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Abstract

We study the social efficiency of several well-known mechanisms for the allocation of a set of available (advertising)

positions to a set of competing budget-constrained users (advertisers). Specifically, we focus on the Generalized

Second Price auction (GSP), the Vickrey-Clarke-Groves mechanism (VCG) and the Expressive Generalized First

Price auction (EGFP). Using liquid welfare as our efficiency benchmark, we prove a tight bound of 2 on the liquid

price of anarchy and stability of these mechanisms for pure Nash equilibria.
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1. Introduction

Position mechanisms have been extensively used for the allocation of advertising positions (with different click-

through rates) when keywords are queried in search engines. Such mechanisms auction off the available positions to

the interested advertisers, who in turn compete with each other by submitting bids, expressing how much they value

the available advertising positions (per user click).

There have been numerous papers analyzing the properties of position mechanisms. Edelman et al. [11] (see

also [18]) studied the generalized first price auction (GFP) as well as the generalized second price auction (GSP).

According to these mechanisms, the advertisers are sorted in terms of the scalar bids that they submit, and each of

them is pays her own bid or the next highest bid, respectively. These definitions allow the advertisers to strategize

over their bids and engage as players into a strategic game. Edelman et al. [11] proved that the games induced by

GFP are not guaranteed to have pure Nash equilibria, while the games induced by GSP always have socially efficient

pure Nash equilibria with respect to the social welfare benchmark (the total value of the players for the positions they

are given); consequently, the price of stability [1] of GSP is equal to 1. Caragiannis et al. [3] (see also [17]) focused

on worst-case equilibria and proved several bounds on the price of anarchy [13] of GSP with respect to a variety of

equilibrium concepts, ranging from pure Nash and coarse-correlated equilibria in the full information setting to Bayes-

Nash equilibria in the incomplete information setting. Dütting et al. [10] proved bounds on the revenue and exploited

more expressive input formats as a remedy for the non-existence of pure Nash equilibria in games induced by GFP.
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They designed the expressive generalized first price auction (EGFP) according to which each player submits a bid per

position, the positions are auctioned off sequentially, and each player pays her bid for the position she is given.

All of the aforementioned papers studied the no-budget setting, where the players are assumed to be able to afford

any payments, no matter how large these can get. However, in reality, the players have hard budget constraints

that upper-bound the payments that they can afford. Following a series of recent papers that focus on such budget-

constrained settings, we also study the social efficiency of position mechanisms by bounding the (pure) price of

anarchy and stability in terms of the liquid welfare benchmark that takes budgets into account. Liquid welfare was first

introduced by Dobzinski and Paes Leme [9] who focused on the design of truthful mechanisms for the allocation of

multiple units of a single divisible item (see also [14, 15] for extensions of this setting). One of the very first results of

Dobzinski and Paes Leme [9] is the observation that the celebrated VCG mechanism [19, 7, 12] is no longer truthful,

which is the case for VCG in our setting as well.

The liquid price of anarchy has been considered in a few related papers so far. Syrgkanis and Tardos [17] con-

sidered the liquid welfare benchmark under the term effective welfare and bounded the ratio between the optimal

liquid welfare and the worst-case social welfare at equilibrium, in various strategic auction settings, including position

mechanisms. Caragiannis and Voudouris [4] and Christodoulou et al. [6] were the first to provide constant bounds

on the liquid price of anarchy (ratio of optimal liquid welfare over worst-case liquid welfare at equilibrium) of the

proportional mechanism for the allocation of divisible resources. These results are based on the now-standard unilat-

eral deviations technique (see also [16]) and can be extended to more general equilibrium concepts, given a specific

definition of the liquid welfare for randomized allocations. Our upper bounds follow this technique as well, but it

seems non-trivial to extend them to more general equilibrium concepts due to the particular form of the deviating bids

used. For pure equilibria in particular, by exploiting the structure of worst-case equilibria, Caragiannis and Voudouris

[5] were able to characterize the liquid price of anarchy of all mechanisms for the allocation of a single divisible

resource, leading to tight bounds. Finally, Azar et al. [2] refined the definition of the liquid welfare for randomized

allocations and proved constant liquid price of anarchy bounds over general equilibrium concepts for simultaneous

first price auctions.

