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Abstract

We study the fundamental problem of distributed network formation among mobile agents of lim-
ited computational power that aim to achieve energy balance by wirelessly transmi�ing and receiving
energy in a peer-to-peer manner. Speci�cally, we design simple distributed protocols consisting of a
small number of states and interaction rules for the formation of arbitrary and k-ary tree networks.
Furthermore, we evaluate (theoretically and also using computer simulations) a plethora of energy
redistribution protocols that exploit di�erent levels of knowledge in order to achieve desired energy
distributions among the agents which require that every agent has exactly or at least twice the energy
of the agents of higher depth, according to the structure of the network. Our study shows that without
using any knowledge about the network structure, such energy distributions cannot be achieved in a
timely manner, meaning that there might be high energy loss during the redistribution process. On the
other hand, only a few extra bits of information seem to be enough to guarantee quick convergence to
energy distributions that satisfy particular properties, yielding low energy loss.

∗A preliminary version of this paper entitled “Peer-to-peer energy-aware tree network formation” appeared in Proceedings of
the 16th ACM International Symposium on Mobility Management and Wireless Access (MOBIWAC), pages 1–8, 2018 [Madhja et al.,
2018]. �is full version extends the conference one in multiple ways. It contains all missing proofs of the theoretical statements
and additional details on the correctness and e�ciency of our methods for the lossless case. Besides presenting protocols only for
the formation of arbitrary and binary tree networks, we now further present protocols for the formation of k-ary tree networks,
for any integer k ≥ 2, building upon ideas used for binary trees. For such networks, we also show that it is possible to achieve
particular energy distributions when there is no energy loss, by designing new protocols for these cases as well. �e evaluation
of our methods in the lossy case has been extended to compare the e�ciency of the protocols in terms of the energy that has been
lost until a stable energy distribution has been reached. Our discussion on related work, generalizations of our model and open
problems has also been extended signi�cantly. Moreover, many examples have been included throughout the paper to illustrate
how all proposed protocols work in particular cases. We would like to thank Dimitrios Tsolovos for fruitful discussions at early
stages of this work that led to the publication of the preliminary conference version of this paper. �is work has been partially
supported by the Greek State Scholarships Foundation (IKY), and by the Alexander S. Onassis Public Bene�t Foundation.
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1 Introduction

During the last few decades, the problem of how to carefully exploit the technology of Wireless Power
Transfer (WPT) [Cannon et al., 2009; Kurs et al., 2007; Lin et al., 2015; Imura and Hori, 2011; Wang et al.,
2004] in (mobile) ad hoc networks has been one of the main subjects of study in the related literature on
sensor networks. In particular, special nodes can be deployed in the network area and exploit WPT in order
to replenish the energy reserves of the network nodes (which drain their ba�eries while performing sensing
and communication tasks), allowing them to sustain their normal operation for longer periods of time, and
thus considerably extending the network lifetime; see [Nikoletseas et al., 2016] for an introduction to this
topic.

Further recent developments on WPT-related technologies o�er mobile devices the capability to achieve
bi-directional energy transfer, and enable peer-to-peer energy exchanges between network nodes [del
Prete et al., 2015; Schafer et al., 2015], thus motivating new applications, like energy sharing between elec-
tric vehicles and portable devices. Towards this goal, Worgan et al. [2016] recently designed PowerShake,
a WPT-based power sharing system between mobile devices, that allows the users to have control over
the energy in their personal devices and trade it with others on demand. Such a system can be applied in
vehicular ad hoc networks (VANETS) [Li and Wang, 2007; Al-Sultan et al., 2014; Zhang et al., 2019; Liang
et al., 2015], especially with the very recent development and massive demand of electric vehicles.

Of course, one can think of many other possible and more critical applications of this technology.
For instance, imagine a number of tiny medical devices, equipped with the appropriate sensors, which
are injected into a patient’s body in order to monitor her medical status. Due to their size, such devices
would have to be computationally weak, with limited memory and energy reserves. However, by carefully
exploiting their communication capabilities, these devices can coordinate with each other in order to form
complex network structures with the goal of performing more advanced computations and also help each
other survive by exchanging energy.

Michail and Spirakis [2016] initiated the study of network formation among populations of computa-
tionally weak agents. �eir model is inspired by the population protocol model of Angluin et al. [2007]
and the mediated population protocol of Michail et al. [2011], and assumes that the agents do not share
memory or exchange messages unless they interact, in which case they can connect to each other and
form particular network structures. �e agents are required to collectively converge to a stable state, even
though they cannot grasp the status of the entire population. �e authors design, prove the correctness,
and analyze the time complexity of a series of protocols for the formation of many interesting networks
focusing, among others, to stars, lines and rings. Moreover, they design generic protocols that are capable
of simulating Turing Machines in order to construct large classes of networks.

Achieving energy balance over the network nodes using peer-to-peer WPT methods can ensure the
stable operation of the network and the extension of its lifetime. Recently, Nikoletseas et al. [2017b] showed
that energy balance can be achieved by populations of devices (agents) that interact in an opportunistic
manner. Whenever two agents happen to come in close proximity they can decide whether to exchange
energy based on their current con�gurations (energy levels, memory, etc). �e authors simulate the inter-
actions between pairs of nodes by assuming the existence of a probabilistic scheduler whose purpose is
to decide which pairs of nodes will interact in every step of time. Moreover, they assume that during an
energy exchange, a constant fraction of the transmi�ed energy is lost.

Madhja et al. [2016a] studied the problem of energy-aware network formation among populations of
computationally weak agents, a problem that combines elements from the models of Michail and Spirakis
[2016] and Nikoletseas et al. [2017b]. �e goal is to design distributed protocols so that the nodes connect
with each other in order to form a star network and achieve a particular energy distribution, where the
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central node stores half of the network energy, while the remaining energy is evenly distributed among the
rest of the nodes. Another critical di�erence of the model of Madhja et al. [2016a] from that of Nikoletseas
et al. [2017b] is that the energy that is lost during any exchange varies from interaction to interaction;
speci�cally, in their simulations, Madhja et al. [2016a] treat the loss of energy as a random variable fol-
lowing a normal probability distribution with given expected value and variance.

1.1 Our contribution

In this paper, we adopt the model of Madhja et al. [2016a] and consider scenarios involving a population
of computationally weak mobile agents aiming to (1) distributively form a tree network structure, and (2)
achieve some sort of energy balance. In particular, we focus on the construction of arbitrary and k-ary
tree networks (for integer k ≥ 2), and energy distributions with the property that every node has exactly
or at least twice the energy of each of its children.

We start by designing, proving the correctness, and analyzing the time complexity of two simple pro-
tocols for the construction of arbitrary and binary tree networks; these protocols require only a few states
(four for arbitrary trees and six for binary) and interaction rules (�ve and eight, respectively). �en, we
extend the second protocol (used for the construction of binary trees), so that the agents can form more
general k-ary tree networks. We also present two simple interaction rules that allow the nodes to locally
infer useful information about their own depth (distance from the root node) and the height of the tree.

To achieve the desired energy distributions, which depend on the network structure, we present of
series of energy redistribution protocols, which di�er on the amount of energy that is exchanged among
the agents during their interactions, and on the knowledge that the agents need to have about the net-
work structure in order to achieve the distributions. Our goal is to test the limits of what type of energy
distributions are possible to achieve using devices with di�erent computational capabilities.

• For the lossless case, where no energy is lost during the interactions among the agents, we theoret-
ically showcase the properties of our protocols; this assumption allows us to argue whether, even
under unrealistically perfect conditions, our protocols are able to converge to the desired energy
distributions. In particular, we show that one of our protocols is able to achieve an energy distri-
bution according to which each node has exactly twice the energy of its children. However, since
this protocol requires complete information about the structure of the network, we then focus on
protocols that are oblivious to such information or utilize some of it, and show that they can achieve
relaxed energy distributions (where each node has at least twice the energy of its children, with the
possible exception of the root node of the tree) in some cases.

• For the lossy case, where energy is lost during the interactions between the nodes, we conduct sim-
ulations in order to �ne-tune several parameters used by our protocols, and evaluate their perfor-
mance on several metrics, which aim to measure the convergence time of the protocols and the
quality of the outcome energy distribution compared to the ideal one. Surprisingly, we observe that
two of our oblivious protocols (that do not require any global information about the network) match,
and sometimes outperform, our stronger protocols, which require some more concrete knowledge
about the network.

1.2 Other related Work

Wireless Power Transfer has been extensively studied in the context of (mobile) ad hoc networks. In
most of these studies, powerful chargers are used with the sole purpose of replenishing the energy of the
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network nodes. For instance, Madhja et al. [2015] consider multiple mobile chargers with limited energy
and design e�cient traversal and coordination strategies with the goal of extending the network lifetime
of static sensor networks. In contrast, Angelopoulos et al. [2015] consider mobile ad hoc networks and a
single mobile charger with in�nite energy that traverses the network in order to recharge the agents as
required. Another variation of this �avor, is the recent work of Madhja et al. [2019] who consider mobile
ad hoc networks and a single static charger that has the ability to adapt its charging power in order to
balance the trade-o�s between recharging the mobile agents and saving energy for future interactions.
Nikoletseas et al. [2017a] experimentally show that WPT is a viable option, by performing experiments
using real devices that aim to charge the sensors and keep the energy loss low. �ey also propose a protocol
that achieves energy balance over the chargers. For a more extensive overview of WPT techniques as well
as some of the key elements that make WPT possible, we refer the interested reader to the work of Bi et al.
[2016] and the book by Nikoletseas et al. [2016].

Zhang et al. [2015], Madhja et al. [2016b] and Chen et al. [2017] considered collaborative WPT schemas
and assumed some aspects of peer-to-peer energy exchange between the chargers. Speci�cally, the authors
proposed protocols that allow the chargers, besides charging the networks nodes as usual, to also cooperate
and charge each other. Bulut and Szymanski [2017] studied energy sharing in mobile social networks, by
taking into account the charging pa�erns of devices and the social interactions between their owners. �ey
also proposed an energy sharing model according to which the nodes of the mobile networks are paired
into power buddies. Dhungana et al. [2018] studied a model according to which the mobile devices can
be charged either by using a charging cable or in a peer-to-peer manner based on their interactions with
other devices and the goal is to minimize the number of times a device needs to be charged via the cable.
Bulut et al. [2018] studied the potential of crowdcharging. �ey discussed its feasibility, the so�ware and
hardware challenges that emerge for its use, and also developed an application that builds a social network
among the users and manages the entire process of power sharing between the mobile devices.

