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We study the problem of computing maximin share allocations, a recently introduced fairness notion. Given
a set of n agents and a set of goods, the maximin share of an agent is the best she can guarantee to herself,
if she is allowed to partition the goods in any way she prefers, into n bundles, and then receive her least de-
sirable bundle. The objective then is to find a partition, where each agent is guaranteed her maximin share.
Such allocations do not always exist, hence we resort to approximation algorithms. Our main result is a 2/3-
approximation, that runs in polynomial time for any number of agents and goods. This improves upon the
algorithm of Procaccia and Wang [2014], which is also a 2/3-approximation but runs in polynomial time only
for a constant number of agents. To achieve this, we redesign certain parts of the algorithm in Procaccia and
Wang [2014], exploiting the construction of carefully selected matchings in a bipartite graph representation
of the problem. Furthermore, motivated by the apparent difficulty in establishing lower bounds, we under-
take a probabilistic analysis. We prove that in randomly generated instances, maximin share allocations
exist with high probability. This can be seen as a justification of previously reported experimental evidence.
Finally, we provide further positive results for two special cases arising from previous works. The first is the
intriguing case of 3 agents, where we provide an improved 7/8-approximation. The second case is when all
item values belong to {0, 1, 2}, where we obtain an exact algorithm.
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1. INTRODUCTION
We study a recently proposed fair division problem in the context of allocating indivi-
sible goods. Fair division has attracted the attention of various scientific disciplines,
including among others, mathematics, economics, and political science. Ever since the
first attempt for a formal treatment by Steinhaus, Banach, and Knaster [Steinhaus
1948], many interesting and challenging questions have emerged. Over the past deca-
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des, a vast literature has developed, see e.g., [Brams and Taylor 1996; Robertson and
Webb 1998], and several notions of fairness have been suggested. The area gradually
gained popularity in computer science as well, as most of the questions are inherently
algorithmic, see [Even and Paz 1984; Edmonds and Pruhs 2006; Woeginger and Sgall
2007], among others, for earlier works and the surveys by Procaccia [2015] and by Bou-
veret et al. [2016] on more recent results.

The objective in fair division problems is to allocate a set of resources to a set of n
agents in a way that leaves every agent satisfied. In the continuous case, the availa-
ble resources are typically represented by the interval [0, 1], whereas in the discrete
case, we have a set of distinct, indivisible goods. The preferences of each agent are
represented by a valuation function, which is usually an additive function (additive
on the set of goods in the discrete case, or a probability distribution on [0, 1] in the
continuous case). Given such a setup, many solution concepts have been proposed as
to what constitutes a fair solution. Some of the standard ones include proportionality,
envy-freeness, equitability and several variants of them. The most related concept to
our work is proportionality, where an allocation is called proportional, if each agent
receives a bundle of goods that is worth at least 1/n of the total value according to her
valuation function.

Interestingly, all the above mentioned solutions and several others can be attained
in the continuous case. Apart from mere existence, in some cases we can also have
efficient algorithms, see e.g., [Even and Paz 1984] for proportionality and [Aziz and
MacKenzie 2016] for some recent progress on envy-freeness. In the presence of indivi-
sible goods however, the picture is quite different. We cannot guarantee existence and
it is even NP-hard to decide whether a given instance admits fair allocations. In fact,
in most cases it is hard to produce decent approximation guarantees.

Motivated by the question of what can we guarantee in the discrete case, we focus
on a concept recently introduced by Budish [2011], that can be seen as a relaxation of
proportionality. The rationale is as follows: suppose that an agent, say agent i, is asked
to partition the goods into n bundles and then the rest of the agents choose a bundle
before i. In the worst case, agent i will be left with her least valuable bundle. Hence,
a risk-averse agent would choose a partition that maximizes the minimum value of a
bundle in the partition. This value is called the maximin share of agent i. The objective
then is to find an allocation where every agent receives at least her maximin share.
Even for this notion, existence is not guaranteed under indivisible goods [Procaccia
and Wang 2014; Kurokawa et al. 2016], despite the encouraging experimental evidence
[Bouveret and Lemaı̂tre 2016; Procaccia and Wang 2014]. However, it is possible to
have constant factor approximations, as has been recently shown [Procaccia and Wang
2014] (see also our related work section).

Contribution: Our main result, in Section 4, is a (2/3− ε)-approximation algorithm,
for any constant ε > 0, that runs in polynomial time for any number of agents and
any number of goods. That is, the algorithm produces an allocation where every agent
receives a bundle worth at least 2/3 − ε of her maximin share. Our result improves
upon the 2/3-approximation of Procaccia and Wang [2014], which runs in polynomial
time only for a constant number of agents. To achieve this, we redesign certain parts
of their algorithm, arguing about the existence of appropriate, carefully constructed
matchings in a bipartite graph representation of the problem. Before that, in Section 3,
we provide a much simpler and faster 1/2-approximation algorithm. Despite the worse
factor, this algorithm still has its own merit due to its simplicity.

Moreover, we study two special cases, motivated by previous works. The first one is
the case of n = 3 agents. This is an interesting turning point on the approximability
of the problem; for n = 2, there always exist maximin share allocations, but adding a
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third agent makes the problem significantly more complex, and the best known ratio
was 3/4 [Procaccia and Wang 2014]. We provide an algorithm with an approximation
guarantee of 7/8, by examining more deeply the set of allowed matchings that we
can use to satisfy the agents. The second case is the setting where all item values
belong to {0, 1, 2}. This is an extension of the {0, 1} setting studied by Bouveret and
Lemaı̂tre [2016] and we show that there always exists a maximin share allocation, for
any number of agents.

Finally, motivated by the apparent difficulty in finding impossibility results on the
approximability of the problem, we undertake a probabilistic analysis in Section 6. Our
analysis shows that in randomly generated instances, maximin share allocations exist
with high probability. This may be seen as a justification of the reported experimental
evidence [Bouveret and Lemaı̂tre 2016; Procaccia and Wang 2014], which show that
maximin share allocations exist in most cases.

1.1. Related Work
For an overview of the classic fairness notions and related results, we refer the reader
to the books of Brams and Taylor [1996], and Robertson and Webb [1998]. The notion
we study here was introduced by Budish [2011] for ordinal utilities (i.e., agents have
rankings over alternatives), building on concepts by Moulin [1990]. Later on, Bouveret
and Lemaı̂tre [2016] defined the notion for cardinal utilities, in the form that we study
it here, and provided many important insights as well as experimental evidence. The
first constant factor approximation algorithm was given by Procaccia and Wang [2014],
achieving a 2/3-approximation but in time exponential in the number of agents.

On the negative side, constructions of instances where no maximin share allocation
exists, even for n = 3, have been provided both by Procaccia and Wang [2014], and
by Kurokawa et al. [2016]. These elaborate constructions, along with the extensive ex-
perimentation of Bouveret and Lemaı̂tre [2016], reveal that it has been challenging to
produce better lower bounds, i.e., instances where no α-approximation of a maximin
share allocation exists, even for α very close to 1. Driven by these observations, a pro-
babilistic analysis, similar in spirit but more general than ours, is carried out by Ku-
rokawa et al. [2016]. In our analysis in Section 6, all values are uniformly drawn from
[0, 1]; Kurokawa et al. [2016] show a similar result with ours but for a a wide range
of distributions over [0, 1], establishing that maximin share allocations exist with high
probability under all such distributions. However, their analysis, general as it may be,
needs very large values of n to guarantee relatively high probability, hence it does not
fully justify the experimental results discussed above.

Recently, some variants of the problem have also been considered. Barman and
Murthy [2017] gave a constant factor approximation of 1/10 for the case where the
agents have submodular valuation functions. It remains an interesting open problem
to determine whether better factors are achievable for submodular, or other non-
additive functions. Along a different direction, Caragiannis et al. [2016] introduced the
notion of pairwise maximin share guarantee and provided approximation algorithms.
Although conceptually this is not too far apart from maximin shares, the two notions
are incomparable.

Another aspect that has been studied is the design of truthful mechanisms providing
approximate maximin share fairness guarantees. Note that our work here does not
deal with incentive issues. Looking at this as a mechanism design problem without
money, Amanatidis et al. [2016] provide both positive and negative results exhibiting
a clear separation between what can be achieved with and without the truthfulness
constraint. Even further, Amanatidis et al. [2017] completely characterized truthful
mechanisms for two agents, which in turn implied tight bounds on the approximability
of maximin share fairness by truthful mechanisms.
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Finally, a seemingly related problem is that of max-min fairness (also known as
the Santa Claus problem) [Asadpour and Saberi 2007; Bansal and Sviridenko 2006;
Bezakova and Dani 2005]. In this problem we want to find an allocation where the
value of the least happy person is maximized. With identical agents, this coincides
with our problem, but beyond this special case the two problems exhibit very different
behavior.

2. DEFINITIONS AND NOTATION
For any k ∈ N, we denote by [k] the set {1, . . . , k}. Let N = [n] be a set of n agents and
M = [m] be a set of indivisible items. Following the usual setup in the fair division
literature, we assume each agent has an additive valuation function vi(·), so that for
every S ⊆M , vi(S) =

∑
j∈S vi({j}). For j ∈M , we will use vij instead of vi({j}).

Given any subset S ⊆ M , an allocation of S to the n agents is a partition T =
(T1, ..., Tn), where Ti ∩ Tj = ∅ and

⋃
Ti = S. Let Πn(S) be the set of all partitions of a

set S into n bundles.

Definition 2.1. Given a set of n agents, and any set S ⊆M , the n-maximin share of
an agent i with respect to S, is:

µi(n, S) = max
T∈Πn(S)

min
Tj∈T

vi(Tj) .

Note that µi(n, S) depends on the valuation function vi(·) but is independent of any
other function vj(·) for j 6= i. When S = M , we refer to µi(n,M) as the maximin share
of agent i. The solution concept we study asks for a partition that gives each agent her
maximin share.

Definition 2.2. Given a set of agents N , and a set of goods M , a partition T =
(T1, ..., Tn) ∈ Πn(M) is called a maximin share (MMS) allocation if vi(Ti) ≥ µi(n,M) ,
for every agent i ∈ N .

Before we continue, a few words are in order regarding the appeal of this new con-
cept. First of all, it is very easy to see that having a maximin share guarantee to every
agent forms a relaxation of proportionality, see Claim 3.1. Given the known impossi-
bility results for proportional allocations under indivisible items, it is worth investiga-
ting whether such relaxations are easier to attain. Second, the maximin share guaran-
tee has an intuitive interpretation; for an agent i, it is the value that could be achieved
if we run the generalization of the cut-and-choose protocol for multiple agents, with i
being the cutter. In other words, it is the value that agent i can guarantee to himself,
if he were given the advantage to control the partition of the items into bundles, but
not the allocation of the bundles to the agents.

