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Abstract

Nowadays, several crowdsourcing projects exploit social choice methods for computing an
aggregate ranking of alternatives given individual rankings provided by workers. Motivated
by such systems, we consider a setting where each worker is asked to rank a fixed (small)
number of alternatives and, then, a positional scoring rule is used to compute the aggregate
ranking. Among the apparently infinite such rules, what is the best one to use? To answer
this question, we assume that we have partial access to an underlying true ranking. Then, the
important optimization problem to be solved is to compute the positional scoring rule whose
outcome, when applied to the profile of individual rankings, is as close as possible to the part
of the underlying true ranking we know. We study this fundamental problem from a theoretical
viewpoint and present positive and negative complexity results and, furthermore, complement
our theoretical findings with experiments on real-world and synthetic data.

1 Introduction

Social choice theory [8] studies voting rules (also known as social choice or social welfare functions)
that compute a winning alternative or a ranking of the available alternatives from voter preferences.
Typically, the preference of each voter is supposed to be a ranking over all available alternatives.
We deviate from this assumption and, instead, we focus our attention to settings in which each
voter (or, better, agent for our purposes) ranks only a small subset of the alternatives. Such
incomplete rankings seem to be non-standard in the literature; the papers [16, 18, 39] are some
notable exceptions.

Our adoption of incomplete rankings is motivated by crowdsourcing [25] and rating applications.
For example, assume that a requester would like to rank a huge set of alternatives using expert
opinions from a crowd of workers. Asking each worker for her opinion on the whole set of alternatives
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(i.e., for a full ranking of them) could be problematic since, most probably, the worker will not be
aware of most of the alternatives. Even if she tries to obtain additional information, coming up
with consistent comparisons between alternatives that she knows well and alternatives that she has
no idea about, would be rather impossible, given their huge number. Instead, this task would be
much easier if workers focused on small fixed sets of alternatives. The requester could give each
worker a different set of few alternatives to rank. Then, processing smaller inputs and merging
them to come up with a global ranking of all alternatives would be easier for the requester as well.

This approach has been recently exploited in the context of ordinal peer grading in massive
open online courses (MOOCs); see the papers [3, 10, 11, 38, 40, 41] for approaches of this flavor.
In such settings, the task of grading an exam with many participating students is outsourced to
the students themselves. Each student is given a small number of exam papers of other students
to rank, and the final grading (a ranking of all students) is obtained by aggregating the inputs
provided by the students. Ordinal peer grading has also been used in the evaluation of proposals
for research funding, e.g., by the Sensors and Sensing Systems (SSS) program of NSF in 2013 [22],
using a Borda-like method proposed earlier by Merrifield and Saari [34] (see also [24]).

An example of the rating application that we envision is as follows. Users of a hotel booking
system are asked to rank hotels in a specific city, in which they have recently stayed. The goal of
the system is to compute a full ranking of the hotels (or, possibly, different rankings depending
on different relevant criteria, such as price, cleanliness, location, etc.) that can help new users.
Clearly, each user can provide meaningful feedback for just a few hotels. Again, in this scenario,
the system might ask each user to focus only on a subset of the hotels she knows. Similar examples
of rating applications include systems related to ranking restaurants, universities, and so on.

Besides the different sets of alternatives each individual is asked to rank in the above scenarios,
another implicit feature is that there is an underlying true ranking of all alternatives (e.g., the
ranking of exam papers in terms of their quality or the ranking of hotels in terms of their facilities)
that we would like to compute when aggregating the individual preferences. Can we do so using
simple voting-like rules? We follow an optimization approach which can be described with the
following question:

Assuming that we have partial knowledge of the underlying true ranking and access
to sampled profiles, which is the rule that yields an outcome that is as consistent as
possible to (our partial knowledge of) the underlying true ranking when applied to the
sampled profiles?

We study the above question for positional scoring rules (or, simply, scoring rules), which have
played a central role in social choice theory. Two factors that have led to this decision are their
simplicity and effectiveness; simplicity follows by their definition and effectiveness is justified by
our experimental results. In particular, we consider settings in which each agent is asked to rank
the same number d of alternatives; this is consistent to the ordinal peer grading approach as it has
been applied in MOOCs [11, 38] or in the NSF pilot [22]. A positional scoring rule in our setting
is defined by a scoring vector (s1, s2, ..., sd). It takes as input the incomplete individual rankings
of the agents and computes scores for alternatives as follows. An alternative gets sk points each
time it is ranked k-th by an agent and its score is its total number of points. The final ranking is
obtained by ordering all alternatives in terms of their scores, in non-increasing order.

The input of our problem consists of a profile of individual incomplete rankings and desired
relations for pairs of alternatives (to be thought of as parts of the underlying true ranking) with
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corresponding weights (indicating the importance of each relation). Given this input, we would like
to compute the positional scoring rule, whose outcome —when applied on the profile— maximizes
the total weight of the desired pairwise relations it satisfies. We refer to this seemingly fundamental
optimization problem as OptPSR, standing for “Optimizing Positional Scoring Rules”.

1.1 Our contribution

Our technical contribution consists of theoretical and experimental results for OptPSR. We be-
gin by presenting an exact algorithm, which we call Regions, that solves OptPSR in time that
depends exponentially only on the parameter d. Hence, Regions runs in polynomial time when
d is constant. For instances with high values of d, we have two approximation algorithms. The
first one, which we call BestApproval, searches among the class of t-approval voting rules (that
use scoring vectors with t 1s followed by d − t 0s, with t ∈ [d]) and returns the one that satis-
fies constraints of highest total weight. The solutions returned by BestApproval are always at
least 1/d–approximate. This means that the total weight of the satisfied constraints is at least
1/d times the maximum total weight of constraints that can be simultaneously satisfied by any
scoring rule. We show that our analysis is tight by constructing simple instances, in which any
approval voting rule is (at most) 1/d-approximate. We also present a second, more sophisticated,
approximation algorithm, called ApxPSR, which achieves even better approximation ratios at the
expense of higher (but still polynomial) running time. On the negative side, we show that OptPSR
is not only computationally hard (in particular, NP-hard) to compute exactly but also NP-hard
to approximate. We present an explicit inapproximability bound of 23/24; our proof is based on
an approximation-preserving reduction from the optimization problem MAX-3LIN-2 of maximizing
the number of satisfied equations in an over-determined system of linear equations modulo 2, and
exploits a famous inapproximability result due to H̊astad [21].

Further, we describe experiments from the execution of scoring rules/algorithms on many
OptPSR instances. We use two real-world profiles, which we have carefully collected, as well as
numerous synthetic profiles that are produced by simulating agents whose ranking behavior follows
the Bradley-Terry [7] and Plackett-Luce [29, 36] noise models. In contrast to our theoretical work,
which is based on worst-case assumptions, our experimental results show that well-known scoring
rules as well as our algorithms ApxPSR and BestApproval perform remarkably well and recover
almost 100% of the desired constraints in all scenarios we examined; this justifies our choice to
study the optimization problem OptPSR in the first place.

1.2 Related work

Social choice theory has traditionally assumed that voters provide full rankings (strict linear or-
ders) over all alternatives. There are some deviations from this tradition that have been attempted
recently. Among other issues, Boutilier and Rosenschein [6] discuss settings with incomplete rank-
ings as votes. In general, these models belong to one of the following categories. Several papers
(see, e.g., [4, 17, 20]) consider voters who rank their few top preferred alternatives. Others, like the
current paper, consider voters who rank arbitrary subsets of alternatives. These include the papers
[16, 18, 39], in which voters rank alternatives they know. For example, in [18], the alternatives are
web pages and the voters are different search engines, which do not necessarily have full coverage of
the web. In the papers on ordinal peer grading mentioned above [3, 10, 11, 24, 34, 38, 40, 41], the
“voters” are asked to rank particular subsets of alternatives. In this sense, even though they are in
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principle capable of evaluating other alternatives, they are never asked to do so and, hence, do not
include them in their rankings. In the most general setting, each vote can be a partial order of all
alternatives. This includes the cases mentioned above as well as the case in which some relations
between pairs of alternatives are not given. Konczak and Lang [23] were the first to consider this
setting in computational social choice, followed by Pini et al. [35], Xia and Conitzer [45], and others.

Important problems in the setting with partial orders of alternatives as votes are related to
how the votes can be extended to full rankings. The papers [23, 35, 45] mentioned above consider
the question of whether there exists an extension of a profile of partial orders so that a given
alternative becomes the winner. The question of whether a given alternative is the winner in any
profile extension has also been studied. Both questions give rise to elegant computational problems,
which are informally known as possible and necessary winners, respectively. Lu and Boutilier [27]
view the selection among different possible winners as a robust optimization problem and use the
notion of minimax regret to solve it. Their techniques extend to multi-winner determination [28].
However, all these papers focus on the winning alternative(s), while our interest here is on the
whole ranking returned by a voting rule that is applied on profiles with incomplete votes.

The existence of an underlying true ranking is a central assumption in our work. This is closely
related to a trend in social choice, which assumes an objectively correct ranking of the alternatives
(a ground truth) and views votes as noisy estimates of this ranking. The most common approach
in such settings aims to view voting rules as maximum likelihood estimators [14, 46] and start with
the assumption that each voter implicitly transforms the ground truth into her vote following a
particular probability distribution or noise model. A voting rule is an MLE for a noise model if,
when applied on a profile of votes, it returns as an outcome the ranking or the winning alternative
that is the most likely to produce this profile, assuming that voters follow the noise model. The
most prominent such result is due to Young [46], who proved that the Kemeny voting rule is the
MLE for a noise model that dates back to Marquis de Condorcet [15] and is today better known as
the Mallows’ model [30]. A discussion on recent results on the MLE approach can be found in the
chapter by Elkind and Slinko [19]. Among them, Xia and Conitzer [44] and Lu and Boutilier [26]
use the MLE approach to voting rules applied on profiles with incomplete votes. A related line of
research aims to establish sample complexity results. How many votes (from a given noise model)
are necessary in order to recover the ground truth with high probability? The papers [9, 12, 13]
follow this direction.