1.3 Roadmap

�e rest of the paper is structured as follows. In Section 2 we give necessary preliminary de�nitions and
examples involving the tree network structures and the energy distributions that we aim to achieve. In
Section 3 we present and analyze various tree network formation protocols as well as protocols that allow
the agents to locally learn useful network characteristics. In Section 4 we present simple redistribution
protocols and theoretically study their properties when there is no energy loss. �en, in Section 5, using
computer simulations, we study the properties of our protocols even when there is random energy loss.
We conclude in Section 6 with a short discussion on possible extensions of our model and many interesting
open problems.

2 Preliminaries

We consider a population of n mobile agents (or nodes) V = {v1, v2, ..., vn} of limited computational
power and memory, who move around in a bounded networking area. When two nodes come in close
proximity and enter the communication range of each other, they interact according to an interaction pro-
tocol which essentially de�nes the information that the nodes must exchange, and how they should update
their con�gurations. �e objective of the interaction protocol is the nodes to eventually distributively form
a desired network structure and achieve an energy distribution. In the following, we give necessary de�-
nitions and terminology regarding node con�guration, interactions, tree formation, energy distributions,
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exchanges and loss. We also present a few examples to help the reader fully grasp the details of the se�ing.

2.1 Con�gurations and interactions

We assume that the time runs in discrete steps. For every time step t ∈ N≥0, each node v is in a state qv(t)
from a set Q of possible states, has energy Ev(t), memory Mv(t), and network connections Nv(t); the
tuple cv(t) = [qv(t), Ev(t),Mv(t), Nv(t)] is the con�guration of node v at time t. During each time step
t, a pair of nodes (u, v) interacts, and the nodes update their con�gurations according to the rules of the
interaction protocol, which de�ne transitions of the form

(cu(t), cv(t), condition)→ (cu(t+ 1), cv(t+ 1)).

Such a transition indicates that, if a speci�c condition regarding the nodes or the network is met, then
the con�gurations of the two participating nodes u and v are updated from cu(t) and cv(t) at time t to
cu(t+ 1) and cv(t+ 1) at time t+ 1, respectively.

In general, the movement of the nodes can be highly arbitrary as they may correspond to smart de-
vices that are carried around by humans or robots following possibly unpredictable movement pa�erns
performing various tasks. Following previous work [Madhja et al., 2016a; Michail and Spirakis, 2016; Niko-
letseas et al., 2017b], we abstract the movement of the nodes by assuming that all interactions are planned
by a fair scheduler, which satis�es the property that all possible interactions will eventually occur. Specif-
ically, we consider the existence of a fair probabilistic scheduler [Angluin et al., 2007] according to which,
during every time step, a single pair of nodes is selected independently and uniformly at random among
all possible pairs of nodes in the population, and the selected nodes then interact following the rules of
the interaction protocol. Observe that, due to the behavior of the scheduler, every pair of nodes will most
probably interact in a span of Θ(n2) time steps.

We should emphasize here that the purpose of the scheduler is to indicate which nodes are close to
each other at each time step and can therefore interact. Essentially, the scheduler hides the movement
and location characteristics of the nodes and allows us to avoid de�ning any particular mobility model to
specify how the location, speed, and direction of the nodes changes over time.

2.2 Tree formation

Our goal in this paper is to de�ne interaction protocols that can construct tree networks. Hence, we assume
that the nodes can form parent-child connections when they interact with each other and are allowed to
do so according to the rules of the protocol, depending on their con�gurations. When such a connection
is established between two nodes u and v, a directed edge from u to v, denoted as u v, is formed in the
network. �e direction indicates that u is the parent node and v is the child node, and helps both nodes
realize who of them is the parent when they communicate again in future interactions. Each node can
have at most one parent, but multiple children, depending on the tree we are aiming for.

We are interested in rooted spanning tree structures consisting of all nodes in the network; note that
the exact number of the nodes in the network is considered unknown and our network formation protocols
do not rely on such global information. Our goal is to construct arbitrary trees where each node may have
any number of children, and k-ary trees (for any integer k ≥ 2) where every node can have at most k
children. We call a node v isolated if it is not connected to any other node in the network, leaf if it has a
parent but no children, internal if it has a parent and at least one child, and root if it does not have a parent
but has children.
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2.3 Energy distributions

Another goal of this paper is to de�ne protocols that can achieve desired energy distributions over the
nodes of the network. We de�ne three interesting types of energy distributions. All of them demand that
nodes of lower depth (closer to the root of the tree) have more energy than nodes of higher depth. �is is
intuitive in applications related to data propagation and energy-e�cient routing, where the tree is used as
the communication network according to which the nodes can only communicate with the nodes they are
connected to (their parents and children; the only nodes they aware of). It is intuitive that nodes that are
closer to the data sink (according to the network) are involved in almost all propagations and need plenty
of energy to function properly for long periods of time, while distant nodes rarely communicate that much
and they can sustain normal operation using less energy [Akkaya and Younis, 2005; Akyildiz et al., 2002;
Boukerche et al., 2011; Pantazis et al., 2013; Zhang et al., 2014]. 1

�e �rst energy distribution that we consider is the strongest one (in terms of the condition that must
be satis�ed) and requires that every node has exactly twice the energy of each of its children. We refer to
such an energy distribution as exact. In particular, we say that a parent-child pair of nodes (p, c) is in an
exact energy equilibrium at time t if Ep(t) = 2Ec(t). �en, a tree network converges to an exact energy
distribution at time t if every parent-child pair of nodes (p, c) is in an exact energy equilibrium.

�e second type of energy distributions is a relaxation of the �rst one and requires every node to
have at least twice the energy of each of its children. We refer to such distributions as relaxed; observe
that there are in�nitely many relaxed energy distributions, in contrast to the exact distribution which is
unique. In particular, we say that a parent-child pair of nodes (p, c) is in a relaxed energy equilibrium at
time t ifEp(t) ≥ 2Ec(t). �en, a tree network converges to a relaxed energy distribution at time t if every
parent-child pair of nodes (p, c) is in a relaxed energy equilibrium.

Finally, the third type we consider is yet another relaxation of the exact energy distribution, which is
however more restrictive than the relaxed one. According to this type of energy distributions, we require
that every node has exactly twice the energy of each of its children except possibly for the root of the tree,
which can have more or less than twice the energy of its children; essentially the root assists the other
nodes of the network achieve an exact distribution. We refer to such an energy distribution as exact up to
the root.

2.4 Energy exchange and loss

To achieve the aforementioned energy distributions, the nodes must exchange energy when they meet
and interact (according to the choices of the scheduler of course). A redistribution protocol de�nes the
conditions under which such exchanges take place as well as the amount of energy that one node has to
transfer to another during their interaction. Energy transfer in such a peer-to-peer manner is possible by
carefully utilizing the WPT technology, which we here use as a black box.

Due to the nature of wireless energy technology, any energy exchange may induce some irrevocable
energy loss. Following [Madhja et al., 2016a; Nikoletseas et al., 2017b], we assume that whenever a node v
is supposed to transfer an amount x of energy to another node u, a fraction β of x is lost, and u actually
receives (1− β)x units of energy. In general, β is unknown and may vary from interaction to interaction
(during which there is indeed energy exchange among the participating nodes – not all interactions lead

1We remark that most energy-e�cient routing protocols in wireless sensor networks aim to improve metrics such as the
network lifetime. While the particular energy distributions we de�ne here can also be thought of as aiming to extend the network
lifetime, our primary goal is to achieve energy balance among the nodes that is consistent with the type of network that is formed,
which in this paper is a tree.
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to energy exchange). When we study the theoretical properties of our protocols, we mainly focus on the
lossless case where β = 0. However, in our simulations, we additionally consider the lossy case, where β is
a random variable following some normal distribution. We remark that we do not account for the possible
energy loss due to movement or other activities of the nodes, as this can be supplied by other sources: the
nodes may be carried around by humans, or robots which can use gas (or some other type of energy) in
order to move.

2.5 An example

Let us present a quick example to fully understand the tree network structures and the energy distributions
we are aiming for.

Example 1. Consider an instance with n = 7 nodes such that they initially have a total of 100 units of
energy (for the purposes of the example, it is irrelevant how this total energy is split among the nodes),
and assume that β = 0 (no energy is lost when energy is exchanged). Figure 1 depicts three possible tree
networks and three di�erent energy distribution that can be formed while the nodes interact with each
other.

• �e �rst network is an arbitrary tree consisting of one root node and 6 leaf nodes; this special type of
a tree is known as a star: the root is the center and the leaves are peripherals. �e energy distribution
is exact since the root node stores twice the energy of each of the other nodes.

• �e second network is a binary tree where every node has at most two children, and the energy
distribution is relaxed since every node has at least twice the energy of each of its children.

• �e third network is a 3-ary tree where every node has at most three children, and the energy
distribution is exact up to the root since only the root does not have twice the energy of each of its
children.

Observe that the exact energy distribution is unique and all nodes at the same depth (distance from the
root) end up having exactly the same energy (in our example this is equal to 12.5). �is is not true for
relaxed and exact up to the root energy distributions as one can observe from our example, where nodes
of the same depth might end up storing di�erent amounts of energy (for instance, in the second network
the root’s children have 15 and 21 units of energy, respectively).

3 Tree network formation

In this section, we present distributed protocols for the formation of tree networks. We start with arbitrary
trees and binary trees, and then extend the ideas used for binary trees to the more general case of k-ary
trees, for any integer k ≥ 2. Finally, we present two interaction rules that can be used by the nodes in
order to learn their own depth and the total height of the tree.