Example 2.3. Consider an instance with three agents and five items:

a b c d e

Agent 1 1/2 1/2 1/3 1/3 1/3
Agent 2 1/2 1/4 1/4 1/4 0
Agent 3 1/2 1/2 1 1/2 1/2

If M = {a, b, c, d, e} is the set of items, one can see that µ1(3,M) = 1/2, µ2(3,M) = 1/4,
µ3(3,M) = 1. E.g., for agent 1, no matter how she partitions the items into three
bundles, the worst bundle will be worth at most 1/2 for her, and she achieves this with
the partition ({a}, {b, c}, {d, e}). Similarly, agent 3 can guarantee a value of 1 (which is
best possible as it is equal to v3(M)/n) by the partition ({a, b}, {c}, {d, e}).
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Note that this instance admits a maximin share allocation, e.g., ({a}, {b, c}, {d, e}),
and in fact this is not unique. Note also that if we remove some agent, say agent 2, the
maximin values for the other two agents increase. E.g., µ1(2,M) = 1, achieved by the
partition ({a, b}, {c, d, e}). Similarly, µ3(2,M) = 3/2.

As shown in [Procaccia and Wang 2014], maximin share allocations do not always
exist. Hence, our focus is on approximation algorithms, i.e., on algorithms that produce
a partition where each agent i receives a bundle worth (according to vi) at least ρ ·
µi(n,M), for some ρ ≤ 1.

3. WARMUP: SOME USEFUL PROPERTIES AND A POLYNOMIAL TIME 1/2-APPROXIMATION
We find it instructive to provide first a simpler and faster algorithm that achieves a
worse approximation of 1/2. In the course of obtaining this algorithm, we also identify
some important properties and insights that we will use in the next sections.

We start with an upper bound on our solution for each agent. The maximin share
guarantee is a relaxation of proportionality, so we trivially have:

CLAIM 3.1. For every i ∈ N and every S ⊆M , µi(n, S) ≤ vi(S)

n
=

∑
j∈S vij

n
.

PROOF. This follows by the definition of maximin share. If there existed a partition
where the minimum value for agent i exceeded the above bound, then the total value
for agent i would be more than

∑
j∈S vij .

Based on this, we now show how to get an additive approximation. Algorithm 1 be-
low achieves an additive approximation of vmax, where vmax = maxi,j vij . This simple
algorithm, which we will refer to as the Greedy Round-Robin Algorithm, has also been
discussed by Bouveret and Lemaı̂tre [2016], where it was shown that when all item va-
lues are in {0, 1}, it produces an exact maximin share allocation. At the same time, we
note that the algorithm also achieves envy-freeness up to one item, another solution
concept defined by Budish [2011], and further discussed in Caragiannis et al. [2016].
Finally, some variations of this algorithm have also been used in other allocation pro-
blems, see e.g., Brams and King [2005], or the protocol in Bouveret and Lang [2011].
We discuss further the properties of Greedy Round-Robin in Section 6.

In the statement of the algorithm below, the set VN is the set of valuation functions
VN = {vi : i ∈ N}, which can be encoded as a valuation matrix since the functions are
additive.

ALGORITHM 1: Greedy Round-Robin(N,M, VN )

1 Set Si = ∅ for each i ∈ N .
2 Fix an ordering of the agents arbitrarily.
3 while ∃ unallocated items do
4 Si = Si ∪ {j}, where i is the next agent to be examined in the current round (proceeding

in a round-robin fashion) and j is i’s most desired item among the currently
unallocated items.

5 return (S1, ..., Sn)

THEOREM 3.2. If (S1, ..., Sn) is the output of Algorithm 1, then for every i ∈ N ,

vi(Si) ≥
∑
j∈M vij

n
− vmax ≥ µi(n,M)− vmax .

PROOF. Let (S1, ..., Sn) be the output of Algorithm 1. We first prove the following
claim about the envy of each agent towards the rest of the agents:
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CLAIM 3.3. For every i, j ∈ N , vi(Si) ≥ vi(Sj)− vmax.

PROOF. Fix an agent i, and let j 6= i. We will upper bound the difference vi(Sj) −
vi(Si). If j comes after i in the order chosen by the algorithm, then the statement of
the claim trivially holds, since i always picks an item at least as desirable as the one j
picks. Suppose that j precedes i in the ordering. The algorithm proceeds in ` = dm/ne
rounds. In each round k, let rk and r′k be the items allocated to j and i respectively.
Then

vi(Sj)− vi(Si) = (vi,r1 − vi,r′1) + (vi,r2 − vi,r′2) + · · ·+ (vi,r` − vi,r′`) .

Note that there may be no item r′` in the last round if the algorithm runs out of goods
but this does not affect the analysis (simply set vi,r′` = 0).

Since agent i picks her most desirable item when it is her turn to choose, this means
that for two consecutive rounds k and k + 1 it holds that vi,r′k ≥ vi,rk+1

. This directly
implies that

vi(Sj)− vi(Si) ≤ vi,r1 − vi,r′` ≤ vi,r1 ≤ vmax .

If we now sum up the statement of Claim 3.3 for each j, we get: nvi(Si) ≥
∑
j vi(Sj)−

nvmax, which implies

vi(Si) ≥
∑
j vi(Sj)

n
− vmax =

∑
j∈M vij

n
− vmax ≥ µi(n,M)− vmax ,

where the last inequality holds by Claim 3.1.

The next important ingredient is the following monotonicity property, which says
that we can allocate a single good to an agent without decreasing the maximin share
of other agents. Note that this lemma also follows from Lemma 1 of Bouveret and
Lemaı̂tre [2016], yet, for completeness, we prove it here as well.

LEMMA 3.4 (MONOTONICITY PROPERTY). For any agent i and any good j, it holds
that

µi(n− 1,M {j}) ≥ µi(n,M) .

PROOF. Let us look at agent i, and consider a partition of M that attains her maxi-
min share. Let (S1, ..., Sn) be this partition. Without loss of generality, suppose j ∈ S1.
Consider the remaining partition (S2, ..., Sn) enhanced in an arbitrary way by the items
of S1 {j}. This is a (n−1)-partition of M {j} where the value of agent i for any bundle
is at least µi(n,M). Thus, we have µi(n− 1,M {j}) ≥ µi(n,M).

We are now ready for the 1/2-approximation, obtained by Algorithm 2 below, which is
based on using Greedy Round-Robin, but only after we allocate first the most valuable
goods. This is done so that the value of vmax drops to an extent that Greedy Round-
Robin can achieve a multiplicative approximation.
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ALGORITHM 2: APX-MMS1/2(N,M, VN )

1 Set S = M
2 for i = 1 to |N | do
3 Let αi =

∑
j∈S vij

|N|

4 while ∃i, j s.t. vij ≥ αi/2 do
5 Allocate j to i.
6 S = S {j}
7 N = N {i}
8 Recompute the αis.
9 Run Greedy Round-Robin on the remaining instance.

THEOREM 3.5. Let N be a set of n agents, and let M be a set of goods. Algorithm 2
produces an allocation (S1, ..., Sn) such that

vi(Si) ≥
1

2
µi(n,M) , ∀i ∈ N .

PROOF. We will distinguish two cases. Consider an agent i who was allocated a
single item during the first phase of the algorithm (lines 4 - 8). Suppose that at the
time when i was given her item, there were n1 active agents, n1 ≤ n, and that S was
the set of currently unallocated items. By the design of the algorithm, this means that
the value of what i received is at least∑

j∈S vij

2n1
≥ 1

2
µi(n1, S)

where the inequality follows by Claim 3.1. But now if we apply the monotonicity pro-
perty (Lemma 3.4) n− n1 times, we get that µi(n1, S) ≥ µi(n,M), and we are done.

Consider now an agent i, who gets a bundle of goods according to Greedy Round-
Robin, in the second phase of the algorithm. Let n2 be the number of active agents at
that point, and S be the set of goods that are unallocated before Greedy Round-Robin
is executed. We know that vmax at that point is less than half the current value of αi
for agent i. Hence by the additive guarantee of Greedy Round-Robin, we have that the
bundle received by agent i has value at least∑

j∈S vij

n2
− vmax >

∑
j∈S vij

n2
− αi

2
=

∑
j∈S vij

2n2
≥ 1

2
µi(n2, S) .

Again, after applying the monotonicity property repeatedly, we get that µi(n2, S) ≥
µi(n,M), which completes the proof.

4. A POLYNOMIAL TIME
(
2
3
− ε

)
-APPROXIMATION

The main result of this section is Theorem 4.1, establishing a polynomial time algo-
rithm for achieving a 2/3-approximation to the maximin share of each agent.

THEOREM 4.1. Let N be a set of n agents, and let M be a set of goods. For any
constant ε > 0, Algorithm 3 produces in polynomial time an allocation (S1, ..., Sn), such
that

vi(Si) ≥
(

2

3
− ε
)
µi(n,M) , ∀i ∈ N .

Our result is based on the algorithm by Procaccia and Wang [2014], which also gua-
rantees to each agent a 2/3-approximation. However, their algorithm runs in polyno-
mial time only for a constant number of agents. Here, we identify the source of expo-
nentiality and take a different approach regarding certain parts of the algorithm. For
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the sake of completeness, we first present the necessary related results of Procaccia
and Wang [2014], before we discuss the steps that are needed to obtain our result.

First of all, we note that even the computation of the maximin share values is alre-
ady a hard problem. For a single agent i, the problem of deciding whether µi(n,M) ≥ k
for a given k is NP-complete. However, a PTAS follows by the work of Woeginger [1997].
In the original paper, which is in the context of job scheduling, Woeginger gave a PTAS
for maximizing the minimum completion time on identical machines. But this sche-
duling problem is identical to computing a maximin partition with respect to a given
agent i. Indeed, from agent i’s perspective, it is enough to think of the machines as
identical agents (the only input that we need for computing µi(n,M) is the valuation
function of i). Hence:

THEOREM 4.2 (Follows by [Woeginger 1997]). Suppose we have a set M of goods to
be divided among n agents. Then, for each agent i, there exists a PTAS for approxima-
ting µi(n,M).

A central quantity in the algorithm of Procaccia and Wang [2014] is the n-density
balance parameter, denoted by ρn and defined below. Before stating the definition, we
give for clarity the high level idea, which can be seen as an attempt to generalize
the monotonicity property of Lemma 3.4. Assume that in the course of an algorithm,
we have used a subset of the items to “satisfy” some of the agents, and that those
items do not have “too much” value for the rest of the agents. If k is the number of
remaining agents, and S is the remaining set of goods, then we should expect to be
able to “satisfy” these k agents using the items in S. A good approximation in this
reduced instance however, would only be an approximation with respect to µi(k, S).
Hence, in order to hope for an approximation algorithm for the original instance, we
would need to examine how µi(k, S) relates to µi(n,M). Essentially, the parameter ρn
is the best guarantee one can hope to achieve for the remaining agents, based only on
the fact that the complement of the set left to be shared is of relatively small value.
Formally:

Definition 4.3 ([Procaccia and Wang 2014]). For any number n of agents, let

ρn = max

{
λ

∣∣∣∣∣ ∀M,∀ additive vi ∈ (R+)2M

,∀S ⊆M,∀k, ` s.t. k + ` = n,
vi(M S) ≤ `λµi(n,M)⇒ µi(k, S) ≥ λµi(n,M)

}
.

After a quite technical analysis, Procaccia and Wang calculate the exact value of ρn
in the following lemma.

LEMMA 4.4 (Lemma 3.2 of [Procaccia and Wang 2014]). For any n ≥ 2,

ρn =
2bncodd

3bncodd − 1
>

2

3
,

where bncodd denotes the largest odd integer less than or equal to n.

