsubset, and it contains 130 audio samples.  The distribution of normal and dysphonic 

subjects in this subset is given in Table 1.   

Table 1. Distribution of normal and dysphonic subjects in the MEEIsubset 

Subjects Gender 
Number 

of Samples 

Mean 

Age (Years) 

Age 

Range 

(Years) 

Standard 

Deviation 

(Years) 

Dysphonic Patients 
Male 30 48.7 18-82 18.2 

Female 47 45.8 17-79 17.9 

Normal Persons 
Male 21 38.8 26-59 8.5 

Female 32 34.2 22-52 7.9 

 

 

  

2.2 Shares Generation by Visual Cryptography 

The generated image SID of the identity is a bitonal, and therefore, it contains only black and white 

pixels. The black pixels are denoted by 0s and the white pixels are represented by 1s in the image of 

SID. In the proposed system, the secret shares of the SID image are used to protect the privacy of an 

individual from unauthorized access. The secret shares are generated by applying visual cryptography 

[47, 48]. The use of secret shares of the SID image as a watermark makes the developed healthcare 

system more secure than the direct usage of the SID image. The encryption process for the generation 

of secret shares is shown in Figure 3. The process encrypts every pixel of the SID image by replacing 

them with the encryption blocks E1, E2, E3, E4, E5, and E6, as shown in Figure 3. The corresponding 

encryption matrices I1, I2, I3, I4, I5, and I6 of the blocks are: 
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 (2) 

 
The replacement of a pixel in the SID image by one of the encryption blocks means that one of the 
encryption matrices (I1, I2, I3, I4, I5, and I6) replaces the pixel. To introduce randomness in the generated 
shares, a deterministic random sequence y is created by using two-dimensional Gingerbread man chaos 
theory, which was proposed by R. L. Devaney [49] and defined in Eq. 3.  

    

1

1

1+

+

= − +

=

r r r

r r

x y x

y x
     (3) 

The number of encryption matrices is six, and the sequence y will select a matrix randomly to 

substitute a pixel in the SID image. Therefore, the values of sequence y should be in the range 1 to 6, 

and it is achieved by using Eq. 4. 

( )1 mod6= + Z y v     (4) 

where v is any number greater than 100, and division by six provides remainders in the range of 0 to 5. 
An encryption matrix is selected by using the values of Z, and it is substituted in the SID image 
according to the following criteria: 

• If a pixel in the SID image is 1, then both secret shares, S1 and S2, will have the same 
encryption matrix, say Ii. 



• If a pixel in the SID image is 0, then both secret shares will have two different encryption 
matrices, which are complements of each other. Specifically, if Ii is in S1, then Ii’ is in the 
S2. 

For instance, if a pixel at location (1,1) in the SID image is 1, then it will be replaced by the same matrix 
I3 in both shares.  If a pixel at location (1,3) is 0, then it will be replaced by I5 in the S1 and by I5’ in the 
S2. Each pixel in the SID image is replaced by a 2x2 matrix. Therefore, the size of each secret share will 
be four times larger than the size of the SID image. The benefit of using 2x2 matrices is that the aspect 
ratio of the SID image will not be distorted because 2x2 encryption matrices double the number of rows 
and columns in both shares and they maintain the aspect ratio of the SID image. 
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Figure 3: Generation of secret shares for the SID image. 

 

The insertion and extraction of the identity’s secrets shares through zero-watermarking strongly 

dependent on the features of the audio signals. These features help in the determination of the 

appropriate locations for the insertion and extraction of the watermark. 



2.3 Extraction and Selection of Features for Zero-Watermarking 

One of the most crucial steps in the proposed zero-watermarking algorithm is finding of  suitable 

features/patterns and they can be obtained by analyzing the audio samples. Moreover, the selection of 

the computed features is also very vital for the reliable insertion and extraction of the identity’s secret 

shares. 

 

2.3.1 Extraction of Features 
 

In this study, to determine the features/patterns, the audio signals are analyzed by applying the 1D-

LBP operator [50, 51], which segments the audio sample into small windows and then observed the 

variation in the neighboring elements with respect to the center element for generation of the LBP 

codes. The number of codes depend on the neighbors of the center element. For n neighbors on each 

side of the center element, the number of LBP codes will be 22n. The frequency of each LBP code can 

be calculated by plotting a histogram for all computed codes. Every bin of the histogram provides the 

information for one of the LBP codes.  

