
1

Viewport-Aware Deep Reinforcement Learning
Approach for 360o Video Caching

Pantelis Maniotis, Student Member, IEEE and Nikolaos Thomos, Senior Member, IEEE

Abstract—360o video is an essential component of VR/AR/MR
systems that provides immersive experience to the users. How-
ever, 360o video is associated with high bandwidth requirements.
The required bandwidth can be reduced by exploiting the fact
that users are interested in viewing only a part of the video
scene and that users request viewports that overlap with each
other. Motivated by the findings of our recent works where the
benefits of caching video tiles at edge servers instead of caching
entire 360o videos were shown, in this paper, we introduce the
concept of virtual viewports that have the same number of tiles
with the original viewports. The tiles forming these viewports are
the most popular ones for each video and are determined by the
users’ requests. Then, we propose a reactive caching scheme that
assumes unknown videos’ and viewports’ popularity. Our scheme
determines which videos to cache as well as which is the optimal
virtual viewport per video. Virtual viewports permit to lower the
dimensionality of the cache optimization problem. To solve the
problem, we first formulate the content placement of 360o videos
in edge cache networks as a Markov Decision Process (MDP),
and then we determine the optimal caching placement using the
Deep Q-Network (DQN) algorithm. The proposed solution aims
at maximizing the overall quality of the 360o videos delivered
to the end-users by caching the most popular 360o videos at
base quality along with a virtual viewport in high quality. We
extensively evaluate the performance of the proposed system and
compare it with that of known systems such as Least Frequently
Used (LFU), Least Recently Used (LRU), First In First Out
(FIFO), over both synthetic and real 360o video traces. The
results reveal the large benefits coming from reactive caching
of virtual viewports instead of the original ones in terms of the
overall quality of the rendered viewports, the cache hit ratio, and
the servicing cost.

Index Terms—Deep reinforcement learning, 360o video, tile-
encoding, viewport-aware caching.

I. INTRODUCTION

Interactivity in VR/AR/MR systems is facilitated by the use
of 360o video content. However, the interactivity associated
with 360o videos comes with a huge increase in the bandwidth
needed to deliver the content to the users. This puts pressure
on the network infrastructure demanding further investments
to accommodate 360o video related network traffic. Exploiting
360o video coding flexibility, i.e., encoding in tiles, and
caching at the edge servers, can be a remedy for the problem,
as we have shown in [1], [2]. However, existing solutions
assume known popularity, which may not always be the case.
Further, existing solutions do not scale well with big content
because of the cache optimization complexity. This naturally
calls for caching systems that exploit tiles encoding and can
estimate future content popularity trends, while preserving low

P. Maniotis and N. Thomos are with the School of Computer Science and
Electronic Engineering, University of Essex, Colchester, United Kingdom (e-
mail: {p.maniotis, nthomos}@essex.ac.uk).

complexity and scalability with respect to the number of 360o

video files.
In 360o videos, a 360o view of a scene is captured from a

single point with the use of an omnidirectional camera. The
captured scene is then mapped to the internal part of a spher-
ical surface. Each user is assumed to be placed at the center
of the sphere and is interested in watching only a portion of
the scene, known as viewport. Typically, each viewport covers
120o of the entire scene. According to the head movements
of the user, the Head Mounted Display (HMD) dynamically
alters the part of the scene that will be displayed. To prevent
users from experiencing motion sickness and discomfort, the
response of the system to the head movements should be
as fast as the HMD refresh rate [3]. Considering that the
refresh rate may be 120Hz, the whole system should project
the requested viewport in less than 10ms. However, state-of-
the-art network streaming architectures are not able to respond
under these tight time constraints due to the end-to-end delay.
Although transmitting the whole scene could help to overcome
the above limitation, it is not an efficient strategy since the
resolution of a 360o video is commonly 4K, 8K, or even higher
[4]. Thus, it would lead to significant bandwidth waste as only
a part of the 360o video would be eventually displayed.

In edge caching systems, Small Base Stations (SBSs), e.g.,
picocells and femtocells, are equipped with caches, which
can store a limited amount of popular content files. This is
inspired by the fact that only a small number of popular
content accounts for most of the network traffic load [5]. As a
result, when there are multiple content requests for a cached
content at an SBS, these can be served from the cache directly
instead of obtaining the content through the core network using
pricey backhaul links. This allows users to receive the content
with lower latency, and the use of the backhaul links is limited.
The potential of using edge caching as a solution to address the
challenges that 360o video delivery faces in cellular networks,
has been recently studied in [1], [2], [6]. These works showed
that offline edge caching can be a prominent solution for
360o video delivery, in particular, when tiles and layered
encoding are used. The main drawback of [1], [2], [6] is that
they assume that the content popularity profile is known in
advance. However, often in practice, the content popularity
changes dynamically and may not be known a priori, or the
estimated distribution may not be accurate. For regular videos,
this problem has been addressed by online caching schemes
[7], [8]. These methods learn the optimal caching policy by
observing previous video consumption patterns. Though these
methods are efficient for standard videos, they cannot be
applied straightforwardly for 360o video. This is because 360o

videos have considerably larger sizes than traditional videos,

2

which limits the number of videos that can be stored at the
SBSs caches. Furthermore, online caching schemes for regular
videos have not been designed to take advantage of the fact
that large parts of the video scene are never displayed, as is
the case of 360o video where users are interested in watching
only a viewport. From the discussion above, it is clear that
there is a vast need for online 360o video caching schemes
which exploit 360o video features and do not necessitate the
delivery of the entire video scene.

In this paper, we propose a reactive caching scheme for
the transmission of 360o video in cellular networks. To the
best of our knowledge, this is the first online caching scheme
for 360o videos. Our method aims at maximizing the overall
quality of the 360o videos delivered to the users, without
requiring a priori knowledge of 360o video and tiles popularity
distributions. In the studied problem, the popularity of tiles and
videos varies with time, making the examined problem more
challenging as 360o video is characterized by tight delivery
deadlines. Our method updates the cached content based
on limited observations regarding 360o video consumption
patterns, obtained from previous users’ requests. We adopt tiles
and layered encoding of 360o video because of the flexibility
they offer to caching algorithms [1], [2], [6]. These methods
encode 360o videos into a number of independently encoded
tiles and multiple layers, as shown in Fig. 1a. Encoding in
tiles and layers allows network operators to cache in high
quality at each SBS only the parts of the scene of each 360o

video (i.e., the tiles that correspond to these parts) that are the
most popular to the users. Further, as only some tiles of the
360o videos are popular, we introduce the concept of virtual
viewport, which is shaped by the overlap that occurs because
of the diverse users’ requests for different viewports, as shown
in Fig. 1b. Virtual viewports differ from the original ones in
that the tiles that comprise them are not necessarily adjacent
to each other, i.e., they do not form a rectangular area. A
virtual viewport has the same number of tiles with regular
viewports, but it consists of the most popular ones. When a
user requests a viewport of a 360o video in a certain quality,
then if some tiles of the requested viewport also belong to the
virtual viewport that is cached at the SBS that received the
request, these tiles will be served from that cache. As a result,
storing virtual viewports will lead to an increase in the cache
hit ratio, due to the greater flexibility they provide in terms of
which tiles to cache in high quality.

In order to determine which videos and virtual viewports
to cache in each SBS, we first formulate the problem of
360o video caching as a Markov Decision Process (MDP).
The aim is to find the optimal set of 360o videos and virtual
viewports that should be cached at the SBS so that the overall
quality delivered to the users is maximized. This is done
by considering a limited history of users’ requests. Although
MDP offers an elegant way to describe our framework, the
requirement of knowing the state transition probabilities makes
it hard to evaluate the optimal policy (caching decisions per
360o video and virtual viewport) for our system. This require-
ment can be lifted with the use of Q-learning [9]. Despite Q-
learning convergence properties, it cannot be trivially applied
for large-sized problems. To address this limitation of the Q-

learning algorithm, we use the Deep-Q-Network (DQN) [10]
variant of Q-Learning. We evaluate the performance of our
solution for both real [11] and synthetic 360o video traces,
and compare its performance with that of known schemes
such as the Least Frequently Used (LFU), Least Recently
Used (LRU), First In First Out (FIFO) algorithms. The results
illustrate the advantages of the proposed method compared to
its counterparts, in terms of the overall quality users enjoy, the
overall cache hit ratio, and the cost of delivering the requested
content to the users.