We are now ready to state our algorithm, referred to as APX-MMS (Algorithm 3 be-
low). We elaborate on the crucial differences between Algorithm 3 and the result of Pro-
caccia and Wang [2014] after the algorithm description (namely after Lemma 4.5). At
first, the algorithm computes each agent’s (1 − ε′)-approximate maximin value using
Woeginger’s PTAS, where ε′ = 3ε

4 . Let ξ = (ξ1, . . . , ξn) be the vector of these values.
Hence, ∀i, µi(n,M) ≥ ξi ≥ (1 − ε′)µi(n,M). Then, APX-MMS makes a call to the re-
cursive algorithm REC-MMS (Algorithm 4) to compute a

(
2
3 − ε

)
-approximate partition.

REC-MMS takes the arguments ε′, n = |N |, ξ, S (the set of items that have not been
allocated yet), K (the set of agents that have not received a share of items yet), and
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the valuation functions VK = {vi|i ∈ K}. The guarantee provided by REC-MMS is that
as long as the already allocated goods are not worth too much for the currently active
agents of K, we can satisfy them with the remaining goods. More formally, under the
assumption that

∀i ∈ K, vi(M S) ≤ (n− |K|)ρnµi(n,M) , (1)
which we will show that it holds before each call, REC-MMS(ε′, n, ξ, S,K, VK) computes
a |K|-partition of S, so that each agent receives items of value at least (1− ε′)ρnξi.

The initial call of the recursion is, of course, REC-MMS(ε′, n, ξ,M,N, VN ). Before mo-
ving on to the next recursive call, REC-MMS appropriately allocates some of the items
to some of the agents, so that they receive value at least (1−ε′)ρnξi each. This is achie-
ved by identifying an appropriate matching between some currently unsatisfied agents
and certain bundles of items, as described in the algorithm. In particular, the most im-
portant step in the algorithm is to first compute the set X+ (line 6), which is the set of
agents that will not be matched in the current call. The remaining active agents, i.e.,
K X+, are then guaranteed to get matched in the current round, whereas X+ will be
satisfied in the next recursive calls. In order to ensure this for X+, REC-MMS guaran-
tees that inequality (1) holds for K = X+ and with S being the rest of the items. Note
that (1) trivially holds for the initial call of REC-MMS, where K = N and S = M .

ALGORITHM 3: APX-MMS(ε,N,M, VN )

1 ε′ = 3ε
4

2 for i = 1 to |N | do
3 Use Woeginger’s PTAS to compute a (1− ε′)-approximation ξi of µi(|N |,M). Let

ξ = (ξ1, . . . , ξn).
4 return REC-MMS(ε′, |N |, ξ,M,N, VN )

For simplicity, in the description of REC-MMS, we assume that K = {1, 2, . . ., |K|}.
Also, for the bipartite graph defined below in the algorithm, by Γ(X+) we denote the
set of neighbors of the vertices in X+.

ALGORITHM 4: REC-MMS(ε′, n, ξ, S,K, VK)

1 if |K| = 1 then
2 Allocate all of S to agent 1.
3 else
4 Use Woeginger’s PTAS to compute a (1− ε′)-approximate |K|-maximin partition of S

with respect to agent 1 from K, say (S1, . . . , S|K|).
5 Create a bipartite graph G = (X ∪ Y,E), where X = Y = K and

E = {(i, j) | i ∈ X, j ∈ Y, vi(Sj) ≥ (1− ε′)ρnξi}.
6 Find a set X+ ⊂ X, as described in Lemma 4.5.
7 Given a perfect matching A, between X X+ and a subset of Y Γ(X+), allocate Sj to

agent i iff (i, j) ∈ A (the matching is a byproduct of line 6).
8 if X+ = ∅ then
9 Output the above allocation.

10 else
11 Output the above allocation, together with REC-MMS(ε′, n, ξ, S∗, X+, VX+), where

S∗ is the subset of S not allocated in line 7.

To proceed with the analysis, and since the choice of X+ plays an important role
(line 6 of Algorithm 4), we should first clarify what properties of X+ are needed for the
algorithm to work. The following lemma is the most crucial part in the design of our
algorithm.
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LEMMA 4.5. Assume that for n, M , S, K, VK inequality (1) holds and let G = (X ∪
Y,E) be the bipartite graph defined in line 5 of REC-MMS. Then there exists a subset X+

of X {1}, such that:

(i) X+ can be found efficiently.
(ii) There exists a perfect matching between X X+ and a subset of Y Γ(X+).
(iii) If we allocate subsets to agents according to such a matching (as described in

line 7) and X+ 6= ∅, then inequality (1) holds for n, M , S∗, X+, VX+ where S∗ ⊆ S is the
unallocated set of items, i.e.:

∀i ∈ X+, vi(M S∗) ≤ (n− |X+|)ρnµi(n,M) .

Before we prove Lemma 4.5, we elaborate on the main differences between our setup
and the approach of Procaccia and Wang [2014]:

Choice of X+. In Procaccia and Wang [2014], X+ is defined as
arg maxZ⊆K {1}{|Z| | |Z| ≥ |Γ(Z)|}. Clearly, when n is constant, so is |K|, and
thus the computation of X+ is trivial. However, it is not clear how to efficiently find
such a set in general, when n is not constant. We propose a definition of X+, which
is efficiently computable and has the desired properties. In short, our X+ is any
appropriately selected counterexample to Hall’s Theorem for the graph G constructed
in line 5.

Choice of ε. The algorithm works for any ε > 0, but Procaccia and Wang [2014] choose
an ε that depends on n, and it is such that (1− ε)ρn ≥ 2

3 . This is possible since for any
n, ρn ≥ 2

3

(
1+ 1

3n−1

)
. However, in this case, the running time of Woeginger’s PTAS (line

4) is not polynomial in n. Here, we consider any fixed ε, independent of n, hence the
approximation ratio of 2

3 − ε.
The formal definition of X+ is given within the proof of Lemma 4.5 that follows.

PROOF OF LEMMA 4.5. We will show that either X+ = ∅ (in the case where G
has a perfect matching), or some set X+ with X+ ∈

{
Z ⊆ X : |Z| > |Γ(Z)| ∧ ∃

matching of size |X Z| in G {Z ∪ Γ(Z)}
}

has the desired properties. Moreover, we
propose a way to find such a set efficiently. We first find a maximum matching B of G.
If |B| = |K|, then we are done, since for X+ = ∅, properties (i) and (ii) of Lemma 4.5
hold, while we need not check (iii). If |B| < |K|, then there must be a subset of X viola-
ting the condition of Hall’s Theorem.1 Let Xu, Xm be the partition of X in unmatched
and matched vertices respectively, according to B, with Xu 6= ∅, Xm 6= ∅. Similarly, we
define Yu, Ym.

We now construct a directed graph G′ = (X ∪ Y,E′), where we direct all edges of
G from X to Y , and on top of that, we add one copy of each edge of the matching but
with direction from Y to X. In particular, ∀i ∈ X,∀j ∈ Y , if (i, j) ∈ E then (i, j) ∈ E′,
and moreover if (i, j) ∈ B then (j, i) ∈ E′. We claim that the following set satisfies the
desired properties

X+ := Xu ∪ {v ∈ X : v is reachable from Xu in G′} .
Note that X+ is easy to compute; after finding the maximum matching in G, and con-
structing G′, we can run a depth-first search in each connected component of G′, star-
ting from the vertices of Xu. See also Figure 1, after the proof of Theorem 4.1 for an
illustration.

1The special case of Hall’s Theorem [Hall 1935] used here, states that given a bipartite graph G = (X∪Y,E),
where X,Y are disjoint independent sets with |X| = |Y |, there is a perfect matching in G if and only if
|W | ≤ |Γ(W )| for every W ⊆ X.
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Given the definition of X+, we now show property (ii). Back to the original graph G,
we first claim that |X+| > |Γ(X+)|. To prove this, note that if j ∈ Γ(X+) in G, then
j ∈ Ym. If not, then it is not difficult to see that there is an augmenting path from a
vertex in Xu to j, which contradicts the maximality of B. Indeed, since j ∈ Γ(X+), let
i be a neighbor of j in X+. If i ∈ Xu, then the edge (i, j) would enlarge the matching.
Otherwise, i ∈ Xm and since also i ∈ X+, there is a path in G′ from some vertex
of Xu to i. But this path by construction of the directed graph G′ must consist of an
alternation of unmatched and matched edges, hence together with (i, j) we have an
augmenting path.

Therefore, Γ(X+) ⊆ Ym, i.e., for any j ∈ Γ(X+), there is an edge (i, j) in the matching
B. But then i has to belong to X+ by the construction of G′ (and since j ∈ Γ(X+)). To
sum up: for any j ∈ Γ(X+), there is exactly one distinct vertex i, with (i, j) ∈ E, and
i ∈ X+ ∩ Xm, i.e., |X+ ∩ Xm| ≥ |Γ(X+)|. In fact, we have equality here, because it
is also true that for any i ∈ X+ ∩ Xm, there is a distinct vertex j ∈ Ym which is
trivially reachable from X+. Hence, |X+ ∩ Xm| = |Γ(X+)|. Since Xu 6= ∅, we have
|X+| = |Xu|+ |X+ ∩Xm| ≥ 1 + |Γ(X+)|. So, |X+| > |Γ(X+)|.

Also, note that X+ ⊆ X {1}, because for any Z ⊆ X that contains vertex 1 we have
|Γ(Z)| = |K| ≥ |Z|. This is due to the fact that for any vertex j ∈ Y , the edge (1, j)
is present by the construction, since v1(Sj) ≥ (1 − ε′)µ1(k, S) ≥ (1 − ε′)ρnµ1(n,M) ≥
(1− ε′)ρnξ1, for all 1 ≤ j ≤ |K|.

We now claim that if we remove X+ and Γ(X+) from G, then the restriction of B
on the remaining graph, still matches all vertices of X X+, establishing property
(ii). Indeed, note first that for any i ∈ X X+, it has to hold that i ∈ Xm, since X+

contains Xu. Also, for any edge (i, j) ∈ B with i ∈ X and j ∈ Γ(X+), we have i ∈ X+

by the construction of X+. So, for any i ∈ X X+, its pair in B belongs to Y Γ(X+).
Equivalently, B induces a perfect matching between X X+ and a subset of Y Γ(X+)
(this is the matching A in line 7 of the algorithm).

What is left to prove is that property (iii) also holds for X+. This can be done by the
same arguments as in Procaccia and Wang [2014], specifically by the following lemma
which can be inferred from their work.

LEMMA 4.6 ([Procaccia and Wang 2014], end of Subsection 3.1). Assume that ine-
quality (1) holds for n, M , S, K, VK , and let G be the graph defined in line 5. For any
Z ⊆ X, if there exists a perfect matching between X Z and a subset of Y Γ(Z), say Y ∗,
and there are no edges between Z and Y ∗ in G, then property (iii) holds as well.

Clearly, there are no edges between X+ and Y Γ(X+). Hence, Lemma 4.6 can be
applied to X+, completing the proof.

Given Lemma 4.5, we can now prove the main result of this section, the correctness
of APX-MMS.