In Section 2, we formally describe the setting considered in this paper and the mechanisms that we are interested

in. Then, in Section 3 we prove our main result: the liquid price of anarchy and stability of GSP, VCG and EGFP is

exactly 2. Consequently, in contrast to the no-budget setting, when we consider players with budget constraints and the

liquid welfare benchmark, these mechanisms do not have socially efficient equilibria. Such a phenomenon was first

observed by Caragiannis and Voudouris [5] for all single divisible resource allocation mechanisms, and it might be the

case that this holds for any position mechanism as well. We conclude with a short discussion of possible extensions of

our work in Section 4.
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2. Preliminaries

There are n available positions such that position j has associated click-through-rate (CTR) αj ∈ R>0 such that

αj ≥ αj+1 for j ∈ [n − 1]; let α = (αj)j∈[n] be the vector containing the CTRs of all positions. Furthermore,

there are n players that compete over these positions. Player i has a valuation vi and a total private budget ci; let

v = (vi)i∈[n] and c = (ci)i∈[n] be the vectors containing the valuations and budgets of all players. The valuation vi

indicates the value that player i has per click and, therefore, if player i is assigned to some position j, then her total

value is αjvi. The budget ci can be thought of as an upper bound to the payment that the player can afford in order to

buy some position.

We consider several greedy mechanisms for the allocation of positions to players, which generally work as follows.

Let M be a greedy mechanism. Each player i submits a bid bi that can either be a real non-negative scalar or a vector

of scalars per position, depending on the input format thatM requires; let b be the vector (or matrix) of bids submitted

by all players. Then, the players are sorted in non-increasing order in terms of their bids and the induced ranking σ(b)

indicates the position σi(b) that is assigned to each player i; therefore, we call σ(b) an assignment that is induced by

b. Also, let πj(b) denote the player that is assigned to position j such that πσi(b)(b) = i. The mechanism charges

player i an amount of money pi(b,M) that depends on b, and may or may not depend on ασi(b). Given a bid vector

b, each player i has utility ui(b,M) = ασi(b)vi− pi(b,M) if pi(b,M) ≤ ci, and −∞ otherwise. We focus on three

important greedy allocation mechanisms that function as follows.

Generalized Second Price (GSP). Each player i submits a scalar bi ∈ R≥0. The players are sorted in non-

increasing order in terms of these bids and are assigned to the corresponding positions. Each player i is charged

the next highest bid per click, that is, the bid of player πσi(b)+1(b) who is assigned to the next position σi(b) + 1.

Hence, the payment of player i is pi(b,GSP) = ασi(b)bπσi(b)+1(b), and her utility can be written as ui(b,GSP) =

ασi(b)

(
vi − bπσi(b)+1(b)

)
. 1

Vickrey-Clarke-Groves (VCG). Again, each player i submits a scalar bi ∈ R≥0, and the players are sorted in non-

increasing order in terms of their bids. Each player i is charged the difference between the social welfare (based on

the bids) of the players ranked below i if i did not participate and their actual social welfare when i participates. In

other words, the payment of player i is pi(b,VCG) =
∑n
j=σi(b)+1 bπ(j)(αj−1−αj), and her utility can be written as

ui(b,VCG) = ασi(b)

(
vi − 1

ασi(b)

∑n
j=σi(b)+1 bπ(j)(αj−1 − αj)

)
.

Expressive Generalized First Price (EGFP). Each player i submits a vector bi ∈ Rn≥0 containing a bid per position.

The positions are assigned to the players sequentially so that the next available position gets assigned to the player

with the maximum bid for it, among the players that have not yet been allocated a position. In other words, let Sj

1Interestingly, Dı́az et al. [8] proved that GSP may not have any equilibria when the number of players exceeds the number of available positions
and proposed alternative mechanisms; we here consider the same number of players and positions.
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be the set of players that are competing for positions ` ≥ j; initially, S1 contains all players. Then, πj(b,EGFP) =

argmaxi∈Sj bi,j . Each player i is charged (in total) her bid for the position that she is allocated, i.e., pi(b,EGFP) =

bi,σi(b), and her utility is ui(b,EGFP) = ασi(b)vi − bi,σi(b).