In summary, the main contributions of our work are:
• Reinforcement Learning framework: We introduce a novel

reinforcement learning framework for optimizing the content
cache placement of 360o videos, by formulating the problem
of caching 360o videos as a Markov Decision Process.
Our solution aims at maximizing the overall video quality
delivered to the users by taking into account both the 360o

videos and tiles’ popularity. As Q-learning cannot be used
because of the size of the problem, we employ DQN.
DQNs enable us to solve large instances of the online cache
optimization problem for 360o videos.

• Concept of Virtual Viewport: We introduce the concept of
the virtual viewport, which is shaped by the overlap of the
diverse users’ requests for different viewports. A virtual
viewport is comprised of the most popular tiles of a 360o

video over the users’ population. Virtual viewports enable us
to reduce the size of the online cache optimization problem
for 360o videos.

• Evaluation on real and synthetic 360o video traces: We
extensively evaluate our proposed solution for real naviga-
tion patterns extracted from the dataset described in [11],
as well as on synthetic navigation patterns in order to
show the benefits coming from the introduction of virtual
viewports, and also, the impact of different users 360o video
consumption patterns on the overall quality users enjoy.
The rest of the paper is organized as follows. In Section

II, we overview work related to edge caching, reinforcement
learning, and tile-encoding of 360o videos. Next, in Section
III, we describe our system setup. Right after, in Section IV we
introduce the considered model of the users’ requests. Then,
we first formulate our problem as an MDP in Section V, and
right after in Section VI, we show how DQN can be used to
solve the cache placement problem for 360o videos. In Section
VII, we thoroughly evaluate the performance of the proposed
scheme and compare it with other methods in the literature.
Finally, we draw conclusions in Section VIII.

II. RELATED WORK

In this section, we briefly overview the literature related
to edge caching, online caching, and tile-based 360o video
streaming.

The use of edge caching has been proposed as an efficient
way to bring content closer to the end-users and improve the
quality of the delivered content [12], [13]. In addition, caching
popular contents at the mobile edge servers has been shown to
reduce the usage of the pricey backhaul links [14]–[16] and the
network operation cost [17]. The optimal placement of layered

3

(a) Encoding of 360o video in two quality layers and several tiles.

(b) Overlapping viewports for various user requests, and virtual viewport.

Fig. 1. Users request different viewports encoded in quality layers and tiles.

videos on edge caching systems is investigated in [18]. The
decisions regarding which video layers to cache in each SBS
are made by taking into account the caching cost, the available
cache capacity at the SBSs, and the social groups formed
by mobile users based on their content requests. Differently
from [18], caching several representations of multiple videos
that correspond to different qualities is examined in [13]. The
cached representations are decided so that the aggregate distor-
tion reduction of all the users is maximized while minimizing
the cost related to downloading the representations. In [12], the
delivery of 4K video quality in LTE-A networks is explored.
That work aims to assure for 4K live streaming systems high
Quality of Experience (QoE) to the users.

The aforementioned works consider that video popularity
profiles are known, which in many cases is not possible. To
address this limitation, the content popularity is predicted us-
ing reinforcement learning algorithms that exploit the demand
history [7], [8], [19], [20]. Specifically, in [7], the SBSs learn
the content popularity online, considering the switching cost
related to the addition of new files to the cache. Contextual
MABs are proposed for online cache optimization in [8] to
take advantage of users’ characteristics such as age, sex, etc.
Neural networks (NN) [19], [20] can be used to decide the
optimal cache placement when content popularity is unknown.
Specifically, a Deep Reinforcement Learning-based framework
aiming to maximize the long-term cache hit ratio is presented
in [19]. To limit the action space in [19], an Actor-Critic
algorithm based on the Wolpertinger architecture [21] is used.
Differently, in [20], an Actor-Critic algorithm is presented
where the actor uses the Gibbs distribution, and the critic uses
a deep neural network to minimize the average transmission
delay. To this aim, the users’ scheduling and content caching
policies are jointly designed.

The delivery of 360o videos encoded by advanced video
coding standards, e.g., H.265/HEVC, SHVC, that support the
encoding of the 360o videos into a number of quality layers
and tiles has been studied in [22]–[25]. These systems exploit
the fact that users are interested in viewing only a viewport
of the 360o video scene, and hence there is no need to deliver
the whole scene in high quality. Differently from [22]–[25],
in our previous work in [1], [2] we proposed a tile-based
collaborative caching scheme for 360o videos for video-on-
demand systems, where we showed the benefits coming from
making the caching decisions on a per tile basis and the
advantages of exploiting SBSs collaboration. In contrast to
[1], [2], authors in [6] examine a tile-based caching scheme
that aims to optimize the error between the requested and
cached tile resolutions across different viewports as well as
the coverage of the tiles set. In their work, they examine the
caching of tile streams both at different resolutions and in a
layered encoding fashion. Differently from [1], [2], [6], authors
in [26] examine the joint caching, transcoding, and delivery of
360o videos. Though the works in [1], [2], [6], [26] showed
promising performance for offline caching of 360o video,
they cannot be extended and be used straightforwardly for
solving online caching problems studied here, as they assume
known popularity. A motion-prediction-based mechanism is
proposed in [27], where viewers’ motion is predicted with the
use of machine learning. Similarly, the navigation behaviors
of users when watching 360o videos on computers has been
investigated in [28]. The results show that viewers have
similar viewing patterns for certain 360o video categories. A
navigation-aware adaptive streaming strategy is presented in
[29], where the aim is to optimize the rate at which a tile
is downloaded during the navigation of the 360o video. The
rate per tile optimization problem is formulated as an integer
linear programming problem. The proposed solution reveals
the benefits of exploiting navigation patterns on both quality
and navigation-smoothness. The impact of tile encoding on
bandwidth saving, coding efficiency, and scalability is exam-
ined in [30], where a tile-aware video streaming system is
proposed. The results show that an up to 80% bit-rate reduction
is achieved by only streaming the tiles viewed by the user.

III. SYSTEM SETUP

In this section, we first introduce the system model and the
network architecture, and then we discuss 360o video encoding
into multiple quality layers and tiles. Finally, we present the
employed viewport prediction algorithm.

1) Wireless cellular network: In this paper, we consider a
heterogeneous cellular network (HCN), like the one depicted
in Fig. 2. The network consists of Small Base Stations,
i.e., microcells, and a Macro-cell Base Station (MBS). Let
N = {1, . . . n, . . . , N} denote the set of the N SBSs, and
N + 1 represent the MBS. For notational convenience, we
also define the augmented set NB = N ∪N +1 that includes
the SBSs along with the MBS. The MBS is connected to
the core network through a high capacity backhaul link, i.e.,
optical fiber, while the SBSs are connected to the MBS through
wireless millimeter-wave links.

4

Fig. 2. Considered network architecture.

Let pn be the communication range of the nth SBS and
P = {p1, . . . pn, . . . , pN} be the set that contains the commu-
nication ranges of all SBS. The communication range of the
MBS is pN+1, and is assumed to be large enough so that the
MBS can communicate with all SBSs. Each SBS n ∈ N has a
cache capacity Cn ≥ 0, ∀n ∈ N where popular content can be
cached. We further assume that there are U users forming the
set U = {1, . . . u, . . . , U}. Since some users may be located
in the overlap of the coverage areas of multiple SBSs, these
users are assigned to the SBS with the maximum signal-to-
interference-plus-noise ratio (SINR).

2) Video Library: We assume that users request 360o

video files from a content catalogue of V = |V| files, with
V = {1, . . . v, . . . , V } being the set of the 360o videos. Each
360o video is encoded into G Group of Pictures (GOPs) that
form the set G = {1, . . . , g, . . . , G}. Each GOP is encoded
into L quality layers forming the set L = {1, . . . , L}, and
M tiles forming the set M = {1. . . . ,M}. For each tile, the
first quality layer is known as the base layer, while the rest
L−1 layers are called enhancement layers. The acquisition of
the base layer of a tile offers reconstruction of that tile at the
lowest available quality, while the acquisition of all the layers
of a tile up to the lth gradually improves the reconstruction
quality of that tile. For each GOP, in order to satisfy a user
demand for a requested viewport at a certain quality, the
user has to acquire the base layer for all the tiles of the
video along with all the enhancement layers corresponding
to the demanded quality for the tiles that form the requested
viewport.

3) Viewport Prediction: A critical component of 360o video
streaming is the Viewport Prediction (VP) [31]–[33]. The aim
of VP is to predict the requested viewport by a user in the
near future (e.g., 1-2 sec), and prefetch it to the user. This
is essential to provide smooth playback, as SBSs are not able
to respond instantly to the user head movements due to the
end-to-end delay.