PROOF OF THEOREM 4.1. It is clear that the running time of the algorithm is po-
lynomial. Its correctness is based on the correctness of REC-MMS. The latter can be
proven with strong induction on |K|, the number of still active agents that REC-MMS
receives as input, under the assumption that (1) holds before each new call of REC-MMS
(which we have established by Lemma 4.5). For |K| = 1, assuming that inequality (1)
holds, we have for agent 1 of K:

v1(S) = v1(M)− v1(M S) ≥ nµ1(n,M)− (n− 1)ρnµ1(n,M)

≥ µ1(n,M) ≥
(

2

3
− ε
)
µ1(n,M).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 G. Amanatidis et al.

For the inductive step, Lemma 4.5 and the choice of X+ are crucial. Consider an
execution of REC-MMS during which some agents will receive a subset of items and the
rest will form the set X+ to be handled recursively. For all the agents in X+ –if any–
we are guaranteed

(
2
3 − ε

)
-approximate shares by property (iii) of Lemma 4.5 and by

the inductive hypothesis. On the other hand, for each agent i that receives a subset Sj
of items in line 7, we have

vi(Sj) ≥ (1− ε′)ρnξi ≥ (1− ε′)2ρnµi(n,M) > (1− 2ε′)
2

3
µi(n,M) =

(
2

3
− ε
)
µi(n,M) ,

where the first inequality holds because (i, j) ∈ E(G).

In Figure 1, we give a simple snapshot to illustrate a recursive call of REC-MMS.
In particular, in Subfigure 1(a), we see a bipartite graph G that could be the current
configuration for REC-MMS, along with a maximum matching. In Subfigure 1(b), we
see the construction of G′, as described in Lemma 4.5, and the set X+. The bold (black)
edges in G′ signify that both directions are present. The set X+ consists then of Xu

and all other vertices of X reachable from Xu. Finally, Subfigure 1(b) also shows the
set of agents that are satisfied in the current call along with the corresponding perfect
matching, as claimed in Lemma 4.5.

(a) The graph G defined in line 5
of Algorithm 4 shown with a max-
imum matching (blue edges). Agent
1 is the top vertex of X.

(b) The graph G′ defined in the proof of Lemma 4.5, where for cla-
rity, agent 1 and her edges are grayed out. The black edges signify
that both directions are present, i.e., they correspond to pairs of
anti-parallel edges. On the right we show the actual allocation
resulting from G.

Fig. 1. Ilustration of G, G′ and X+.

We note that the analysis of the algorithm is tight, given the analysis on ρn (see
Section 3.3 of Procaccia and Wang [2014]). Improving further on the approximation ra-
tio of 2/3 seems to require drastically new ideas and it is a challenging open problem.
We stress that even a PTAS is not currently ruled out by the lower bound constructi-
ons [Kurokawa et al. 2016; Procaccia and Wang 2014]. Related to this, in the next
section we consider two special cases in which we can obtain better positive results.
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5. TWO SPECIAL CASES
In this section, we consider two interesting special cases, where we have impro-
ved approximations. The first is the case of n = 3 agents, where we obtain a 7/8-
approximation, improving on the 3/4-approximation of Procaccia and Wang [2014].
The second is the case where all values for the goods belong to {0, 1, 2}. This is an ex-
tension of the {0, 1} setting discussed in Bouveret and Lemaı̂tre [2016], and we show
how to get an exact allocation without any approximation loss.

5.1. The Case of n = 3 Agents
For n = 2, it is pointed out in Bouveret and Lemaı̂tre [2016] that maximin share alloca-
tions exist via an analog of the cut and choose protocol. Using the PTAS of Woeginger
[1997], we can then have a (1 − ε)-approximation in polynomial time. In contrast, as
soon as we move to n = 3, things become more interesting. It is proven that with
3 agents there exist instances where no maximin share allocation exists [Procaccia
and Wang 2014]. The best known approximation guarantee is 3

4 by observing that the
quantity ρn, defined in Section 4, satisfies ρ3 ≥ 3

4 .
We provide a different algorithm, improving the approximation to 7

8 − ε. To do this,
we combine ideas from both algorithms presented so far in Sections 3 and 4. The main
result of this subsection is as follows:

THEOREM 5.1. Let N = {1, 2, 3} be a set of three agents with additive valuations,
and let M be a set of goods. For any constant ε > 0, Algorithm 5 produces in polynomial
time an allocation (S1, S2, S3), such that

vi(Si) ≥
(

7

8
− ε
)
µi(3,M) , ∀i ∈ N .

The algorithm is shown below. Before we prove Theorem 5.1, we provide here a brief
outline of how the algorithm works.

Algorithm Outline: First, approximate values for the µis are calculated as before.
Then, if there are items with large value to some agent, in analogy to Algorithm 2, we
first allocate one of those reducing this way the problem to the simple case of n = 2.
If there are no items of large value, then the first agent partitions the items as in
Algorithm 4. In the case where this partition does not satisfy all three agents, then
the second agent repartitions two of the bundles of the first agent. Actually, she tries
two different such repartitions, and we show that at least one of them works out. The
definition of a bipartite preference graph and a corresponding matching (as in Algo-
rithm 4) is never mentioned explicitly here. However, the main idea (and the difference
with Algorithm 4) is that if there are several ways to pick a perfect matching between
X X+ and a subset of Y Γ(X+), then we try them all and choose the best one. Of
course, since n = 3, if there is no perfect matching in the preference graph, then X X+

is going to be just a single vertex, and we only have to examine two possible perfect
matchings between X X+ and a subset of Y Γ(X+).

PROOF OF THEOREM 5.1. First, note that for constant ε the algorithm runs in time
polynomial in |M |. Next, we prove the correctness of the algorithm.

If the output is computed in lines 3-4 then for agent i, as defined in line 3, the value
she receives is at least 7

8ξi ≥
7
8 (1 − ε)µi(3,M) >

(
7
8 − ε

)
µi(3,M). The remaining two

agents i1, i2 essentially apply an approximate version of a cut and choose protocol.
Agent i1 computes a (1 − ε)-approximate 2-maximin partition of M {j}, say (C1, C2),
then agent i2 takes the set she prefers among C1 and C2, and agent i1 gets the other.
By the monotonicity lemma (Lemma 3.4), we know that µi1(2,M {j}) ≥ µi1(3,M),
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ALGORITHM 5: APX-3-MMS(ε,M, v1, v2, v3)

1 ε′ = 8
7
ε

2 Compute a (1− ε)-approximation ξi of µi(3,M) for i ∈ {1, 2, 3}.
3 if ∃i ∈ {1, 2, 3}, j ∈M such that vij ≥ 7

8
ξi then

4 Give item j to agent i and divide M {j} among the other two agents in a
“cut-and-choose” fashion.

5 else
6 Agent 1 computes a (1− ε)-approximate maximin partition of M into three sets, say

(A1, A2, A3).
7 if ∃j2, j3 ∈ {1, 2, 3} such that j2 6= j3, v2(Aj2) ≥ 7

8
ξ2 and v3(Aj3) ≥ 7

8
ξ3 then

8 Give set Aj2 to agent 2, set Aj3 to agent 3, and the last set to agent 1.
9 else

10 There are two sets that have value less than 7
8
ξ2 w.r.t. agent 2, say for simplicity A2

and A3.
11 Agent 2 computes (1− ε′)-approximate 2-maximin partitions of A1 ∪A2 and

A1 ∪A3, say (B1, B2) and (B′1, B
′
2) respectively, and discards the partition with the

smallest maximin value. Let (D1, D2) be the partition she keeps.
12 Agent 3 takes the set she prefers from (D1, D2); agent 2 gets the other, and agent 1

gets M (D1 ∪D2).

and thus no matter which set is left for agent i1, she is guaranteed a total value of at
least (1− ε)µi1(3,M) >

(
7
8 − ε

)
µi1(3,M). Similarly, we have µi2(2,M {j}) ≥ µi2(3,M),

and therefore vi2(M {j}) ≥ 2µi2(3,M). Since i2 chooses before i1, she is guaranteed a
total value that is at least µi2(3,M) >

(
7
8 − ε

)
µi2(3,M).

If the output is computed in lines 6-8 then clearly all agents receive a (7/8 − ε)-
approximation, since for agent 1 it does not matter which of the Ais she gets.

The most challenging case is when the output is computed in lines 10-12 (starting
with the partition from line 6). Then, as before, agent 1 receives a value that is at least
a (7/8− ε)-approximation no matter which of the three sets she gets. For agents 2 and
3, however, the analysis is not straightforward. We need the following lemma.

LEMMA 5.2. Let N,M, ε be as above, such that for all j ∈ M we have v2j <
7
8ξ2.

Consider any partition of M into 3 sets A1, A2, A3 and assume that there are no
j2, j3 ∈ {1, 2, 3} such that j2 6= j3, v2(Aj2) ≥ 7

8ξ2 and v3(Aj3) ≥ 7
8ξ3. Then lines 10-12 of

Algorithm 5 produce an allocation (S2, S3) for agents 2 and 3, such that for i ∈ {2, 3}:
vi(Si) ≥

(
7
8 − ε

)
µi(3,M). Moreover, if agent 1 is given set Ak, then S2 ∪ S3 =

⋃
`∈N k A`.

Clearly, Lemma 5.2 completes the proof.

Before stating the proof of Lemma 5.2, we should mention how it is possible to go
beyond the previously known 3

4 -approximation. As noted above, ρn is by definition the
best guarantee we can get, based only on the fact that the complement of the set left
to be shared is not too large. As a result, the 7

8 ratio cannot be guaranteed just by
the excess value. Instead, in addition to making sure that the remaining items are
valuable enough for the remaining agents, we further argue about how a maximin
partition would distribute those items.

There is an alternative interpretation of Algorithm 5 in terms of Algorithm 3. Whe-
never only a single agent (i.e., agent 1) is going to become satisfied in the first recursive
call, we try all possible maximum matchings of the graph G for the calculation of X+.
Then we proceed with the “best” such matching. Here, for n = 3, this means we only
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have to consider two possibilities for the set agent 1 is going to get matched to; it is
either A2 or A3 (subject to the assumptions in Algorithm 5).

PROOF OF LEMMA 5.2. First, recall that v2(M) ≥ 3µ2(3,M) ≥ 3ξ2. Like in the
description of the algorithm we may assume that agent 1 gets set A3, without loss
of generality. Before we move to the analysis we should lay down some facts. Let
(B1, B2) be agent 2’s (1 − ε′)-approximate maximin partition of A1 ∪ A2 computed
in line 11; similarly (B′1, B

′
2) is agent 2’s (1 − ε′)-approximate maximin partition of

A1 ∪ A3. We may assume that v2(B1) ≥ v2(B2). Also, assume that in line 11 of
the algorithm we have (D1, D2) = (B1, B2), i.e., min{v2(B′1), v2(B′2)} ≤ v2(B2) and
M (D1 ∪ D2) = A3. The case where (D1, D2) = (B′1, B

′
2) is symmetric. Our goal is

to show that v2(B2) ≥
(

7
8 − ε

)
µ2(3,M). For simplicity, we write µ2 instead of µ2(3,M).

Note, towards a contradiction, that

v2(B2) <

(
7

8
− ε
)
µ2 ⇒

(1− ε′)µ2(2, A1 ∪A2) <

(
7

8
− ε
)
µ2 ⇒

(1− ε′)µ2(2, A1 ∪A2) <

(
7

8
− 7

8
ε′
)
µ2 ⇒

µ2(2, A1 ∪A2) <
7

8
µ2 .