Another approach, which is even closer to the current paper, has an optimization flavor. The
papers [10, 11] of our group on ordinal peer grading as well as the paper by de Weerdt et al. [16] aim
to identify the voting rule whose outcome ranking has as small expected distance from the ground
truth ranking as possible. In general, these voting rules are not maximum likelihood estimators. In
contrast to these papers as well as to those following the MLE approach, here we assume that we
have access to parts of the underlying ground truth. Furthermore, in our theoretical investigations,
we do not exploit the fact that votes may be noisy estimates of some ground truth but, instead,
treat them as arbitrary; this gives rise to several optimization challenges. On the other hand, our
experimental scenarios use ground truth rankings and voters (agents) that follow two well-known
noise models.

Finally, our optimization problem OptPSR aims to compute the positional scoring rule that best
fits the input. This is conceptually related to learning-theoretic studies that seek a scoring rule
that is consistent to given examples; e.g., see the papers by Boutilier et al. [5] and Procaccia et al.
[37] which, among other results, study the sample complexity of scoring rules by bounding their
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generalized dimension. Like our theoretical investigations, their settings are more general and do
not depend on particular noise models.

1.3 Roadmap

The rest of the paper is structured as follows. We begin with the formal description of the OptPSR
problem and necessary preliminary material in Section 2, including definitions, an example, as well
as the description of a naive exact algorithm for OptPSR. In Section 3, we present and analyze our
exact algorithm Regions. Our approximation algorithms BestApproval and ApxPSR are presented
and analyzed in Section 4. In Section 5, we give the proof of our inapproximability result for
OptPSR. Our experiments follow in Section 6. We conclude with a discussion on open problems
and possible extensions in Section 7. Additional material related to our experiments is given in
Appendix.

2 Problem statement

We consider settings with a set N of agents and a set A of alternatives. Agent i expresses her
preference over a subset Ai ⊆ A of alternatives; her preference (or vote) is a strict linear order
(henceforth, simply, a ranking) of the alternatives in Ai. A preference profile (or simply, a profile)
Π consists of the preferences of all agents. In this work, we assume that all agents have the same
number d ≥ 2 of alternatives in their preferences, i.e., |Ai| = d for each agent i.

A social welfare function takes as input a profile Π and it outputs a ranking of all alternatives
in A. A positional scoring rule (or, simply, a scoring rule) is a social welfare function that uses a
scoring vector s = (s1, ..., sd) with si ≥ si+1 for i = 1, ..., d−1 and sd ≥ 0; the alternative at position
k in each vote is assigned sk points and the ranking of the alternatives is produced by ordering
them in monotone non-increasing order in terms of their total points (or score). In the following,
with some abuse in notation, we use s to refer to both the scoring vector and the corresponding
scoring rule that uses it. Formally, for an alternative x, let νj(x,Π) denote the number of agents
that rank x at position j in profile Π. Then, given a scoring rule s, the score of alternative x is
defined as

scs(x,Π) =

d∑
j=1

νj(x,Π) · sj .

We remark that this score definition does not take into account the popularity of alternative x (i.e.,
the number of times x appears in the rankings of the profile). Another definition would normalize
the score by dividing with the number of appearances of x in the profile. We have chosen the
current definition for proof-of-concept purposes only.

We also assume that we have access to a set of constraints C that represents our (possibly partial)
knowledge to an objective set of pairwise relations between the alternatives. Each constraint in C
is given by an ordered pair of alternatives (x, y) and requires that alternative x is ranked higher
than alternative y in the outcome of the scoring rule s. For a pair of alternatives (x, y), let
δj(x, y,Π) = νj(x,Π)− νj(y,Π). Now, observe that, in order for alternative x to be ranked above
y with certainty in the final ranking, it must be scs(x,Π) > scs(y,Π) and, equivalently,

d∑
j=1

δj(x, y,Π) · sj > 0.
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Using δ(x, y,Π) = (δ1(x, y,Π), ..., δd(x, y,Π)), the above expression can be compactly written as
the dot product δ(x, y,Π) · s > 0. For our purposes, instead of thinking of a profile Π as the set of
rankings provided by the agents, it is convenient to describe it using the quantities δ(x, y,Π) for
every constraint (x, y) in C; we use the notation δ(Π) to denote the set of these quantities and we
will simply refer to it as the profile. Each constraint (x, y) ∈ C has a corresponding non-negative
weight w(x, y), which indicates the importance of the constraint.

Now, problem OptPSR (standing for “optimizing positional scoring rules”) is defined as follows.
We are given a profile δ(Π) and a set C of constraints. The goal of OptPSR is to find the scoring
rule s that produces a ranking of all alternatives so that the total weight (or gain)

g(s, δ(Π), C) =
∑

(x,y)∈C

w(x, y) · 1 {δ(x, y,Π) · s > 0} ,

of satisfied constraints is maximized. The quantity 1 {X} takes value 1 if X is true and 0 otherwise.

Example 1. Consider ten agents, a set of seven alternatives A = {x1, x2, x3, x4, x5, x6, x7}, the
profile of rankings of size d = 4 that appears in Table 1, and the constraints that appear in Table 2
together with the corresponding weights and the representation δ(Π) of the profile.

First, observe that the first three constraints cannot be satisfied simultaneously; this can be
easily seen since by summing the corresponding inequalities we obtain −s2 + s3 − 8s4 > 0 which
contradicts s2 ≥ s3 and s4 ≥ 0. So, in the best case, the optimal scoring rule can satisfy all
constraints besides the one among the first three that has the minimum weight. One such scoring
rule uses the scoring vector (4, 4, 1, 0) and satisfies all constraints except the second one for a total
gain of 10. In contrast, well-known scoring rules such as the Borda count that uses the scoring
vector (3, 2, 1, 0) and the t-approval rules, with t ∈ [4], that use scoring vectors with t ones followed
by 4− t zeros, satisfy constraints of total gain equal to 7, 8 (for t = 1), 8 (for t = 2), 9 (for t = 3),
and 4 (for t = 4), respectively; see also Table 3.

# of agents ranking

1 x1 � x2 � x6 � x4
2 x3 � x1 � x4 � x2
2 x5 � x6 � x4 � x2
1 x7 � x3 � x4 � x2
1 x5 � x4 � x3 � x6
3 x7 � x5 � x4 � x2

Table 1: The profile Π of agent rankings in Example 1. The notation � is used here to represent
the preference of the agents. For instance, according to the second row of the table, there are two
agents that rank alternative x3 first, alternative x1 second, x4 third, and x2 last.

Let us now give an equivalent view of OptPSR. A scoring rule s can be thought of as a point
in Rd, and, in particular, in the region R0 of Rd formed by the inequalities si − si+1 ≥ 0 for
i = 1, ..., d − 1 and sd ≥ 0 that define all valid scoring vectors. We can define subregions of R0

by considering any subset C ′ ⊆ C of constraints and the inequality δ(x, y,Π) · s > 0 for every
constraint associated with the pair of alternatives (x, y) ∈ C ′ and the inequality δ(x, y,Π) · s ≤ 0
for every constraint (x, y) ∈ C \ C ′. In this way, the collection of all subsets of constraints in C
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constraint weight δ1(·,Π) δ2(·,Π) δ3(·,Π) δ4(·,Π) inequality

(x1, x2) 4 1 1 0 −8 s1 + s2 − 8s4 > 0
(x4, x5) 2 −3 −2 8 1 −3s1 − 2s2 + 8s3 + s4 > 0
(x3, x4) 3 2 0 −7 −1 2s1 − 7s3 − s4 > 0
(x4, x6) 2 0 −1 7 0 −s2 + 7s3 > 0
(x3, x2) 1 2 0 1 −8 2s1 + s3 − 8s4 > 0

Table 2: The constraints, the corresponding weights, the alternative representation of the profile
Π using the quantities δ(x, y,Π), and the induced inequalities used in Example 1. For instance,
the first constraint of weight 4 requires that alternative x1 appears above x2 in the final ranking.
According to the profile Π in Table 1, since there are two agents that place alternative x1 in the
second position, while there is only one agent that places alternative x2 in the second position, we
have that δ2(x1, x2,Π) = 1; one can easily verify the remaining values of the table. Given these
quantities, the inequalities follow since δj(x1, x2,Π) for j ∈ [4] is the coefficient of the variable sj
corresponding to the points assigned to position j.

rule scoring vector gain

opt (4, 4, 1, 0) 10
Borda count (3, 2, 1, 0) 7
1-approval (1, 0, 0, 0) 8
2-approval (1, 1, 0, 0) 8
3-approval (1, 1, 1, 0) 9
4-approval (1, 1, 1, 1) 4

Table 3: The positional scoring rules considered in Example 1 and their corresponding total gains.

partition R0 into disjoint subregions; of course, some of them may be infeasible. Hence, in order
to maximize g(s, δ(Π), C), it suffices to find any point s in the non-empty subregion of R0 that
satisfies the subset of constraints with maximum total weight.

To do so, we can enumerate all subsets of constraints of C, check feasibility of the corresponding
regions using linear programming, and report any point in the subregion that yields the highest
gain. This algorithm takes time polynomial in 2|C| and d, assuming that it receives δ(Π) and C as
input. In practice, the parameter d (i.e., the size of the input rankings) is expected to be a small
constant, while the number of alternatives and, consequently, the number of constraints |C| would
be much larger. Hence, an algorithm that runs in time exponential in |C| is clearly impractical. In
the next section, we will present an algorithm that uses a more clever enumeration of the feasible
subregions in order to get the one that yields the maximum gain.

3 An improved OptPSR algorithm

We will present another (exact) OptPSR algorithm which we call Regions. Its running time depends
exponentially only on the parameter d and, hence, is polynomial when d is a constant. We remark
that this time complexity is interesting only in theory. As we will mention later, when describing
our experiments in Section 6, even when d is small (say, equal to 6), the algorithm does not scale
well with the number of constraints.
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Regions computes a pool of non-empty subregions ofR0, each of which satisfies a different subset
of constraints. Initially, the pool consists only of region R0, and is updated as new constraints of C
are considered. When a new constraint is considered, each region in the pool can be split into two
subregions consisting of the points that satisfy the constraint and the points that do not satisfy it,
respectively. When all points of a region satisfy the constraint or all points of the region do not
satisfy it, then the region is not split and is retained as a whole in the pool.