In this study, to obtain 1D-LBP codes, an audio sample is segmented into the windows of five 

elements. The elements may be positive or negative as audio samples contain positive as well as 

negative amplitude. Each sample of the audio is a center element of a window. The computational 

steps to find the LBP code of a window of length five are shown in Figure 4. The elements of the 

segmented window are 0.8, -0.1, 0.4, -0.3, and 0.6. The center element is 0.4 and there are two 

neighbors on both sides. The number of LBP codes in this case is 24 in the range from 0 to 24-1. These 

codes were obtained by comparing the center element with its neighbors. If a neighbor is equal to or 

greater than a center element, then it is replaced by a 1 in the window.  However, if a neighbor is 

smaller than the center elements, then it is replaced by a 0. In Figure 4, the neighbors 0.8 and 0.6 are 

greater than the center element 0.4, hence they are replaced by 1s, whereas -0.1 and -0.3 are replaced 

by 0s because they are smaller than the center element. As a result, a 4-bit binary number (1001)2 is 

obtained, where the bit at the extreme left is the most significant bit. The frequency of this code is 

represented by the corresponding bin, which is 9, since (9)10=(1001)2.  

0.8   -0.1   0.4   -0.3   0.6 1    0    X    0    1

Comparison of the center 

element with the neighbors
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1 0 0 1
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frequency of this code

d4     d3     dc     d2     d1         b3    b2         b1     b0 

 

Figure 4: Computational step for 1D-LBP codes. 

The 1D-LBP code for a window w with the center element dc and the neighbors d1, d2, d3, and d4 

can be calculated using Eq. 1 as follows:  

 

1

1
       1,  2,  3 ,4

0−


= =



j c

j

j c

if d d
b where j

if d d
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where d1 and d2 are two neighbors on the right side of the center element, d3 and d4 are two neighbors 

on the left side, b3b2b1b0 is a required 1D-LBP code, and b3 is the most significant bit. 

 

 



2.3.2 Selection of Features 
 

The selection of locations for zero-watermarking are determined by analyzing the histograms of 

the computed 1D-LBP codes. The histograms representing the 1D-LBP codes for two different 

normal subjects are plotted in Figures 5(a) and 5(b). Moreover, the histograms for two different 

dysphonic subjects are shown in 6(a)  and 6(b). It can be observed that LBP codes 0000 in bin 0, 0011 

in bin 3, 1100 in bin 12, and 1111 in bin 15 have high frequencies in the histograms of normal 

subjects. For instance, in the histogram of CAD1NAL, the frequency of these four LBP codes is 2706, 

16663, 21785, and 2747, respectively. The sum frequency of these codes is 43901, which is 90% of 

the total number of codes in all bins. These codes provide sufficient capacity for zero-watermarking. 

Codes 0000 and 1111 represent that there are no variations in neighboring elements with respect to 

the center elements. Code 0000 means that all neighbors are smaller than center elements, and code 

1111 represents that all neighbors are greater than the center.  Code 1100 shows that the neighbors on 

the left are greater, and on the right they are smaller than the center elements.   

In addition, the same kind of trend is found in the histograms of dysphonic subjects. Similar to the 

histograms of normal subjects, LBP codes 0000, 0011, 1100, and 1111 also have high frequencies in 

dysphonic subjects. In Figure 6, the frequencies of these codes in the histogram of AJF12AN are 

6299, 10028, 9833, and 6307, respectively. The sum frequency of these codes is 32467, which is 65% 

of the total number of codes. These codes provide enough capacity for zero-watermarking. 
 

  
(a) SID: CAD1NAL (b) SID: KAN1NAL 

 

Figure 5: Histograms of 1D-LBP codes for normal subjects (a) CAD1NAL (b) KAN1NAL 

 

  
(a) SID: AJF12AN (b) SID: SHC07AN 

 

Figure 6: Histograms of 1D-LBP codes for dysphonic subjects (a) AJF12AN (b) SHC07AN 



2.4 Speech Features 

The first component of the second module is extraction of MFCC features.  The MFCC is a well-

known speech feature and has been used successfully in a number of studies for the detection of vocal 

fold disorders [52-54]. In this study, the MFCC [55] is used to investigate the effect on diagnosis of 

the vocal fold disorders due to the embedding and extraction processes of watermarks and noise 

attacks on the watermarked audio. The MFCC mimics the human hearing system and behaves like an 

expert clinician in diagnosing voice disorders. Prior to the computation of MFCC, it is important to 

divide an audio into short frames. Moreover, each frame is multiplied with a hamming window to 

ensure the continuity of divided frames into successive frames, and to avoid the spectral leakage at the 

ends of segmented frames during implementation of Fourier’s transformation (FT). The FT converts 

the audio from the time domain to the frequency domain, and the result of this step is referred to as 

the spectrum of the audio. Then, the spectrum is filtered through a Mel-spaced band-pass filter bank. 