3.1 Arbitrary trees

For the formation arbitrary trees, we consider the protocol TreeConstructor which uses 4 states and the
interaction rules of Table 1; see also Figure 2 for a graphical explanation of the rules of the protocol. In
particular, we say that a node v is in state
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Figure 1: �e tree networks and energy distributions of Example 1; the number in each node represents
the units of energy that the node stores so that the sum over all nodes is equal to 100. (a) the le� network is
an arbitrary tree (star) and the nodes achieve an exact energy distribution (the root node has exactly twice
the energy of every other node). (b) the middle network is a binary tree and the nodes achieve a relaxed
energy distribution (all nodes have at least twice the energy of their children). (c) the right network is a
3-ary tree and the nodes achieve an exact up to the root energy distribution (all nodes but the root have
exactly twice the energy of their children).

rule transition
SS (S, S)→ (R,L, )
RS (R,S)→ (R,L, )
IS (I, S)→ (I, L, )
LS (L, S)→ (I, L, )
RR (R,R)→ (R, I, )

Table 1: �e interaction rules of TreeConstructor. �e rule SS implies that when two isolated nodes (in
state S) interact, they form a parent-child connection, one of them becomes the root (its state changes to
R) of the newly formed 2-node tree, and the other becomes the leaf (its state changes to L). Similarly, the
rule RS implies that when a root node (in state R) and an isolated node (in state S) interact, they form a
parent-child connection, and the isolated node becomes a leaf (its state changes to L). �e rest of the rules
can be interpreted similarly.

• S if v is isolated,

• L if v is a leaf,

• I if v is internal, and

• R if v is a root.

According to the interaction rules, when two nodes u and v interact with each other, node v becomes a
child of u when v is isolated, or when both u and v are root nodes. Essentially, we allow di�erent trees to
get connected only when their roots interact (viewing isolated nodes as 1-node trees).

Before we continue with the analysis of the protocol TreeConstructor, we present an example of how
it operates in order to construct an arbitrary tree network.

Example 2. Consider an instance with n = 8 nodes {v1, ..., v8}, and assume the following (incomplete)
ordering over pairs of nodes, according to which the fair probabilistic scheduler selects the nodes that
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Figure 2: Graphical representation of the interaction rules used by the two protocols TreeConstructor
and BinaryTreeConstructor.
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Figure 3: An example execution of the protocol TreeConstructor. Each circle contains the name of the
corresponding node and its current state. �e ordering according to which the fair probabilistic scheduler
selects the nodes that interact is as follows: (v1, v2), (v3, v4), (v1, v4), (v3, v5), (v1, v2), (v1, v3), (v2, v6),
(v7, v8), (v1, v7). Only the interactions that lead to new connections are depicted. See the relevant discus-
sion in Example 2.
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interact: (v1, v2), (v3, v4), (v1, v4), (v3, v5), (v1, v2), (v1, v3), (v2, v6), (v7, v8), (v1, v7). Figure 3 depicts
how the arbitrary tree gets formed following the rules ofTreeConstructor. All nodes are initially isolated.
We now describe the behavior of the protocol for each interaction:

• When the nodes (v1, v2) interact, they get connected according to rule SS : v2 becomes a child of v1,
v1 becomes a root node, and v2 becomes a leaf node; since both nodes were isolated, the choice as
to which of them becomes the parent is arbitrary in this case. �e same happens at the second step
for the pair (v3, v4): v4 becomes a child of v3, v3 becomes a root node, and v4 becomes a leaf node.

• For the next pair (v3, v5), since v3 is a root node and v5 is isolated, rule RS gets invoked and the
nodes get connected: v5 becomes a child of v3 and a leaf node.

• When nodes v1 and v4 interact, nothing happens since v1 is a root node and v4 is a leaf node.
TreeConstructor has no rule for this case since such nodes should not get connected: v4 already has
a parent, and leaf nodes are not allowed to become parents of root nodes since such connections could
create cycles when the interacting leaf and root nodes are already part of the same tree subnetwork.

• For the pair (v3, v5) the ruleRS get invoked again and leads to v5 becoming a child of v3 and a leaf
node, while for the pair (v1, v2) nothing happens since they are already connected to each other.

• For the pair (v1, v3), since both v1 and v3 are root nodes, the rule RR get invoked and establishes
a connection between them: v3 becomes a child of v1, v1 remains a root node, and v3 now becomes
an internal node; again the choice as to which of them becomes the parent is arbitrary.

• �e remaining interactions and connections are similar: (v2, v6) leads to v6 becoming a child of v2
and a leaf node; the interaction (v7, v8) leads to v8 becoming a child of v7, v7 becomes a root node,
and v8 becomes a leaf node; �nally, the interaction (v1, v7) leads to v7 becoming a child of v1 and
an internal node.

Of course, with di�erent choices for which node becomes the parent when possible, the tree network might
end up having a di�erent structure. Any other future interactions chosen by the scheduler cannot a�ect
the structure since the formation process is already complete and there are no rules for the deletion of
already established connections.

Next, we show the correctness of the protocol and bound its time complexity.

�eorem 1. �e protocol TreeConstructor correctly constructs an arbitrary tree network, and its expected
running time is Θ(n2).

Proof. To prove the correctness of TreeConstructor we need to argue that

(a) no cycles will ever appear, and

(b) the network will eventually consist of a single connected component.

For (a), simply observe that the interaction rules of TreeConstructor are such that only di�erent compo-
nents are allowed to get connected. �erefore, since initially all nodes are isolated (we can think of them
as 1-node trees), the only possible components that may form are trees. For (b), observe that at any step of
time the network may consist of multiple components that are either isolated nodes or trees. Any inter-
action between an isolated node and any other node yields at least one less isolated node and at most one
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rule transition
SS (S, S)→ (R1, L, )
RS (R1, S)→ (R2, L, )
IS (I1, S)→ (I2, L, )
LS (L, S)→ (I1, L, )
RR (R1, Ri, <)→ (R2, Ii, )
IR (I1, Ri, <)→ (I2, Ii, )
LR (L,Ri, <)→ (I1, Ii, )
UW (u, v, )→ wv := wu

Table 2: �e interaction rules of BinaryTreeConstructor. For instance, the rule IR implies when an
internal node u with one child (in state I1) interacts with a root node v with i ∈ {1, 2} children (in state
Ri) andwu < wv , the form a parent-child connection, u remains an internal node but now has two children
(its state becomes I2), and v becomes an internal node with i children (its state becomes Ii). �e other
rules can be interpreted similarly.

more root node, while any interaction between two root nodes yields one less root. We can think of the
number of isolated nodes plus the number of roots as a potential which is initially equal to n and decreases
by exactly 1 for every interaction involving isolated or root nodes; for any other type of interaction, its
value remains unchanged. Hence, it eventually becomes equal to 1, when there is only a single spanning
tree le�.

For the running time, since we assume the existence of a fair probabilistic scheduler, every pair of nodes
needs on average Θ(n2) steps to interact and, therefore, during such a span of Θ(n2) steps, each node will
de�nitely interact with the node that will end up becoming its parent in the �nal tree network.

3.2 Binary trees

For the formation of binary tree networks, we assume that each node v is equipped with a register wv
which initially stores a unique random number.2 �e values stored in these registers are used to de�ne a
monotonic merging of di�erent components so that no cycles appear and the �nal outcome is a tree.

Now, we consider the protocol BinaryTreeConstructor which uses six states and the interaction
rules of Table 2; see again Figure 2 for a graphical description of the rules. Speci�cally, we say that a node
v is in state

• S if v is isolated,

• L if v is a leaf,

• Ii if v is internal with i ∈ {1, 2} children, and

• Ri if v is a root with i ∈ {1, 2} children.

According to the interaction rules, when two nodes u and v interact with each other, node v becomes
a child of u when v is isolated, or when v is a root and it holds that wu < wv . Essentially, by always

2Assuming unique random numbers is only a simpli�cation for the exposition of our results. In a real implementation, when
an isolated node v interacts with and connects as a child of another node u, we can set wu and wv equal to the current timestamp
(which is unique) if u is isolated as well, or we can set wv equal to wu in any other case like rule UW suggests. �is way, there
is no randomness involved and everything is well-de�ned.
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respecting this inequality condition, we guarantee that, at any time, every distinct tree contains nodes
that store values strictly greater than the value stored in the root of the tree. In this way, cycles that could
appear due to the interactions between leaf or internal nodes with root nodes that are part of the same
tree, are correctly avoided. For example, consider the interaction of a leaf node v with the root r of the tree
that it belongs to. �en, since wv > wr , the condition of rule LR is not satis�ed and r will not become a
child of v.

�e interaction rule UW is necessary to guarantee that the value stored in the root of each tree is
spread to all other nodes of this tree so that a single spanning tree network can be formed. To see the
necessity of this, consider two trees T1 and T2 with corresponding root nodes r1 and r2 (each with two
children) such thatwr1 < wv for every v ∈ T2 \{r2} andwr2 < wv for every v ∈ T1 \{r1}. �en, without
the interaction rule UW , these two trees will never get connected. However, with UW , it is now possible
to spread the valueswr1 andwr2 to all nodes in the two trees and, since one of them is strictly greater than
the other, the connection of the trees will eventually become possible.

Let us present an example of how BinaryTreeConstructor would operate in order to form a binary
tree network.

Example 3. Consider an instance with n = 7 nodes {v1, ..., v7}, and the following values for their cor-
responding w-registers: w1 = 4, w2 = 2, w3 = 7, w4 = 6, w5 = 5, w6 = 3, w7 = 1. Further, assume
the following (incomplete) ordering over pairs of nodes, according to which the fair probabilistic sched-
uler selects the nodes that interact: (v1, v2), (v3, v4), (v7, v6), (v1, v4), (v5, v6), (v2, v7), (v3, v4), (v1, v6).
Figure 4 depicts how the binary tree gets formed following the rules of BinaryTreeConstructor. Initially
all are isolated. Let us describe what happens in each of these interactions:

• When the nodes (v1, v2) interact, they get connected according to rule SS : v2 becomes a child of
v1, v1 becomes a root node with one child, v2 becomes a leaf node, and w2 is updated to be equal to
w1, that is, w2 becomes equal to 1; this is the result of rule UW , which we assume that is invoked
immediately a�er a new connection has been established for the purposes of this example (in general,
UW can be invoked the next time the scheduler selects the same pair of nodes to interact). Similar
connections are established at the next two step for the pairs (v3, v4) and (v7, v6), and thew-registers
are updated accordingly (see Figure 4); recall that the choice as to which node becomes the parent
when both nodes are isolated is arbitrary.

• Since both v1 and v4 are root nodes with one child at this point, the next interaction between them
invokes ruleRR, and the nodes get connected: v4 becomes a child of v1, v4 becomes an internal node
with one child, v1 remains a root node with two children, andw4 becomes equal tow1 = 4; note that
since both of them were root nodes with one child before their interaction and w1 = 4 < w4 = 6,
v4 can become a child of v1, but not the other way around, even though they were both in the same
state.