In particular, the algorithm considers the constraints of C one by one. At each step t, a pool P
of regions is kept; at the beginning of each step, all regions in the pool are active. For each region
R in P, the algorithm keeps the gain val(R) that is obtained by the constraints which have been
considered until step t and are satisfied by scoring vectors of region R. The algorithm begins its
execution having only region R0 in the pool. When a new constraint (x, y) with weight w(x, y) is
considered, the algorithm attempts to update each active region R of P as follows. It defines the
candidate regions Rxy and R¬xy such that

• Rxy is defined by the inequalities that form R together with inequality δ(x, y,Π)·s > 0 (which
defines the set of points that satisfy constraint (x, y)), and

• R¬xy is defined by the inequalities that form R together with inequality δ(x, y,Π) · s ≤ 0
(which defines the set of points that do not satisfy constraint (x, y)).

If both Rxy and R¬xy are non-empty (i.e., the corresponding sets of inequalities are feasible), the
algorithm includes both Rxy and R¬xy in P as inactive, sets their gains val(Rxy) := val(R)+w(x, y)
and val(R¬xy) := val(R), and removes region R from the pool. If only Rxy is feasible (and R¬xy

is infeasible), val(R) is increased by w(x, y). If only R¬xy is feasible (and Rxy is infeasible), the
algorithm does nothing. In the last two cases, no new region is added to the pool. Clearly, it cannot
be the case that both Rxy and R¬xy are infeasible. Again, feasibility can be checked efficiently by
solving linear programs with d variables and up to |C| constraints. At the end of step t (i.e., when
there is no other active region in the pool to be considered), the inactive regions become active
and the algorithm proceeds with step t + 1. When all constraints of C have been considered, the
algorithm computes the active region R∗ with maximum val(R∗) and returns any scoring vector
in R∗. A description of the algorithm in pseudocode is given as Algorithm 1.

Example 2. We will now examine a simple example of how Regions works on a profile Π with
alternatives x1, x2, x3, y1, y2, and y3, and d = 2 (see Figure 1). The set C has three constraints
(x1, y1), (x2, y2), and (x3, y3) with corresponding weights 3, 1 and 2. The profile is such that
δ(x1, y1,Π) = (−7, 2), δ(x2, y2,Π) = (4,−2), and δ(x3, y3,Π) = (−2, 3). Therefore, the constraints
define the inequalities −7s1 + 2s2 > 0, 4s1 − 2s2 > 0, and −2s1 + 3s2 > 0.

Now, the algorithm proceeds as follows. Initially (see Figure 1a), the algorithm has region R0,
defined by the lines s2 = 0 and s1 − s2 = 0, in the pool with gain equal to 0. At the next step (see
Figure 1b), the algorithm considers constraint (x1, y1) and replaces R0 with regions R1 = Rx1y10

and R2 = R¬x1y10 ; R1 is the subregion of R0 with −7s1 + 2s2 > 0 that satisfies the first constraint
and has gain 3, while R2 is the subregion of R0 with −7s1 + 2s2 < 0 that does not satisfy the
first constraint and has gain 0 (the line −7s1 + 2s2 = 0 separates the two subregions). Next (see
Figure 1c), the constraint (x2, y2) leaves both regions R1 and R2 in the pool, and increases both of
their gains by 1. Finally (see Figure 1d), the third constraint (x3, y3) replaces region R1 by regions
R3 = Rx3y31 and R4 = R¬x3y31 ; R3 is the subregion of R1 with −2s1 + 3s2 > 0 that satisfies the
constraint and has gain equal to 6 (the gain of R1 increased by the weight of the constraint), while
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Algorithm 1: Regions

Input: parameter d, profile δ(Π), set C of constraints
Output: a scoring vector s = (s1, ..., sd)
R0 := {s1 ≥ s2, ..., sd−1 ≥ sd, sd ≥ 0}
val(R0) := 0
P := {R0}
for (x, y) ∈ C do

active := P
for R ∈ active do

active := active \ {R}
Rxy := {R, δ(x, y,Π) · s > 0}
R¬xy := {R, δ(x, y,Π) · s ≤ 0}
if Rxy is feasible and R¬xy is feasible then

val(Rxy) := val(R) + w(x, y)
val(R¬xy) := val(R)
P := {P \ {R} ∪ {Rxy, R¬xy}}

else if Rxy is feasible and R¬xy is not feasible then
val(R) := val(R) + w(x, y)

end

end

end
R∗ := arg maxR∈P{val(R)}
return s ∈ R∗

R4 is the subregion of R1 with −2s1 + 3s2 < 0 that does not satisfy the constraint and has gain 4
(equal to that of R1). Observe that in the last step, region R2 also satisfies the third constraint and,
hence, its gain is also increased by 2. The region with the maximum gain is R3 and the algorithm
will output some scoring vector from this region.

Next, we prove that our improved OptPSR algorithm is correct and that its running time
depends exponentially only on the parameter d.

Theorem 1. Given an instance of OptPSR with parameter d, a set of constraints C, and a profile
Π, algorithm Regions correctly returns a solution in time O(|C|d · poly(|C|, d)).

Proof. The correctness of the algorithm should be apparent. It considers the whole space of points
in Rd which corresponds to scoring vectors and divides it into all (sub)regions defined for every
inclusion-maximal subset of constraints that are satisfied simultaneously. Among all these regions,
it finds the one with points that correspond to scoring vectors that satisfy constraints of C with
maximum total weight.

Expanding R0 into the regions in the pool when the last constraint of C is considered can be
thought of as a non-complete binary tree T with nodes corresponding to regions (see Figure 1e for
an example). T is rooted at a node corresponding to R0 and is such that each node at level t− 1,
corresponding to a region R, has two children at level t if the region R was split in and replaced
by two subregions at step t and has one child otherwise (indicating that the region was retained
in the pool during step t). The total time required to find all regions is proportional to the size of
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s2 = 0
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R0
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s1

(a)

−7s1 + 2s2 = 0

R1R2
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(b)

4s1 − 2s2 = 0
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s2
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(c)

2s1 − 3s2 = 0

R3 R4R2

+ −
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s1

(d)

R0

0

R1

3

R2

0

R1

4

R2

1

R3

6

R4

4

R2

3

(e)

Figure 1: An example with the execution of Regions on a profile Π with d = 2. Subfigures (a)–(d)
depict the step-by-step consideration of the constraints and how the active regions are updated.
At each subfigure, the blue line corresponds to a new constraint that is considered. In Subfigures
(b)–(d), the marks + and − denote which of the two subregions defined by the blue line contain
the vectors that satisfy the constraint or not. The gain of the subregions marked with + are
increased by the weight of the constraint (a darker shade of gray for a subregion indicates a higher
gain). Subfigure (e) depicts the evolution of the content of the pool of regions together with the
corresponding gains. Specifically, the nodes in each level of the tree represent the content of the
pool and the corresponding gains during each step of the algorithm.
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T . Since all non-leaf nodes have at least one child, the size of T is at most its height |C| times the
number of leaves. The number of leaves is essentially the number of different non-empty regions,
which is upper-bounded by the number of different sign patterns that the quantities δ(x, y,Π) · s
define for each constraint (x, y) in C. Since these |C| quantities are linear functions over the d
coordinates of vector s, a result due to Alon [1] (see also Warren [43]) yields that the total number

of different sign patterns is at most
(
8e|C|
d

)d
. For each of the nodes of T , feasibility can be checked

by solving two linear programs with d variables and at most |C| constraints in time poly(|C|, d).
The theorem follows.

By Theorem 1, we obtain the following corollary. For comparison, the naive algorithm presented
at the end of the previous section is polynomial in the very special case where |C| is at most
logarithmic in d.

Corollary 2. Algorithm Regions solves instances of OptPSR with constant d in polynomial time.

4 Approximating OptPSR

As the running time of the exact algorithm Regions of the previous section depends exponentially
on d, our aim here is to design much faster (i.e., polynomial-time) algorithms that compute approx-
imate OptPSR solutions. Given an instance of OptPSR with parameter d, profile Π, and set C of
constraints, let s∗ be the scoring vector that satisfies constraints of C with maximum total weight.
A scoring vector s is a ρ-approximate solution, for some ρ ∈ [0, 1], for the particular instance if
g(s, δ(Π), C) ≥ ρ ·g(s∗, δ(Π), C), i.e., the total weight of constraints satisfied by s is at least ρ times
the total weight of constraints satisfied by s∗. An algorithm is called a ρ-approximation algorithm
if it computes a ρ-approximate solution for every instance of OptPSR. We refer to ρ as the approx-
imation ratio of the algorithm. Ideally, we would like to design approximation algorithms that are
as efficient as possible, i.e., algorithms that run in polynomial-time and have as high approximation
ratio as possible.

Let us warm up by observing that a single positional scoring rule (e.g., Borda, plurality, k-
approval) cannot serve as an efficient approximation algorithm as it has an approximation ratio of
0. This is stated in the next lemma.

Lemma 3. Let d be a positive integer. For every scoring vector s ∈ Rd≥0 with s1 ≥ ... ≥ sd, there
exists an instance of OptPSR with parameter d, profile Π and set C of constraints such that s is
0-approximate.

Proof. Clearly, the scoring vector s = (0, ..., 0) does not satisfy any constraint. So, in the following,
we assume that s1 > 0. For any positive integer K > 0, we will construct a set C of constraints
consisting of disjoint pairs of alternatives (xt, yt) for t = 1, ...,K. We will distinguish between two
cases depending on the structure of s. For each of them we will construct an OptPSR instance
(formed by an appropriately defined profile and the set C of constraints), in which s satisfies no
constraint, while another scoring vector s∗ satisfies all of them.

If s1 = ... = sd > 0, then for every constraint (xt, yt) we set δ1(xt, yt,Π) = 1, δ2(xt, yt,Π) = −2
and δj(xt, yt,Π) = 0 for j = 3, ..., d. Profile Π can be realized as follows. Alternative xt appears
in position 1 once and alternative yt appears in position 2 twice; all other positions are filled with
additional alternatives that do not appear in the constraints of C. Observe that δ(xt, yt,Π) · s =
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s1 − 2s2 < 0 for every t = 1, ...,K, i.e., s does not satisfy any constraint. In contrast, the plurality
vector s∗ = (1, 0, ..., 0) satisfies all constraints of C.