Moreover, this means min{v2(B′1), v2(B′2)} <
(

7
8 − ε

)
µ2 as well, which leads to

µ2(2, A1 ∪A3) < 7
8µ2. So, it suffices to show that either µ2(2, A1 ∪A2) or µ2(2, A1 ∪A3)

is at least 7
8µ2. This statement is independent of the Bis and in what follows we con-

sider exact maximin partitions with respect to agent 2. Before we proceed, we should
make clear that for the case we are analyzing there are indeed exactly two sets in
{A1, A2, A3} each with value less than 7

8µ2 with respect to agent 2, as claimed in line
10 of the algorithm. Indeed, notice that in any partition of M there is at least one
set with value at least µ2 with respect to agent 2, due to the fact that v2(M) ≥ 3µ2
and by the definition of a maximin partition. If, however, there were at least 2 sets in
{A1, A2, A3} with value at least 7

8ξ2, then we would be at the case handled in steps 6-8.
Hence, there will be exactly two sets each with value less than 7

8ξ2 ≤
7
8µ2 for agent 2

and as stated in the algorithm we assume these are the sets A2, A3.
Consider a 3-maximin share allocation (A′1, A

′
2, A

′
3) of M with respect to agent 2. Let

Fi = A′i ∩ A3 for i = 1, 2, 3. Without loss of generality, we may assume that v2(F1) ≤
v2(F2) ≤ v2(F3).

If v2(F1) ≤ 1
8µ2, then the partition (A′1 A3, (A

′
2 ∪ A′3) A3) is a partition of A1 ∪ A2

such that

v2(A′1 A3) = v2(A′1)− v2(F1) ≥ µ2 −
1

8
µ2 =

7

8
µ2

and

v2((A′2 ∪A′3) A3) ≥ v2(A′2) + v2(A′3)− v2(A3) ≥ 2µ2 −
7

8
µ2 =

9

8
µ2 .

So, in this case we conclude that µ2(2, A1 ∪A2) ≥ 7
8µ2.

On the other hand, if v2(F1) > 1
8µ2 we are going to show that µ2(2, A1 ∪ A3) ≥ 7

8µ2.
Towards this we consider a 2-maximin share allocation (C1, C2) of A1 with respect to
agent 2 and let us assume that v2(C1) ≥ v2(C2). For a rough depiction of the different
sets involved in the following arguments, see Figure 2.
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Fig. 2. Assuming that the set of items M is represented by a rectangle, here is a depiction of several sets
involved in the proof of Lemma 5.2. Recall that (A1, A2, A3) and (A′1, A

′
2, A
′
3) are partitions of M , (C1, C2)

is a partition of A1, and Fi = A′i ∩A3 for i = 1, 2, 3.

CLAIM 5.3. For C1, C2, A3, F1, F2, F3 as above, we have

(i) v2(A3) + v2(C2) ≥ 7
8µ2, and

(ii) v2(F1) + v2(F2) + v2(C1) > 7
8µ2.

PROOF. Note that

v2(C1) + v2(C2) + v2(A3) = v2(M)− v2(A2) > 3µ2 −
7

8
µ2 =

17

8
µ2 .

If v2(A3) + v2(C2) < 7
8µ2 then v2(C1) > 10

8 µ2. Moreover,

v2(A3) = v2(F1) + v2(F2) + v2(F3) ≥ 3v2(F1) >
3

8
µ2 ,

so v2(A3) + v2(C2) < 7
8µ2 implies that v2(C2) < 4

8µ2.
Let d denote the difference v2(C1)− v2(C2); clearly d > 6

8µ2. It is not hard to see that
minj∈C1

v2j ≥ d. Indeed, suppose there existed some j ∈ C1 such that v2j < d. Then,
by moving j from C1 to C2 we increase the minimum value of the partition, which
contradicts the choice of (C1, C2).

Since v2(C1) > 10
8 µ2 and no item has value more than 7

8µ2 for agent 2, this means
that C1 contains at least two items. Thus, v2(C1) ≥ minj∈C1

v2j >
12
8 µ2.

Now, for any item g ∈ arg minj∈C1
v2j , the partition ({g}, A1 {g}) is strictly better

than (C1, C2), since v2g >
6
8µ2 > v2(C2) and v2(A1 {g}) = v2(A1)− v2g ≥ v2(C1)− v2g >

12
8 µ2 − 6

8µ2 = 6
8µ2 > v2(C2). Again, this contradicts the choice of (C1, C2). Hence, it

must be that v2(A3) + v2(C2) ≥ 7
8µ2.

The proof of (ii) is simpler. Notice that

v2(F1) + v2(F2) + v2(C1) ≥ v2(F1) + v2(F1) +
1

2
v2(A1)

>
1

8
µ2 +

1

8
µ2 +

1

2

(
3µ2 −

7

8
µ2 −

7

8
µ2

)
=

7

8
µ2 .

Now, if v2(C1) ≥ 7
8µ2 then (i) of Claim 5.3 implies that min{v2(C1), v2(A3∪C2)} ≥ 7

8µ2.
Similarly, if v2(F3) + v2(C2) ≥ 7

8µ2 then (ii) of Claim 5.3 implies that min{v2(F1 ∪ F2 ∪
C1), v2(F3 ∪ C2)} ≥ 7

8µ2. In both cases, we have µ2(2, A1 ∪ A3) ≥ 7
8µ2. So, it is left to

examine the case where both v2(C1) and v2(F3) + v2(C2) are less than 7
8µ2.
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CLAIM 5.4. Let C1, C2, A3, F1, F2, F3 be as above and max{v2(C1), v2(F3 ∪ C2)} <
7
8µ2. Then min{v2(F1 ∪ C1), v2(F2 ∪ F3 ∪ C2)} ≥ 7

8µ2.

PROOF. Recall that v2(A1)+v2(A3) > 17
8 µ2. Suppose v2(F1∪C1) < 7

8µ2. Then v2(F2∪
F3 ∪ C2) > 10

8 µ2. Since v2(F3 ∪ C2) < 7
8µ2 we have v2(F2) > 3

8µ2. But then we get the
contradiction

7

8
µ2 > v2(A3) = v2(F1) + v2(F2) + v2(F3) ≥ 1

8
µ2 +

3

8
µ2 +

3

8
µ2 =

7

8
µ2 .

Hence, v2(F1∪C1) ≥ 7
8µ2. Similarly, suppose v2(F2∪F3∪C2) < 7

8µ2. Then v2(F1∪C1) >
10
8 µ2. Since v2(C1) < 7

8µ2 we have v2(F1) > 3
8µ2. Then we get the contradiction

7

8
µ2 > v2(A3) = v2(F1) + v2(F2) + v2(F3) ≥ 3

8
µ2 +

3

8
µ2 +

3

8
µ2 =

9

8
µ2 .

Hence, v2(F2 ∪ F3 ∪ C2) ≥ 7
8µ2.

Claim 5.4 implies µ2(2, A1 ∪A3) ≥ 7
8µ2 and this concludes the proof.

5.2. Values in {0, 1, 2}
Bouveret and Lemaı̂tre [2016] consider a binary setting where all valuation functions
take values in {0, 1}, i.e., for each i ∈ N , and j ∈ M , vij ∈ {0, 1}. This can correspond
to expressing approval or disapproval for each item. It is then shown that it is always
possible to find a maximin share allocation in polynomial time. In fact, they show
that the Greedy Round-Robin algorithm, presented in Section 3, computes such an
allocation in this case.

Here, we extend this result to the setting where each vij is in {0, 1, 2}, allowing the
agents to express two types of approval for the items. Enlarging the set of possible
values from {0, 1} to {0, 1, 2} by just one extra possible value makes the problem signi-
ficantly more complex. Greedy Round-Robin does not work in this case, so a different
algorithm is developed.

THEOREM 5.5. LetN = [n] be a set of agents andM = [m] be a set of items. If for any
i ∈ N , agent i has a valuation function vi such that vij ∈ {0, 1, 2} for any j ∈M , then we
can find, in time O(nm logm), an allocation (T1, . . . , Tn) of M so that vi(Ti) ≥ µi(n,M)
for every i ∈ [n].

To design our algorithm, we make use of an important observation by Bouveret and
Lemaı̂tre [2016] that allows us to reduce appropriately the space of valuation functi-
ons that we are interested in. We say that the agents have fully correlated valuation
functions if they agree on a common ranking of the items in decreasing order of values.
That is, ∀i ∈ N , if M = {1, 2, ...,m}, we have vi1 ≥ vi2 ≥ . . . ≥ vim. In Bouveret and
Lemaı̂tre [2016], the authors show that to find a maximin share allocation for any set
of valuation functions, it suffices to do so in an instance where the valuation functions
are fully correlated. This family of instances seems to be the difficulty in computing
such allocations. Actually, their result preserves approximation ratios as well (with the
same proof); hence we state this stronger version. For a valuation function vi let σi be
a permutation on the items such that vi(σi(j)) ≥ vi(σi(j + 1)) for j ∈ {1, . . . ,m− 1}. We
denote the function vi(σi(·)) by v↑i . Note that v↑1 , v

↑
2 , . . . , v

↑
n are now fully correlated.

THEOREM 5.6 ([Bouveret and Lemaı̂tre 2016]). Let N = [n] be a set of agents with
additive valuation functions, M = [m] be a set of goods and ρ ∈ (0, 1]. Given an alloca-
tion (T1, . . . , Tn) of M so that v↑i (Ti) ≥ ρµi(n,M) for every i, one can produce in linear
time an allocation (T ′1, . . . , T

′
n) of M so that vi(T ′i ) ≥ ρµi(n,M) for every i.
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We are ready to state a high level description of our algorithm. The detailed des-
cription, however, is deferred to the end of this subsection. The reason for this is that
the terminology needed is gradually introduced through a series of lemmas motiva-
ting the idea behind the algorithm and proving its correctness. In fact, the remainder
of the subsection is the proof of Theorem 5.5. Algorithm 6 in the end summarizes all
the steps.

Algorithm Outline: We first construct v↑1 , v
↑
2 , . . . , v

↑
n and work with them instead. The

Greedy Round-Robin algorithm may not directly work, but we partition the items in a
similar fashion, although without giving them to the agents. Then, we show that it is
possible to choose some subsets of items and redistribute them in a way that guaran-
tees that everyone can get a bundle of items with enough value. At a higher level, we
could say that the algorithm simulates a variant of the Greedy Round-Robin, where
for an appropriately selected set of rounds the agents choose in the reverse order. Fi-
nally, a maximin share allocation can be obtained for the original vis, as described in
Bouveret and Lemaı̂tre [2016].

PROOF OF THEOREM 5.5. According to Theorem 5.6 it suffices to focus on instances
where the valuation functions take values in {0, 1, 2} and are fully correlated. Given
such an instance we distribute the m objects into n buckets in decreasing order, i.e.,
bucket i will get items i, n + i, 2n + i, . . .. Notice that this is compatible with how the
Greedy Round-Robin algorithm could distribute the items; however, we do not assign
any buckets to any agents yet. We may assume that m = kn for some k ∈ N; if not,
we just add a few extra items with 0 value to everyone. It is convenient to picture the
collection of buckets as the matrix

B =


(k − 1)n+ 1 (k − 1)n+ 2 · · · kn

...
...

. . .
...

n+ 1 n+ 2 · · · 2n
1 2 · · · n

 ,

since our algorithm will systematically redistribute groups of items corresponding to
rows of B.