The game. LetM ∈ {GSP,VCG,EGFP} be any of the aforementioned position mechanisms. MechanismM induces

a strategic position game G(M) among the players who act as utility maximizers; this is true even for VCG as we will

see in the next section. A bid vector (or matrix) b is called a pure Nash equilibrium (or, simply, equilibrium) for G(M)

if all players simultaneously maximize their utilities and have no incentive to deviate to any different bid in order to

increase their personal utility, i.e., ui(b,M) ≥ ui((y,b−i),M), for all players i and bids y 6= bi. Here, the notation

(y,b−i) is used to denote the vector (or matrix) that is obtained by b when player i bids y (and all other players bid

according to b). Let eq(G(M)) be the set of all equilibria of the position game G(M).

Liquid welfare, price of anarchy and price of stability. We measure the social efficiency of an assignment σ(b) by the

liquid welfare benchmark, which is defined as the total value of the players, with the value of each player capped by

her budget, i.e.,

LW(σ(b)) =
∑
i

min{ασi(b)vi, ci}.

The liquid price of anarchy (liquid price of stability) of a position game G(M) that is induced by a position mechanism

M is defined as the ratio between the optimal liquid welfare achieved by any assignment to the minimum (maximum)

liquid welfare achieved at any equilibrium assignment. In other words, the liquid price of anarchy and the liquid price

of stability of G(M) are, respectively, equal to

LPoA(G(M)) =
maxy LW(σ(y))

minb∈eq(G(M)) LW(σ(b))
.

and

LPoS(G(M)) =
maxy LW(σ(y))

maxb∈eq(G(M)) LW(σ(b))
.

Then, the liquid price of anarchy and stability of a mechanismM are respectively defined as the worst-case liquid price

of anarchy and stability among all position games that are induced by M , i.e., LPoA(M) = supG(M) LPoA(G(M))

and LPoS(M) = supG(M) LPoS(G(M)) .

The no-over assumption: no-overbidding and no-overbudgeting. For the GSP and VCG mechanisms, in order to have

meaningful bounds on the liquid price of anarchy, we assume that ασi(b)bi ≤ min{ασi(b)vi, ci} for every player i.

This is a combination of the well-known no-overbidding assumption that demands that bi ≤ vi and a no-overbudgeting

assumption that demands that alphaσi(b)bi ≤ ci. This assumption is necessary as it is easy (like in the case of the

classic price of anarchy literature that deals with the social welfare objective) to construct position games that have

arbitrarily bad liquid price of anarchy when the players overbid. For the EGFP mechanism such an assumption is of

course not necessary due to the definition of the payment function.
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3. Bounds on the liquid price of anarchy and stability

We begin with Theorem 1, where we show that the LPoA and LPoS of GSP, VCG and EGFP are at least 2; notice

that the example that we present in the following proof also proves that VCG is no longer truthful when the players

have budget constraints. Then, in Theorem 2 we prove that this bound of 2 on the LPoA and LPoS is tight.

Theorem 1. The liquid price of anarchy and stability of GSP, VCG (under the no-over assumption) and EGFP are at

least 2.

PROOF. Let M ∈ {GSP,VCG,EGFP}, λ > 2 and ε ∈ (0, 1/2). Consider a position game G(M) among two players

with valuations v = (λ, 1) and budgets c = (1 + ε, 1), for two positions with CTRs α = (1, 1/λ). Observe that,

for the two possible assignments (1, 2) and (2, 1), the liquid welfare is LW(1, 2) = min{λ, 1 + ε} + min
{

1
λ , 1
}
=

(1+ε)λ+1
λ and LW(2, 1) = min{1, 1 + ε} + min{1, 1} = 2. Therefore, since λ > 2 and ε < 1/2, we have that

LW(2, 1) > LW(1, 2), and the optimal assignment is (2, 1). The ratio

LW(2, 1)

LW(1, 2)
=

2λ

(1 + ε)λ+ 1

tends to 2 as λ becomes arbitrarily large and ε becomes arbitrarily small. In order to prove the theorem, it suffices to

show that there exists an equilibrium bid vector that induces the assignment (1, 2), while there exists no equilibrium

bid vector that induces the assignment (2, 1).