VP can be done by observing the most recently requested
frames by a user. These past requests are used to forecast
the viewport that will be requested in the next few seconds.
Such an approach is examined in [31], [32], where authors
use variants of the linear regression algorithm to predict the

users’ head movements. A more naı̈ve approach is presented
in [33], where VP is performed assuming that the users’ head
orientation will not change in the next 3 seconds.

In our system, to perform viewport prediction, we use
the Last Sample Replication (LSR) algorithm [32]. We have
selected this algorithm because of its low complexity, however,
our framework can be used with any VP algorithm. Based on
the LSR, the predicted viewport of the GOP g+1 is assumed
to be the same as the one that was requested in the GOP g.
For the first GOP, without loss of generality, we assume that
the predicted viewport is the requested viewport. Although
the employment of advanced VP algorithms [34], [35] would
further improve the accuracy of the predicted viewports, we
do not adopt such algorithms as we aim to show the advan-
tages coming from caching. Further, the employment of more
advanced prediction algorithms would increase the complexity
of our system. However, the conclusions regarding how tile-
encoding, layered encoding and online caching impact 360o

video delivery systems would not be altered by the employed
VP algorithm.

4) End-to-end-delay: As we already mentioned, for each
GOP g ∈ G, all the tiles encoded at the base quality along with
all the enhancement layers up to the targeted quality for the
tiles that form the output viewport of the VP algorithm, need
to be prefetched to the users within a specific time window.
Failing to deliver these tiles on time would lead to buffer
underruns, as the tiles would not be available to the buffer at
the time they should be displayed. This would lead to degraded
QoE, as tiles that are not delivered on time are discarded. Let
us denote by dn the time needed to transmit one Mbit from
the nth SBS to a user, and dN+1 the time needed to transmit
one Mbit from the backhaul of the MBS to a user. Obviously,
dN+1 > dn, due to the additional time needed to initially fetch
data from the backhaul of the MBS to the SBS. The timely
delivery of the tiles of each GOP must respect the following
equation:

∑
n∈NB

∑
l∈L

∑
m∈M

ovglm · dn · qnuvglm ≤ tdisp, ∀v ∈ V, ∀u ∈ U , g ∈ G

(1)

where ovglm is the size of the mth tile encoded in the lth
quality layer of the gth GOP of the vth 360o video. The
variable qnuvglm takes the value 1 when the mth encoded tile
of the lth quality layer of the gth GOP of the vth 360o video
is delivered to the uth user from the cache of the nth SBS
(n ∈ N) or the MBS (n = N + 1), and 0 otherwise. The
parameter tdisp denotes the playback duration of each GOP.
This constraint determines whether the tiles of the (g + 1)th
GOP can be prefetched at the user’s buffer, as the user is
watching the GOP g. We would like to note that under the
constraint (1), the employed buffer size is equal to 1 GOP. This
is because as the user interacts through the scene in the GOP
g, the output of the VP algorithm for the GOP g+1 is revealed.
In addition, the use of a short buffer limits the bandwidth loss
occurring due to users changing the 360o videos they want to
watch.

5

Fig. 3. User requests for a 360o video.

IV. USERS’ REQUESTS MODEL AND CACHE UPDATE
SCHEDULE

In this section, we present the considered users’ requests
model and the cache update schedule. We assume that for
each cached 360o video, our system caches all the tiles at the
base quality layer for all the GOPs, as well as the tiles of a
virtual viewport for each GOP in high quality. Recall that a
viewport consists of k tiles that form a rectangular area, while
a virtual viewport is comprised of the k most popular tiles,
which do not necessarily form a rectangular area, as shown in
Fig. 1b.

We assume that time is slotted in T time slots, and each time
slot has the duration of one GOP. When a user is interested in
watching a 360o video with duration of G GOPs, they should
send G consecutive requests,1 as shown in Fig. 3. The first
request is special and comprises a request w0, which is used
by our algorithm in Section VI to predict the popularity of
each 360o video, and a request w1 for obtaining the viewport
for the first GOP. The request w0 is to acquire the 360o video
at the base quality for all GOPs. As we will show in Section
VI this request is used to reduce the size of the optimization
problem. Though all the tiles encoded at the base layer are
requested at the first time slot, they may be delivered to the
users along with the enhancement layer tiles. We assume that
the request w0 occurs at the same time slot with the request
w1. The wgth request, g ∈ {1, . . . , G}, is to obtain the tiles
that comprise the requested viewport, and belong to the gth
GOP, in high quality. These requests are used by our algorithm
presented in the next sections to calculate the popularity of
each tile per GOP. For notational convenience, we denote the
ith set of requests {wi0, wi1, . . . , wiG} made by a user for a
360o video by Wi, while W = ∪iWi contains all the sets of
users’ requests. Hereafter, we drop the index of the ith set of
requests when is not needed.

The decisions of which tiles of a 360o video to cache at an
SBS and in what quality are made online, i.e., when the content
is requested. Specifically, when a user request w0 arrives at an
SBS in the time slot 1, if the tiles of the requested 360o video
at base quality are not cached in it, a decision has to be made
regarding whether to cache them. This decision depends on
the popularity of the video. If the decision is to cache these
tiles, all the tiles of the base layer for all GOPs will start
being fetched through the backhaul and cached at the SBS,
replacing the tiles of another 360o video that will be evicted.
When the user issues further requests wg for receiving tiles of
the GOPs of the 360o video in high quality, our system uses
the viewport prediction algorithm described in Section III to

1When a user wants to stop watching a video, they halt sending requests
for the following GOPs.

decide which tiles of the predicted viewport will be fetched
from the backhaul so that they can be delivered to the user on
time. When the tiles that form the predicted viewport arrive at
the SBS, we identify two cases: (a) if the decision for w0 was
not to cache the 360o video in base quality, the fetched tiles
will be delivered to the user but these tiles will not be cached
at the SBS, as the video is not popular enough, (b) if the
decision for w0 was to cache the 360o video in base quality,
then for each request wg, g ∈ G, in case some (or none) of
the tiles that form the predicted viewport are cached in high
quality a soft cache hit [36] will occur. In such a case, the
cached tiles of the predicted viewport will be served to the
user directly from the SBS, while the tiles of the predicted
viewport that are not cached at the SBS will be fetched to
the SBS from a remote content server through the backhaul
link of the MBS and be delivered to the user if the end-to-end
constraint permits. Then, a decision is made about whether
to cache some or all of the tiles that were fetched through
the backhaul. The latter decision reflects tiles’ popularity of a
360o video.

The proposed cache optimization algorithm regarding which
tiles to cache is presented in the next sections.

V. MDP FORMULATION

In this section, we formulate the problem of caching 360o

videos in cellular networks as a Markov Decision Process [37].
Since in our setting users can download the requested content
only from the SBS that they are connected to, each SBS
optimizes the cache use and the content replacement strategy
independently of each other. Hereafter, following reinforce-
ment learning terminology, SBSs are also called agents.

State Space: In the considered setting, the SBS n ∈ N can
be in a state s ∈ S, where S represents the set of all possible
states. Each state is characterized by the features extracted
from observations of users’ past requests, considering fixed
observation windows. Below we describe the features we
consider.

The first feature has two components that refer to the total
number of requests for each cached 360o video that occurred
in: a) a short-term window of Hs sets of user requests (see
Fig. 3), and b) a long-term window of Hl sets of user requests.
This feature associated with the cache of SBS n ∈ N can be
described by the vector xn = [xns xnl] with xnf = [xnf,i], ∀f ∈
{s, l}, ∀i ∈ 1, . . . , C, and xnf,i ∈ {1, . . . ,Hf}. xnf,i refers to
the total number of times the video in the ith cache position
was requested (either in short-term or long-term). Thus, the
feature space Xnf is given by {1, . . . ,Hf}C and the overall
feature space is Xn = Xns × Xnl . Recall that, C is the cache
capacity of the SBS. It is worth noting that the above definition
of features reduces the feature space drastically, as features
are computed for all the tiles (cached videos) in base quality
instead of each tile in base quality independently.

Similarly, the second feature has two components that
correspond to the total number of requests for tiles in high
quality of the cached 360o videos that happened during: a)
the short-term window of Hs sets of user requests, and b) the
long-term window of Hl sets of user requests. This feature

6

is associated with the cache of SBS n ∈ N and is computed
for each cached tile in high quality of GOP g, when request
wg, g > 0 is processed. Let the vector yn = [yns ynl] describe
this feature, where ynf = [ynf,i,j], ∀f ∈ {s, l}, ∀j ∈ {1, . . . , k},
∀i ∈ {1, . . . , C} and ynf,i,j ∈ {1, . . . ,Hf}. ynf,i,j denotes the
number of times the jth tile of the ith cached 360o video was
requested at the nth SBS. Thus, the feature space Ynf is given
by {1, . . . ,Hf}kC and the overall feature space for the cache
space at the nth SBS is given by Yn = Yns × Ynl .