The bandwidth of each filter is called a critical bandwidth, which is one of the principles of human 

psychoacoustic principles [56]. The Mel scale is given by Eq. 5, and it is linear up to 800 Hz and 

logarithmic beyond that. In Eq. 5, h represents the frequency in Hz and m stands for the corresponding 

frequency in Mel scale. 

 

102595log 1
700

 
= + 

 

h
m

    (5) 
 The logarithm is applied to the Mel-scaled spectrum for the compression, and it converts the 
multiplication operations into additives to make the calculation easier. The last step is the application of 
discrete cosine transformation to decorrelate the coefficients. The output of the last step is the required 
MFCC features. The MFCC are calculated for all speech signals of MEEIsubset. With the combination of 
MFCC and SVM, the baseline results for the detection of disorder will be obtained. Ultimately, these 
results will be compared with those obtained after watermarking and noise attacks.     

2.5 Pattern Matching 

The extracted MFCC features are given to SVM for differentiation of normal and disordered 

signals. SVM is a supervised learning algorithm of machine learning, which is considered to be one of 

the most successful approaches in pattern recognition [57, 58].  SVM learns patterns from the given 

training data and uses them to predict the label for an object. In this study, SVM is implemented to 

distinguish between normal and dysphonic subjects. The ultimate goal of the SVM is to determine an 

optimal hyperplane that provides maximum distances between the samples of normal and dysphonic 

subjects. SVM is implemented with linear and radial basis function (RBF) kernels. In most of the 

cases, the classes are not linearly separable. Therefore, an RBF kernel is also used, which maps the 

original input space to a higher dimensional space to separate the classes. The RBF kernel is given by 

Eq. 6, where x and x’ represent the training and testing data, respectively, and γ is a free parameter.  

 

( ) ( )2
, ' exp '= − −F x x x x

   (6) 

3 The Proposed Zero-Watermarking Algorithm 

In the developed healthcare system, the privacy protection module is built by proposing and 

implementing a new zero-watermarking algorithm. The embedding and extraction processes of the 

proposed algorithm describe the steps for the insertion and recovery of the identity.   



 

3.1 Embedding Process for the Insertion of Identity 

The embedding process of the proposed algorithm to insert the identity of a subject is depicted in 

Figure 7. The steps for the embedding process are described as follows: 
 

1. First, the proposed algorithm generates an image for SID, as shown in Figure 2, with dimension 
a x b.    

2. In the next step, the algorithm creates two secret shares, S1 and S2, of the SID image by using 
the visual cryptography explained in Section 2.3. The dimensions of each secret share are 2a x 
2b, i.e., dimS1= 2a x 2b and dimS2=2a x 2b. The desired watermarks are secret shares S1 and S2, 

given by Eq. 7.  
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3. The algorithm segments the host audio signal D into the windows wi of size 2n+1, as 
mentioned in Eq. 8, so that each element of the audio D is a center element of a window. 
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Figure 7: Embedding process of the proposed algorithm for insertion of SID. 

 

In Eq. 8, N is the number of samples in the host audio signal D, n is the number of elements on 

each side of the center element in a window, and .    is a floor operator. In this study, we use 

n=2. 

4. The next step is to compute the 1D-LBP code for each window wi by using Eq. 1, and then to 
identify the windows whose 1D-LBP codes are 0000, 0011, 1100, or 1111, and store indices of 
such windows in an index key Kx  as: 

   
  1 2( ) 0011,1111,0000,1100 , 1,2,3,...,dim dim=  = +k

x iK i LBP w k S S
 (9) 

 where LBP(wi) denotes the 1D-LBP code for a window wi. 

5. The next step is to partition the index key Kx into two equal parts, say Kx1 and Kx2. After this, 
keys Kx1 and Kx2 should be reshaped according to the dimension of the secret shares, which is 
2a x 2b. Use the indices of Kx1 and Kx2 and compute 1D-LBP codes for the respective windows 

wi to generate a binary pattern, Bp1 and Bp2, with the following criteria:  



• The elements of Bp1 and Bp2 will be 1 if the bits on the right side of the center element 
are greater than the center element and both bits of the left side are either greater or 
less, i.e., 0011 and 1111.  

• The elements of Bp1 and Bp2 will be zero if the bits on the right side are less than the 
center element and both bits on the left side are greater or less, i.e., 0000 and 1100. 
The criteria is summarized in Eq. 10 and 11 as: 
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   where e=1,2,3, … , 2a and f=1,2,3, … , 2b. 

6. The watermark detection key Km1 for secret share S1 is obtained by performing exclusive OR 
(XOR) operation between the generated binary pattern Bp1 and the S1 as given in Eq. 12. 