Before we state the algorithm, we establish some properties regarding these buckets
and the way each agent views the values of these bundles. First, we introduce some
terminology.

Definition 5.7. We say that agent i is

— satisfied with respect to the current buckets, if all the buckets have value at least
µi(n,M) according to vi.

— left-satisfied with respect to the current buckets, if she is not satisfied, but at
least the n/2 leftmost buckets have value at least µi(n,M) according to vi.

— right-satisfied if the same as above hold, but for the rightmost n/2 buckets.

Now suppose that we see agent i’s view of the values in the buckets. A typical view
would have the following form (recall the goods are ranked from highest to lowest
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value): 

0 0 0 0 0 0 · · · 0 0 0
· · · · · · · · · · · ·
1 1 1 1 1 0 · · · 0 0 0
· · · · · · · · · · · ·
1 1 1 1 1 1 · · · 1 1 1
2 2 2 1 1 1 · · · 1 1 1
· · · · · · · · · · · ·
2 2 2 2 2 2 · · · 2 2 2


A row that has only 2s for i will be called a 2-row for i. A row that has both 2s and
1s will be called a 2/1-row for i, and so forth. An agent can also have a 2/1/0-row. It is
not necessary, of course, that an agent will have all possible types of rows in her view.
Note, however, that there can be at most one 1/0-row and at most one 2/1-row in her
view. We first prove the following lemma for agents that are not initially satisfied.

LEMMA 5.8. Any agent not satisfied with respect to the initial buckets must have
both a 1/0-row and a 2/1-row in her view of B. Moreover, initially all agents are either
satisfied or left-satisfied.

PROOF. Let us focus on the multiset of values of an agent that is not satisfied, say
i. It is straightforward to see that if i has no 1s, or the number of 2s is a multiple of n
(including 0), then agent i gets value µi(n,M) from any bucket. So, i must have a row
with both 2s and 1s. If this is a 2/1/0-row, then again it is easy to see that the initial
allocation is a maximin share allocation for i. So, i has a 2/1-row. The only case where
she does not have a 1/0-row is if the total number of 1s and 2s is a multiple of n.But
then the maximum and the minimum value of the initial buckets differ by 1, hence we
have a maximin share allocation and i is satisfied.

Next we show that an agent i who is not initially satisfied is left-satisfied. In what
follows we only refer to i’s view. Buckets B1 and Bn, indexed by the corresponding
columns of B, have maximum and minimum total value respectively. Since i is not
satisfied, we have vi(B1) ≥ vi(Bn)+2, but the way we distributed the items guarantees
that the difference between any two buckets is at most the largest value of an item;
so vi(B1) = vi(Bn) + 2. Moreover, since vi(M) ≥ nµi(n,M) and vi(Bn) < µi(n,M), we
must have vi(B1) > µi(n,M) . This implies that vi(B1) = µi(n,M) + 1 and vi(Bn) =
µi(n,M)− 1.

More generally, we have buckets of value µi(n,M) + 1 (leftmost columns), we have
buckets of value µi(n,M) − 1 (rightmost columns), and maybe some other buckets of
value µi(n,M) (columns in the middle). We know that the total value of all the items
is at least nµi(n,M), so, by summing up the values of the buckets, we conclude that
there must be at most n/2 buckets of value µi(n,M)−1. Therefore i is left-satisfied.

So far we may have some agents that could take any bucket and some agents that
would take any of the n/2 (at least) first buckets. Clearly, if the left-satisfied agents
are at most n/2 then we can easily find a maximin share allocation. However, there is
no guarantee that there are not too many left-satisfied agents initially, so we try to fix
this by reversing some of the rows of B. To make this precise, we say that we reverse
the ith row of B when we take items (i− 1)n+ 1, (i− 1)n+ 2, . . . , in and we put item in
in bucket 1, item in− 1 in bucket 2, etc.

The algorithm then proceeds by picking a subset of rows of B and reversing them.
The rows are chosen appropriately so that the resulting buckets (i.e., the columns of
B) can be easily paired with the agents to get a maximin share allocation. First, it is
crucial to understand the effect that the reversal of a set of rows has to an agent.
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LEMMA 5.9. Any agent satisfied with respect to the initial buckets remains satisfied
independently of the rows of B that we may reverse. On the other hand, any agent not
satisfied with respect to the initial buckets, say agent i, is affected if we reverse her 1/0-
row or her 2/1-row. If we reverse only one of those, then i becomes satisfied with respect
to the new buckets; if we reverse both, then i becomes right-satisfied. The reversal of any
other rows is irrelevant to agent i.

PROOF. Fix an agent i. First notice that, due to symmetry, reversing any row that
for i is a 2-row, a 1-row, or a 0-row does not improve or worsen the initial allocation
from i’s point of view. Also, clearly, reversing both the 1/0-row and the 2/1-row of a left-
satisfied agent makes her right-satisfied. Similarly, if i is satisfied and has a 2/1/0-row,
or has a 2/1-row but no 1/0-row, or has a 1/0-row but no 2/1-row, then reversing those
keeps i satisfied.

The interesting case is when i has both a 1/0-row and a 2/1-row. If i is satisfied, then
even removing her 1/0-row leaves all the buckets with at least as much value as the
last bucket; so reversing it keeps i satisfied. A similar argument holds for i’s 2/1-row
as well. If i is not satisfied, then the difference of the values of the first and the last
bucket will be 2. Like in the proof of Lemma 5.8, the number of columns that have 1 in
i’s 1/0-row and 2 in i’s 2/1-row (i.e., total value µi(n,M) + 1) are at least as many as the
columns that have 0 in i’s 1/0-row and 1 in i’s 2/1-row (i.e., total value µi(n,M)− 1). So,
by reversing her 1/0-row, the values of all the “worst” (rightmost) buckets increase by 1,
the values of some of the “best” (leftmost) buckets decrease by 1, and the values of the
buckets in the middle either remain the same or increase by 1. The difference between
the best and the worst buckets now is 1 (at most), so this is a maximin share allocation
for i and she becomes satisfied. Due to symmetry, the same holds for reversing i’s 2/1-
row only.

Now, what Lemma 5.9 guarantees is that when we reverse some of the rows of
the initial B, we are left with agents that are either satisfied, left-satisfied, or right-
satisfied. If the rows are chosen so that there are at most n/2 left-satisfied and at
most n/2 right-satisfied agents, then there is an obvious maximin share allocation: to
any left-satisfied agent we arbitrarily give one of the first n/2 buckets, to any right-
satisfied agent we arbitrarily give one of the last n/2 buckets, and to each of the remai-
ning agents we arbitrarily give one of the remaining buckets. In Lemma 5.10 below,
we prove that it is easy to find which rows to reverse to achieve that.

We use a graph theoretic formulation of the problem for clarity. With respect to the
initial buckets, we define a graph G = (V,E) with V = [k], i.e., G has a vertex for each
row of B. Also, for each left-satisfied agent i, G has an edge connecting i’s 1/0-row and
2/1-row. We delete, if necessary, any multiple edges to get a simple graph with n edges
at most. We want to color the vertices of G with two colors, “red” (for reversed rows)
and “blue” (for non reversed), so that the number of edges having both endpoints red
is at most n/2 and at the same time the number of edges having both endpoints blue
is at most n/2. Note that if we reverse the rows that correspond to red vertices, then
the agents with red endpoints become right-satisfied, the agents with blue endpoints
remain left-satisfied and the agents with both colors become satisfied. Moreover, the
initially satisfied agents are not affected, and we can find a maximin share allocation
as previously discussed. This is illustrated in Figure 3 below.

LEMMA 5.10. Given graphG defined above, in timeO(k+n) we can color the vertices
with two colors, red and blue, so that the number of edges with two red endpoints is less
than n/2 and the number of edges with two blue endpoints is at most n/2.

PROOF. We start with all the vertices colored blue, and we arbitrarily recolor ver-
tices red, one at a time, until the number of edges with two blue endpoints becomes
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Fig. 3. Assuming an instance with 3 agents and 11 items, the tables on top are the three different views
on the initial buckets. This results in the graph shown in the middle—before and after the coloring. By
reversing row c that corresponds to a red vertex, every agent becomes satisfied and thus any matching of
the columns to the agents defines an MMS allocation.

at most |E|/2 for the first time. Assume this happens after recoloring vertex u. Before
turning u from blue to red, the number of edges with at most one blue endpoint was
strictly less than |E|/2. Also, the recoloring of u did not force any of the edges with two
blue endpoints to become edges with two red endpoints. So, the number of edges with
two red endpoints after the recoloring of u is at most equal to the number of edges with
at most one blue endpoint before the recoloring of u, i.e., less than |E|/2. To complete
the proof, notice that |E| ≤ n. For the running time, notice that each vertex changes co-
lor at most once and when this happens we only need to examine the adjacent vertices
in order to update the counters on each type of edges (only red, only blue, or both).

Lemma 5.10 completes the proof of correctness for Algorithm 6 that is summarized
below. For the running time notice that v↑1 , . . . , v

↑
n can be computed in O(nm logm),

since we get v↑i by sorting vi1, . . . , vim. Also step 5 can be computed in O(nm); for each
agent i we scan the first column of B to find her (possible) 1/0-row and 2/1-row, and then
in O(n) we check whether she is left-satisfied by checking that the positions that have
1 in i’s 1/0-row and 2 in i’s 2/1-row are at least as many as the positions that have 0 in
i’s 1/0-row and 1 in i’s 2/1-row.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 G. Amanatidis et al.

ALGORITHM 6: EXACT-MMS0,1,2(N,M, VN )

1 Let k = dm
n
e. Add kn−m dummy items with value 0 for everyone.

2 if v1, . . . , vn are not fully correlated then
3 Compute v↑1 , . . . , v

↑
n and use them instead.

4 Construct a k × n matrix B so that Bij is the (i− 1)n+ jth item.
5 Find the set of left-satisfied agents and their corresponding 1/0-rows and 2/1-rows.
6 Construct a graph G = ([k], E) with E = {{i, j}|∃ left-satisfied agent that i and j are her

1/0-row and 2/1-row}.
7 Color the vertices of G with two colors, red and blue, so that the number of edges having

both endpoints red, and the number of edges having both endpoints blue, each is ≤ n/2.
8 Reverse the rows of B that correspond to red vertices, and keep track of who is satisfied,

left-satisfied, or right-satisfied.
9 Arbitrarily give some of the first n/2 buckets (columns of B) to each of the left-satisfied

agents and some of the last n/2 buckets to each of the right-satisfied agents. Arbitrarily
give the rest of the buckets to the satisfied agents.

10 if v↑1 , . . . , v
↑
n were used then

11 Based on the allocation in step 9 compute and return a maximin share allocation for the
original vis as described in [Bouveret and Lemaı̂tre 2016].

12 else
13 Return the allocation in step 9.

6. A PROBABILISTIC ANALYSIS
As argued in the previous works [Bouveret and Lemaı̂tre 2016; Procaccia and Wang
2014], it has been quite challenging to prove impossibility results. Setting efficient
computation aside, what is the best ρ for which a ρ-approximate allocation does exist?
All we know so far is that ρ 6= 1 by the elaborate constructions by Kurokawa et al.
[2016], and Procaccia and Wang [2014]. However, extensive experimentation by Bou-
veret and Lemaı̂tre [2016] (and also by Procaccia and Wang [2014]), showed that in all
generated instances, there always existed a maximin share allocation. Motivated by
these experimental observations and by the lack of impossibility results, we present
a probabilistic analysis, showing that indeed we expect that in most cases there exist
allocations where every agent receives her maximin share. In particular, we analyze
the Greedy Round-Robin algorithm from Section 3 when each vij is drawn from the
uniform distribution over [0, 1].