Finally, the third feature has two components that corre-
spond to the number of times the examined item (tile in
high quality or 360o video in base quality) was requested
at the nth SBS: a) in the short-term window of Hs sets of
user requests, and b) in the long-term window of Hl sets of
user requests. Specifically, when the examined item is a 360o

video in base quality, this feature refers to the total number
of times this video was requested at the nth SBS. This is
the case when a request w0 is received. When the examined
item is a tile of a 360o video in high quality, i.e. for requests
wg, g > 0, the feature corresponds to the total number of
times the examined tile was requested. The feature vector
is defined as zn = [zns znl] with znf = [znf], ∀f ∈ {s, l},
and ∀znf ∈ {1, . . . ,Hf}. znf stands for the total number of
times the item (tile in high quality or 360o video in base
quality) was requested. Thus, the feature space Znf is given
by {1, . . . ,Hf} and the overall feature space for the examined
item is Zn = Zns ×Znl .

Following the above definitions of the features, the overall
state space is given by:

Sn = Xn × Yn ×Zn. (2)

Hereafter, we drop the superscript of the state space and use
S as each SBS makes decisions independently of each other.

Action Space: As we mentioned in Section IV, users’
requests w0 correspond to a request for a 360o video in base
quality for all the GOPs of this video, while requests wg ∈ W
with g ∈ 1, . . . , G stand for a request for a viewport of the
gth GOP encoded in high quality.

When an SBS receives a request from a user, there are three
possible cases regarding what data is cached at the SBS: a)
no data for the requested 360o video is cached, b) the 360o

video is cached at the base quality and the predicted viewport
is cached at high quality and, c) the 360o video is cached at
the base quality, but a different viewport is cached at high
quality.

In case a user requests a 360o video that is not cached
at the SBS, this has to be fetched through the backhaul
and be delivered to the user. Fetching content through the
backhaul adds cost to the network operator and increases the
delay experienced by the users. When no data of a 360o

video are cached at the SBS, a user request wg ∈ W with
g ∈ {0, . . . , G} is processed as follows. To accommodate a
request w0, all the tiles of the requested 360o video encoded at
the base quality will start being fetched through the backhaul
and delivered to the user for all the GOPs. For each of the
following requests wg with g ∈ {1, . . . , G}, all the tiles of the
viewport indicated by the prediction algorithm in Section III

encoded in high quality will be fetched through the backhaul in
high quality, and be delivered to the user. Therefore, when the
requested 360o video is not cached at the SBS, there are two
types of possible actions: a) to leave the cached content at the
SBS unchanged, or b) to evict the tiles of a cached 360o video
from the cache of the SBS and replace them with the tiles of
the requested one. Thus, there are C + 1 possible actions.
Let the set A1 = {A10, A11 . . . , A1i, . . . , A1C} denotes all
the possible actions when a video is not cached at the SBS.
A10 stands for the case the cached content at the SBS is left
unchanged, and A1i means that all the tiles of the ith cached
video at the SBS will be replaced by the corresponding tiles
of the requested 360o video.

If both the requested 360o video encoded in the base quality
and the tiles that form the predicted viewport for the examined
GOP, e.g., g ∈ {1, . . . , G} encoded in high quality are cached
at the SBS, the request wg will be served from the cache, and
no action will be taken. Then, a decision regarding whether
to cache the tiles of the predicted viewport for the next GOP,
i.e., g+1, is made. This happens because our scheme employs
the LSR algorithm, as we described in Section III-3.

Finally, if the 360o video is cached at the base quality,
but a different viewport than the predicted one is cached
at the SBS at high quality, the requested tiles that are not
cached have to be fetched through the backhaul, and then
be served to the user. In that case, the possible actions are
the following: a) to leave the cached viewport unchanged, or
b) to cache some of the tiles, which were not part of the
predicted viewport, and were fetched through the backhaul. To
limit the action space, we assume that each action concerns
only one tile that may be updated at the SBS cache. In this
way, the agent takes sequentially actions for all tiles that were
fetched through the backhaul in terms of whether to cache
them at the SBS or not. This process is repeated until a
decision is made for all the fetched tiles. Since each viewport
consists of k tiles, the possible actions for a tile form the set
A2 = {A20, A21 . . . , A2j , . . . , A2k}. The action A20 denotes
the case where the cached content is left unchanged, while the
action A2j corresponds to the case where the candidate tile
will replace the jth tile in high quality of the requested 360o

video that was cached at the SBS. We consider that a GOP
is fully processed when a decision has been made for all the
tiles that were fetched through the backhaul. After completing
the sequential decisions, the cached virtual viewport for the
considered video is updated. Next, the subsequent GOP is
processed in a similar way. We would like to note that the
use of virtual viewports and the decomposition of actions on
per tile basis permits to greatly reduce the action space as
otherwise, the action space would have been comprised of all
possible viewports.

Considering the above, the overall action space A is defined
as:

A = A1 ×A2. (3)

Reward:
We define the reward of each action to be the average

distortion reduction the users will experience in the next H
sets of users’ requests. Thus, given a state s ∈ S , the reward

7

of taking action a ∈ A is calculated as:

r(s, a) =
1

H

∑
h∈H

∑
v∈V

∑
g∈G

∑
l∈L

∑
m∈M

1(φh,v,g,l,m) · δv,g,l,m

(4)
When we process the ith set of requests Wi, the set H =
{Wi+1, . . . ,Wi+h, . . . ,Wi+H} contains the next H sets of
user requests. In our formulation, the reward in (4) is obtained
after the next H sets of user requests have occurred [38].
The term φh,v,g,l,m represents the mth tile of the lth quality
layer of the gth GOP of the vth 360o video of the Wi+hth
set of user requests. The term δv,g,l,m denotes the distortion
reduction achieved by obtaining the corresponding tile. The
indicator function 1(φh,v,g,l,m) in (4) is defined as:

1(φh,v,g,l,m) =

1, if φh,v,g,l,m can be delivered

on time for Wi+h.
0, if φh,v,g,l,m cannot be delivered

on time for Wi+h.

Optimization Problem:
In order to quantify how good a particular state s is, we

estimate the value function. This function corresponds to the
expected discounted reward of policy π when starting from a
state s and then following this policy. The value function is
formally expressed as:

Vπ(s) = Eπ[Gτ |Sτ = s] = Eπ[

∞∑
κ=0

γτRτ+κ+1|Sτ = s] (5)

where Gτ , Rτ , and Sτ are the expected reward, the immediate
reward and the state at time τ , respectively. The parameter
0 ≤ γ ≤ 1 is called discount rate and gradually discounts
the effect of an action to future rewards. If γ = 0, the
agent is “myopic” and maximizes the immediate reward. As γ
approaches 1, the objective takes into account future rewards
more strongly, and the agent becomes farsighted. The above
equation can be rewritten as a Bellman equation [39] as
follows:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)] (6)

where p(s′, r|s, a) is the transition probability from the state
s to the state s′ by taking the action a with a reward r.

VI. DQN BASED CACHE OPTIMIZATION

The main challenge to solve (6) is the requirement to
know the transition probabilities p(s′, r|s, a). For the studied
problem, continuous computation of the transition probability
matrix is necessary because of the non-stationary requests’
dynamics, which is computationally demanding. To overcome
this problem, we can adopt the Q-learning algorithm [9],
which learns the optimal policy through interaction with the
environment. Q-learning uses the Q(s, a) values instead of
using the value function in (6). These values reflect how
“good” is to take action a when in state s. Similarly, Qπ(s, a)
represents how good it is to take action a when starting from
state s, and thereafter follow the policy π. This is defined as
follows:

Qπ(s, a) = Eπ[

∞∑
k=0

γτRτ+k+1|Sτ = s,Aτ = a] (7)

where Aτ is the action at time τ .
The optimal policy is the one that maximizes the expected

reward for all states and is given by:
π?(s) = argmax

a∈A
(Q(s, a)), s ∈ S (8)

To determine the optimal policy π?(s), the Q-learning
algorithm updates the Q(s, a) values iteratively. Specifically,
the Q(s, a) values are updated according to the formula:
Q(sτ , aτ) = (1−ατ)Q(sτ , aτ)+ατ [Rτ +γmax

a∈A
Q(sτ+1, a)]

(9)
where ατ is the learning rate at time τ . The learning rate
corresponds to the rate at which newly acquired information
overrides old one.