Otherwise, if si > si+1 for some i ∈ [d − 1], let D be an integer satisfying D > si+1

si−si+1
. For

every constraint (xt, yt) for t = 1, ...,K, we set δi(xt, yt,Π) = −D, δi+1(xt, yt,Π) = D + 1, and
δj(xt, yt,Π) = 0 for j ∈ [d] \ {i, i+ 1}. Profile Π can be realized as follows. Alternative xt appears
D times in position i and alternative yt appears D + 1 times in position i + 1; again, all other
positions are filled with additional alternatives that do not appear in the constraints of C. Observe
that the definition of D implies that δ(xt, yt,Π) · s = −siD + si+1(D + 1) < 0, i.e., s does not
satisfy any constraint. In contrast, the (i+ 1)-approval vector s∗ (consisting of 1s in the first i+ 1
positions and 0s in the remaining ones) satisfies all constraints of C.

In both cases, the scoring vector s is a 0-approximate solution.

We conclude that efficient approximation algorithms should consider many candidate scoring
vectors and pick the one that better serves a given OptPSR instance. This is a recipe that is
followed by the algorithms BestApproval and ApxPSR that are presented in Sections 4.1 and 4.2,
respectively.

4.1 Approximating OptPSR using approval scoring vectors

We will now show that an extremely simple algorithm that examines a set of simple scoring vectors
and returns the best of them achieves a 1/d-approximation solution. Formally, for t ∈ [d], the
t-approval rule is a positional scoring rule that uses the scoring vector that has 1 in the first t
positions and 0 in the remaining ones. Our algorithm, which we call BestApproval, considers
all t-approval rules and returns the one that satisfies constraints of maximum total weight. A
description of BestApproval in pseudocode is given as Algorithm 2.

Algorithm 2: BestApproval

Input: parameter d, profile δ(Π), set C of constraints
Output: a t∗-approval rule
for t ∈ [d] do

t := (1, ..., 1,︸ ︷︷ ︸
t times

0, ..., 0)

g(t, δ(Π), C) :=
∑

(x,y)∈C w(x, y) · 1 {δ(x, y,Π) · t > 0}
end
return t∗ ∈ arg maxt{g(t, δ(Π), C)}

With the following two theorems, we prove that BestApproval is a 1/d-approximation algo-
rithm for OptPSR (Theorem 4) and, furthermore, we show that this bound is tight by providing a
particular instance for which any t-approval rule is an (at most) 1/d-approximate solution (Theo-
rem 5).

Theorem 4. Given an instance of OptPSR with parameter d, a set of constraints C, and a profile
Π, algorithm BestApproval returns a 1/d-approximate solution.

Proof. In order to prove the bound on the approximation ratio, we will show that there exists some
t ∈ [d] so that the corresponding t-approval scoring rule is a 1/d-approximate solution. Then, the
t∗-approval rule returned by BestApproval will have an at least as good approximation guarantee.
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Let s∗ ∈ Rd≥0 be the optimal scoring rule for the given instance of OptPSR, and let X ⊆ C be
the set of constraints that it satisfies, i.e., δ(x, y,Π) · s∗ > 0 if and only if (x, y) ∈ X. For k ∈ [d],
let

Xk =

(x, y) ∈ X :
k∑
j=1

δj(x, y,Π) > 0

 .

I.e., Xk contains the constraints of X which are satisfied by the k-approval scoring rule. This
definition implies that

d∑
k=1

g(k, δ(Π), C) ≥
d∑

k=1

∑
(x,y)∈Xk

w(x, y). (1)

We now claim that each constraint (x, y) ∈ X belongs to Xk for some k ∈ [d] and, hence,

∑
(x,y)∈X

w(x, y) ≤
d∑

k=1

∑
(x,y)∈Xk

w(x, y). (2)

Assume otherwise; then, it would mean that
∑k

j=1 δj(x, y,Π) ≤ 0 for every k ∈ [d]. By multiplying
these d inequalities with the non-negative quantities s∗k − s∗k+1 for k = 1, ..., d − 1 and s∗d, and
summing them, we obtain that

d−1∑
k=1

(s∗k − s∗k+1)

k∑
j=1

δj(x, y,Π) + s∗d

d∑
j=1

δj(x, y,Π) ≤ 0.

The claim follows by observing that the left-hand side is equal to δ(x, y,Π)·s∗ and, hence, δ(x, y,Π)·
s∗ ≤ 0, contradicting the fact that (x, y) ∈ X.

Using (2) and (1), we obtain

g(s∗, δ(Π), C) =
∑

(x,y)∈X

w(x, y) ≤
d∑

k=1

∑
(x,y)∈Xk

w(x, y) ≤
d∑

k=1

g(k, δ(Π), C).

This implies that there exists t ∈ [d] such that g(t, δ(Π), C) ≥ 1
dg(s∗, δ(Π), C), as desired. The

theorem follows.

Theorem 5. There exists an instance of OptPSR with parameter d for which all t-approval rules,
with t ∈ [d], are (at most) 1/d-approximate.

Proof. We will define an OptPSR instance with d pairs of alternatives (xt, yt) as constraints with
w(xt, yt) = 1 for t ∈ [d]. We will build a profile Π so that the t-approval scoring rule satisfies
only constraint (xt, yt) for t ∈ [d], while there exists a scoring rule that simultaneously satisfies all
constraints. The profile is defined as follows:

• Alternative x1 appears 2d − 1 times in position 1, and alternative y1 appears 2d times in
position 2. This means that δ1(x1, y1,Π) = 2d− 1, δ2(x1, y1,Π) = −2d and δj(x1, y1,Π) = 0
for j ≥ 3.
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• For 2 ≤ t ≤ d − 1, alternative xt appears 2d times in position t, and alternative yt appears
once in position 1 and 2d times in position t + 1. This means that δ1(xt, yt,Π) = −1,
δt(xt, yt,Π) = 2d, δt+1(xt, yt,Π) = −2d, and δj(xt, yt,Π) = 0 for j 6∈ {1, t, t+ 1}.

• Alternative xd appears 2d times in position d, and alternative yd appears once in position 1.
This means that δ1(xd, yd,Π) = −1, δd(xd, yd,Π) = 2d, and δj(xd, yd,Π) = 0 for 2 ≤ j ≤ d−1.

• The rest of the positions in the votes are filled with additional alternatives that do not appear
in the constraints.

Observe that, for every t ∈ [d], it holds that
∑t

j=1 δj(xt, yt,Π) = 2d − 1 > 0 and∑t
j=1 δj(x`, y`,Π) = −1, for any ` 6= [d] \ {t}. Hence, the t-approval scoring rule satisfies only

constraint (xt, yt) for a total weight of 1. Now, consider a variation of the Borda count scoring rule
that uses the scoring vector s = (d, d−1, ..., 1). Then, since δ(x`, y`,Π) · s = d > 0 for every ` ∈ [d],
this scoring rule satisfies all constraints for a total weight of d. Therefore, we conclude that any
t-approval has approximation ratio at most 1/d.

4.2 An improved approximation algorithm

Here, we will design the more sophisticated approximation algorithm ApxPSRk, which is parameter-
ized by a positive integer k, and exploits ideas that we have already presented above. Similarly to
BestApproval, ApxPSRk searches over a set of candidate scoring vectors and identifies the one that
better serves the available input data (profile and constraints). Two important differences between
ApxPSRk and BestApproval are that (a) the set of candidate scoring rules is much broader now
and (b) a few executions of a variation of the exact algorithm Regions are used in order to find
the best among these candidates.

Let ` ∈ [dd/ke]. We say that a scoring vector s follows the `-th k-pattern if s1 = ... = sk(`−1)+1 ≥
sk(`−1)+2 ≥ ... ≥ smin{d,k`} ≥ 0 and, if ` < dd/ke, sk`+1 = ... = sd = 0. For example, the t-approval
scoring rule follows that t-th 1-pattern. Note that the scoring vectors that follow some of the dd/ke
k-patterns have a very special structure and (at most) k different values in their score entries.

For a given instance of OptPSR and integers k > 0 and ` ∈ [dd/ke], we can compute the best
scoring vector that follows the `-th k-pattern via a slight modification of Regions. We refer to this
modification as algorithm mRegions and we assume that, together with parameter d, the profile
δ(Π), and the set C of constraints, it receives as input the parameters k and ` as well. All we
need to do is to include the equality constraints which restrict the entries of scoring vectors that
follow the `-th k-pattern in the initial region R0. These equality constraints are included in all
(sub)regions that are considered by the algorithm. Hence, the regions that will be contained in the
pool P when mRegions terminates will all satisfy the equality restrictions. In this way, the scoring
vector that will be computed will follow the `-th k-pattern, as desired.

Our algorithm ApxPSRk first calls mRegions to compute the dd/ke best scoring rules that follow
the `-th k-pattern for ` = 1, ..., dd/ke and returns the best among all these rules, i.e., the one that
yields the highest gain among them. Algorithm ApxPSRk follows as Algorithm 3.

The next theorem summarizes the properties of algorithm ApxPSRk. Observe that the algorithm
runs in polynomial time when the parameter k is a constant. The approximation ratio is better
than approximately k times that of BestApproval.

Theorem 6. Given an instance of OptPSR with parameter d, a set of constraints C, and a profile Π,
algorithm ApxPSRk runs in time O(|C|k · poly(|C|, d)) and returns a dd/ke−1-approximate solution.
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Algorithm 3: ApxPSRk
Input: parameter d, profile δ(Π), set C of constraints
Output: a scoring vector s = (s1, ..., sd)
S := ∅
for ` ∈ [dd/ke] do

S := S ∪ mRegions(d, δ(Π), C, k, `)
end
return s ∈ arg maxs′∈S{g(s′, δ(Π), C)}

Proof. We first show the bound on the running time. Observe that ApxPSRk selects the best scoring
vector among those returned in dd/ke executions of mRegions. We will show that each execution
of mRegions takes time O(|C|k · poly(|C|, d)).

By mimicking the proof of Theorem 1, we can view the expansion of the pool by mRegions as a
non-complete binary tree T with nodes corresponding to regions. Then, the total time required to
find all regions by mRegions is proportional to the size of T , which is at most its height |C| times
the number of leaves. The number of leaves is again the number of different non-empty regions,
which is upper-bounded by the number of different sign patterns that the quantities δ(x, y,Π) · s
define for each constraint (x, y) in C. Since these |C| quantities are linear functions over k (as
opposed to d in the proof of Theorem 1) coordinates of vector s, the results of Alon [1] and Warren

[43] yield that the total number of different sign patterns is at most
(
8e|C|
k

)k
. For each of the nodes

of T , feasibility can again be checked by solving two linear programs with d variables and at most
|C| constraints in time poly(|C|, d). The bound on the running time follows.