GSP. First, consider the bid vector b = (1+ε, 1) which induces the assignment (1, 2). The utilities of the two players

are u1(b,GSP) = λ− 1 and u2(b,GSP) = 1
λ . Player 2 has no incentive to deviate as, by the no-over assumption, she

cannot bid above her budget (which coincides with her value), while any other bid would not change the assignment.

Player 1 obviously has no incentive to deviate to any other bid b′1 ≥ b2 as the assignment as well as her payment would

not change. So, consider the deviation of player 1 to the bid b′1 = b2−γ, for some γ > 0. Then, the induced assignment

would be (2, 1) and player 1 would have utility u1((b′1, b2),GSP) = 1 < u1(b,GSP) since λ > 2. Therefore, b is an

equilibrium, and the price of anarchy bound follows.

Now, assume that there exists an equilibrium bid vector b = (b1, b2) with b1 ≤ b2 ≤ 1 so that the assignment (2, 1)

is induced, while the no-over assumption is satisfied (for player 2). The utilities of the two players at this equilibrium

are u1(b,GSP) = 1 and u2(b,GSP) = 1 − b1. Consider the deviation of player 1 to the bid b′1 = c1 = 1 + ε > b2.

Then, the utility of this player would be u1((b′1, b2),GSP) = λ − b2 ≥ λ − 1 > 1, since b2 ≤ 1 and λ > 2. Hence,

player 1 has incentive to deviate to b′1 and b cannot be an equilibrium. The price of stability bound follows.

VCG. Like in the case of GSP, consider the bid vector b = (1 + ε, 1) which induces the assignment (1, 2). The

payments of the players are p1(b,VCG) = 1− 1
λ and p2(b,VCG) = 0, yielding utilities of u1(b,VCG) = λ− 1+ 1

λ

and u2(b,VCG) = 1
λ . Obviously, again player 2 has no incentive to deviate, while player 1 has no incentive to deviate

to any bid b′1 ≥ b2. So, consider the deviation of player 1 to the bid b′1 = b2 − γ, for some γ > 0. Then, the
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induced assignment would be (2, 1), the payment of player 1 would be p1((b′1, b2),VCG) = 0 and her utility would be

u1((b
′
1, b2),VCG) = 1 < λ−1+ 1

λ = u1(b,VCG) since (λ−1)2 > 0, for any λ > 2. Therefore, b is an equilibrium,

and the price of anarchy bound follows.

Now, assume that there exists an equilibrium bid vector b = (b1, b2) with b1 ≤ b2 ≤ 1 so that the assignment (2, 1)

is induced, while the no-over assumption is satisfied (for player 2). The payments of the players at this equilibrium

are p1(b,VCG) = 0 and p2(b,VCG) = b1
(
1− 1

λ

)
, yielding utilities of u1(b,VCG) = 1 and u2(b,VCG) =

1 − b1
(
1− 1

λ

)
. Consider the deviation of player 1 to the bid b′1 = c1 = 1 + ε > b2. Then, the induced assignment

would be (1, 2), while the payment and the utility of player 1 would be p1((b′1, b2),VCG) = b2
(
1− 1

λ

)
≤ 1− 1

λ and

u1((b
′
1, b2),VCG) = λ− p1(b′1, b2) ≥ λ− 1+ 1

λ > 1, respectively; the last inequality follows since (λ− 1)2 > 0, for

any λ > 2. Hence, since player 1 has incentive to deviate to b′1, b cannot be an equilibrium, and the price of stability

bound follows.

EGFP. To show that there exists an equilibrium bid vector b that induces the assignment (1, 2), consider the bids

b1 = (1 + δ, 0), where δ > 0 is arbitrarily small, and b2 = (1, 0) of the two players for the two available positions,

respectively. Observe that after the allocation of the first position, the second one is given without any competition to

the only remaining player. Therefore, at equilibrium, no player has any incentive to submit a bid that is greater than

zero for the second position. Player 2 has no incentive to change her bid for the first position since she simply cannot

bid any higher, while bidding any lower would not change the assignment. Player 1 has no incentive to deviate to any

other bid b′1,1 ≥ b2,1 as the allocation and her payment would not change, and δ is assumed to be arbitrarily small. So,

consider the deviating bid b′1,1 < b2,1 which would change the assignment to (2, 1) and the utility of player 1 would

be u′1(((b
′
1,1, 0),b2),EGFP) = 1 < λ − 1 = u1(b,EGFP). Therefore, b is indeed an equilibrium, and the price of

anarchy bound follows.