Recently, Kurokawa et al. [2016] show similar results for a large set of distributions
over [0, 1], including U [0, 1]. Although, asymptotically, their results yield a theorem that
is more general than ours, we consider our analysis to be of independent interest, since
we have much better bounds on the probabilities for the special case of U [0, 1], even for
relatively small values of n.

For completeness, before stating and proving our results, we include the version of
Hoeffding’s inequality we are going to use.

THEOREM 6.1 ([Hoeffding 1963]). Let X1, X2, . . . , Xn be independent random vari-
ables with Xi ∈ [0, 1] for i ∈ [n]. Then for the empirical mean X̄ = 1

n (X1 + . . .+Xn) we
have P

(
X̄ − E[X̄] ≥ t

)
≤ exp(−2nt2).

We start with Theorem 6.2. Its proof is based on tools like Hoeffding’s and Chebys-
hev’s inequalities, and on a careful estimation of the probabilities when m < 3n. Note
that for m ≥ 2n, the theorem provides an even stronger guarantee than the maximin
share (by Claim 3.1).
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THEOREM 6.2. Let N = [n] be a set of agents and M = [m] be a set of goods, and
assume that the vijs are i.i.d. random variables that follow U [0, 1]. Then, for m ≥ 2n
and large enough n, the Greedy Round-Robin algorithm allocates to each agent i a set of
goods of total value at least 1

n

∑m
j=1 vij with probability 1−o(1). The o(1) term is O(1/n)

when m > 2n and O(log n/n) when m = 2n.

PROOF. In what follows we assume that agent 1 chooses first, agent 2 chooses se-
cond, and so forth. We consider several cases for the different ranges of m. We first
assume that 2n ≤ m < 3n.

It is illustrative to consider the case of m = 2n and examine the nth agent that
chooses last. Like all the agents in this case, she receives exactly two items; let Yn
be the total value of those items. From her perspective, she sees n + 1 values chosen
uniformly from [0, 1], picks the maximum of those, then u.a.r. n − 1 of the rest are
removed, and she takes the last one as well. If we isolate this random experiment,
it is as if we take Yn = max{X1, ..., Xn+1} + XY , where Y ∼ U ({1, 2, ..., n+ 1} {µ}),
µ ∈ arg max{X1, ..., Xn+1}, Xi ∼ U [0, 1] ∀i ∈ [n+1], and all the Xis are independent. We
estimate now the probability P(Yn ≤ a) for 1 < a < 2. We will set a to a particular value
in this interval later on. In fact, we bound this probability using the corresponding
probability for Zn = max{X1, ..., Xn+1} + XY ′ , where Y ′ ∼ U{1, 2, ..., n + 1}. For Zn we
have

P(Zn ≤ a) =

n+1∑
i=1

∫ a

0

P

(
max

1≤j≤n+1
Xj ≤ t ∧ Y = i ∧Xi ≤ a− t

)
dt

= (n+ 1)

∫ a

0

P

(
max

1≤j≤n+1
Xj ≤ t ∧ Y = 1 ∧X1 ≤ a− t

)
dt

=

∫ a

0

P

(
max

1≤j≤n+1
Xj ≤ t ∧X1 ≤ a− t

)
dt

=

∫ a

0

P(X1 ≤ t ∧X1 ≤ a− t ∧X2 ≤ t ∧ . . . ∧Xn+1 ≤ t)dt

=

∫ a/2

0

P(X1 ≤ t ∧X2 ≤ t ∧ . . . ∧Xn+1 ≤ t)dt+

+

∫ 1

a/2

P(X1 ≤ a− t ∧X2 ≤ t ∧ . . . ∧Xn+1 ≤ t)dt+

+

∫ a

1

P(X1 ≤ a− t ∧X2 ≤ t ∧ . . . ∧Xn+1 ≤ t)dt

=

∫ a/2

0

tn+1dt+

∫ 1

a/2

(a− t)tndt+

∫ a

1

(a− t)dt .

Also, by the definition of Y ′ we have P(Y ′ /∈ arg max{X1, ..., Xn+1}) = n/(n+ 1). There-
fore, for Yn we get

P(Yn ≤ a) = P(Zn ≤ a | Y ′ /∈ arg max{X1, ..., Xn+1})

=
P(Zn ≤ a ∧ Y ′ /∈ arg max{X1, ..., Xn+1})

P(Y ′ /∈ arg max{X1, ..., Xn+1})

≤ P(Zn ≤ a)

P(Y ′ /∈ arg max{X1, ..., Xn+1})
=
n+ 1

n
P(Zn ≤ a)

=
n+ 1

n

(∫ a/2

0

tn+1dt+

∫ 1

a/2

(a− t)tndt+

∫ a

1

(a− t)dt

)
,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 G. Amanatidis et al.

where for the inequality we used the fact that P(A ∩B) ≤ P(A) for any events A,B.
A similar analysis for the jth agent yields

P(Yj ≤ a) ≤ 2n− j + 1

n

(∫ a/2

0

t2n−j+1dt+

∫ 1

a/2

(a− t)n−j+1tndt+

∫ a

1

(a− t)n−j+1dt

)
.

In the more general case where m = 2n+κ(n), 0 ≤ κ(n) < n, we have a similar calcula-
tion for the agents that receive only two items in the Greedy Round-Robin algorithm,
as well as for the first two items of the first κ(n) agents (who receive three items each).
Let Yi be the total value agent i receives, and Wi be the value of her first two items.
Of course, for the last 2n players, Yi = Wi. Also, recall that

∑m
j=1 vij = vi(M). We

now relate the probability that we are interested in estimating, with the probabilities
P(Yi ≤ a) that we have already bounded. We will then proceed by setting α appropria-
tely. We have

P

(
∃i such that Yi <

1

n

m∑
j=1

vij

)
≤

n∑
i=1

P

(
Yi <

vi(M)

n

)

=

n∑
i=1

P

(
Yi < min

{
vi(M)

n
, a

}
∨ vi(M)

n
> max {Yi, a}

)
≤

n∑
i=1

P

(
Yi < min

{
vi(M)

n
, a

})
+

n∑
i=1

P

(
vi(M)

n
> max {Yi, a}

)
≤

n∑
i=1

P(Yi < a) +

n∑
i=1

P

(
vi(M)

n
> a

)
.

To upper bound the first sum we use the Wis, i.e., we do not take into account the
third item that the first κ(n) agents receive. By the definition of Yi,Wi, for these first
κ(n) agents we have P(Yi < a) ≤ P(Wi < a), while for the remaining agents we have
P(Yi < a) = P(Wi < a). Note that the bounds for P(Yi ≤ a) calculated above, here hold
for κ(n) + 1 ≤ i ≤ n. For 1 ≤ i ≤ κ(n) the same bounds hold for P(Wi ≤ a).

n∑
i=1

P(Yi < a) ≤
κ(n)∑
i=1

P(Wi < a) +

n∑
i=κ(n)+1

P(Yi < a)

≤
n∑
i=1

m−i+1
n

(∫ a/2

0

tm−i+1dt+

∫ 1

a/2

(a− t)n+κ(n)−i+1tndt+

∫ a

1

(a− t)n+κ(n)−i+1dt

)
≤ 3

n∑
j=1

(∫ a/2

0

tn+κ(n)+jdt+

∫ 1

a/2

(a− t)κ(n)+jtndt+

∫ a

1

(a− t)κ(n)+jdt

)

= 3

 n∑
j=1

(a/2)n+κ(n)+j+1

n+ κ(n) + j + 1
+

n∑
j=1

∫ 1

a/2

(a− t)κ(n)+jtndt+

n∑
j=1

∫ a−1

0

uκ(n)+jdu

 .

We are going to bound each sum separately. We set a = 1+κ(n)
2n +

√
3 lnn
n = m

2n+
√

3 lnn
n .

Note that for n ≥ 46 we have a ∈ (1, 2). Consider the first sum:
n∑
j=1

(a/2)n+κ(n)+j+1

n+ κ(n) + j + 1
≤ (a/2)n+κ(n)+2

n+ κ(n) + 2

n−1∑
i=0

(a/2)i
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<
1

n+ κ(n) + 2
· (a/2)n+κ(n)+2

1− a/2
= O(1/n) ,

where we got O(1/n) because the bound is at most 3
n for n ≥ 57 and for any value of

κ(n).
Next, we deal with the second sum:

n∑
j=1

∫ 1

a/2

(a− t)κ(n)+jtndt <

∫ 1

a/2

tn

 ∞∑
j=0

(a− t)κ(n)+j

 dt ≤
∫ 1

a/2

tn(a/2)κ(n) 1

1− a+ t
dt

≤ (a/2)κ(n)

1− a/2

∫ 1

a/2

tndt =
(a/2)κ(n)

1− a/2

(
1− (a/2)n+1

n+ 1

)
= O(1/n) .

Here, for n ≥ 58 the bound is at most 10
n for any κ(n).

Finally, for the third sum, we rewrite it as

n∑
j=1

∫ a−1

0

uκ(n)+jdu =

n∑
j=1

(a− 1)κ(n)+j+1

κ(n) + j + 1
=

n+κ(n)+1∑
i=κ(n)+2

(a− 1)i

i
.

We are going to bound each term separately. Consider the case where κ(n) ≥ 5
√
n. For

n ≥ 64, it can be shown that 1
5

(
κ(n)
2n +

√
3 lnn
n

)5
√
n

< 10
n3/2 . So,

n+κ(n)+1∑
i=κ(n)+2

(a− 1)i

i
≤

n∑
i=1

(a− 1)κ(n)

κ(n)
≤ n ·

(
κ(n)
2n +

√
3 lnn
n

)5
√
n

5
√
n

≤ n · 10

n2
=

10

n
.

On the other hand, when κ(n) < 5
√
n, we have a − 1 < 2.5+

√
3 lnn√
n

. For n ≥ 59 and

j ≥ 10 it can be shown that 1
j

(
2.5+

√
3 lnn√
n

)j
< 30

n2 . Of course, for 3 ≤ j ≤ 9 it is true that

1
j

(
2.5+

√
3 lnn√
n

)j
= o(1/n), and particularly for n ≥ 59 the sum

∑9
i=3

1
j

(
2.5+

√
3 lnn√
n

)j
is

bounded by 25
n . In general, it is to be expected to have relatively large hidden constants

when m is very close to 2n. This changes quickly though; when κ(n) > 21 the whole
sum is less than 1/n. In any case, if κ(n) > 0

n+κ(n)+1∑
i=κ(n)+2

(a− 1)i

i
≤
n+2∑
i=3

(a− 1)i

i
≤

9∑
i=3

1
i

(
2.5+

√
3 lnn√
n

)i
+

n+2∑
i=10

1
i

(
2.5+

√
3 lnn√
n

)i
≤

≤ O(1/n) + (n− 7)
30

n2
= O(1/n) .