In order to prove the bound on the approximation ratio, we will show that there exists a scor-

ing vector s(k) that follows some k-pattern which is a
⌈
d
k

⌉−1
-approximate solution to the OptPSR

instance. Then, the scoring vector s returned by algorithm ApxPSRk will have the same approx-
imation guarantee, since ApxPSRk returns the best scoring vector following some k-pattern, i.e.,
g(s, δ(Π), C) ≥ g(s(k), δ(Π), C).

Consider an instance of OptPSR consisting of a profile Π and a set of constraints C with
weighting w : C → R≥0. Let s∗ ∈ Rd≥0 be the optimal scoring vector for this instance. We will

show that there exists a scoring vector s(k) that follows some k-pattern such that g(s(k), δ(Π), C) ≥⌈
d
k

⌉−1
g(s∗, δ(Π), C).

Let X ⊆ C be the set of constraints that are satisfied by the scoring vector s∗. We now define
an alternative view of s∗ by setting αd = sd and αi = s∗i − s∗i+1 for i = 1, ..., d− 1. I.e., instead of
keeping the entries of the scoring vector s∗, we use the vector α = (α1, ..., αd) to represent the entry
s∗d and the increase of s∗i compared to s∗i+1 for i = 1, ..., d− 1. Hence, s∗j =

∑d
i=j αi for j = 1, ..., d.

Using the definition of δ(x, y,Π), for every (x, y) ∈ X, we have

δ(x, y,Π) · s∗ =
d∑
j=1

δj(x, y,Π) · s∗j =
d∑
j=1

δj(x, y,Π)
d∑
i=j

αi =
d∑
i=1

αi

i∑
j=1

δj(x, y,Π).

Now, define

ξ`(x, y,Π) =

min{d,`k}∑
i=(`−1)k+1

αi

i∑
j=1

δj(x, y,Π)

15



for ` ∈ [dd/ke], and observe that the last two equalities imply that

δ(x, y,Π) · s∗ =

dd/ke∑
`=1

ξ`(x, y,Π). (3)

For ` ∈ [dd/ke], define the set

X` = {(x, y) ∈ X : ξ`(x, y,Π) > 0}

and observe that, for every constraint (x, y) ∈ X, (3) and the fact that δ(x, y,Π) · s∗ > 0 imply
that ξ`(x, y,Π) > 0 for some ` ∈ [dd/ke]. This yields that

g(s∗, δ(Π), X) =
∑

(x,y)∈X

w(x, y) ≤
dd/ke∑
`=1

∑
(x,y)∈X`

w(x, y).

We conclude that there exists `∗ ∈ [dd/ke] such that∑
(x,y)∈X`∗

w(x, y) ≥ dd/ke−1g(s∗, δ(Π), X) = dd/ke−1g(s∗, δ(Π), C). (4)

In order to complete the proof, we will define a particular scoring vector s(k) that follows a
k-pattern and satisfies all constraints in X`∗ . We do so by first defining the difference vector

α(k) = (α
(k)
1 , ..., α

(k)
d ) corresponding to s(k). This is done as follows:

• If `∗ > 1, we set α
(k)
i = 0 for i = 1, ..., k(`∗ − 1).

• If `∗ < dd/ke, we set α
(k)
i = 0 for i = k`∗ + 1, ..., d.

• We set α
(k)
i = αi for i = k(`∗ − 1) + 1, ...,min{d, k`∗}.

Now, define the scoring vector s(k) as s
(k)
j =

∑d
i=j α

(k)
i for j = 1, ..., d. Then, for every (x, y) ∈ X,

δ(x, y,Π) · s(k) =

d∑
j=1

δj(x, y,Π) · s(k)j =

d∑
j=1

δj(x, y,Π)

d∑
i=j

α
(k)
i

=
d∑
i=1

α
(k)
i

i∑
j=1

δj(x, y,Π) =

min{d,k`∗}∑
i=k(`∗−1)+1

α
(k)
i

i∑
j=1

δj(x, y,Π)

= ξ`∗(x, y,Π).

This equality, together with the definition of set X` yields that δ(x, y,Π) · s(k) > 0 for every
(x, y) ∈ X`∗ , i.e., the scoring vector s(k) satisfies all constraints in X`∗ . We obtain that

g(s(k), δ(Π), C) ≥ g(s(k), δ(Π), X`∗) =
∑

(x,y)∈X`∗

w(x, y) ≥ dd/ke−1g(s∗, δ(Π), C).

The last inequality follows by (4). This completes the proof of the approximation bound.
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5 Hardness of approximation

We devote this section to proving that OptPSR is not simply computationally hard, but also hard to
approximate well. The proof of our next statement relies on an approximation-preserving reduction
from a well-known inapproximable optimization problem.

Theorem 7. For every constant η ∈ (0, 1/24], OptPSR is NP-hard to approximate within 23/24+η.

Proof. We use a reduction from MAX-3LIN-2, the problem of maximizing the number of satisfied
equations in an over-determined system of linear equations modulo 2. An instance of MAX-3LIN-2
consists of n binary variables xi ∈ {0, 1} and m equations of the forms xi ⊕ xj ⊕ xk = 0 and
xi ⊕ xj ⊕ xk = 1, where ⊕ denotes addition modulo 2. The objective is to find an assignment
to the variables so that the number of satisfied equations is maximized. Below, we use the term
α-equation to refer to an equation of the form xi ⊕ xj ⊕ xk = α (for α ∈ {0, 1}).

Given an instance of MAX-3LIN-2, our reduction constructs in polynomial-time an instance of
OptPSR that has a scoring vector that satisfies constraints of total weight 11m+L if and only if the
MAX-3LIN-2 instance has an assignment satisfying L equations. A famous result by H̊astad [21]
states that, for any constant η′ ∈ (0, 1/2), it is hard to distinguish in time polynomial in n and
m whether a given instance of MAX-3LIN-2 has an assignment that satisfies at least (1 − η′)m
equations or any assignment satisfies at most (1/2 + η′)m equations. As a consequence of our
reduction, we obtain that it is hard to distinguish between instances of OptPSR that have a scoring
vector that satisfies constraints of total weight at least (12 − η′)m and instances of OptPSR in
which the total weight of the constraints satisfied by any scoring vector is at most (23/2 + η′)m.
An inapproximability bound of 23/24+η (for every constant η ∈ (0, 1/24]) then follows by standard
arguments. The rest of the proof consists of two main parts: the description of the reduction and
the proof of correctness.

Description of the reduction Without loss of generality, we can assume that the scoring vectors
s = (s1, s2, ..., sd), that we seek for, have s1 = d and the remaining scores are defined in terms of
d − 1 variables a1, a2, ..., ad−1 ≥ 0 as si+1 = si − ai (or, consequently, sj = d −

∑j−1
k=1 ak) for

i = 1, ..., d−1 so that
∑d−1

i=1 ai ≤ d. Hence, a constraint (y, z) requiring that the score of y is higher
than the score of z can be expressed as a linear inequality of the variables aj with j ∈ [d− 1]. The
assumption that s1 = d allows for inequalities that have non-zero constant terms.

Our reduction will be described in two steps. Given the MAX-3LIN-2 instance (i.e., the binary
variables and the equations), we will first define linear inequalities among the variables ai. Later, we
will define the OptPSR instance by explicitly constructing the profile and specifying the constraints
as pairs of alternatives and corresponding weights that are consistent to these linear inequalities.

For the first step of the description of our reduction, we present the linear inequalities that
will later evolve to constraints of the OptPSR instance. We set ε to be a small constant such that
0 < ε ≤ 1/d and 1/ε is an integer. We define the following inequalities:

• For every variable xi, we have the four inequalities ai > 0, ai < ε, ai > 1 and ai < 1 + ε. An
important property of the four inequalities corresponding to variable xi is that three of them
are simultaneously satisfied when ai ∈ (0, ε)∪ (1, 1 + ε), and only two of them are satisfied for
any other value of ai. Intuitively, by enforcing these inequalities to be satisfied as constraints
with high weight will simulate binary assignments in the MAX-3LIN-2 instance.
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• For every equation, there are four inequalities.

– If the equation is of the form xi ⊕ xj ⊕ xk = 0, the inequalities are ai + aj + ak > 0,
ai + aj + ak < ε, ai + aj + ak > 2 and ai + aj + ak < 2 + ε. Now, three of the
inequalities corresponding to a 0-equation xi ⊕ xj ⊕ xk = 0 are simultaneously satisfied
when ai + aj + ak ∈ (0, ε) ∪ (2, 2 + ε); otherwise, exactly two inequalities are satisfied.

– If the equation is of the form xi ⊕ xj ⊕ xk = 1, the inequalities are ai + aj + ak > 1,
ai + aj + ak < 1 + ε, ai + aj + ak > 3 and ai + aj + ak < 3 + ε. Again, for every
1-equation xi ⊕ xj ⊕ xk = 1, we have three inequalities that are simultaneously satisfied
when ai+aj +ak ∈ (1, 1 + ε)∪ (3, 3 + ε); otherwise, exactly two inequalities are satisfied.

These inequalities will correspond to constraints of equal (and low) weight of the OptPSR
instance. Overall, our construction will guarantee that the total weight of all satisfied con-
straints will be linear to the number of satisfied equations in the MAX-3LIN-2 instance. This
will be crucial in proving the correctness (and the approximation-preserving nature) of the
reduction.

We are now ready to proceed with the second step of the description of the reduction. In
particular, we show how the above inequalities are implemented by explicitly constructing a profile
and pairs of alternatives as constraints. Let d = n+ 1. Also, for i ∈ [d− 1], let mi be the number
of equations in which variable xi participates. For every variable xi, with i ∈ [n], we have four
constraints (yti , z

t
i), where t ∈ {1, 2, 3, 4}, of weight mi each. In the profile, alternatives yti and zti

appear in specific positions as follows:

• Alternative y1i appears once in position i, and alternative z1i appears once in position i + 1.
Then, the constraint (y1i , z

1
i ) corresponds to the inequality si − si+1 > 0 or, equivalently,

ai > 0.