Q-learning can select actions using policies such as the ε-
greedy, where ε ∈ [0, 1], which ensures that random actions
are always explored and overfitting is avoided. According to ε-
greedy policy, the action resulting in the maximum Q(sτ , aτ)
value is selected with probability 1− ε, and a random action
is selected with probability ε. The Q-learning algorithm is
guaranteed to converge to the optimal solution [40] when
all the state-action pairs are visited infinitely often, and the
learning rate ατ satisfies the following conditions:

∞∑
τ=0

ατ (s, a) =∞ and
∞∑
τ=0

α2
τ (s, a) <∞, ∀(s, a) ∈ S ×A

(10)
The Q-learning algorithm is an efficient method to deter-

mine the optimal policy when the state-action space is small.
However, when the state-action space grows, the lookup table
where the Q(s, a) values are stored becomes prohibitively
large. To overcome this drawback of Q-learning, we employ
a Deep Reinforcement Learning (DRL) [10] approach. Using
DLR the Q(s, a) values are approximated by a Deep Neural
Network (DNN). The DRL framework consists of two phases:
a) the offline phase where the DNN is trained, and b) the online
phase during which the actual caching decisions are made.

During the offline phase, the DNN is initially built by select-
ing some random weights θ. Then, the DNN is trained with a
number of historic transition profiles, as in [41]. These profiles
correspond to request patterns experienced in the past, and
are available to network operators, as they maintain statistics
of past requests. The training of the DNN is performed in
a mini-batch manner. Specifically, at each training epoch, a
sample of the transition profiles and their estimated Q values
are obtained by randomly sampling the experience replay
memory D, which has capacity ND. This mechanism is used
to remove the correlations between observations, while the
transitions between the states become more independent and
identically distributed. We would like to note that while the
videos and tiles’ popularity changes over time, our system uses
the same model, i.e., employs the same DNN for all GOPs.
This makes the DNN able to generalize between similar states
and take actions in terms of which content to cache at the
SBSs. Hence, the number of GOPs does not have an impact
on the complexity of our model.

To stabilize DNN training, apart from the experience replay,
we use the mechanism of the fixed target network [40].
According to this mechanism, a second DNN is employed,

8

Algorithm 1 DRL Framework
1: Offline Phase
2: Initialize the evaluation network with weights θ
3: Initialize the fixed target network with weights θ′

4: Initialize the experience buffer D with capacity ND
5: Initialize a random exploration process
6: Train the DNN with features (s, a) and outcomes Q(s, a)

in a mini-batch manner
7: Online Phase
8: for each time slot do
9: for each user request in a time slot do

10: for each candidate item of a user request do
11: Receive observation sτ
12: if the candidate item is not cached at the SBS then
13: With probability 1− ε select
14: aτ = argmax

a∈A
Q(sτ , a, θ)

15: Otherwise,
16: aτ ← random action
17: Take action aτ and observe rτ , sτ+1

18: Store the tuple (sτ , aτ , rτ , sτ+1) in the experi-
ence replay buffer D

19: end if
20: Update cache hit ratio
21: Update Feature Space
22: if Modulo(w, NB)==0 then
23: Sample MB tuples from D

24: Update DNN by minimizing Loss(θ) in (11)
25: Update fixed target network weights
26: end if
27: end for
28: end for
29: end for

which is called fixed-target network. This network has the
same architecture as the original DNN that is used for the
function approximation (evaluation network). Not using a
separate network to estimate the target Q values would lead
to destabilization. This would happen because as the Q values
(output of the evaluation network) are updated towards the
target values (calculated by (9)), the target values will also
be updated in the same direction. To overcome this problem,
the weight parameters of the target network are kept fixed and
are copied from the evaluation network only every NT steps.
Thus, using a second network to estimate the target Q-values
leads to a more stable training, since the Q-values obtained
from the evaluation network are updated towards a target that
is kept fixed (for a number of steps).

When the offline phase is completed, the obtained weights
θ are used to initialize the DNN in the online phase. During

this phase, if the candidate item (360o video in base quality
or tile in high quality) is not cached at an SBS, the agent
takes an action according to the ε-greedy policy (i.e., it decides
whether to cache the item or not and what content will be
replaced), and then proceeds to the next state. In this way,
new actions are always explored, and cached content whose
popularity the algorithm overestimated in the past will not
stay in the cache forever. After the execution of each action,
the tuple (sτ , aτ , rτ , sτ+1) is stored in the experience replay
buffer D, in order to be used later for the training of the DNN.

In the online phase, the DNN is trained in a similar way
to the offline phase, where a batch of MB transition profiles
is randomly sampled from the experience replay memory D
every NB steps. The DNN is trained towards the target Q
values using the back-propagation method, by minimizing the
loss function Loss(θ). The loss function is given by:

Loss(θ) =
1

MB

∑
i∈MB

(yi −Q(si, ai, θ))
2 (11)

where yi = ri + maxa′iQ(s′i, a
′
i, θ
−
i) represents the target Q

value of the ith sample, and θ−i = θi−NB . This loss function
is used in both offline and online phases. We would like to
note that the continuous update of our DNN in the online
phase helps our model to keep track of gradual changes that
may occur in the consumption patterns of the users’ requests.
This is because, in general, network operators have fallback
mechanisms to account for potential changes in the popularity
model, as this affects the provided quality of service.

The overall DRL framework is presented in Algorithm 1.

VII. PERFORMANCE EVALUATION

In this section, we examine the performance of the proposed
DQN-based online caching algorithm for 360o videos in cellu-
lar networks. First, we describe the schemes under comparison
and provide the simulation setup. Next, we show the conver-
gence of the loss function during the training of the DNN.
Then, we analyze the impact of various system parameters on
the performance of the system. Finally, we demonstrate how
the viewports’ popularity shapes the popularity of each tile.

A. Simulation Setup

Let us describe the main characteristics of the schemes
under comparison and the proposed scheme:

1) Least Frequently Used (LFU): In this scheme, the net-
work operator keeps track of the number of requests that
occurred for each cached 360o video. When a user request
arrives at an SBS, then: a) if the requested 360o video
is not cached at it, all the tiles of the 360o video that
was requested the least number of times will be evicted
from the cache of the SBS. Then, for all the GOPs, all
the tiles of the requested 360o video encoded at the base
layer along with the tiles of the predicted viewport in high
quality will be cached at the SBS; b) if the 360o video
is already cached at the base quality for all the GOPs,
but some of the cached tiles in high quality are different
from the ones that belong to the predicted viewport, these

9

tiles will be evicted and be replaced by the tiles of the
predicted viewport.

2) Least Recently Used (LRU): In this scheme, the network
operator keeps track of how recent are the requests that
occurred for each cached 360o video. When a user request
happens at an SBS, then: a) if the requested 360o video
is not cached at the SBS, all the tiles of the 360o video
that were requested the least recently will be evicted from
the SBS cache. Next, all the tiles of the requested 360o

video will be cached at the SBS at the base quality for
all GOPs along with the tiles of the predicted viewport in
high quality; b) if the 360o video is cached at the SBS, for
each GOP, if some of the cached tiles in high quality are
different from the ones of the predicted viewport, these
tiles will be replaced by the corresponding tiles of the
predicted viewport.

3) First In First Out (FIFO): In this scheme, the network
operator keeps track of when the requests for each cached
360o video occurred. When a user request arrives at an
SBS, then: a) if the requested 360o video is not cached at
the SBS, all the tiles of the 360o video that was cached
the earliest will be evicted from the SBS. Then, for all
GOPs, all the tiles of the requested 360o video encoded at
the base layer, along with, for each GOP, the tiles of the
predicted viewport in high quality will be cached at the
SBS in the place of the evicted tiles; b) if the 360o video
is cached at the SBS, then for each GOP, if some of the
cached tiles in high quality are different from the ones
forming the predicted viewport, these tiles will be evicted,
and be replaced by the tiles of the predicted viewport.

4) Proposed Scheme: In the proposed scheme, the caching
decisions are made exploiting observations derived from
past users’ requests. This scheme employs the DQN
algorithm presented in Section VI to decide on the cache
updates. For each cached 360o video, all the tiles at the
base quality along with the most popular tiles in high
quality that form a virtual viewport, are cached at the
SBS for all the GOPs.

We selected LFU, LRU, and FIFO policies as comparison
schemes as they are common cache updates methods used
for standard videos in the literature. Similar to the proposed
scheme, the schemes under comparison cache per video the
same number of tiles. We advanced the performance of these
schemes by considering that users who want to receive 360o

videos are interested in viewing only a viewport. To the best
of our knowledge, there are no sophisticated online caching
policies for 360o videos that take into account that users are
interested in viewing only a viewport.