      1 1 1= m PK B S
    (12) 

7. Similarly, the watermark detection key Km2 for secret share S2 is obtained by performing XOR 
operation between the generated binary pattern Bp2 and the S2 as given in Eq. 13. 

      2 2 2= m PK B S
    (13)  

 Finally, the host audio signal D with two keys, the index key Kx1, and the watermarking detection 
key Km1 will be transmitted to the authorized healthcare staff 1. Likewise, the host audio sample D with 
Kx2 and Km2 will be sent to the authorized healthcare staff 2. The purpose is to ensure collusion and split 
knowledge i.e., separation of duties.    

3.2 Extraction Process for the Recovery of Identity 

Two healthcare staff have the keys and transmitted audios. The block diagram for the extraction 
process of the proposed zero-watermarking algorithm is shown in Fig. 8. The steps of the extraction 
process to recover the identity are:   
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Figure 8: Extraction process of the proposed algorithm to recover the identity SID.    

  

1. The algorithm segments the watermarked audio signal    into the windows   i, as shown in Eq. 
14, of size 2n+1 so that each element of    is a center element of a window. 

    
1 2 3

2
, , , , and 1

2 1

− 
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T

g

N n
D w w w w g

n   (14) 

In Eq. 14, N is the number of samples in the test audio signal   , n is the number of elements on 

each side of the center element in a window, and .    is a floor operator.  

2. In the next step, calculate the 1D-LBP codes for the segmented windows whose indices are 
listed in the index key Kx1. Then, estimate the binary pattern   P1 by using the criteria given in 
Eq. 15: 
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  where e=1,2,3, … , 2a and f=1,2,3, … , 2b. 

3. After that, XOR operation between the estimated pattern   P1 and the watermark detection key 
Km1 is performed to recover the secret share S 1 of the SID image as: 

      1 1 1= P mS B K
    (16) 

4. Likewise, use steps 1 to 3 to recover the secret share S 2 of the SID image by using the index key 
Kx2 and the watermark key Km2. 

5. The benefit of using the visual cryptography is that no further calculation is required to decrypt 
the recovered secret share S 1 and S 2 to disclose the identity of a subject. To recover the identity, 
print the S 1 and S 2 on two different transparencies, and superimpose them on each other. 



Alternatively, perform AND operation between the recovered secret shares S 1 and S 2 as given 
in Eq. 17. 

     1 2= IDS S S
    (17) 

 where S ID is the recovered identity of a subject. 

4 Experimental Results and Discussion 

The second module of the developed healthcare system for vocal disorder detection is 

implemented with MFCC and SVM. This module contains two important phases i.e., training and 

testing. The former takes labeled audio samples and extracts MFCC features. For the computed 

features, SVM generates the model for each type of subject. In SVM, dysphonic subjects are 

designated as a positive class, and normal subjects are specified as a negative class. The testing phase 

takes unlabeled/unknown audio samples and calculates the MFCC features. Then, SVM uses these 

features to predict the class of unknown audio samples through pattern matching. In both phases, the 

MFCC features are calculated by using a frame size of 512 samples, a hamming window with 512 

points to taper the ends of the divided frames, and 29 band-pass filters are used in a Mel-spaced filter 

bank.   

Moreover, the k-fold cross validation approach is applied to obtain the results for disorder 

detection. In this way, bias of the training and testing audio samples can be avoided. In this study, the 

3-fold cross-validation approach is used to divide all audio samples into three disjointed subsets. Each 

time, the system is tested with one of the sets, while it is trained with the remaining two sets of audio 

samples. The performance of the proposed system is gauged based on the following metrics: 

sensitivity (SEN), specificity (SPE), and accuracy (ACC). These metrics are defined as: 

• Sensitivity (SEN): A ratio between accurately detected audio samples of the dysphonic 

subjects by the system and the total number of dysphonic subjects. 

• Specificity (SPE): A ratio between correctly detected audio recordings of the normal 

subjects by the system and the total number of normal subjects. 

• Accuracy (ACC): A ratio between the total number of truly detected samples by the 

system and the total number of audio samples. 

In addition, the area under the Receiver Operating Characteristic (ROC) is also used as a performance 

metric. The area under the ROC curve (AUC) shows the reliability of the developed system in 

diagnosing disorders. 

The detection results of the developed healthcare system for the MEEIsubset are provided in Table 2. 

The ACC of the system with an RBF kernel is better than the ACC obtained with a linear kernel, 

which suggests that data are not linearly separable, and the RBF mapped the original space into a 

higher dimension space to obtain the optimized hyperplane for the normal and dysphonic subjects. 

Moreover, the AUC of the RBF is greater than the AUC of the linear kernel, which shows that the 

RBF kernel is more reliable in diagnosing voice disorders. 