• Alternative y2i appears once in position 1 and d/ε times in position i + 1, and alternative
z2i appears d/ε times in position i. The constraint (y2i , z

2
i ) corresponds to the inequality

s1 − d
ε si + d

ε si+1 > 0 or, equivalently, ai < ε (since s1 = d and ai = si − si+1).

• Alternative y3i appears d times in position i, and alternative z3i appears once in position 1 and d
times in position i+1. The constraint (y3i , z

3
i ) corresponds to the inequality −s1+dsi−dsi+1 >

0 or, equivalently, ai > 1.

• Alternative y4i appears 1/ε + 1 times in position 1 and d/ε times in position i + 1, and
alternative z4i appears d/ε times in position i. The constraint (y4i , z

4
i ) corresponds to the

inequality
(
1
ε + 1

)
s1 − d

ε si + d
ε si+1 > 0 or, equivalently, ai < 1 + ε.

For every equation ` ∈ [m], we have four constraints (bt`, c
t
`), where t ∈ {1, 2, 3, 4}, of unit weight

each. In the profile, these alternatives appear in specific positions depending on whether equation
` is a 0- or a 1-equation. In the case where it is a 0-equation of the form xi⊕ xj ⊕ xk = 0, we have:

• Alternative b1` appears once in positions i, j and k, and alternative c1` appears once in positions
i+ 1, j + 1 and k + 1. Then, the constraint (b1` , c

1
` ) corresponds to the inequality si − si+1 +

sj − sj+1 + sk − sk+1 > 0 or, equivalently, ai + aj + ak > 0.
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• Alternative b2` appears once in position 1 and d/ε times in positions i+1, j+1 and k+1, and
alternative c2` appears d/ε times in positions i, j and k. The constraint (b2` , c

2
` ) corresponds to

the inequality s1− d
ε si+

d
ε si+1− d

ε sj+ d
ε sj+1− d

ε sk+ d
ε sk+1 > 0 or, equivalently, ai+aj+ak < ε

(since s1 = d, ai = si − si+1, aj = sj − sj+1 and ak = sk − sk+1).

• Alternative b3` appears d times in positions i, j and k, and alternative c3` appears 2 times in
position 1 and d times in positions i+1, j+1 and k+1. The constraint (b3` , c

3
` ) corresponds to

the inequality −2s1+dsi−dsi+1+dsj−dsj+1+dsk−dsk+1 > 0 or, equivalently, ai+aj+ak > 2.

• Alternative b4` appears 2/ε+ 1 times in position 1 and d/ε times in positions i+ 1, j + 1 and
k + 1, and alternative c4` appears d/ε times in positions i, j and k. The constraint (b4` , c

4
` )

corresponds to the inequality
(
2
ε + 1

)
s1 − d

ε si + d
ε si+1 − d

ε sj + d
ε sj+1 − d

ε sk + d
ε sk+1 > 0 or,

equivalently, ai + aj + ak < 2 + ε.

In the case where equation ` is a 1-equation of the form xi ⊕ xj ⊕ xk = 1, we have:

• Alternative b1` appears d times in positions i, j and k, and alternative c1` appears once in
position 1 and d times in positions i + 1, j + 1 and k + 1. Then, the constraint (b1` , c

1
` )

corresponds to the inequality −s1+dsi−dsi+1+dsj−dsj+1+dsk−dsk+1 > 0 or, equivalently,
ai + aj + ak > 1 (since s1 = d, ai = si − si+1, aj = sj − sj+1 and ak = sk − sk+1).

• Alternative b2` appears 1/ε+ 1 times in position 1 and d/ε times in positions i+ 1, j + 1 and
k + 1, and alternative c2` appears d/ε times in positions i, j and k. The constraint (b2` , c

2
` )

corresponds to the inequality
(
1
ε + 1

)
s1 − d

ε si + d
ε si+1 − d

ε sj + d
ε sj+1 − d

ε sk + d
ε sk+1 > 0 or,

equivalently, ai + aj + ak < 1 + ε.

• Alternative b3` appears d times in positions i, j and k, and alternative c3` appears 3 times in
position 1 and d times in positions i+1, j+1 and k+1. The constraint (b3` , c

3
` ) corresponds to

the inequality −3s1+dsi−dsi+1+dsj−dsj+1+dsk−dsk+1 > 0 or, equivalently, ai+aj+ak > 3.

• Alternative b4` appears 3/ε+ 1 times in position 1 and d/ε times in positions i+ 1, j + 1 and
k + 1, and alternative c4` appears d/ε times in positions i, j and k. The constraint (b4` , c

4
` )

corresponds to the inequality
(
3
ε + 1

)
s1 − d

ε si + d
ε si+1 − d

ε sj + d
ε sj+1 − d

ε sk + d
ε sk+1 > 0 or,

equivalently, ai + aj + ak < 3 + ε.

In order for this profile to be valid, we use sufficiently many agents and additional alternatives
(that do not appear in the constraints) as placeholders, so that the alternatives mentioned above
have the appropriate number of appearances in the rankings.

Proof of correctness We now prove that there exists a variable assignment for the MAX-3LIN-2
instance that satisfies L of its equations if and only if there exists a scoring vector that satisfies
constraints of total weight 11m + L. As we have discussed above, this is enough to complete the
proof.

Consider an assignment that satisfies L of the equations. Consider the scoring vector defined
by setting ai = xi + ε/4 for i ∈ [d− 1]. Recall that we use ε ≤ 1/d and, hence,

∑d−1
i=1 ai < d; this is

sufficient so that the corresponding scoring vector s has non-negative entries. This scoring vector
satisfies:
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• three out of the four inequalities corresponding to any variable xi, since ai = ε/4 ∈ (0, ε)
when xi = 0 and ai = 1 + ε/4 ∈ (1, 1 + ε) when xi = 1;

• three out of the four inequalities corresponding to any satisfied 0-equation xi ⊕ xj ⊕ xk = 0
since ai+aj +ak = 3ε/4 ∈ (0, ε) when xi+xj +xk = 0 and ai+aj +ak = 2 + 3ε/4 ∈ (2, 2 + ε)
when xi + xj + xk = 2;

• two out of the four inequalities corresponding to any unsatisfied 0-equation since ai+aj+ak 6∈
(0, ε)∪ (2, 2 + ε) in that case (observe that ai + aj + ak = 1 + 3ε/4 when xi + xj + xk = 1 and
ai + aj + ak = 3 + 3ε/4 when xi + xj + xk = 3);

• three out of the four inequalities corresponding to any 1-equation xi ⊕ xj ⊕ xk = 1 since
ai+aj +ak = 1+3ε/4 ∈ (1, 1+ε) when xi+xj +xk = 1 and ai+aj +ak = 3+3ε/4 ∈ (3, 3+ε)
when xi + xj + xk = 3;

• two out of the four inequalities corresponding to any unsatisfied 1-equation since ai+aj+ak 6∈
(1, 1 + ε)∪ (3, 3 + ε) then (again, observe that ai + aj + ak = 3ε/4 when xi + xj + xk = 0 and
ai + aj + ak = 2 + 3ε/4 when xi + xj + xk = 2).

Hence, the total weight of the constraints satisfied is 3
∑n

i=1mi + 3L + 2(m − L) = 11m + L,
since

∑n
i=1mi = 3m due to the fact that all equations have three variables and the sum

∑n
i=1mi

accounts for the total number of appearances of all variables in equations.
Conversely, assume that we are given a scoring vector that satisfies constraints of total weight

11m+L; we will show that there exists an assignment to the variables of the MAX-3LIN-2 instance
that satisfies L equations. First, we show that we can transform the scoring vector into a (possibly)
different one with ai = ε/4 or ai = 1 + ε/4 for i ∈ [d − 1], without decreasing the total weight of
the satisfied constraints.

For a variable ai 6∈ (0, ε) ∪ (1, 1 + ε) we have that the satisfied inequalities are the following:
exactly two out of the four variable inequalities and at most three out of the four inequalities
for each of the mi equations in which the variable xi appears. This gives a weight of at most
2mi + 3mi = 5mi. By setting ai = ε/4, exactly three out of the four variable inequalities and at
least two out of the four equation inequalities in which xi appears are satisfied, for a total weight
of at least 5mi. Clearly, there is no loss in weight after this change in the value of ai. So, in the
following, we can assume that ai ∈ (0, ε) ∪ (1, 1 + ε) for every variable ai.

Now, we slightly modify the variable values as follows: for all variables ai ∈ (0, ε) we set ai = ε/4
and for all variables ai ∈ (1, 1+ε) we set ai = 1+ε/4. The set of inequalities containing ai that were
satisfied before the modification are still satisfied after the update as well. This is trivial for the
variable inequalities. For β ∈ {0, 1, 2, 3}, for an equation inequality of the form ai +aj +ak < β+ ε
(respectively, ai + aj + ak > β) that was satisfied before the modification, at most β (respectively,
at least β) of the three variables have values in (1, 1 + ε) before the modification. Clearly, the
inequality is satisfied after the modification as well.

So, we can assume that we have total weight of 11m + L from satisfied constraints with the
variables ai taking values in {ε/4, 1 + ε/4}. Hence, 3

∑n
i=1mi = 9m comes as weight from satisfied

variable inequalities (with three satisfied inequalities per variable). Then, the remaining weight
comes from 2m + L satisfied equation inequalities. The definition of the reduction implies that
there exist L equations in the MAX-3LIN-2 instance so that three among the four corresponding
inequalities are satisfied. Then, it is easy to inspect that, if three among the four equation in-
equalities are satisfied when variables take values in {ε/4, 1 + ε/4}, then the (binary) assignment
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Sydney, Australia

Oslo, Norway

Baghdad, Iraq

Vienna, Austria

Washington, USA

London, UK

Greece

Switzerland

Nigeria

Thailand

China

Mexico

Figure 2: An example of the sets from the ppl and col templates given to some agent. The particular
format was used for building the real-world profiles. The blank column at the left is where the
corresponding participant was required to define her ranking by putting distinct numbers from 1
to 6.

xi = ai − ε/4 satisfies their corresponding equation as well. This yields an assignment with (at
least) L satisfied equations and the proof is complete.