However, if κ(n) = 0, we have

n+1∑
i=2

(a− 1)i

i
=
(

2.5+
√

3 lnn√
n

)2

+

n+1∑
i=3

(a− 1)i

i
= O

(
logn
n

)
.

So far, we have
∑n
i=1 P(Yi < a) = O(1/n) (or O(log n/n) when m = 2n). In order to

complete the proof for this case we use Hoeffding’s inequality to bound the probability
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that the average of the values for any agent is too large.
n∑
i=1

P

(
vi(M)

n
> a

)
≤ n · P

(
v1(M)

n
> a

)
= n · P

(
v1(M)

m
>

n

m

(
m

2n
+
√

3 lnn
n

))
= n · P

(
v1(M)

m
− 1

2
>

n

m

√
3 lnn
n

)
≤ n · e−2m

(
n
m

√
3 lnn

n

)2

= n · e−2 n
m ·3 lnn ≤ n · e−2 lnn =

1

n
.

Hence,

P

(
∃i such that Yi <

vi(M)

n

)
=

O
(

logn
n

)
if m = 2n

O
(

1
n

)
if 2n < m < 3n

.

The remaining cases are for m ≥ 3n. We give the proof for m ≥ 4n. The cases for
3n ≤ m < 3.5n and 3.5n ≤ m < 4n differ in small details but they essentially follow the
same analysis. We briefly discuss these cases at the end of the proof.

Assume that kn ≤ m < (k + 1)n, k ≥ 4. We focus on the agent that choses last, i.e.,
agent n, who has the smallest expected value. She gets exactly k items, and like before
let Yn be the total value she receives. In order to bound P (Yn < β) we introduce the
random variables Zn and Wn. Consider the following random experiment involving
the independent random variables X1, . . . , Xm−n+1, Xi ∼ U [0, 1] ∀i ∈ [m−n+ 1]. Given
a realization of the Xis, i.e., some values x1, . . . , xm−n+1 in [0, 1], Zn is defined similarly
to Yn:

— Initially, Zn = 0.
— While there are still xis left, take the maximum of the remaining xis, add it to Zn,

remove it from the available numbers, and then remove the xis with the n− 1 highest
indices.

— Return Zn.

On the other hand, Wn =
∑k−1
i=1 X(m+1−in,m−i(n−1)), where X(j,t) is the jth order statis-

tic of X1, . . . , Xt. That is, Wn is defined as the sum of the largest of all xis, the second
largest of the first m− n+ 1 xis, the third largest of the first m− 2n+ 2 xis, and so on.

It is not hard to see that always Wn ≤ Zn (in fact, each term of Wn is less than or
equal to the corresponding term of Zn) and that Zn follows the same distribution as Yn.
So, P (Yn < β) = P (Zn < β) ≤ P (Wn < β). Using the fact that the ith order statistic
in a sample of size ` drawn independently from U [0, 1] has expected value i

`+1 and
variance i(`−i+1)

(`+1)2(`+2) [Gentle 2009], we get

E[Wn] =
m− n+ 1

m− n+ 2
+
m− 2n+ 1

m− 2n+ 3
+ . . .+

m− (k − 1)n+ 1

m− (k − 1)n+ k

≥ (k − 1)n+ 1

(k − 1)n+ 2
+

(k − 2)n+ 1

(k − 2)n+ 3
+ . . .+

n+ 1

n+ k

> k − 1− 1

(k − 1)n
− 2

(k − 2)n
− . . .− k − 1

n
> k − 1− (k − 1)Hk−1

n
.

Moreover, if X ′i = X(m+1−in,m−i(n−1)) we have

σ2
Wn

= Var(Wn) =

k−1∑
i=1

k−1∑
j=1

Cov(Xi, Xj) ≤
k−1∑
i=1

k−1∑
j=1

√
Var(Xi)Var(Xj) ≤

(
k−1∑
i=1

√
Var(Xi)

)2
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<

(
k−1∑
i=1

√
i

m− in+ i+ 1

)2

<

(
√
k − 1

k−1∑
i=1

1

(k − i)n

)2

=
(k − 1)H2

k−1

n2
,

where Hk−1 is the (k− 1)-th harmonic number. Now we can bound the probability that
any agent receives value less than 1/n of her total value.

P

(
Yi <

vi(M)

n

)
≤ P

(
Yn <

vn(M)

n

)
≤ P

(
Yn <

13k

20

)
+ P

(
vn(M)

n
>

13k

20

)
.

Next, using Chebyshev’s inequality we have

P

(
Yn <

13k

20

)
≤ P

(
Wn <

13k

20

)
= P

(
E[Wn]−Wn > E[Wn]− 13k

20

)
≤ P

(
|E[Wn]−Wn| > k − 1− (k − 1)Hk−1

n
− 13k

20

)
≤ P

(
|E[Wn]−Wn| >

7k
20 − 1− (k−1)Hk−1

n√
k−1Hk−1

n

σWn

)

≤
(k − 1)H2

k−1((
7k−20

20

)
n− (k − 1)Hk−1

)2 .
On the other hand, using Hoeffding’s inequality,

P

(
vn(M)

n
>

13k

20

)
= P

(
vn(M)

m
− 1

2
>

n

m

13k

20
− 1

2

)
≤ P

(
vn(M)

m
− 1

2
>

13k

20(k + 1)
− 1

2

)
≤ e−2m( 3k−10

20(k+1) )
2

≤ e−2kn( 3k−10
20(k+1) )

2

.

Finally, we take a union bound to get

P

(
∃i s.t. Yi <

vi(M)

n

)
≤

n∑
i=1

P

(
Yi <

vi(M)

n

)
≤ n

(
(k−1)H2

k−1

(( 7k−20
20 )n−(k−1)Hk−1)

2 + e−2kn( 3k−10
20(k+1) )

2
)

= O(1/n) .

The exact same proof works when 3n ≤ m < 3.5n, but instead of 3k−10
20(k+1) in Hoeffding’s

inequality, we have 3·3−5
20(3+0.5) and of course we should adjust E[Wn] and Var(Wn) accor-

dingly. When 3.5n ≤ m < 4n on the other hand, we need to consider three items in Wn

instead of two, since two items are not enough anymore to guarantee separation of Yi
and 1

n

∑m
j=1 vij with high probability. That said, the proof is the same, but we should

adjust E[Wn] and Var(Wn), and instead of 13k
20 = 39

20 we may choose 2.5.

We now state a similar result for any m, generalizing Theorem 6.2 that only holds
when m ≥ 2n. We use a modification of Greedy Round-Robin. While m < 2n, the
algorithm picks any agent uniformly at random and gives her only her “best” item
(phase 1). When the number of available items becomes two times the number of active
agents, the algorithm proceeds as usual (phase 2). We note that while for m ≥ 2n

Theorem 6.2 gives the stronger guarantee of vi(M)
n for each agent i, here we can only

have a guarantee of µi(n,M).
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THEOREM 6.3. Let N = [n], M = [m], and the vijs be as in Theorem 6.2. Then, for
any m and large enough n, the Modified Greedy Round-Robin algorithm allocates to
each agent i a set of items of total value at least µi(n,M) with probability 1− o(1). The
o(1) term is O(1/n) when m > 2n and O(log n/n) when m ≤ 2n.

PROOF. Ifm ≥ 2n then this is a corollary of Theorem 6.2. Whenm < 2n, then for any
agent iwe have maxj{vij} ≥ µi(n,M). So the first agent that receives only her most va-
luable item has total value at least µi(n,M). If Na,Ma are the sets of remaining agents
and items respectively, after several agents were assigned one item in phase 1 of the
algorithm, then by Lemma 3.4, for any agent i ∈ Na, we have µi(|Na|,Ma) ≥ µi(n,M).
If |Ma| < 2|Na| it is also true that maxj∈Ma

vij ≥ µi(|Na|,Ma), so correctness of phase
1 follows by induction. If |Ma| = 2|Na|, then by Theorem 6.2 phase 2 guarantees that
with high probability each agent i ∈ Na will receive a set of items with total value at
least 1

|Na|vi(Ma) ≥ µi(|Na|,Ma) ≥ µi(n,M).

Remark 1. The implicit constants in the probability bounds of Theorems 6.2 and
6.3 depend heavily on n and m, as well as on the point one uses to separate Yi and
1
n

∑m
j=1 vij in the proof of Theorem 6.2. Our analysis gives good bounds for the case

2n ≤ m < 3n without requiring very large values for n (especially when κ(n) in the
proof of Theorem 6.2 is not small). For example, if m = 2.4n an appropriate adjustment
of our bounds gives a o(1) term less than 1.7/n for n ≥ 41. When we switch from the
detailed analysis of the 2n ≤ m < 3n case to the sloppier general treatment for m ≥ 3n,
there is definitely some loss, e.g., for m = 4n we get that the o(1) term is less than
130/n for n > 450. This is corrected relatively quickly as m grows, e.g., for m = 13n
the o(1) term can be made less than 8/n for n ≥ 59. One can significantly improve the
constants by breaking the interval kn ≤ m < (k+1)n into smaller intervals (not unlike
the 3n ≤ m < 3.5n case).

Theorems 6.2 and 6.3 may leave the impression that n has to be large. Actually,
there is no reason why we cannot consider n fixed and let m grow. Following closely the
proof of Theorem 6.2 for m ≥ 4n, we get the next corollary. Notice that now we can use
E[Wn] ≥ 0.7k and σ2

Wn
< k.

COROLLARY 6.4. Let N = [n], M = [m], and the vijs be as in Theorem 6.2. Then, for
fixed n and large enough m, the Greedy Round-Robin algorithm allocates to each agent
i a set of goods of total value at least 1

n

∑m
j=1 vij with probability 1−O(1/m).

7. CONCLUSIONS
The most interesting open question is undoubtedly whether one can improve on the
2/3-approximation. Going beyond 2/3 seems to require a drastically different approach.
One idea that may deserve further exploration is to pick in each step of Algorithm 4,
the best out of all possible matchings (and not just an arbitrary matching as is done
in line 7 of the algorithm). This is essentially what we exploit for the special case of
n = 3 agents. However, for a larger number of agents, this seems to result in a heavy
case analysis without any visible benefits. In terms of non-combinatorial techniques,
we are not currently aware of any promising LP-based approach to the problem.

Even establishing better ratios for special cases could still provide new insights into
the problem. It would be interesting, for example, to see if we can have an improved
ratio for the special case studied in Bansal and Sviridenko [2006] for the Santa Claus
problem. In this case of additive functions, the value of a good j takes only two dis-
tinct values, 0 or vj . On the other hand, obtaining negative results seems to be an
even more challenging task, given our probabilistic analysis and the results of related
works. The negative results [Kurokawa et al. 2016; Procaccia and Wang 2014] require
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very elaborate constructions, which still do not yield an inapproximability factor far
away from 1. Apart from improving the approximation quality, exploring practical as-
pects of our algorithms is another direction, see e.g., Spliddit [2015]. Finally, we have
not addressed here the issues of truthfulness and mechanism design, a stimulating
topic for future work, studied recently by [Amanatidis et al. 2016; Amanatidis et al.
2017]. These works still leave several open questions regarding the approximability
that can be achieved under truthfulness (without payments) for more than two agents.
It is also not clear if more positive results can arise when payments are allowed. Si-
milar mechanism design questions also remain open for a related problem studied
by Markakis and Psomas [2011].
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