 

Table 2. Results of Disorder Detection 

Kernel % SEN±STD % SPE±STD % ACC±STD AUC 

Linear 96.32±4.1 81.96±6.7 90.64±5.8 0.89 



RBF 98.72%±2.2 83.22%±8.3 92.39%±4.4 0.95 

 

In the following subsections, the proposed algorithm is evaluated through a performance test of 

the algorithm in identity recovery, imperceptibility of embedded identity, detection reliability to 

recover the identity, and, lastly, robustness of the algorithm against the noise of various signal-to-

noise ratios (SNR). In each case, we also observe the effect on the ACC for disorder detection in the 

developed healthcare system. Whilst our prime concern is privacy, this should not be at the cost of 

inaccurate diagnosis.      

4.1 Performance Test 

The audio signal with the inserted and recovered identities are depicted in Fig. 9. An audio sample 

of a subject is taken from the MEEIsubset database, and is shown in Figure 9(a). The privacy protection 

module of the proposed system generates two secret shares, S1 and S2, for the subject’s identity in 

order to conceal it. The image for the identity of subject AOS21AN is shown in Figure 9(e), and the 

two generated secret shares, S1 and S2, are depicted in Figures 9(b) and 9(c). The dimension of the SID 

image for all audio samples in the MEEIsubset is 20 x 126. After generating the secret shares, the 

embedding process of the proposed zero-watermarking algorithm created the index keys Kx1, Kx2 and 

the watermark key Km for insertion of identity. To disclose the identity of a subject, it is compulsory to 

have access to both shares at the same time.  

 

 

(a) 

  

(b) (c) 

 

(d) 

  

(e) (f) 

Figure 9: The insertion and recovery of the identity SID in an audio signal (a) An original audio sample, (b) 

the first secret share of the identity S1, (c) the second secret share of the identity S2, (d) the recovered identity S ID, 

(e) the original image for identity SID, and (f) the recovered identity image S̃ID with the procedure given in Eq. 18. 

 

The extraction process of the privacy protection module in the proposed algorithm uses the keys 

Kx1, Kx2, and Km, along with the transmitted audio sample to extract the secret share by using the 

patterns (1D-LBP code) of the audio samples. The extracted secret shares, S 1 and S 2, will be printed 

on the transparencies, and their superimposing on each other will disclose the identity of the patients. 



The disclosed identity of the patient is shown in Figure 9(d). The background of the recovered 

identity is not white as in the original image of the identity (Figure 9(e)), which is due to the visual 

cryptography. Visual cryptography does not require any computation for decryption to disclose the 

identity. However, some computational steps are required to retrieve exactly the same image of 

identity.    

To obtain exactly the same identity, a simple procedure containing some additional steps is 

implemented in the proposed zero-watermarking algorithm. This procedure takes both recovered 

secret shares, S 1 and S 2, as input and compares the corresponding blocks of 2 x 2 dimensions in both 

shares. If the corresponding 2 x 2 blocks in both shares are the same, then a pixel is 1 in the recovered 

identity. In case of different corresponding blocks, the pixel in the recovered identity is 0. The 

recovered identity used in this procedure is depicted in Figure 9(f), and it is similar to the original 

identity image shown in Figure 9(e). The procedure is defined in Eq. 18 as: 
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where colons ‘:’ are used to represent the range, sb1 and sb2 are 2x2 blocks of S 1 and S 2, respectively. 

We have implemented this procedure because we want to demonstrate the objective evaluation of the 

proposed zero-watermarking algorithm. The objective evaluation is only possible when the recovered 

identity is of the same size and background. For an objective evaluation, we used Normalized Cross-

Correlation (NCR), Bit Error Rate (BER), and Energy Ratio (ENR). These performance metrics are 

defined in equations 19, 20 and 21. In Eq. 20, t represents the number of erroneously extracted bits. 
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The metrics NCR, BER, and ENR for the audio sample of patient AOS21AN are 1, 0, and 1, 

respectively. The NCR equals to 1 describes that the original image of identity SID and recovered 

image of identity S̃ID are identical, and BER equals to 0 refers to the fact that there is no difference 

between the pixels of both images. Moreover, the ENR equals to 1 represents that the energy of the 



original and the recovered identity images is the same. These metrics are computed for all audio 

samples of the MEEIsubset database and listed in Table 3. 

 
 Table 3: Performance of the proposed algorithm for the MEEIsubset  

Modules  Performance Metrics 

Privacy protection NCR: 1 BER: 0 ENR: 1  

Vocal disorder 

detection 
SEN: 98.72%±2.2 SPE: 83.22%±8.3 ACC:92.39%±4.4 AUC:0.95 

 

The experimental results (NCR=1, BER=0 and ENR=1) demonstrate that the performance of the 

proposed algorithm is excellent. The values of NCR, BER, and ENR show that there is no difference 

between the original and recovered identity.  In addition, it can also be seen in Table 3 that the SEN, 

SPE, ACC, and AUC for disorder detection are not affected, and they are similar to the baseline result 

provided in Table 2. We have used only the RBF kernel in these experiments since this kernel also 

performs better for the baseline results. 