6 Experiments

In this section, we present our experiments, which should be viewed as complementary to our the-
oretical work in the previous sections. We report on the execution of algorithms on two real-world
OptPSR instances that we have generated as well as on numerous synthetic ones. In contrast to
the theoretical analysis of the approximation algorithms in Section 4 which focuses on worst-case
instances, here we are mainly interested in the average-case behavior of algorithms or scoring rules
in scenarios that are close to ones that are likely to appear in practice. This explains the findings de-
scribed in the following, according to which the observed performance of simple algorithms/scoring
rules is much closer to optimality compared, for example, to the performance guarantees in Theo-
rem 4.

Our experimental setup involves two different scenarios, to which we refer to as ppl and col.
Each scenario is defined by a set of alternatives and by a profile template (or, simply, a template).
The alternatives in the ppl scenario are the 48 countries that are listed in Table 6 of A. For the
col scenario, the alternatives are the 36 cities that are listed in Table 7. The templates consist of
equal-sized subsets of alternatives that each agent will be asked to rank. Specifically, the templates
consist of 392 sets of six alternatives each. The distribution of the alternatives to the different sets
of the ppl and col templates is almost uniform; each country appears in at least 47 and at most
52 sets, while each city appears in at least 57 and at most 70 sets. The templates are used to
produce profiles as follows. Each profile has exactly 392 agents. Each agent is given a distinct set
of alternatives from the template (see Figure 2 for examples of such sets for ppl and col) and ranks
these alternatives. The profile then consists of the rankings provided by all agents.

Input profiles In our experiments, we used both real-world and synthetic data. Two real-world
profiles (for the scenarios ppl and col, respectively) were collected as input from 392 participants1

in the PatrasIQ2 technology exhibition organized by our home institution in April 2016. Each

1Actually, we had prepared even more sets of alternatives that could be part of the template; as we did not manage
to obtain more inputs, we restricted the templates and synthetic profiles to 392 agents for comparison reasons.

2www.patrasiq.gr
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participant was given distinct sets of six countries and six cities (see Figure 2) from the ppl and
col templates, and was asked to rank the countries in terms of their population and the cities in
terms of their cost of living. These two profiles are available at preflib.org [32, 33] as dataset
ED-00034.3

Many different synthetic profiles (in each scenario) were obtained by simulating agents who rank
alternatives randomly. Specifically, each agent provides a noisy estimate of the correct underlying
ranking of the alternatives assigned to her, according to either the Bradley-Terry [7] or the Plackett-
Luce [29, 36] noise model. Both Bradley-Terry and Plackett-Luce are random utility models [2, 42].
They are defined using an underlying (positive) utility ux associated with each alternative x and
assume that the correct outcome of the pairwise relation between two alternatives x and y depends
on the comparison between the utilities ux and uy (the alternative with the highest utility is better).
In particular, the utilities of the 48 alternatives-countries in the ppl scenario are their populations
according to information retrieved by wikipedia.org in April 2016 (see Table 6). Similarly, the
utilities of the 36 alternatives-cities in the col scenario are their cost of living indices as retrieved
by numbeo.org during the same time period (see Table 7).

A Bradley-Terry (BT, in short) agent (implicitly) works as follows. She first decides relations
between all pairs of alternatives in her set. For each pair of alternatives x and y with corresponding
utilities ux and uy, the agent decides to rank x above y with probability ux

ux+uy
and y above x

with probability
uy

ux+uy
. If the relative ranks of all pairs of alternatives in her set (that have been

computed separately) define a ranking, then this is the ranking provided by the agent. Otherwise,
the whole process is repeated from scratch.

A Plackett-Luce (PL, in short) agent decides the ranking of the alternatives in her set B
sequentially. Starting from the first position, the next undetermined position in the ranking is filled
by alternative x ∈ B with probability ux∑

y∈B uy
. After a random selection, the chosen alternative is

removed from B and the process continues for the next undetermined position and the remaining
alternatives until all positions are filled.

Constraints The constraints of the OptPSR instances we consider in our experiments were defined
as follows. In both scenarios, we have a constraint (x, y) for each ordered pair of alternatives x and y
such that ux > uy. For example, a constraint in the ppl scenario is the pair (China, Switzerland) as
China is more populous than Switzerland. We consider three different weightings of the constraints,
defining different OptPSR instances. In particular, the weight of (x, y) is either 1, or equal to ux−uy,
or equal to log (ux − uy).

Unit weights are used when we care only about maximizing the number of correctly recovered
pairwise comparisons between alternatives. However, there might be pairs that are really important
to recover correctly, while some others are not. For example, in the ppl scenario, it might be
important to conclude that China is ranked above Switzerland since their population difference
is almost 1.3 billion people. Using this reasoning, an error in the comparison between Cuba and
Belgium (both with population around 11 million) would not be that severe. Weighted and log-
weighted (as opposed to unweighted) constraints have been introduced to capture this characteristic.

Evaluation Since all profiles that we experimented with have d = 6, one would expect that the
exact algorithm Regions presented in Section 3 would be the obvious choice in order to come up with

3It seems that together with the dataset ED-00025 that were collected and used by Mao et al. [31], these are
among the very few existing voting profiles with an underlying ground truth ranking.
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the optimal scoring rule. Unfortunately, for the size of OptPSR instances that we considered (with(
48
2

)
= 1128 constraints for ppl and

(
36
2

)
= 630 constraints for col), Regions (as well as algorithm

ApxPSR from Section 4.2) turned out to be really slow, even after implementing several heuristics
that yield minor performance improvements. This rather disappointing outcome, together with the
fact that d is small, forced us to consider scoring vectors with discretized scores (e.g., which are
multiples of 0.05 or 0.02) in order to come up with approximations of the optimal scoring vector.
Similarly, we have implemented a simplified variant of ApxPSR2 by searching over all vectors of the
form (1, s, 0, 0, 0, 0), (1, 1, 1, s, 0, 0), and (1, 1, 1, 1, 1, s) where s is a multiple of 0.02 between 0 and
1. For real-world profiles, this approach has yielded the vectors that are shown in Table 4.

We remark that these variants of Regions and ApxPSR2 are the most time-consuming among
the algorithms we have implemented. The total execution time of all experiments (which were
conducted using Matlab R2017B) is approximately 44 hours using an Intel 12-core i7 desktop, with
32Gb of RAM, running Windows 7. This is amortized to approximately 10 seconds per instance
for the variant of Regions and less than 1 second per instance for the variant of ApxPSR2.

rule ppl col

Optimal (1.00, 0.50, 0.35, 0.20, 0.15, 0.05) (1.00, 0.90, 0.30, 0.30, 0.24, 0.00)
ApxPSR2 (1.00, 0.02, 0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 0.34, 0.00, 0.00)

(a) Unweighted constraints

rule ppl col

Optimal (1.00, 0.65, 0.65, 0.35, 0.30, 0.25) (1.00, 0.68, 0.68, 0.50, 0.22, 0.22)
ApxPSR2 (1.00, 0.30, 0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 0.52, 0.00, 0.00)

(b) Weighted constraints

rule ppl col

Optimal (1.00, 0.60, 0.42, 0.20, 0.18, 0.08) (1.00, 0.65, 0.65, 0.35, 0.30, 0.25)
ApxPSR2 (1.00, 0.02, 0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 0.52, 0.00, 0.00)

(c) Log-weighted constraints

Table 4: The positional scoring vectors returned by the variants of the optimal algorithm and
algorithm ApxPSR2 on the real-world profiles. These vectors follow by searching a discretized spaces
with scores that are multiples of either 0.05 or 0.02.

We compare the optimal OptPSR solution (obtained as described above) to the scoring vector
returned by algorithm BestApproval which was presented in Section 4, the variant of ApxPSR2 (also
implemented as described above) and to two well-known scoring rules: the Borda count scoring
rule that is defined by the scoring vector (5, 4, 3, 2, 1, 0), as well as the Harmonic scoring rule (also
known as Dowdall) which is defined by the vector (1, 1/2, 1/3, 1/4, 1/5, 1/6). Table 5 shows the
performance of these algorithms/scoring rules in all OptPSR instances that we experimented with.
Each performance value is expressed as a percentage of the total weight of the constraints satisfied
by an algorithm/scoring rule compared to the total weight of all constraints. The two columns
labeled “real data” contain values that correspond to a single execution of an algorithm/scoring
rule on the two real-world ppl and col profiles. The values in the remaining columns are averages
over executions of algorithms/scoring rules on 1000 (random) profiles with either BT or PL agents
as well as their standard deviations. Table 5 is split in three parts to report the results for OptPSR
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instances with unweighted (Table 5a), weighted (Table 5b), and log-weighted constraints (Table 5c).
Our results indicate that Harmonic is better than both Borda and BestApproval in OptPSR

instances with real-world profiles. Harmonic is also better than ApxPSR2 in all real-world profiles
besides ppl with weighted constraints. On the other hand, ApxPSR2 is better the best algorithm
for all synthetic profiles besides ppl with BT agents, where Borda is slightly better. Even though
BestApproval is never the best among the four algorithms/scoring rules, it always provides com-
petitive results. The performance values of algorithms/scoring rules on the real-world profiles are
considerably inferior to those for synthetic profiles. This indicates that the BT and PL noise
models are rather idealized and do not reflect accurately the behavior of the agents in our real-
world inputs. Still, as they allowed for many executions, they made possible the assessment of the
algorithms/scoring rules in terms of robustness, as we will see shortly.

Table 5b indicates that the performance values for weighted constraints are considerably higher
than those for unweighted ones. This is to be expected since the total weight of correctly recovered
constraints improves significantly when heavy pairwise relations are satisfied. The performance
values for log-weighted constraints seem to lie in-between.

The low standard deviation values in Table 5 for synthetic profiles indicate that the perfor-
mance values measured for each algorithm/scoring rule in the 1000 executions are always sharply
concentrated around their average values. Indicatively, we demonstrate this by plotting a point
for each execution, which has the performance value of the optimal scoring rule as x-coordinate
and the performance value of Borda as the y-coordinate. The twelve 1000-point clouds in Figure 3
correspond to the three different constraint weightings and the profiles with BT and PL agents for
the ppl and col scenarios. All points in these clouds lie below the red dashed diagonal as Borda is
in general suboptimal. The clouds of points comparing the optimal scoring rule with the remaining
algorithms/scoring rules (not reported here) have similar structure and, like Figure 3, suggest that
the average values in Table 5 robustly characterize the performance of algorithms/scoring rules on
all the synthetic instances that we have considered. Another interesting observation from these
experiments is that the optimal scoring vectors corresponding to the different points of the clouds
in Figure 3 are, in general, very different, in spite of the fact that the optimal performance values
are so concentrated.