For the sake of simplicity, all the conducted experiments are
done assuming a single SBS and an MBS. This does not affect
the derived conclusions, as SBSs make caching decisions
independently of each other. As we have already mentioned in
Section III, although SBSs’ coverage area may overlap, users
are assigned to a single SBS, i.e., the one with the maximum
SINR. The exploitation of opportunities arising because of the
overlapped coverage areas is part of our future work. The
exploitation of users association with multiple SBSs would

require changes in our framework, which would increase the
complexity. This problem can be addressed using multi-agent
concepts [42], but the main challenge would be how to deal
with the tight delivery deadlines. We would like to emphasize
that our algorithm can be applied to networks with an arbitrary
number of SBSs. This is because as each user is assigned to
a single SBS, our algorithm can run in parallel for each SBS.
The coverage range of the SBS is set to be Pn = 300m,
while the coverage range of the MBS is PN+1 = 2000m,
and is large enough to permit the communication with the
SBS. The delay needed to obtain one Mbit from the SBS is
dn = 1/14 sec/Mbit, while the delay to deliver one Mbit
from the backhaul of the MBS to the user is dN+1 = 1/2.9
sec/Mbit. The cache capacity of the SBS is set to be enough
to store 10% of the 360o videos of the content library. The
number of users is U = 200 who are randomly placed in the
coverage area of the SBSs. Recall that, when a 360o video is
cached at the SBS, this means that for each GOP, all the tiles
are cached at the base quality, and the tiles that form a virtual
viewport are cached in high quality.

The content library contains V = 500 videos, while each
video is encoded in 30 GOPs. The duration of each GOP
is assumed to be tdisp = 1 sec. Each GOP is encoded into
M = 12 tiles, where each tile is encoded into L = 2 quality
layers. The bitrate of the base layer is 2 Mbps, while the
bitrate of the enhancement layer is 12 Mbps. The size of each
viewport consists of 4 tiles, while the available viewports are
the ones depicted in Fig. 4. The distortion reduction achieved
by obtaining a tile at the base quality layer is 30 dB, while
the distortion reduction achieved by receiving a tile at the
enhancement quality layer is 10 dB. The probability of a
360o video to be requested from a user follows the Zipfian
distribution [43], as it is common to the literature. The shape
parameter of the Zipfian distribution is set to ηv = 1. The
probability of a 360o video v ∈ V to be selected under the
Zipfian distribution is given by:

pv =
1/vηv∑
v∈V 1/v

ηv
.

We consider realistic navigation patterns, extracted from
the dataset in [11], from which we sampled 200 trajectories
of head movements. These trajectories are obtained from 10
different videos, where for each video, we sampled 20 different
trajectories. With equal probability, we mapped the index of
each one of the V = 500 videos from the content library to
one of the 10 sampled videos of the dataset. Then, for each
of the V = 500 videos of the content library, according to its
mapped index, we selected one of the 20 available trajectories
uniformly at random. We used Zipf distribution with different
shape parameters in the range [0.8, 2.5] for generation of the
training and testing sets.

We assume that the total number of sets of users’ requests
is W = 10000. The short-term time window refers to Hs =
300 sets of user requests,2 while the long-term time window
corresponds to Hl = 1000 sets of user requests. The reward in
(4) is calculated for the next H = 1000 sets of user requests.

2Each set of requests corresponds to the tiles of a single video demanded
by a user.

10

Fig. 4. Considered set of viewports. The light blue area highlights the area
covered by the viewports.

B. Deep Neural Network Training

We consider a Deep Neural Network (DNN), which consists
of four fully connected layers, i.e., the input layer, two hidden
layers, and the output layer. As the cache capacity of our
system is C, the input layer consists of 10C + 2 nodes that
reflect the vector size of each state. The hidden layers and the
output layer consist of 5C + 1 nodes, as there are 5C + 1
total actions. The activation function of the hidden layers is
the “ReLu”, while the activation function of the output layer is
the “linear” function. The loss function for the training of the
DNN in the offline phase is the same as the one that is used in
the online phase, and is given in (11). The DNN is trained with
the Adam optimizer. The DNN is trained for 100 epochs with
historic transition profiles, as explained in Section VI in order
to become sufficiently accurate. The transition profiles were
generated following the Zipfian distribution, where the shape
parameters were varied in the range [0.8, 2.5] to diversify the
users’ requests. The learning rate is set to be α = 0.001, while
the ε-greedy parameter is set to ε = 0.05. The discount factor
is set to be γ = 0.6. The experience replay buffer is set to be
D = 2000, while the mini-batch size is set to MB = 32. The
mini-batch samples are obtained every NB = 200 requests.
The convergence of the loss function during the training phase
for the basic scenario is presented in Fig. 5. When the DNN
is trained with different system settings than the ones of the
basic scenario, a similar convergence behavior is noticed. We
would like to note that our employed DNN is trained using
a variety of consumption patterns, while the environment in
the online phase is considered unknown. These patterns are
available to network operators through collecting statistics
regarding consumed data. These statistics are obtained by
analyzing consumption patterns that occurred over previous
years. In the online phase, changes in the popularity model
happen gradually, and this is why our model can learn them
fast with a small loss.

C. System Parameter Analysis

1) Cache Size: First, we examine the impact of the cache
size on the overall quality of the rendered viewports. To this
aim, we vary the cache capacity C in the range [5, 25]%
of the size of the content library. As we can see in Fig. 6,

0 20 40 60 80 100

Epoch

0

5

10

15

20

25

30

M
S

E

10 3

Fig. 5. MSE of the loss function with respect to the training epochs.

5 10 15 20 25

Cache Size (%)

32

33

34

35

36

37

38

Y
-P

S
N

R
 (

d
B

)

Proposed

LFU

LRU

FIFO

Fig. 6. Y-PSNR of the rendered viewports with respect to the cache size for
all the schemes under comparison.

the proposed scheme outperforms the LFU, LRU and FIFO
schemes, for all cache sizes. In particular, for typical cache
capacity sizes, i.e., [5-10]%, the performance gap between
the proposed scheme and the LFU, the LRU and the FIFO
is about 1 dB, 1.5 dB, and 2 dB, respectively. This is because
the proposed scheme achieves a better cache hit ratio, as
shown in Fig. 7. The increased cache hit ratio of the proposed
scheme is attributed to the use of the DQN that learns from
the experience of the past observations, which content should
be cached. In addition, unlike LFU, LRU and FIFO, where the
cached tiles in high quality correspond to actual viewports, in
the proposed algorithm, the tiles that will be cached for each
360o video in high quality correspond to virtual viewports.
This provides us with greater flexibility to decide the cached
tiles. The effect of the increased cache hit ratio on the quality
of the rendered viewports comes from the fact that the tiles
that are delivered from the cache of the SBS to the users are
delivered with a smaller delay. Hence, more tiles are delivered
in total to the users under the considered tight time constraints.
When the cache capacity is large, i.e., 25%, the performance
gap between the proposed algorithm and the LFU, the LRU
and the FIFO schemes closes to about 0.8 dB, 1 dB and 1.4
dB, respectively. This happens because as the cache capacity
becomes larger, most of the popular content is stored in the
SBS cache for all the schemes.

11

5 10 15 20 25

Cache Size (%)

20

30

40

50

60

70

80
C

a
c
h
e
 H

it
 R

a
ti
o
 (

%
)

Proposed

LFU

LRU

FIFO

Fig. 7. Cache Hit Ratio with respect to the cache size for all the schemes
under comparison.

5 10 15 20 25

Cache Size (%)

32

33

34

35

36

37

38

Y
-P

S
N

R
 (

d
B

)

Proposed

LFU

LRU

FIFO

Fig. 8. Y-PSNR of the rendered viewports with respect to the cache size
assuming perfect VP for all the schemes under comparison.

To understand the impact of the prediction scheme, we
examine in Fig. 8 the impact of the cache size on the overall
quality of the rendered viewports when perfect viewport
prediction is assumed for the same setting, as in Fig. 6. By
comparing Figs. 6 and 8, we can observe that the quality of
the rendered viewports in case of perfect VP improves for all
the schemes under comparison. Further, we can note that the
comparative performance among all schemes is similar in both
cases, regardless of the accuracy of the VP mechanism. We
would like to emphasize that assuming perfect prediction is an
oracle and is used here only as a benchmark. Overall, online
caching offers great performance gains because more tiles are
delivered to the users under tight delivery constraints.