4.2 Imperceptibility  

In watermarking algorithms, one of the major problems is the degradation of the audio quality due 

to embedded watermarks. Inaudibility of the inserted watermark demonstrates the success of an 

algorithm. Imperceptibility in the privacy protected healthcare diagnostic system is very crucial. A 

significant difference between the host and watermarked audio samples will lead to a false diagnosis.  

In this study, the proposed zero-watermarking algorithm did not insert the identity of a subject 

tangibly into the audio sample. In fact, the identity was inserted into the secret key. Therefore, the 

watermarked audio    and the host audio D are exactly same and there is no chance for the audibility 

of the watermark. It is a positive aspect of the proposed zero-watermarking algorithm that the 

accuracy of diagnosis in the healthcare system will not be affected.  

The objective analysis of imperceptibility is done by computing the SNR of host audio D and 

watermarked audio   . The SNR was calculated for all audio samples in the MEEIsubset database and 

their corresponding watermarked audio samples by using the relation provided in Eq. 22. For all audio 

samples, the SNR = ∞ demonstrates that the proposed algorithm does not affect audio samples during 

watermark embedding and extraction processes. Moreover, the performance of Module 2 for disorder 

detection is also not affected and the results are provided in Table 4. The results of SEN, SPE, ACC, 

and AUC are similar to the baseline results. 

 
Table 4: Performance of the proposed algorithm for the MEEIsubset in case of imperceptibility 

Modules  Performance Parameters 

Privacy protection SNR = ∞ 

Vocal Disorder 

Detection 
SEN: 98.72%±2.2 SPE: 83.22%±8.3 ACC:92.39%±4.4 AUC:0.95 
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4.3 Detection Reliability 

Detection reliability investigates whether the proposed zero-watermarking algorithm has the 

undesired property of watermark extraction by using secret keys of a different subject. For instance, 

consider an audio sample of a subject with identity KLC06AN. The proposed algorithm embedded the 

subject’s identity, and generated the index and watermark keys Kx1, Kx2, and Km. To examine the 

detection reliability of the proposed algorithm, we examined whether it was possible to extract the 

identity from the audio samples of subjects KAN1NAL, KAS09AN, and KAH02AN by using the 

keys of subject KLC06AN.  

The identities extracted from samples KAN1NAL, KAS09AN, and KAH02AN are shown in 

Figures 10(a), 10(b), and 10(c), respectively. The identities of these subjects are not revealed by using 

the secret keys of subject KLC06AN, which confirms the detection reliability of the proposed 

algorithm. 
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Figure 10: Attempt to extract the identities by using the keys of KLC06AN from audio samples (a)  KAN1NAL 

(b) KAS09AN (c) KAH02AN 
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Figure 11: Detection reliability of the proposed zero-watermarking algorithm by using (a) BER and (b) NCR 

 

Moreover, by utilizing the secret key of subject KLC06AN, the identities are extracted from all 

samples of the MEEIsubset. The extracted identities are compared with the embedded identity of the 

subject KLC06AH by computing BER and NCR. The values of BER and NCR for all 130 audio 

samples are depicted in Figures 11(a) and 11(b), respectively. Figure 11(a) shows that the BER for 

extracted identities of all audio samples is above 60%, which means that identities can be revealed 

only when relevant keys are available. Figures 10(a)-(c) confirm that extracted identities with a BER 

above 60% do not provide any information about the identities. These extracted identities are just a 

random collection of pixels. However, the BER is zero for one sample, which suggests that the secret 



keys belong to that audio sample and the identity of that subject is KLC06AN. Furthermore, in Figure 

11(b), the NCR for all extracted identities is below 0.25, which suggests that extracted identities with 

the keys of a different subject and the embedded identity are entirely different. It can be noticed that 

the NCR is 1 for one sample, which signifies that the keys belong to that audio sample. Therefore, it 

can be concluded that the proposed algorithm detects the identity of a subject reliably, and a key of a 

different subject cannot be used to disclose the identity of some other subject. 

 

4.4 Robustness 

A watermark algorithm should be robust against malicious attacks. One of the most commonly 

used attacks involves the addition of noise to distort the watermarked audio in order to eradicate the 

identity of a subject. In the healthcare diagnosis system, a trade-off between the privacy and accurate 

diagnosis of an individual is very crucial and of extreme importance. In this study, the White-

Gaussian noise of various SNR is added to the watermarked audio to examine the robustness of the 

proposed algorithm. 