• For the next pair (v5, v6), rule LS get invoked and the nodes get connected: v5 becomes a child of
v6, v5 becomes a leaf nodes, v6 becomes an internal node with one child (since it was already a leaf
node), and w5 becomes equal to w6 = 1.

• �e next interaction between nodes v2 and v7 has no impact in the network structure: since v2 is
a leaf node at this point, it would only be possible for v7 to become a child of v2, but this does not
happen since thew-registers do not respect the desired inequality (it should bew2 < w7, butw2 = 7
and w7 = 1).
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Figure 4: An example execution of the protocol BinaryTreeConstructor. Each circle contains the name
of the corresponding node, its current state, and the value of the w-register. �e ordering according to
which the fair probabilistic scheduler selects the nodes that interact is as follows: (v1, v2), (v3, v4), (v7, v6),
(v1, v4), (v5, v6), (v2, v7), (v3, v4), (v1, v6). Only the interactions that lead to new connections or change
the value of the w-register are depicted. Notice that the interaction (v2, v7) does not lead to v7 becoming
a child of v2 since w2 > w7, while the second to last interaction (v3, v4) only updates the value of w3. See
the relevant discussion in Example 3.
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• �e interaction (v3, v4) between two nodes that are already connected to each can only invoke rule
UW to update w3 and set it equal to w4; notice that w4 was changed since v4 became a child of v1,
but w3 remained equal to the previous value it inherited from w4 from the �rst interaction that led
to their connection.

• Finally, the interaction (v1, v6) invokes rule IR: v1 becomes a child of v6, both v1 and v6 now
becomes internal nodes with two children, and w1 becomes equal to w6; observe here that v6 could
not become a child of v1 since v1 already has two children.

Since the the binary tree network is now formed, any future interactions can only update the w-registers
and at the end all of them will hold the same value, but this has not impact as the formation process has
already been completed.

�eorem 2. �e protocol BinaryTreeConstructor correctly constructs a binary tree network, and its run-
ning time is O(n4).

Proof. �e correctness of the protocol follows by the above discussion: no cycles will ever appear, and all
nodes will end up get connected in a single spanning binary tree.

For the running time, observe that for every possible merging of two di�erent trees, it might be the
case that we �rst need to update the values stored in all nodes of the two trees, and then wait for the
right pair of nodes to interact in order for the merging to take place. �is last step needs expected time
Θ(n2). For the update step, in the worst case, we must wait for all sequential parent-child interactions
to happen, starting from the root and its children. Since there are O(n) parent-child pairs in the tree and
each such interaction takes average time Θ(n2) to happen, the update of all values in a tree needs time
O(n3). �erefore, every merging needs time O(n3) + O(n2) = O(n3), and since n mergings must take
place, the total time is O(n4).

3.3 k-ary trees

We now extend the ideas developed for binary tree networks in order to form k-ary tree networks, for any
integer k ≥ 2. Again we assume that each node v is equipped with a register wv which initially stores a
unique random number.

Consider the protocol k-TreeConstructor which uses 2k + 2 states and the 4k interaction rules of
Table 3. We say that a node v is in state

• S if v is isolated,

• L if v is a leaf,

• Ii if v is internal with i ∈ {1, ..., k} children, and

• Ri if v is a root with i ∈ {1, ..., k} children.

According to the interaction rules, when two nodes u and v interact with each other, node v becomes a
child of u when v is isolated, or when v is a root, u has strictly less than k children already and it holds
that wu < wv .

�e proof of the next statement follows by arguments similar to those used for the proof of �eorem 2.
�e running time remains asymptotically the same since again it might be the case that the values stored
by roots of di�erent trees may need to be di�used to all nodes of these trees (in order for their merging to
happen); this scenario is clearly not a�ected by the number of children a node may have.
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rule transition
SS (S, S)→ (R1, L, )
RS (R1, S)→ (R2, L, )

…
(Rk−1, S)→ (Rk, L, )

IS (I1, S)→ (I2, L, )
…
(Ik−1, S)→ (Ik, L, )

LS (L, S)→ (I1, L, )
RR (R1, Ri, <)→ (R2, Ii, )

…
(Rk−1, Ri, <)→ (Rk, Ii, )

IR (I1, Ri, <)→ (I2, Ii, )
…
(Ik−1, Ri, <)→ (Ik, Ii, )

LR (L,Ri, <)→ (I1, Ii, )
UW (u, v, )→ wv := wu

Table 3: �e interaction rules of k-TreeConstructor. �e rules are partitioned into types depending on
their function. For example, rules of type IS deal with interactions among two nodes such that one node is
internal and the other node is isolated; the di�erent versions of rule take into account the di�erent number
of children the internal node may have.

rule transition
UD (u, v, )→ dv := du + 1
UH (u, v)→ hu := hv := max{hu, hv, du, dv}

Table 4: Depth and tree height estimation.

�eorem 3. Given k ≥ 2, the protocol k-TreeConstructor correctly constructs a k-ary tree network, and
its running time is O(n4).

3.4 Depth and tree height estimation

As we will see later, information about the depth of each node and the height (max depth) of the tree can be
very useful, especially since this information can be computed locally by each node through its interactions
with other nodes of the network. We assume that each node v is equipped with two more registers dv and
hv , which store the node’s estimation about its own depth and the height of the tree, respectively. Both of
them are initially equal to zero, and are updated according to the two interaction rules of Table 4.

Of course, while the network is under construction, every node v has a wrong estimation about these
quantities, but eventually a�er the completion of the network structure, the values stored in the registers
dv and hv will stabilize to the correct ones such that dr = 0 only for the root node r of the tree, and
hv = maxu du = h for every node v. Next, we formally argue about the correctness of rules UD and UH.

Proposition 1. Rules UD and UH correctly compute the depth of each node and the height of the tree.
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Proof. Since the register dv is initially equal to zero for every node v, once the network is constructed, the
root node r of the tree will de�nitely have the correct estimation about its own depth, that is, dr = 0;
notice that r changes its state only once (from isolated to root) and never updates the register value of dr .
�erefore, rule UD will correctly compute the depth of the root’s children when these nodes interact with
r, and the information will sequentially be spread in an up-bo�om manner to all nodes of the network.
�en, once every node correctly knows its own depth, rule UH will also spread the information about the
maximum depth in a bo�om-up manner to all nodes.

4 Energy redistribution protocols

In this section, we present several energy redistribution protocols and discuss some of their theoretical
properties, mainly focusing on the lossless case. In our simulations in the next section, we will also consider
the more general lossy case, and evaluate the redistribution protocols presented in the following.

To study whether it is possible to achieve good energy distributions, we present protocols which make
a plethora of di�erent assumptions about the information of the network that the nodes can exploit. We
start by assuming that the nodes have complete knowledge about the structure, the total energy, and the
number of nodes in the network. �is allows us to design a very powerful protocol that can achieve an
exact distribution in the lossless case. �en, we consider the other extreme case in which the nodes have
no global information, and show that such protocols do not convergence to good distributions in general,
but do so in many fundamental special cases, such as when the network happens to be a line. Finally, we
also consider an intermediate scenario according to which the nodes have partial global information about
the total initial energy in the network, but know nothing about its structure.

4.1 Exploiting global network information

We start with the presentation of a protocol that exploits the whole network structure; we refer to it as
ideal-target. In our simulations in the next section, the performance of ideal-target will serve as an
upper bound on the performance of the rest of our protocols, which we will de�ne next.

Given a tree structure T and the total energy of the network Etotal, it is easy to compute the ideal
energy γv(T,Etotal) that each node v must have so that the energy distribution of the network is exact.
Let h denote the height (maximum depth) of the tree, dv ∈ {0, ..., h} denotes the depth of node v, and nd
is the number of nodes at depth d ∈ {0, ..., h}. By the de�nition of the exact energy distribution, all nodes
at depth d < h must have equal ideal energy that is twice the energy of every node at depth d+ 1. Let x
denote the ideal energy of any node at depth h. �en, the ideal energy of node v is γv(T,Etotal) = 2h−dv ·x,
where

x =
Etotal∑h

d=0 nd · 2h−d

so that
∑

v γv(T,Etotal) = Etotal.3
Now, the protocol ideal-target is de�ned as follows: given the tree network structure T (that is, the

height of the tree h, the depth dv of every node v ∈ V , and the number of nodes nd at every depth d ∈
{0, ..., h}) and the initial total energy Etotal of the network, simply compute the ideal energy γv(T,Etotal)
for every node v, and then use this as the target energy that v must end up storing. So, node v asks for

3Observe that if the height of the tree is large, then nodes of higher depth will have an ideal energy that is close to zero. �e
worst case is when the tree ends up being a line.
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Protocol 1: ideal-target
Input: interacting pair of nodes (u, v) at time step t, energy loss β
Output: updated energies Eu(t+ 1) and Ev(t+ 1)
if Eu(t) > Tu(t) and Ev(t) < Tv(t) then

x := min{Eu(t)− Tu(t), Tv(t)− Ev(t)}
Eu(t+ 1) := Eu(t)− x
Ev(t+ 1) := Ev(t) + (1− β)x

else if Eu(t) < Tu(t) and Ev(t) > Tv(t) then
x := min{Tu(t)− Eu(t), Ev(t)− Tv(t)}
Eu(t+ 1) := Eu(t) + (1− β)x
Ev(t+ 1) := Ev(t)− x

end if

v6

v5v1

v2 v4

v3

Figure 5: �e tree network used in Examples 4–6, which showcase the operation of the energy redistribu-
tion protocols.

energy if its current energy is below the target, and gives away energy when its current energy is exceeding
the target; see Protocol 1.

Example 4. Let β = 0 and consider an instance with n = 6 nodes, which are connected according to
the binary tree network T that is depicted in Figure 5. �e total energy in the network is Etotal = 2100,
and the amount of energy that each node currently holds is as follows: E1 = 500, E2 = 100, E3 = 150,
E4 = 400, E5 = 350, E6 = 600. �e tree has height h = 3, and the number of nodes per depth
level is as follows: n0 = 1, n1 = 2, n2 = 2, n3 = 1. �erefore, we can compute the ideal energy of
every node. Since

∑h
d=0 nd · 2h−d = 1 · 23−0 + 2 · 23−1 + 2 · 23−2 + 1 · 23−3 = 21, we have that

x = 100. Consequently, the ideal energies of the nodes are as follows: γv6(T,Etotal) = 23−0 · 100 = 800,
γv1(T,Etotal) = γv5(T,Etotal) = 23−1 · 100 = 400, γv2(T,Etotal) = γv4(T,Etotal) = 23−2 · 100 = 200, and
γv3(T,Etotal) = 23−3 · 100 = 100.