2) Video popularity distribution: In Fig. 9, we analyze the
impact of the skewness parameter of the Zipfian distribution,
which characterizes the 360o video popularity. Specifically,
we alter the shape parameter ηv in the range [0.8, 1.6] and
measure the overall quality of the rendered viewports for all
the schemes under comparison. We note that an increase in the
value of the Zipf shape parameter ηv leads to an increase in the
overall rendered quality for all the schemes. This is because
bigger values of ηv mean that the video popularity distribution
gets steeper, i.e., a smaller number of 360o videos is popular,
which increases the efficiency of the cache utilization. We
can further observe that as the users’ requests concern a

0.8 1 1.2 1.4 1.6

Zipf Shape parameter
v

30

32

34

36

38

40

Y
-P

S
N

R
 (

d
B

)

Proposed

LFU

LRU

FIFO

Fig. 9. Y-PSNR of the rendered viewports with respect to the Zipf shape
parameter of the 360o videos for all schemes under comparison.

smaller number of videos (big ηv values), the performance gap
between the proposed algorithm and the LFU, the LRU, and
the FIFO schemes decreases. For example, as the skewness
parameter changes from 0.8 to 1.6, the performance gap
between the proposed algorithm and the LFU decreases from
∼ 1 dB to ∼ 0.6 dB. This is attributed to the fact that as
a smaller number of 360o videos becomes popular, most of
these videos will be cached at the SBS for all the schemes.

3) Viewports’ popularity distribution: Besides video pop-
ularity, we examine the impact of viewports’ popularity. We
first assume that the viewports’ popularity follows a Zipfian
distribution with skewness parameter ηp. To analyze the impact
of the skewness parameter on the quality of the rendered
viewports, we vary the shape parameter ηp in the range [0.5,
2.5]. The performance of the schemes under comparison is
depicted in Fig. 10. From the results, we can note that an in-
crease of the skewness parameter ηp leads to an increase in the
overall quality of the rendered viewports for all the examined
schemes. This is because as the parameter ηp increases, the
user requests for the various parts of the 360o video scenes
become less diverse. Thus, the cache effectiveness is improved.
In addition, as the skewness parameter changes from 0.5 to
2.5, the performance gap between the proposed algorithm
and the LFU increases from about 0.5 dB to about 0.65 dB,
respectively. This is because unlike LFU, in the proposed
algorithm, the caching decisions for the tiles that will be
cached in high quality are made for virtual viewports, which
offers increased flexibility in the caching decisions regarding
which tiles to cache. Thus, as the requests for the various
viewports become less diverse, the performance gains in the
proposed algorithm increase. Similar conclusions can be drawn
by comparing the proposed scheme with the LRU and FIFO
schemes.

In Fig. 11, we evaluate the cache hit ratio of the proposed
scheme for: a) our basic scenario where the requests for the
viewports are according to the dataset [11], b) the case where
the requests for the viewports follow the Zipfian distribution
while the shape parameter ηp takes a value from the range
[0.5, 1.5], and c) the case where all the user requests are for
one viewport, which we term as “Selective”. To this aim, we
vary the cache size from 5% to 15% of the content library. As

12

0.5 1 1.5 2 2.5

Zipf Shape parameter
p

32

33

34

35

36

37

38
Y

-P
S

N
R

 (
d
B

)

Proposed

LFU

LRU

FIFO

Fig. 10. Y-PSNR of the rendered viewports with respect to the Zipf shape
parameter of the viewports for all schemes under comparison.

5 10 15

Cache Size (%)

30

40

50

60

70

80

C
a

c
h

e
 H

it
 R

a
ti
o

 (
%

)

Selective

Zipf np=1.5

Zipf np=1

Zipf np=0.5

Dataset

Fig. 11. Cache hit ratio with respect to the cache size for the proposed scheme
considering different viewport popularity distributions.

we can observe, the “Selective” distribution achieves a better
cache hit ratio in all cases. This is expected, as when the
viewports follow either the dataset or the Zipfian distribution,
the requests for the viewports are diverse, while in case of
the Selective distribution, all requests are for one viewport.
In addition, the cache hit ratio is better when the skewness
parameter is higher as described above, while the performance
of the dataset, is comparable with the case when the skewness
parameter is ηp = 1.

4) Backhaul Usage: In Fig. 12, we compare the perfor-
mance of all the schemes under comparison in terms of the
backhaul usage. This is a very important performance indicator
of the caching schemes since field trials [44] have shown that
by reducing the backhaul usage, the network service cost is
also reduced. To this end, we vary the cache size in the range
[5, 25]% of the content library and measure the backhaul
usage, in terms of the bandwidth that should be communicated
to satisfy the demands. As expected, an increase in the cache
size leads to a decrease in the backhaul usage for all cases.
This is because as the cache size increases, more videos will
be able to be stored at the SBS cache, thus, more content
will be served locally to the users. In addition, we can note
that as the cache size increases, the performance gap between
the proposed method and the other schemes under comparison
decreases. Specifically, as the cache size increases from 5% to

5 10 15 20 25

Cache Size (%)

100

120

140

160

180

200

B
a
c
k
h
a
u
l
U

s
a
g
e
 (

G
B

)

Proposed

LFU

LRU

FIFO

Fig. 12. Backhaul usage with respect to the Cache Size for all schemes under
comparison.

1 2 3 4 5 6 7 8 9 10

Viewport index

0

10

20

30

40

R
e

q
u

e
s
ts

 f
o

r
V

ie
w

p
o

rt

Fig. 13. Total amount of requests for each one of the available viewports.

25%, the performance gap between the proposed method and
the LFU decreases from about 15.6 GB to approximately 10.7
GB. This is because as the cache size increases, most of the
requested content will be able to be cached at the SBS, and
thus, the effectiveness of the caching improves for all schemes.

D. Overlap between Viewports

In this section, we present how the overlap between the
various viewports shapes the popularity of each tile. To this
aim, we examine the popularity of each viewport, along with
the popularity of each tile. These popularities are computed
by measuring the frequency of occurrence of a request wg in
a window of the previous Hl = 1000 sets of user requests.
The popularity of each viewport is depicted in Fig. 13 and
the popularity of each tile is depicted in Fig. 14. Although the
most popular viewport is the viewport 8 (see the viewports
illustrated in Fig. 4), by observing the Fig. 14, we can see
that the most popular tiles do not correspond to the tiles of
that viewport. The overlap between the diverse requests for the
various viewports is what determines the popularity of each
tile. Thus, by using virtual viewports, which consist of the
most popular tiles, the most popular tiles can be cached at the
SBS. This results in higher cache hit ratio and better quality
for the rendered viewports.

13

Fig. 14. Total amount of requests for each one of the in high quality encoded
tiles.

VIII. CONCLUSION

In this work, we studied the problem of delivering 360o

videos in mobile networks using edge caching for un-
known content popularity. We formulated the caching place-
ment/eviction problem as a MDP that aims at maximizing the
overall quality of the videos delivered to the users. To deal
with the dimensionality problem, we employ a DQN solution
that exploits the patterns from the observations in the sequence
of users’ requests, in order to learn for each state, which cache
update action should be taken. In this way, we are able to cache
the 360o videos that are predicted to be the most popular,
along with for each GOP, a virtual viewport. To evaluate our
method, we use both real and synthetic navigation patterns. We
extensively compare our proposed method with the LFU, LRU,
and FIFO schemes. The results show that the proposed method
outperforms its counterparts. This improved performance is
attributed to the exploitation of the tiles’ popularity and the
use of virtual viewports instead of the original ones, which
increases the flexibility in the caching decisions. While at this
work, we assumed that all users have the same requirements,
i.e., demand of 360o videos encoded at the same quality, as
part of our future work, we plan to study the case users having
various quality requirements. In such case, our system could
still be used, but the complexity of the problem will increase
because the state-action space would grow in order to capture
the fact that users have diverse capabilities.

REFERENCES

[1] P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint caching
and delivery of 360o videos in heterogeneous networks,” in Proc. of
IEEE 21st Int. Workshop on Multimedia Signal Processing (MMSP’19),
Kuala Lumpur, Malaysia, Malaysia, Sep. 2019.

[2] ——, “Tile-based joint caching and delivery of 360o videos in het-
erogeneous networks,” IEEE Trans. on Multimedia, vol. 22, no. 9, pp.
2382–2395, Sep. 2020.

[3] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery,” in Proc. of IEEE Int.
Conf. on Communications (ICC’17), Paris, France, May 2017.

[4] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“360 video viewing dataset in head-mounted virtual reality,” in Proc. of
the 8th ACM on Multimedia Systems Conf. (MMSys’17), Taipei, Taiwan,
Jun. 2017.

[5] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube
network traffic at a campus network - measurements, models, and
implications,” Comput. Netw., vol. 53, no. 4, pp. 501–514, Mar. 2009.