For the price of stability bound, assume that there exists an equilibrium bid matrix b such that b1,1 ≤ b2,1 ≤ 1 so

that the allocation (2, 1) is induced; again the two players must bid zero for the second position which is, basically,

for free. The utilities of the two players at this equilibrium are u1(b,EGFP) = 1 and u2(b) = 1− b2,1. Consider the

deviation of player 1 to the bid b′1,1 = 1+ δ > b2,1 for the first position, where δ > 0 is arbitrarily small. Then, player

1 would be allocated the first position and her utility would be u1(((b′1,1, 0),b2),EGFP) = λ− b1,1 = λ− 1− δ > 1,

since λ > 2 and δ is arbitrarily small. Hence, player 1 has no incentive to deviate to b′1 = (b′1,1, 0), b cannot be an

equilibrium, and the proof is complete. �

The proof of the upper bounds exploits the well-known technique (for proving welfare guarantees in games) of

deviating bids. However, it is more complicated since the selected deviating bids must be such that the payments of the

players are within their budgets. In fact, this is the main barrier in proving LPoA bounds for more general equilibrium

concepts, like Bayes-Nash equilibria in the incomplete information model, where the bids of the players are random

variables.
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Theorem 2. The liquid price of anarchy and stability of GSP, VCG (under the no-over assumption) and EGFP are at

most 2.

PROOF. Let M ∈ {GSP,VCG,EGFP} and consider any n-player position game G(M). Let vi and ci be the value

and budget of player i ∈ [n], and let αj be the CTR of position j ∈ [n]. Let b be an equilibrium bid vector that induces

an assignment σ(b); recall that πj(b) denotes the player that is assigned to position j. Moreover, let oi denote the

position given to player i at an optimal allocation, and OPT =
∑
imin{αoivi, ci}.

Now, consider the following partition of the players: A = {i : ασi(b)vi ≤ ci}. Then, for every player i 6∈ A, we

have that min{ασi(b)vi, ci} = ci ≥ min{αoivi, ci}, and by summing over all such players, we obtain∑
i6∈A

min{ασi(b)vi, ci} ≥
∑
i6∈A

min{αoivi, ci}. (1)

The rest of the proof is dedicated to showing that, for any player i ∈ A and some γ > 0, it holds that

ui(b) ≥ min{αoivi, ci} −min{αoivπoi (b), cπoi (b)} − γ. (2)

Then, since min{ασi(b)vi, ci} = ασi(b)vi ≥ ui(b), by summing over all players i ∈ A, and by the fact that |A| ≤ n,

we obtain ∑
i∈A

min{ασi(b)vi, ci} ≥
∑
i∈A

min{αoivi, ci} −
∑
i∈A

min{αoivπoi (b), cπoi (b)} − γ|A|

≥
∑
i∈A

min{αoivi, ci} − LW(σ(b))− γn. (3)

Hence, the theorem will follow by combining inequalities (1) and (3), and by choosing γ to be arbitrarily small, since

we have that

LW(σ(b)) =
∑
i 6∈A

min{ασi(b)vi, ci}+
∑
i∈A

min{ασi(b)vi, ci}

≥
∑
i 6∈A

min{αoivi, ci}+
∑
i∈A

min{αoivi, ci} − LW(σ(b))− γn

≥ OPT− LW(σ(b))− γn.

We now distinguish between cases depending on which mechanism is used. In the following, since the mechanism

under consideration is clear from context, we drop it from our notation.