Now assume that the next interaction is between v1 and v2, which form a parent-child pair. Since v1
has 500 units of energy and its ideal energy is 400, it would like to give away the 100 extra units of energy
that it has. On the other hand, since v2 currently has 150 units of energy and its ideal is 200, it would like
to get 50 more units of energy to reach its goal. Hence, it is possible for v1 to give these 50 units to v2.
As a result, v2 has now reached its ideal energy and v1 is by 50 units closer to its own ideal. �e protocol
continues similarly with other parent-child interactions until every node has reached its ideal energy.
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�eorem 4. �e protocol ideal-target converges to an exact energy distribution for β = 0.

Proof. Observe that for β = 0, a given tree structure T and total network energy Etotal, the exact energy
distribution is unique. Hence, by the de�nition of ideal-target, where each node has a target energy that
is equal to the energy it has in the unique exact energy distribution, the network will converge to exactly
this energy distribution.

Unfortunately, for β 6= 0, the total energy of the network is continuously decreasing from interaction to
interaction. �erefore, we cannot guarantee that the network will converge to an exact energy distribution.
In fact, it might be the case that the outcome energy distribution is not even relaxed; for instance, the root
may end up with less than twice the energy of its children. However, as we will see later, ideal-target
converges to a stable energy distribution fast enough so that the total energy loss is small and the �nal
energy distribution is close to the exact energy distribution (as computed using the initial total energy of
the network).

4.2 Oblivious protocols

Even though ideal-target looks like the perfect protocol, it assumes that the nodes can infer global in-
formation about the network structure. Since the nodes are computationally weak devices with limited
memory, they cannot “remember” how many nodes there are in every di�erent depth level nor have a
correct estimation of the total energy in the network (let alone the initial total energy). So, we now turn
our a�ention in de�ning two protocols that are oblivious to the structure of the network and need much
less information to operate. �ese protocols redistribute energy only when parent-child pairs of nodes
interact.

For any real λ ≥ 2, the protocol λ-exchange requires that when a parent-child pair of nodes (p, c)
interacts, their energy is redistributed so that p has exactly λ times the energy of c only if p has initially
strictly less than λ times the energy of c; see Protocol 2. For any real κ ∈ (0, 1), we also consider the
protocol κ-transfer, which requires that when a parent-child pair (p, c) interacts and p has less than
twice the energy of c, then c transfers a κ-fraction of its energy to p; see Protocol 3.

Example 5. Consider again the instance with n = 6 nodes that are connected according to the network
that is depicted in Figure 5, and β = 0. Recall that the amounts of energy that the nodes have areE1 = 500,
E2 = 100, E3 = 150, E4 = 400, E5 = 350, E6 = 600. Let us brie�y examine how 2-exchange and 0.5-
transfer operate for two parent-child interactions (v1, v2) and (v1, v4).

Since E1 > 2E2, both protocols will not change anything when v1 interacts with v2. However, since
E1 < 2E4, when v1 interacts with v4, 2-exchange gets x = 1

3(2 · 400 − 500) = 100 units of energy
from v4 and gives them to v1 so that v1 now has 600 units of energy, while v4 has 300; this way v1 who is
the parent node has exactly twice the energy of its child v4. On the other hand, 0.5-transfer will transfer
exactly have of v4’s energy to v1 so that v1 has 700 units of energy and v4 has 200.

One can easily observe that these protocols are designed to achieve a relaxed energy distribution rather
than an exact one. In order to have any chance to converge to an exact energy distribution, we need to
change the condition under which energy exchanges take place from p having energy strictly less than λ
times (for λ-exchange) or twice (for κ-transfer) the energy of c to p not having exactly twice the energy
of c (for both protocols); notice that λ-exchange makes sense only for λ = 2 in this case. We refer to the
la�er condition as the exact equilibrium condition.
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Protocol 2: λ-exchange
Input: interacting parent-child pair (p, c) at time step t, energy loss β
Output: updated energies Ep(t+ 1) and Ec(t+ 1)
if Ep(t) < λEc(t) then

x := 1
λ+1

(
λEc(t)− Ep(t)

)
Ep(t+ 1) := Ep(t) + (1− β)x
Ec(t+ 1) := Ec(t)− x

end if

Protocol 3: κ-transfer
Input: interacting parent-child pair (p, c) at time step t, energy loss β
Output: updated energies Ep(t+ 1) and Ec(t+ 1)
if Ep(t) < 2Ec(t) then

Ep(t+ 1) := Ep(t) + (1− β)κEc(t)
Ec(t+ 1) := (1− κ)Ec(t)

end if

�eorem 5. �e protocols 2-exchange and κ-transfer may not converge to the exact energy distribution,
even when they are de�ned using the exact equilibrium condition and β = 0.

Proof. To show the theorem it su�ces to show explicit instances for which the protocols do not converge
to the exact energy distribution. To this end, consider an instance with three nodes {a, b, c} and assume
that the probabilistic fair scheduler that processes all possible pairs of nodes in the order {(a, b), (b, c),
(a, c)} in a round-robin manner. Following this order of interactions, any of the tree formation protocols
presented in the previous section may form the line-tree network a b c, where a is the root, b is an
internal node, and c is a leaf. Since interactions between nodes a and c do not a�ect the energy distribution
(a and c do not have a parent-child connection, which is required by both 2-exchange and κ-transfer),
we can assume without loss of generality that during any step of time the only interactions that take place
are between the pairs (a, b) and (b, c).

For 2-exchange, consider the case where all nodes have the same initial energy Ea(0) = Eb(0) =
Ec(0). Let t ≥ 1 be a step of time such that both parent-child pairs (a, b) and (b, c) are in exact energy
equilibrium, and therefore the network has converged to the exact energy distribution. We will examine
the case where the interaction at time t is between the parent-child pair (b, c); the other case of (a, b) is
obviously symmetric. During the previous time step t − 1, due to the interaction between a and b, we
have that (a, b) must be in exact energy equilibrium: Ea(t − 1) = 2Eb(t − 1). At time t, since the pair
(a, b) remains in equilibrium, we have that Ea(t) = 2Eb(t). Also, since node a does not participate in the
scheduled interaction at time t, we obtain that Ea(t) = Ea(t− 1). Combining these three relations, yields
that Eb(t) = Eb(t − 1). Since there is no energy loss (β = 0), the condition Ea(t) + Eb(t) + Ec(t) =
Ea(t − 1) + Eb(t − 1) + Ec(t − 1) yields that Ec(t) = Ec(t − 1). �erefore, if there exists a time step
t during which the energy distribution of the network is exact, it must be the case that at time t − 1 the
energy distribution of the network is also exact. Recursively, this requires that the energy distribution of
the network is exact from the beginning, which is not true. Hence, there cannot be any such t.

For κ-transfer, consider the case where the nodes have initial energy such that Ea(0) > 2[Eb(0) +
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Ec(0)]. By the de�nition of the protocol, node a will never transfer energy to the other nodes. Hence,
due to the particular initial energy, there exists no time step t such that Ea(t) = 2Eb(t). �e theorem
follows.

Actually, we believe that no oblivious protocol can converge to an exact energy distribution, even for
β = 0. We were not able to prove such a statement, but our intuition is that �xing a parent-child pair
of nodes (p, c) in exact energy equilibrium will inevitably break other pairs of nodes that are already in
equilibrium.

Next, we will prove that if there is no energy loss (β = 0) and the tree network is a line (each node
has at most one child), then λ-exchange always converges to some relaxed distribution, for any λ ≥ 2.
Our simulations in the next section indicates that this is true for any kind of tree network, and that this is
true for κ-exchange as well. However, as we will see, there is a huge di�erence between these protocols
in terms of the quality of the �nal energy distribution.

�eorem 6. When β = 0 and the tree network is a line, the protocol λ-exchange always converges to a
relaxed energy distribution for any λ ≥ 2.

Proof. Let v1  v2  ... vn be the line-tree network: v1 is the root, nodes vi for i ∈ {2, ..., n− 1} are
internal, and vn is the leaf. To simplify our notation in what follows, we denote by Ei(t) the energy that
node vi has at time t. We will de�ne a function Φ : N≥0 → R≥0 with the following three properties:

(P1) Φ(t) = 0 means that the network converges to a relaxed energy distribution at time t,

(P2) Φ(t) is non-increasing for every t ≥ 0, and

(P3) there exists a number of time steps during which Φ strictly decreases until it reaches 0.

�en, Φ is a potential function. Essentially, properties (P2) and (P3) guarantee that Φ will reach its global
minimum value of zero, and property (P1) guarantees that when Φ has reached this global minimum value,
the network has converged to a relaxed energy distribution.

To this end, for each i ∈ {1, ..., n − 1}, let xi(t) = 1{Ei(t) < λEi+1(t)} be the binary variable
indicating whether at time step t the energy Ei(t) of node vi is strictly less than λ times the energy
Ei+1(t) of its child node vi+1 or not, and consider the function

Φ(t) =
n−1∑
i=1

(
λEi+1(t)− Ei(t)

)
· xi(t). (1)

Observe that Φ(t) ≥ 0 for every t. Moreover, property (P1) is satis�ed since if Φ(t) = 0 for some t, then
Ei(t) ≥ λEi+1(t) ≥ 2Ei+1(t) for every parent-child pair (vi, vi+1). So, it remains to prove that Φ satis�es
properties (P2) and (P3) as well.

For property (P2), let t ≥ 1 be a time step during which a parent-child pair (vi∗ , vi∗+1) with xi∗(t−1) =
1 interacts; otherwise, obviously there is no change during step t and Φ(t) = Φ(t − 1). �en, the λ-
exchange protocol will set

Ei∗(t) =
λ

λ+ 1

(
Ei∗(t− 1) + Ei∗+1(t− 1)

)
and

Ei∗+1(t) =
1

λ+ 1

(
Ei∗(t− 1) + Ei∗+1(t− 1)

)
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so that Ei∗(t) = λEi∗+1(t), and therefore xi∗(t) = 0. To prove that Φ is non-increasing, we have to show
that Φ(t)− Φ(t− 1) ≤ 0. We distinguish between cases, depending on the states of vi∗ and vi∗+1.