[6] G. Papaioannou and I. Koutsopoulos, “Tile-based caching optimization
for 360o videos,” in Proc. of the 20th ACM Int. Symp. on Mobile Ad
Hoc Networking and Computing, Mobihoc ’19, Catania, Italy, Jul. 2019.

[7] P. Blasco and D. Gündüz, “Multi-armed bandit optimization of cache
content in wireless infostation networks,” in Proc. of IEEE Int. Symp.
on Information Theory, Honolulu, HI, USA, Jun. 2014.

[8] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Trans. on Wireless Communications, vol. 16, no. 2, pp.
1024–1036, Feb. 2017.

[9] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279–292, May 1992.

[10] H. Li, T. Wei, A. Ren, Q. Zhu, and Y. Wang, “Deep
reinforcement learning: Framework, applications, and embedded
implementations,” vol. abs/1710.03792, 2017. [Online]. Available:
http://arxiv.org/abs/1710.03792

[11] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, “A subjective
study of viewer navigation behaviors when watching 360-degree videos
on computers,” in Proc. of IEEE Int. Conf. on Multimedia and Expo
(ICME’18), San Diego, CA, USA, July 2018.

[12] C. Ge, N. Wang, W. K. Chai, and H. Hellwagner, “QoE-assured 4K
HTTP live streaming via transient segment holding at mobile edge,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.
1816–1830, Aug. 2018.

[13] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “QoE-driven mobile
edge caching placement for adaptive video streaming,” IEEE Trans. on
Multimedia, vol. 20, no. 4, pp. 965–984, Apr. 2018.

[14] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, Sept. 2016.

[15] J. Poderys, M. Artuso, C. M. O. Lensbl, H. L. Christiansen, and J. Soler,
“Caching at the mobile edge: A practical implementation,” IEEE Access,
vol. 6, pp. 8630–8637, Feb. 2018.

[16] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Edge-caching wireless
networks: Performance analysis and optimization,” IEEE Trans. on
Wireless Communications, vol. 17, no. 4, pp. 2827–2839, Apr. 2018.

[17] S. Zhang, N. Zhang, P. Yang, and X. Shen, “Cost-effective cache de-
ployment in mobile heterogeneous networks,” IEEE Trans. on Vehicular
Technology, vol. 66, no. 12, pp. 11 264–11 276, Dec. 2017.

[18] Z. Su, Q. Xu, F. Hou, Q. Yang, and Q. Qi, “Edge caching for layered
video contents in mobile social networks,” IEEE Trans. on Multimedia,
vol. 19, no. 10, pp. 2210–2221, Oct. 2017.

[19] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in Proc. of the 52nd
Annual Conf. on Information Sciences and Systems (CISS), Princeton,
NJ, USA, Mar. 2018.

[20] Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, “Joint user scheduling
and content caching strategy for mobile edge networks using deep
reinforcement learning,” in Proc. of IEEE Int. Conf. on Communications
Workshops (ICC Workshops), Kansas City, MO, USA, May 2018.

[21] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep
reinforcement learning in large discrete action spaces,” 2015. [Online].
Available: http://arxiv.org/abs/1512.07679

[22] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl, “Tile based HEVC
video for head mounted displays,” in Proc. of IEEE Int. Symp. on
Multimedia (ISM’16), San Jose, CA, USA, Dec. 2016.

[23] M. Hosseini, “View-aware tile-based adaptations in 360 virtual reality
video streaming,” in Proc. of IEEE Virtual Reality (VR’17), Los Angeles,
CA, USA, Mar. 2017.

[24] J. Le Feuvre and C. Concolato, “Tiled-based adaptive streaming using
MPEG-DASH,” in Proc. of the 7th Int. Conf. on Multimedia Systems,
Klagenfurt, Austria, 2016.

[25] A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, and R. Prakash, “Fov-
aware edge caching for adaptive 360o video streaming,” in Proc. of the
26th ACM Int. Conf. on Multimedia, ser. MM ’18, Seoul, Rep. Korea,
Oct. 2018.

[26] Q. Lu, C. Li, J. Zou, K. Tang, Q. Wang, and H. Xiong, “Transcoding-
enabled edge caching and delivery for tile-based adaptive 360-degree
video streaming,” in Proc. of IEEE Visual Communications and Image
Processing (VCIP’19), Sydney, Australia, Australia, Dec. 2019.

[27] Y. Bao, H. Wu, A. A. Ramli, B. Wang, and X. Liu, “Viewing 360
degree videos: Motion prediction and bandwidth optimization,” in Proc.

14

of IEEE 24th Int. Conf. on Network Protocols (ICNP’16), Singapore,
Singapore, Nov. 2016.

[28] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, “A subjective
study of viewer navigation behaviors when watching 360-degree videos
on computers,” in Proc. of IEEE Int. Conf. on Multimedia and Expo
(ICME’18), San Diego, CA, USA, Jul. 2018.

[29] S. Rossi and L. Toni, “Navigation-aware adaptive streaming strategies
for omnidirectional video,” in Proc of. IEEE 19th Int. Workshop on
Multimedia Signal Processing (MMSP’17), Luton, UK, Oct. 2017.

[30] W. C. Lo, C. L. Fan, S. C. Yen, and C. H. Hsu, “Performance mea-
surements of 360o video streaming to head-mounted displays over live
4g cellular networks,” in Proc. of 19th Asia-Pacific Network Operations
and Management Symp. (APNOMS’17), Seoul, South Korea, Sep. 2017.

[31] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
Proc. of the 24th Annual Int. Conf. on Mobile Computing and Network-
ing, MobiCom ’18, New Delhi, India, 2018.

[32] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 1, pp. 43–57, March 2019.

[33] M. Xiao, C. Zhou, Y. Liu, and S. Chen, “Optile: Toward optimal tiling
in 360-degree video streaming,” in Proc. of the 25th ACM Int. Conf. on
Multimedia, MM ’17, Mountain View, California, USA, Apr. 2017.

[34] M. Assens, K. McGuinness, X. Giró, and N. E. O’Connor,
“Saltinet: Scan-path prediction on 360 degree images using saliency
volumes,” CoRR, vol. abs/1707.03123, 2017. [Online]. Available:
http://arxiv.org/abs/1707.03123

[35] A. D. Aladagli, E. Ekmekcioglu, D. Jarnikov, and A. Kondoz, “Pre-
dicting head trajectories in 360o virtual reality videos,” in Proc. of Int.
Conf. on 3D Immersion (IC3D’17), Brussels, Belgium, Dec 2017.

[36] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache
hits: Improving performance through recommendation and delivery of
related content,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1300–1313, June 2018.

[37] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[39] R. E. Bellman, Dynamic Programming. Dover Publications, 2003.
[40] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,

and D. I. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” IEEE Communications Surveys
Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam et al.,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[42] E. Nisioti and N. Thomos, “Robust Coordinated Reinforcement Learning
for MAC Design in Sensor Networks,” Journal Selected Areas on
Communications, vol. 37, no. 10, pp. 2211–2224, Oct. 2019.

[43] L. Alexander, R. Johnson, and J. Weiss, “Exploring zipf’s law,” Teaching
Mathematics and Its Applications: Int. Journal of the IMA, vol. 17, no. 4,
pp. 155–158, Dec. 1998.

[44] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video
delivery over heterogeneous cellular networks: Optimizing cost and
performance,” in Proc. of IEEE Conf. on Computer Communications,
INFOCOM’14, Toronto, ON, Canada, Apr. 2014.

Pantelis Maniotis received his diploma in Electri-
cal and Computer Engineering from the Aristotle
University of Thessaloniki in 2015 and his PhD
from the School of Computer Science and Electronic
Engineering at the University of Essex in 2020. His
interests fall in the areas of multimedia technologies,
wireless communications, Virtual and Augmented
Reality, edge caching, and machine learning.

Nikolaos Thomos (S’02-M’06-SM’16) is an Asso-
ciate Professor at the University of Essex, UK and
the deputy director of research at School of Com-
puter Science and Electronic Enineering. Previously,
he was senior researcher at the Ecole Polytechnique
Fédérale de Lausanne (EPFL), and the University
of Bern, Switzerland. He received the Diploma and
Ph.D. degrees from Aristotle University of Thessa-
loniki, Greece in 2000 and 2005 respectively. He is
an elected member of IEEE MMSP Technical Com-
mittee (MMSP - TC) for the period 2019 - 2022. His

research interests include machine learning for communications, multimedia
communications, network coding, information-centric networking, source and
channel coding, device-to-device communication, and signal processing. He
received the highly esteemed Ambizione career award from Swiss National
Science Foundation (SNSF) in 2008.