Table 5 provides the results of the proposed algorithm after adding the noise in the watermarked 

audio sample. In case of 60dB SNR, the identity extracted from the attacked audio sample S̃ID and 

original identity SID has only 1% BER, whereas the other metrics (NCR and ENR) are very good. 

Moreover, it can be seen that the recovered identity is also not distorted. The BER is increased to 3% 

for 50 dB and 10% for 40 dB. However, the recovered identity S̃ID is recognizable in both situations.  

Furthermore, a significant distortion is noted in the recovered identity S̃ID for an attack of 30 dB, but 

at the same time, due to the attack of high SNR, the diagnostic system of vocal disorder detection 

module failed to diagnose the attacked audio accurately. 

 
Table 5: The performance of the proposed zero-watermarking algorithm for noise attack 

dB 
Recovered Identity of the Subject 

NCR BER ENR Diagnosis 
S ID S̃ID 

No 
  

1 0 1 True 

60 
  

0.99 1.11 0.98 True 

50 
  

0.98 3.01 0.95 True 

40 
  

0.92 9.64 0.85 True 

30 
  

0.81 22.61 0.65 False 

 

In Table 6, the detection results of vocal disorder detection module for the diagnosis of voice 

disorders are listed for noise attacks of 60 dB, 50 dB, 40 dB, 30 dB, and 20 dB. At 60 dB, the SEN is 

98.7%, SPE is 83.2%, and ACC is 92.4%. Table 6 shows that SPE decreases as SNR increases. The 

reason is that after increasing the SNR, the audio sample of a normal sample becomes transient and 

complex, similar to that of a dysphonic subject, as shown in Figure 12.  Due to voice disorders, the 

vocal folds of a dysphonic patient vibrate irregularly and generate complex patterns in the audio 

signal. This makes the voice of a dysphonic subject sound noisy, harsh, and strained to the ears. 

Therefore, the diagnosis system misclassified a normal subject as a dysphonic one after a noise attack 



of high SNR, which affects the SPE of the system. The misclassification of normal subjects ultimately 

affects the ACC of the developed healthcare system. Furthermore, attacks of 30 dB and 20 dB are 

audible, and so healthcare staff can ask the subject to transmit another audio sample for the diagnosis. 

 
Table 6: The results of the developed healthcare system for noise attacks of different SNR 

dB % SEN±STD % SPE±STD % ACC±STD AUC 

No 98.72%±2.2 83.22%±8.3 92.39%±4.4 0.95 

60 98.72%±2.2 83.22%±8.3 92.39%±4.4 0.95 

50 98.72±2.22 81.37±11.3 91.63±6.2 0.89 

40 98.71±2.22 77.45±9.3 90.08±5.4 0.88 

0 100±0 33.99±6.2 73.15±3.1 0.60 

20 100±0 0±0 59.23±1.2 0.31 

 

 

(a)  

  

(b)  (c)  

Figure 12: (a) Dysphonic Subject, (b) Normal subject, (c) Normal subject after adding White-Gaussian noise of 

30 dB 

4.5 Comparison 

Despite our best efforts, we did not find any privacy protected healthcare system implemented 

with zero-watermarking. However, a framework of a healthcare system for Parkinson’s disease is 



presented in [25], in which the image of a subject’s identity is embedded by using a traditional 

watermarking algorithm in the speech signal of an affected subject. The authors concluded that the 

watermark algorithm has a high NCR between the original and recovered identity, but at the same 

time the SNR is not good. The reason is that the traditional watermarking algorithms insert 

watermarks in speech signals, which cause degradation. In our study, the NCR is comparatively low 

but SNR is very good as SNR = ∞, which signifies that the host audio and the watermarked audio are 

absolutely the same. 

Although Alhussein and Muhammad recovered the identity even at 20 dB, they did not mention 

that after an attack of 20dB, the speech signal of Parkinson’s disease is usable for the evaluation. In 

our study, we found that after the noise attack of 20dB, the audio signal cannot be diagnosed 

accurately. In a privacy protected healthcare system, privacy is important but not at the cost of 

accurate diagnosis. A comparison between the watermark algorithm of [25] and our proposed zero-

watermarking algorithm is provided in Figure 13. 
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Figure 13: A comparison between the proposed algorithm and the existing algorithm. 