First, we consider the case i∗ = 1: v1 is the root of the tree and v2 is internal; the case i∗ = n − 1 is
symmetric since we can think of node vn as the root node instead (it is only a ma�er of perspective). Since
xi(t) = xi(t− 1) for every i 6∈ {1, 2}, by (1) (de�nition of the function Φ) we have that

Φ(t)− Φ(t− 1) =

n−1∑
i=1

(
λEi+1(t)− Ei(t)

)
· xi(t)−

n−1∑
i=1

(
λEi+1(t− 1)− Ei(t− 1)

)
· xi(t− 1)

=

(
λE2(t)− E1(t)

)
x1(t)−

(
λE2(t− 1)− E1(t− 1)

)
x1(t− 1)

+

(
λE3(t)− E2(t)

)
x2(t)−

(
λE3(t− 1)− E2(t− 1)

)
x2(t− 1). (2)

Since x1(t−1) = 1 and x1(t) = 0, observe that the worst case occurs when x2(t−1) = 0 and x2(t) = 1 so
that the last expression in the above sequence of equalities is maximized; that is, the relaxed energy equi-
librium of nodes (v1, v2) breaks the equilibrium of nodes (v2, v3). �erefore, since v3 does not participate
in the interaction of time t, we have that E2(t− 1) ≥ λE3(t− 1) = λE3(t), and (2) becomes

Φ(t)− Φ(t− 1) = E1(t− 1)− λE2(t− 1) + λE3(t)− E2(t)

≤ E1(t− 1)− (λ− 1)E2(t− 1)− 1

λ+ 1

(
E1(t− 1) + E2(t− 1)

)
=

λ

λ+ 1

(
E1(t− 1)− λE2(t− 1)

)
< 0,

as desired. �e last inequality follows since x1(t− 1) = 1.
Next, we consider the case 1 < i∗ < n − 1. Similarly to before, xi(t) = xi(t − 1) for each i 6∈

{i∗ − 1, i∗, i∗ + 1}. Hence, by (1), we have that

Φ(t)− Φ(t− 1) =

(
λEi∗(t)− Ei∗−1(t)

)
xi∗−1(t)−

(
λEi∗(t− 1)− Ei∗−1(t− 1)

)
xi∗−1(t− 1)

+

(
λEi∗+1(t)− Ei∗(t)

)
xi∗(t)−

(
λEi∗+1(t− 1)− Ei∗(t− 1)

)
xi∗(t− 1)

+

(
λEi∗+2(t)− Ei∗+1(t)

)
xi∗+1(t)−

(
λEi∗+2(t− 1)− Ei∗+1(t− 1)

)
xi∗+1(t− 1).

(3)

Given that xi∗(t − 1) = 1 and xi∗(t) = 0, the worst case occurs when xi∗−1(t − 1) = 0, xi∗−1(t) = 1,
xi∗+1(t−1) = 0 and xi∗+1(t) = 1 so that the last expression is maximized; essentially, in the worst case the
relaxed energy equilibrium of nodes (vi∗ , vi∗+1) leads to breaking the equilibrium of both pairs of nodes
(vi∗−1, vi∗) and (vi∗+1, vi∗+2). �erefore, since nodes vi∗−1 and vi∗+2 do not participate in the interaction
of time t, we have that Ei∗−1(t) = Ei∗−1(t − 1) ≥ λEi∗(t − 1) and Ei∗+1(t − 1) ≥ λEi∗+2(t − 1) =

λEi∗+2(t). Also, since λEi∗(t)− Ei∗+1(t) = (λ− 1)

(
Ei∗(t− 1) + Ei∗+1(t− 1)

)
, (3) becomes

Φ(t)− Φ(t− 1) = λEi∗(t)− Ei∗−1(t)− λEi∗+1(t− 1) + Ei∗(t− 1) + λEi∗+2(t)− Ei∗+1(t) ≤ 0.
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For property (P3), it su�ces to show that if Φ(t) 6= 0 for some time step t and x1(t) = xn−1(t) = 0,
then there exists a sequence of interactions between internal nodes that leads to x1(τ) = 1 or xn−1(τ) = 1
for some time step τ > t. If this is true, then the function Φ will eventually (a�er multiple interactions
at the two endpoints of the line) reach its minimum value of 0, as it strictly decreases when interactions
between nodes (v1, v2) and (vn−1, vn) take place and change the energy of the participating nodes; any
other parent-child pair interaction does not increase the value of Φ.

Now, assume a time step with the above speci�cations. Since Φ(t) 6= 0, there exists an i ∈ {1, ..., n−1}
such that xi(t) = 1 and x`(t) = 0 for ` < i, as well as a j ∈ {1, ..., n−1} such that xj(t) = 1 and x`(t) = 0
for ` > j. In the worst case, a�er the interaction of nodes (vi, vi+1) or (vj , vj+1) at some time step ti > t
or tj > t, it will be xi−1(ti) = 1 or xj+1(tj) = 1. Inductively, since the energy is in general �owing
upwards in the network, such interactions will de�ne chains of future interactions that can lead to at least
one of the pairs (v1, v2) or (vn−1, vn) to no longer satisfy the condition of λ-exchange, i.e., there exists a
time step τ such that x1(τ) = 1 or xn−1(τ) = 1. �e proof is now complete.

We remark that the above theorem guarantees only convergence to a relaxed energy distribution. How-
ever, it is not obvious that this convergence will happen quickly, or that the �nal relaxed distribution will
be close to an exact one. We expect that the convergence time decreases as λ increases since the la�er
increases the energy that �ows upwards. On the other hand, the distance of the outcome energy distribu-
tion from the exact energy distribution (which can be thought of as the “optimal” distribution) increases
as λ increases since nodes at lower depth will end up with substantially more energy than those in higher
depth; in fact, for high enough λ, the root might concentrate almost all of the network energy. Hence, it is
important to �ne-tune the parameter λ and balance these trade-o�s; we do this in the next section where
we present our simulations.

4.3 Mixing locally inferred and global information

So far, we have made two extreme informational assumptions: the nodes either have complete global
information, or no information at all. We complement these two by further considering an intermediate
se�ing according to which the nodes have access to only to some information about the network (such as
the total initial energy, but not the network structure). For k-ary tree networks (with integer k ≥ 2), we
de�ne the protocol k-depth-target which sets a target energy for each node by exploiting some network
information that can be locally estimated as well as some global network information that is provided as
input to the nodes. Speci�cally, during each time step t, every non-root node v sets a target energy

ζv(t) =
Etotal

kdv(t)(hv(t) + 1)
, (4)

where dv(t) is the estimation of node v for its own depth at time t, hv(t) is the estimation of v for the height
of the tree at time t, and Etotal is the initial total network energy. As already discussed in Section 3.4, once
the network is formed, the estimations dv(t) and hv(t) stabilize to the correct values. �en, the target is
set to the correct value as well, and eventually all non-root nodes will end up storing exactly this much
energy, while the root r will collect the remaining Etotal −

∑
v 6=r ζv(t) units of energy. A description of

k-depth-target is given as Protocol 4.
Before we continue, we show that the target energy of each node is feasible when β = 0 in the sense

that the total target energy of non-root nodes is at most the total energy of the network. To see this,
observe that when the depth and height estimations of the nodes stabilize to the correct ones, then all
nodes of the same depth d will have the same target energy Etotal

kd(h+1)
, where h is the true height of the
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Protocol 4: k-depth-target
Input: interacting pair of nodes (u, v) at time step t, energy loss β
Output: updated energies Eu(t+ 1) and Ev(t+ 1)
if u, v 6∈ R and Eu(t) > ζu(t) and Ev(t) < ζv(t) then

x := min{Eu(t)− ζu(t), ζv(t)− Ev(t)}
Eu(t+ 1) := Eu(t)− x
Ev(t+ 1) := Ev(t) + (1− β)x

else if u ∈ R then
y := ζv(t)− Ev(t)
x := min{|y|, Eu(t)}
Eu(t+ 1) := Eu(t) + sgn{y}x− βx · 1{y > 0}
Ev(t+ 1) := Ev(t)− sgn{y}x− βx · 1{y < 0}

else if v ∈ R then
y := ζu(t)− Eu(t)
x := min{|y|, Ev(t)}
Eu(t+ 1) := Eu(t)− sgn{y}x− βx · 1{y < 0}
Ev(t+ 1) := Ev(t) + sgn{y}x− βx · 1{y > 0}

end if

k-ary tree. Hence, if nd denotes the number of nodes at depth d, then nd ≤ kd (since each node has at
most k children) and the total target energy of non-root nodes is

h∑
d=1

nd
Etotal

kd(h+ 1)
≤

h∑
d=1

Etotal
h+ 1

=
h · Etotal
h+ 1

< Etotal.

Example 6. Consider yet again the instance withn = 6 nodes that are connected according to the network
that is depicted in Figure 5, and β = 0. Recall that the total energy in the network isEtotal and is distributed
to the nodes as follows: E1 = 500, E2 = 100, E3 = 150, E4 = 400, E5 = 350, E6 = 600. We will focus
on the protocol 2-depth-target. Since the height of the tree is h = 3, we can compute the target energy
of each non-root node using (4) as follows: ζv1 = ζv5 = 2100

21(3+1)
= 262.5, ζv2 = ζv4 = 2100

22(3+1)
= 131.25,

and ζv3 = 2100
23(3+1)

= 65.625. Observe that since the tree network has been formed, these target energies
are not just estimations, they are the �nal targets that the nodes have, which is why they do not depend
on the current time step. Let us see how the protocol operates for two parent-child interactions (v1, v2)
and (v1, v6).

Since v1 has 500 units of energy and its target is 265.5, it can give the 31.25 units of energy that v2
would like to get in order to reach its own target of 131.25 from the 100 that it currently has. Hence, a�er
the interaction (v1, v2), the energies of these nodes are updated to E1 = 468.75 and E2 = 131.25. A�er
that, when v1 and v6 interact, since v6 is the root of the tree and it does not have any target, v1 can just
transfer the extra 206.25 units to v6 in order to reach its target of 265.5.