GSP. For any player i ∈ A consider the deviating bid bπoi (b) + γ̃, where bπoi (b) is the bid of the player that is given

position oi at equilibrium and γ̃ = γ
αoi

is such that bπoi (b) ≤ bπoi (b) + γ̃ ≤ bπoi−1(b); notice that player i can choose

such a γ̃ as she has full information about the bids of the other players, and there exists a tie-breaking assigning the

position oi to player i after the deviation (in case of equality). With this deviating bid, player i essentially plays only

for her optimal position oi, if she can afford to do so.
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If the deviating bid bπoi (b) + γ̃ satisfies the no-over assumption, then player i is guaranteed to be given position

oi in the new allocation and pay bπoi (b) per click. By the equilibrium condition, the fact that γ > 0, and since

αoibπoi (b) ≤ min{αoivπoi (b), cπoi (b)} (by the no-over assumption for player πoi(b)), we have that

ui(b) ≥ ui(bπoi (b) + δ,b−i) = αoi(vi − bπoi (b)) ≥ min{αoivi, ci} −min{αoivπoi (b), cπoi (b)} − γ.

If the deviating bid does not satisfy the no-over assumption, then we have that bπoi (b) + γ̃ > vi or

αoi(bπoi (b) + γ̃) > ci. Due to the no-over assumption for player πoi(b), both of these inequalities imply that

min{αoivπoi (b), cπoi (b)} + γ > min{αoivi, ci}. Since player i has non-negative utility at equilibrium, we conclude

that

ui(b) ≥ 0 > min{αoivi, ci} −min{αoivπoi (b), cπoi (b)} − γ,

as desired.

VCG. The proof is similar to that for GSP. The main difference here is that when the deviating bid bπoi (b) + γ̃ of

player i ∈ A satisfies the no-over assumption, then player i is again guaranteed to be given position oi, but now has

to pay
∑n
j=oi+1 bπj(b)(αj−1 − αj) in total. Observe that, since VCG is a greedy mechanism, at equilibrium we have

that bπoi (b) ≥ bπj(b) for every j ∈ {oi + 1, ..., n}. This implies that

n∑
j=oi+1

bπj(b)(αj−1 − αj) ≤ bπoi (b)
n∑

j=oi+1

(αj−1 − αj) = bπoi (b)(αoi − αn) ≤ αoibπoi (b).

Using this, we can follow the proof template for GSP and show the desired inequality.

EGFP. For any player i ∈ A consider the deviating bid vector y so that yoi = bπoi (b),oi + γ and yj = 0 for any other

position j 6= oi. Again, player i plays only for her optimal position oi, if she can afford to do so. If yoi > ci, then

since the utility of player i is non-negative at equilibrium, we obtain

ui(b) ≥ 0 > ci − bπoi (b),oi − γ ≥ min{αoivi, ci} −min{αoivπoi (b), cπoi (b)} − γ,

where the last inequality follows by the fact that player πoi(b) has non-negative utility at equilibrium and her payment

is within her budget, which imply that bπoi (b),oi ≤ min{αoivπoi (b), cπoi (b)}.

Otherwise, the deviating bid is such that player i is allocated position oi and her payment yoi is within her budget.

Therefore, by the equilibrium condition, and by the fact that bπoi (b),oi ≤ min{αoivπoi (b), cπoi (b)}, we have that

ui(b) ≥ ui(y,b−i) ≥ αoivi − bπoi (b),oi − γ ≥ min{αoivi, ci} −min{αoivπoi (b), cπoi (b)} − γ

and inequality (2) follows. �
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4. Possible extensions

In this letter, we studied the efficiency of several well-known mechanisms for the allocation of (advertising) posi-

tions to strategic budget-constrained users, and proved that their liquid price of anarchy and stability for pure equilibria

is exactly 2. Of course, there are multiple interesting open questions that one could attempt to answer here, like ex-

ploring all position mechanisms and bounding their liquid price of anarchy and stability. In particular, is there any

position mechanism with liquid price of anarchy strictly smaller than 2, even for the fundamental case of two players?

Another important direction for future research is to consider more general settings, possibly with incomplete

information where both the values and the budgets of the players are randomly drawn from a prior distribution, and

bound the liquid price of anarchy of position mechanisms for more general equilibrium notions, like coarse-correlated

and Bayes-Nash equilibria. Finally, it might be interesting to study scenarios where the budgets of the players are

assumed to be common knowledge (or they can be inferred in some way), and design mechanisms with improved

social efficiency guarantees, by exploiting this information.
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