7 Conclusions and open problems

Motivated by crowdsourcing and rating applications, we have introduced and studied the OptPSR
problem. Very informally, the problem is to compute a positional scoring rule, whose outcome when
applied on a given profile is as close as possible to constraints corresponding to underlying correct
pairwise relations between alternatives. We have presented the algorithm Regions that solves the
problem exactly by cleverly searching the space of all candidate scoring vectors and exploiting lin-
ear programming. The algorithm runs in polynomial time when the parameter d (representing the
number of alternatives in the ranking of each agent) is constant. We also consider approximation
algorithms for OptPSR. A simple algorithm, called BestApproval, that selects among all approval
vectors the one that satisfies constraints of the highest weight is shown to achieve a tight approx-
imation ratio of 1/d. Our more sophisticated algorithm ApxPSR can achieve better approximation
ratios at the expense of higher running times. We complement these positive results by showing
that OptPSR is a hard-to-approximate optimization problem. We also present an experimental
evaluation of algorithms and scoring rules on real-world and synthetic instances.
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real data synthetic (BT) synthetic (PL)
ppl col ppl col ppl col

rule avg std avg std avg std avg std

Optimal 81.83 83.97 94.54 0.642 93.74 1.037 93.19 0.916 88.20 1.867
ApxPSR2 80.50 82.22 93.22 0.774 92.74 1.019 92.04 0.963 86.68 1.941
Borda 79.96 82.06 93.43 0.706 92.04 1.112 91.94 0.983 85.95 1.984
Harmonic 80.94 82.54 92.85 0.746 91.35 1.297 90.50 1.109 83.18 2.321
BestApproval 79.43 80.48 91.72 0.844 91.42 1.080 90.54 0.986 84.68 1.929

(a) Unweighted constraints

real data synthetic (BT) synthetic (PL)
ppl col ppl col ppl col

rule avg std avg std avg std avg std

Optimal 95.98 92.93 99.66 0.078 98.69 0.364 99.49 0.134 96.02 1.079
ApxPSR2 95.62 91.95 99.47 0.117 98.34 0.412 99.31 0.172 95.13 1.236
Borda 94.67 91.92 99.52 0.102 98.07 0.447 99.30 0.166 94.82 1.260
Harmonic 95.42 92.01 99.42 0.124 97.80 0.542 99.04 0.229 92.67 1.769
BestApproval 95.24 90.83 99.34 0.143 97.90 0.472 99.10 0.196 94.18 1.313

(b) Weighted constraints

real data synthetic (BT) synthetic (PL)
ppl col ppl col ppl col

rule avg std avg std avg std avg std

Optimal 83.03 88.21 95.29 0.553 97.02 0.717 94.06 0.768 92.53 1.487
ApxPSR2 81.56 86.82 94.07 0.681 96.24 0.765 93.06 0.887 91.24 1.695
Borda 81.05 86.91 94.31 0.596 95.87 0.841 92.94 0.827 90.75 1.663
Harmonic 82.15 87.24 93.75 0.674 95.32 0.952 91.59 1.015 88.08 2.076
BestApproval 80.56 85.48 92.79 0.722 95.52 0.841 91.65 0.872 89.77 1.633

(c) Log-weighted constraints

Table 5: Performance of algorithms/scoring rules on instances with weighted constraints. Each
value is a percentage and denotes the ratio of the total weight of the satisfied constraints over the
total weight of all constraints. For synthetic profiles with BT and PL agents, the values indicate
average performance (avg) and standard deviations (std) from 1000 simulations (on randomly
generated BT and PL profiles), while for real-world data each value corresponds to a single execution
of an algorithm/scoring rule. The performance of the best among the non-optimal scoring rules is
marked in bold. As the ppl and col instances have 1128 and 630 constraints, a respective difference
of 0.09 and 0.16 in performance in subtable (a) corresponds to a gain difference of one constraint.
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Figure 3: Comparing Borda with the optimal OptPSR solution. Each cloud consists of 1000 points,
each corresponding to a distinct simulation. The x-coordinate of each point is the performance
value of the optimal scoring rule and the y-coordinate is the performance value of Borda. The
caption of each subfigure indicated the type of agents (BT or PL), the scenario (ppl or col), and
the constraint weighting (unweighted, weighted, or log-weighted).
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Our work reveals several open problems. First, we would like to design exact algorithms that are
practical. Our ambitious goal here is to be able to solve —in reasonable time— OptPSR instances
like the ones we used in our experiments (i.e., with d up to 10, approximately 50 alternatives, and
1000 constraints).

Second, we would like to determine the approximability of OptPSR. Currently, there is a huge
gap between our positive algorithmic results in Theorems 4 and 6 and the inapproximability bound
from Theorem 7; the former have a dependence on d while the latter is a constant close to 1. Is
there a polynomial time algorithm with constant approximation ratio? Is there a sub-constant
inapproximability bound? These questions are very important from the theoretical point of view.
More importantly, we would like to design practical approximation algorithms that will be effective
on huge OptPSR instances. Here, we need both simplicity and efficiency; achieving these two goals
simultaneously seems elusive at this point.

Third, observe that our theoretical results in Section 4 focus on worst-case approximation
guarantees. In addition to such studies, we would like to conduct theoretical analysis in random
profiles that have been produced by Plackett-Luce or Bradley-Terry agents or, more importantly,
by more realistic agents who follow appropriate generalizations of random utility models (see [2]).
In particular, the following optimization problem that is inspired by the flavor of our experiments
is very appealing: Given a template, constraints, and statistical information (e.g., a noise model)
describing the behavior of agents, compute the best algorithm or scoring rule that maximizes the
expected total weight of satisfied constraints. Here, the expectation is taken over random OptPSR
instances with agents following the given noise model that are asked to rank the sets of alternatives
in the template.

Finally, our definition of OptPSR assumes that all agents rank the same number of alternatives.
This feature has been used for proof-of-concept purposes here but, admittedly, it could be very
restrictive in many applications. Extending OptPSR by allowing different numbers of alternatives
per agent (and more general definitions of scoring vectors) is important.

Thinking beyond OptPSR, one could consider optimization problems of similar flavor by replac-
ing positional scoring rules by a class of voting rules defined over incomplete votes which can be
identified by a small number of parameters (in the same way in which positional scoring rules are
identified by the position scores). One possibility might be to consider the class of Kemeny-like
voting rules which given a profile of possibly incomplete votes computes a full ranking of the alter-
natives that has the minimum possible total distance from the votes of the profile. Each voting rule
in this class is identified by a distance function between rankings. Kemeny is such a voting rule for
the Kendall-tau distance function (see [47]). Then, a natural optimization problem would aim for
optimizing the distance function parameters so that the resulting voting rule, when applied on the
given profile, returns a ranking that is as close as possible to the constraints of an underlying true
ranking. This direction might be worth studying, taking extra care of computational issues (e.g.,
Kemeny is computationally hard to resolve) that do not arise in OptPSR.
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A Alternatives and utilities used in experiments

Here we present the alternatives and the utilities that define the correct underlying ranking, the
constraints, and the corresponding weightings in our experiments. Table 6 contains the list of 48
countries and their populations sorted in descending order, as retrieved from wikipedia in April
2016 (ppl scenario). Table 7 contains the list of 36 cities and their corresponding cost of living index
sorted in decreasing order, as retrieved from the website numbeo.com in April 2016 (col scenario).

countries population countries population countries population

China 1,375,880,000 Iran 79,149,100 Peru 31,488,700
India 1,287,180,000 Turkey 78,741,053 Australia 24,051,600
USA 323,225,000 Thailand 65,273,832 Romania 19,861,000
Indonesia 258,705,000 Great Britain 65,097,000 Chile 18,191,900
Brazil 205,900,000 France 64,543,000 Netherlands 17,003,600
Pakistan 193,295,802 Italy 60,676,361 Belgium 11,312,444
Nigeria 186,988,000 South Korea 51,569,536 Cuba 11,238,317
Bangladesh 160,197,000 Colombia 48,608,000 Greece 10,864,979
Russia 146,544,710 Kenya 47,251,000 Czech Republic 10,553,843
Japan 126,920,000 Spain 46,423,064 Portugal 10,374,822
Mexico 122,273,500 Argentina 43,590,400 Sweden 9,866,670
Philippines 103,083,100 Ukraine 42,738,070 Hungary 9,849,000
Ethiopia 92,206,005 Algeria 40,400,000 Austria 8,699,730
Vietnam 91,700,000 Iraq 36,575,000 Israel 8,489,400
Egypt 90,755,700 Canada 36,048,521 Switzerland 8,306,200
Germany 81,459,000 Saudi Arabia 32,248,200 Bulgaria 7,202,198

Table 6: The 48 countries that are used as alternatives in the ppl scenario, ordered by population.
Retrieved from wikipedia.org (April 2016).
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cities col index cities col index cities col index

San Francisco 111.67 Doha 68.99 Barcelona 47.91
Zurich 106.19 Stockholm 66.46 Montreal 46.87
New York 100.00 Melbourne 62.25 Lagos 44.19
Lausanne 93.72 Tel Aviv 61.89 Nicosia 41.58
London 89.23 Munich 59.72 Athens 37.19
Washington 85.67 Rome 58.93 Istanbul 34.74
Boston 80.86 Brussels 58.29 Baghdad 33.42
Oslo 76.31 Toronto 55.75 Patras 32.21
Sydney 75.92 Maastricht 54.70 Budapest 30.69
Tokyo 74.35 Vienna 52.59 City of Mexico 29.20
Dubai 73.07 Genoa 51.11 Bucharest 27.10
Copenhagen 71.12 Berlin 48.96 Mumbai 24.64

Table 7: The 36 cities that are used as alternatives in the col scenario, ordered by cost of living
(plus rent) index. Retrieved from numbeo.com (April 2016).
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