Next, we show that for β = 0 and k-ary tree networks, k-depth-target converges to relaxed energy
distribution. For the special case binary trees (k = 2), the protocol actually converges to an exact up to
the root energy distribution, which is also relaxed: the root has energy that is at least twice the energy of
each of its children, while any other node has exactly twice the energy of each of its children.
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�eorem 7. For β = 0 and k-ary tree networks, the protocol k-depth-target converges to relaxed energy
distribution. For k = 2, the energy distribution is also exact up to the root.

Proof. Let τ ≥ 1 be the step of time a�er which all nodes correctly estimate their own depths and the
height of the tree. �en, for every t > τ and non-root node v, we have that dv(t) = dv(τ) = dv ,
hv(t) = hv(τ) = h, and ζv(t) = ζv(τ) = ζv . During every interaction that a non-root node v participates
in, it requests for energy when Ev(t) < ζv and gives away energy when Ev(t) > ζv ; the root node r gives
away and receives energy based on the demands of the other nodes with which it interacts. �erefore, in
the �rst case the energy of a non-root node can only increase until it reaches the target, while in the second
case it can only decrease until it again reaches the target. Hence, the protocol converges to a distribution
where each non-root node has its target energy, and the root stores the remaining energy of the network.
�is distribution is exact up to the root. To see this, consider a parent-child pair (p, c) for which it holds
that dc = dp + 1. �en, by (4), we have

ζp
ζc

=

(
Etotal

kdp(h+ 1)

)/(
Etotal

kdp+1(h+ 1)

)
= k.

Hence, the energy distribution is exact up to the root for binary trees (k = 2) and relaxed for non-root
nodes for any other kind of k-ary trees (k ≥ 3).

To complete the proof and show that the energy distribution is also relaxed, we need to show that the
root node also has at least twice the energy of its children. Let nd be the number of nodes at depth d. Since
the tree is k-ary, we have that nd ≤ kd. �en, the energy of the root node r is

Er = Etotal −
∑
v 6=r

ζv = Etotal −
h∑
d=1

nd
Etotal

kd(h+ 1)

=

(
h+ 1−

h∑
d=1

nd
kd

)
Etotal
h+ 1

≥ Etotal
h+ 1

.

Since any child node v of the root has ζv = Etotal
k(h+1) , we obtain that Er ≥ k · ζv ≥ 2 · ζv , and the theorem

follows.

In addition to the above theorem, we expect that for most instances with binary tree networks, the
protocol 2-depth-target will converge to an exact up to the root energy distribution, even in the lossy
case: each node will aim to store its target energy, and any energy loss will be accumulated in the energy
of the root. However, this means that the distribution will no longer be relaxed since the root might end
up having less than twice the energy of its children, for any k-ary tree (k ≥ 2). Of course, converging to
an exact up to the root distribution cannot be guaranteed in general, especially in cases where the energy
loss is so much that there is not enough energy for non-root nodes to satisfy their targets.

Further, observe that when β = 0 and the network is a complete binary tree (the root and all internal
nodes have exactly two children), the target energy of any node will be exactly equal to its ideal energy.
Hence, 2-depth-target converges to the unique exact distribution in this case. However, if the tree struc-
ture is incomplete (with the worst case being a line), then the target energy of any non-root node will
be far away from ideal. As we will see in our simulations for binary trees, the structure of the network
plays a huge factor in the quality of the �nal distribution when compared to the distribution produced by
ideal-target.
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5 Simulations

In this section, we evaluate the energy redistribution protocols de�ned in Section 4, via indicative simula-
tions implemented in Matlab 2018a.

5.1 Simulation Setup

We study both the lossless case where β = 0, and the lossy case where β is a random variable following the
Normal Distribution N(0.2, 0.05). We investigate two scenarios regarding the initial energy of the nodes.
�e total initial network energy is analogous to the number n ∈ {10, 30, 50} of nodes in the network
(in particular, n · 103), and it can be split amongst them either uniformly leading to all nodes having the
same initial energy, or randomly leading to the nodes having possibly di�erent initial energy. �e second
scenario (of unequal initial energy per node) is more realistic due to the di�erent characteristic and needs
of the various portable devices there exist (for example, smartphones).

For simplicity and in order to have meaningful results about the protocol k-depth-target, we only
focus on binary tree networks (with k = 2); in what follows we refer to 2-depth-target as depth-target.
For statistical smoothness we have repeated each simulation 100 times. �e statistical analysis of our �nd-
ings (average, median, lower and upper quartiles, outliers) demonstrate very high concentration around
the mean and, thus, in the following we depict only the average values of our simulation results.

5.2 Metrics

We use two metrics to measure the performance of our protocols. �e �rst one is called distribution distance
and is designed to show how fast a protocol converges to a relaxed energy distribution if this is possible,
while the second one is called energy distance and is a measure of the quality of the �nal energy distribution
compared to the ideal one (as computed by ideal-target given the true total initial network energy; see
Section 4.1 for the de�nition of the protocol).

For any step of time t ≥ 0, the distribution distance is de�ned as

DD(t) =
∑
u

∑
v:u v

(
2Ev(t)− Eu(t)

)
1{Eu(t) < 2Ev(t)}. (5)

Essentially, the distribution distance counts the total energy that must be redistributed at time t in order
to achieve a relaxed energy distribution. �e convergence time of λ-exchange and κ-transfer is the �rst
time step τ for which DD(τ) = 0, when a relaxed distribution has been reached. For the targeted protocols
ideal-target and depth-target, the convergence time is the �rst time step τ a�er which the distribution
distance remains constant: DD(τ) = DD(t) for every t > τ . �e value of DD(τ) will be 0 in the lossless
case since both protocols achieve a relaxed distribution then. In the lossy case however, DD(τ) can be
positive, since the energy that is lost may prevent the protocols to achieve a relaxed distribution, especially
ideal-target which sets the targets so as to achieve an exact distribution based on the initial total network
energy.

�e energy distance of the �nal distribution from the ideal one is de�ned as

ED =
1

2

∑
v

|Ev(τ)− γv(T,Etotal)|, (6)

where γv(T,Etotal) is the target energy of v as set by ideal-target, i.e., it is the ideal energy based on the
underlying tree structure T of the network and the total initial network energy. Essentially, the energy
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Figure 6: Distribution distance of λ-exchange and κ-exchange for various values of λ ≥ 2 and κ ∈ [0, 1].
It is easy to observe that as λ and κ increase, the distance decreases faster.

λ-exchange
λ = 2 λ = 3 λ = 4 λ = 5 λ = 6

5,98% 12,76% 18,03% 21,03% 23,92%

κ-transfer
κ = 0.3 κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.7

57,80% 59,44% 59,65% 59,67% 59,67%

Table 5: Energy distance of λ-exchange and κ-transfer for various values of λ ≥ 2 and κ ∈ [0, 1]. �e
depicted percentages are the result of diving the energy distance by the total network energy. It is easy to
observe that for λ-exchange as λ increases, the distance increases. In contrast, for κ-transfer all values
of κ exhibit similar high energy distance.

distance counts the total energy that has been misplaced in the �nal distribution. �is metric also allows
us to compare our protocols even when there is energy loss; in this case, to compute the ideal energy of
each node, we consider the total energy in the network at the time when the network has been formed.
Since even a “perfect” protocol like ideal-target will inevitably lose some energy in the lossy case, we also
measure the energy that has been lost until the convergence to a steady energy distribution.

5.3 Fine-tuning of λ-exchange and κ-transfer

To optimize the performance of λ-exchange and κ-transfer, we study the cases where λ ∈ {2, 3, 4, 5, 6}
and κ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

Figure 6 depicts the performance of the two protocols for these values of the parameters with respect to
the distribution distance metric, for n = 10 nodes in the lossless case and di�erent initial energy supplies;
we have experimented with many more di�erent se�ings, but the conclusions are similar. One can easily
observe that as the values of λ and κ increase, the distribution distance and, consequently, the convergence
time decreases. Speci�cally, for λ-exchange there is a huge improvement from λ = 2 to λ = 3, but then
the improvement is only minor as we consider higher values of λ; this seems to be a consequence of the
energy distribution de�nition, where we aim for nodes to have twice the energy of each of their children,
and hence there is a signi�cant improvement when we move from λ = 2 to λ = 3. In contrast, for κ-
transfer the improvement in convergence time is steady as the value of κ increases, which is also expected
since the energy transfers from child to parent nodes increase with rate analogous to κ.
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Table 5 contains the values of the energy distance induced by the two protocols for the values of the
parameters considered. We can observe that higher values of λ incur higher and higher energy distance,
while the energy distance remains pre�y much at the same level for all values of κ.

Given these observations, we conclude that the values λ = 2 and λ = 3 nicely balance the distribution
distance and the energy distance for λ-exchange. Hence, we choose λ = 2, but also implement another
randomized protocol, which we call rand-exchange. According to this protocol, λ varies from interaction
to interaction, as a random variable following a uniform distribution taking values in the interval [2, 3].
For κ-transfer we choose k = 0.5 as the middle ground.

5.4 Comparison of the protocols

Figures 8 and 9 depict the performance of our energy redistribution protocols in terms of the distribution
distance metric in the lossless and lossy case, respectively. �e corresponding performance values in terms
of the energy distance metric are given in Tables 6 and 7, while Table 8 contains the average percentages of
energy that has been lost until the protocols converge to a steady energy distribution. See Figure 7 for an
example of a tree structure created via our simulations and the corresponding �nal distributions achieved
by the protocols.

First, we can easily observe that as the number of nodes increases, the protocols require more time
to converge (see Figures 8 and 9), the quality of the �nal distribution decreases (see Tables 6 and 7), and
more energy is lost (see Table 8). Second, whether the nodes all have equal or di�erent energy does not
seem to a�ect the performance of the protocols (for instance, compare Figures 8a, 8c and 8e to 8b, 8d
and 8f). Finally, in the lossy case the protocols converge faster than in the lossless case (for example,
compare Figures 8a–8e to Figures 9a–9e). �is is expected since in the lossy case the total network energy
is decreasing in time, and therefore there is less energy that can be transferred from node to node.