5 Conclusion 

A privacy protected healthcare system is developed in this study using the proposed zero-

watermarking algorithm, which generates two secret shares of a subject’s identity with the help of 

visual cryptography. This makes the developed system more secure from unauthorized access because 

the identity of a subject cannot be disclosed until both shares are available simultaneously. The 

positive aspect of the proposed zero-watermarking algorithm is that it does not degrade the audio 

sample unlike traditional watermarking techniques, and hence it does not affect the accuracy of the 

diagnosis in the developed healthcare system. In the proposed algorithm, the secret shares of the 

identity are embedded into the secret keys instead of the host audio. The insertion of the secret shares 

depends on the patterns of the host audio, which are explored by implementing the 1D-LBP codes. 

The codes having the high frequency in the histogram of the speech signal are selected to embed the 



secret shares of the identity. The index key holds the locations of these codes and this is used to 

generate the watermark key that contains the secret shares of identity. The performance of the 

proposed algorithm is evaluated by using the MEEI voice disorder database. The experimental results 

show that the proposed algorithm is reliable in the detection of a subject’s identity and robust against 

noise attacks with various SNR. In addition, the secret shares are not embedded in the host audio, and 

therefore the imperceptibility of the proposed algorithm is naturally achieved. 
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Appendix A 

 

List of patients recorded at sampling frequency of 50 KHz in MEEI voice disorder database 

No. 
Patient’s 

Identity 
Diagnosis No. 

Patient’s 

Identity 
Diagnosis 

1 AJF12AN M A-P squeezing 27 JAJ10AN N/A 

2 AJM05AN Hyper function 28 JCH21AN M Paralysis 

3 AMT11AN N/A 29 JEC18AN N/A 

4 BJK16AN N/A 30 JES29AN N/A 

5 CAK25AN M Vocal fold edema 31 JJD06AN N/A 

6 CRM12AN M Parkinson's Disease 32 JJD11AN Vocal fold edema 

7 CXM18AN N/A 33 JLS11AN M Vocal fold polyp 

8 DAC26AN M Paralysis 34 JMH22AN M Vocal fold polyp 

9 DBF18AN M Vocal fold edema 35 JPP27AN M Paralysis 

10 DLW04AN N/A 36 JTM05AN Reinke's edema 

11 DMP04AN M A-P squeezing 37 JWK27AN N/A 

12 DWK04AN M Hyper function 38 KAH02AN N/A 

13 DXS20AN N/A 39 KAS09AN M Hyper function 

14 EAB27AN M Cyst 40 KLC06AN M Paralysis 

15 EAL06AN N/A 41 KMS29AN M Paralysis 

16 EJM04AN M Hyper function 42 LAR05AN M A-P squeezing 

17 EML18AN M Idiopathic dysphonia 43 LGM01AN M Vocal fold edema 

18 EWW05AN M Hyper function 44 LJH06AN M A-P squeezing 

19 EXE06AN M Vocal fold edema 45 LMB18AN N/A 

20 EXI04AN M Hyper function 46 LPN14AN M A-P squeezing 

21 EXI05AN M A-P squeezing 47 LSB18AN N/A 

22 EXW12AN N/A 48 LXG17AN N/A 

23 FGR15AN M Hyper function 49 LXY01AN M Paralysis 

24 FMM29AN N/A 50 MAT26AN Hyper function 

25 HWR04AN M A-P squeezing 51 MAT28AN N/A 

26 HXI29AN M A-P squeezing 52 MCB20AN M A-P squeezing 

 

 



(Continue) List of patients recorded at sampling frequency of 50 KHz in MEEI voice disorder database 

No. 
Patient’s 

Identity 

Diagnosis 
No. 

Patient’s 

Identity 

Diagnosis 

53 MMS29AN M A-P squeezing 66 RXM15AN M A-P squeezing 

54 MRC20AN A-P squeezing 67 RXS13AN M Keratosis 

55 MRM16AN N/A 68 SAR14AN M A-P squeezing 

56 MWD28AN M Hyper function 69 SEC02AN M Vocal nodules 

57 MYW14AN N/A 70 SHC07AN M Vocal nodules 

58 NJS06AN M Vocal nodules 71 SLG05AN Hyper function 

59 NMB28AN M Keratosis 72 TAB21AN M Hyper function 

60 PAT10AN M A-P squeezing 73 TLP13AN M Vocal nodules 

61 PDO11AN M Cyst 74 TMD12AN M Vocal tremor 

62 PMC26AN Varix 75 TPP11AN N/A 

63 REC19AN M Hyper function 76 WJP20AN M Hyper function 

64 RMF14AN M Hyper function 77 WXE04AN M A-P squeezing 

65 RPJ15AN M A-P squeezing    

1Note: N/A represents the patients whose diagnoses are not provided in the documentation of the MEEI database. 

2Note: M in the superscript denotes that the patient is suffering from more than one disorder. However, only one 

disorder is listed in the above table. 

 

 

 