In all cases, 2-exchange seems to be the slowest protocol, which is natural since it is not a targeted
protocol and may require many exchanges where the energy may go either upwards (to parent nodes)
or downwards (to child nodes), depending on the needs of the interacting nodes. In contrast, for the
0.5-transfer protocol the energy can only go towards the root of the tree, since at every parent-child
interaction where the energy equilibrium is not satis�ed, the child transfers half of its energy to the parent.
�e protocol rand-exchange is of course faster than 2-exchange, since it also randomly considers higher
values ofλ; see the previous subsection for a comparison of di�erent values ofλ. On the other hand, depth-
target seems to be the fastest protocol, outperforming even ideal-target. �is is due to its de�nition,
where the root plays the role of an auxiliary node helping the other nodes to reach their target, as opposed
to the case of ideal-target where the root also has a target that must be reached.

Even though 2-exchange needs more time to converge to a stable energy distribution, as we can see in
Tables 6 and 7, it outperforms all protocols in terms of energy distance, except ideal-target in the lossless
case, which of course has zero energy distance by its de�nition. �e low energy distance that 2-exchange
achieves in the lossless case is a due to the energy equilibrium condition that it exploits, which is tailor-
made so that when a parent-child pair of nodes interact, the parent ends up with exactly twice the energy of
the child. Consequently, we should expect that the �nal energy distribution will be quite close to the ideal
one, especially when no energy is lost. Even though the energy distance of 2-exchange is considerably
higher in the lossy case, it is still lower than that of the other protocols, including ideal-target, which
is quite surprising if one also accounts the fact that the energy loss is much smaller for ideal-target
and depth-target; see Table 8. Of course, the rand-exchange has a comparable performance in this
perspective since it is similarly de�ned.

�e protocols 0.5-transfer and depth-target have high energy distance in both the lossless and the
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Figure 7: An example of a binary tree network for n = 10 nodes and the corresponding �nal energy
distribution that the protocols compute for the lossless case with equal initial energy for the nodes.

lossy case, while ideal-target also has high energy distance in the lossy case. �is is naturally expected for
0.5-transfer since it only transfers energy towards the root and therefore creates an extremely unbalanced
energy distribution, which might end up being relaxed, but it is much di�erent than the ideal one. On the
other hand, the reason why depth-target has such a high energy distance might be due to the fact that
the target energy of each node depends on the network structure, and if the structure is unbalanced, then
almost all of the network energy ends at the root node, which plays an auxiliary role. For ideal-target
this is not a problem since the root also has a particular target energy, but in the lossy case the energy
that is lost creates the following problem: for an energy transfer between two nodes, one of them must
need to give away excess energy and the other must need to receive energy; since energy is lost during
the exchanges, all nodes might end up needing either to give away energy or to receive energy.

Given the above observations, the protocols that best balance all of the trade-o�s we have discussed
(fast convergence and energy distribution of good quality, with low energy loss until convergence) seem
to be 2-exchange and rand-exchange, which are also oblivious and do not depend on global knowledge;
depth-target is of course a good candidate, but it is vulnerable when the tree network ends up being even
just a bit unbalanced, and requires knowledge that may not be available a priori, which is a hard constraint
when dealing with computationally weak devices with limited power and memory, as we assume in this
work.

6 Conclusions and possible extensions

In this paper, we have thoroughly studied the problem of energy-aware tree network formation, both the-
oretically as well as via computer simulations. We proposed simple interaction protocols for the formation
of arbitrary and k-ary tree networks, as well as energy redistribution protocols that exploit di�erent levels
of information regarding the network structure and achieve di�erent energy distributions. Still, our work
leaves open several problems and reveals new ones.

Energy distributions Aiming for an energy distribution that requires every node to have exactly or at
least twice the energy of each of its children as we did in this work seems like an intuitive choice when
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protocol Same initial energy Di�erent initial energy
n = 10 n = 30 n = 50 n = 10 n = 30 n = 50

2-exchange 6.93% 6.92% 24.32% 6.15% 2.27% 16.70%
0.5-transfer 63.71% 66.32% 56.73% 62.97% 66.94% 64.02%
depth-target 33.81% 47.60% 51.24% 33.14% 49.91% 51.59%

rand-exchange 10.96% 11.97% 16.41% 11.21% 15.21% 15.31%
ideal-target 0% 0% 0% 0% 0% 0%

Table 6: Energy distance of the �ve energy redistribution protocols in the lossless case for various number
of nodes.

protocol Same initial energy Di�erent initial energy
n = 10 n = 30 n = 50 n = 10 n = 30 n = 50

2-exchange 18.73% 37.26% 38.11% 18.33% 33.56% 35.90%
0.5-transfer 52.81% 57.27% 51.51% 53.83% 51.44% 49.71%
depth-target 38.43% 60.86% 65.47% 40.29% 59.69% 63.42%

rand-exchange 20.91% 39.57% 40.34% 21.11% 34.53% 37.19%
ideal-target 20.53% 46.91% 49.59% 20.55% 41.44% 44.50%

Table 7: Energy distance of the �ve energy redistribution protocols in the lossy case for various number
of nodes.

we deal with tree networks and, of course, one can de�ne several natural generalizations of the energy
distributions we considered. For instance, given a parameter α ≥ 1, one can de�ne the α-exact energy
distribution requiring that all nodes have exactly α times the energy of each of their children; similarly one
can de�ne parameterized versions of relaxed and the exact up to the root energy distributions. �en, the
energy redistribution protocols presented in Section 4 can be adapted (using corresponding parameters)
in order to aim for such generalized energy distributions. Moreover, one can take it a step further and
consider di�erent parameters for di�erent nodes: node i can be associated with a parameter αi ≥ 1 and
the requirement is that its energy is (at least) αi times the energy of each of its children. �is extension is
probably the most realistic one and can be used to model data transmission scenarios with diverse energy
consumption for the nodes that are closer to the root.

As we observed in our simulations in Section 5, the main problem with the de�nition of such multi-
plicative energy distributions is that almost all of the network energy gets concentrated close to the root of
the tree, even for exact distributions (for example, consider the case of complete binary trees). �erefore,
considering other interesting energy distributions, possibly with additive terms instead of multiplicative
ones, is an important future direction. For instance, is it possible to achieve an energy distribution where
every node has exactly or at least γ units more energy than each of its children, for some parameter γ > 0?
More generally, what happens if every node is associated with a di�erent such additive parameter?

Network structures In the paper of Madhja et al. [2016a], the star network structure is very well de-
�ned: one of the nodes is the center, while all others all peripherals. In contrast, our tree network formation
protocols may construct so many di�erent tree structures, ranging from totally balanced trees to lines or
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protocol Same initial energy Di�erent initial energy
n = 10 n = 30 n = 50 n = 10 n = 30 n = 50

2-exchange 34.30% 56.76% 65.08% 31.62% 64.01% 68.22%
0.5-transfer 47.35% 66.59% 77.33% 43.86% 72.53% 79.93%
depth-target 17.66% 23.59% 29.01% 18.64% 30.04% 32.70%

rand-exchange 36.22% 58.93% 69.97% 33.48% 65.77% 72.76%
ideal-target 12.16% 21.83% 27.16% 11.20% 24.53% 27.32%

Table 8: Energy loss until convergence time for the �ve energy redistribution protocols in the lossy case.

even stars. �is is one of the reasons why the �nal energy distribution may end up be so di�erent than the
ideal one, especially when the number of nodes is large. Can we design protocols that are able to construct
predictable tree networks? If so, then it may be possible to achieve energy distributions of be�er quality.

Of course, it is also very interesting to consider totally di�erent network structures and corresponding
tailor-made energy distributions. For instance, can we design distributed protocols for the formation of
grid networks and energy distributions that require more central nodes to have more energy than outer
ones (thinking the grid as an approximate three-dimensional pyramid)? Since the nodes interact only in
pairs, one of the several bo�lenecks in forming grid networks is that the nodes cannot understand if they
are at a corner of the structure or somewhere in the middle. Taking care of issues like these is non-trivial,
and one may need to assume some sort of global information.

Battery constraints Another issue that has not been addressed in the current paper or in previous
related work, is that the nodes actually have ba�ery limits. �erefore, it is not possible for a node (e.g.
the root of a tree network) to store a really high amount of energy. �is gives rise to many interesting
algorithmic challenges. For instance, suppose that a parent-child pair of nodes interacts, and in order
to satisfy the required energy equilibrium, the parent must receive energy from the child. However, what
happens if the parent has reached its ba�ery limit? �e child then has to dispose parts of its energy instead
by transmi�ing it to some other unrelated node that can carry it. But then, other interaction may take place
and the state of the energy distribution over the network may be completely di�erent, meaning that the
child node possibly has outdated information what can lead to “confusion.” Resolving such problems seems
to be highly non-trivial and de�nitely deserves more investigation in the future.

Some practical issues Finally let us discuss some practical issues that are not captured by our model
and methods. Since the nodes are mobile, building a �xed network might be problematic. Many nodes that
are considered important (like the root of the tree) might rarely enter the communication range of other
nodes, or nodes that are considered to be less important might physically move very close to many other
nodes. In such cases, the roles of the nodes are clearly not well chosen and the network should be rebuilt.
Taking care of this issue in a distributive manner seems to be a very challenging task, especially for nodes
with limited computational power and memory.

Furthermore, we have assumed perfect conditions during the communication between pairs of nodes.
However, in practice, the total time during which two nodes are in close proximity and critically a�ects
the performance of energy transmission (and the total amount of energy that can be exchanged), while
communication data may be lost due to faults in the network. Even though our protocols can still be applied
in such cases (some interactions might not take place or some energy exchanges may be incomplete), they
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might be highly ine�cient, and coming up with new protocols that can adapt (or are tailor-made) to such
faults is necessary.
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Figure 8: Distribution distance of the �ve energy redistribution protocols (2-exchange, 0.5-transfer,
depth-target, rand-exchange and ideal-target) in the lossless case for various number of nodes n ∈
{10, 30, 50}. Figures (a), (c) and (e) depict the performance of the protocols in the case where the nodes
have the same initial energy, while Figures (b), (d) and (f) depict their performance in the case of di�erent
initial energy supplies.
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Figure 9: Distribution distance of the �ve energy redistribution protocols (2-exchange, 0.5-transfer,
depth-target, rand-exchange and ideal-target) in the lossy case for various number of nodes n ∈
{10, 30, 50}. Figures (a), (c) and (e) depict the performance of the protocols in the case where the nodes
have the same initial energy, while Figures (b), (d) and (f) depict their performance in the case of di�erent
initial energy supplies.
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