
A feedback-directed method of evolutionary test data
generation for parallel programs

Dunwei Gong1, Feng Pan1, Tian Tian2*, Su Yang1, Fanlin Meng3

1School of Information and Control Engineering, China University of Mining and Technology,
Xuzhou 221116 Jiangsu, P. R. China

2School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101
Shandong, P. R. China

3 Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, UK
∗Corresponding author, email address: tian tiantian@126.com.

Abstract

Context: Genetic algorithms can be utilized for automatic test data generation.
Test data are encoded as individuals which are evolved for a number of genera-
tions using genetic operators. Test data of a parallel program include not only
the program input, but also the communication information between each pair of
processes. Traditional genetic algorithms, however, do not make full use of in-
formation provided by a population’s evolution, resulting in a low efficiency in
generating test data.
Objective: This paper emphasizes the problem of test data generation for parallel
programs, and presents a feedback-directed genetic algorithm for generating test
data of path coverage.
Method: Information related to a schedule sequence is exploited to improve ge-
netic operators. Specifically, a scheduling sequence is evaluated according to how
well an individual covers the target path. The probability of the crossover and
mutation points being located in the region is determined based on the evalua-
tion result, which prevents a good schedule sequence from being destroyed. If
crossover and mutation are performed in the scheduling sequence, the location of
crossover and mutation points is further determined according to the relationship
between nodes to be covered and the scheduling sequence. In this way, the popu-
lation can be evolved in a narrowed search space.
Results: The proposed algorithm is applied to test 11 parallel programs. The
experimental results show that, compared with the genetic algorithm without uti-
lizing information during the population evolution, the proposed algorithm signif-

Preprint submitted to Information and Software Technology April 14, 2020

icantly reduces the number of generations and the time consumption.
Conclusion: The proposed algorithm can greatly improve the efficiency in evolu-
tionary test data generation.

Keywords: information utilization, genetic algorithm, parallel program, path
coverage, test data

NOMENCLATURE

Abbreviations

GA Genetic Algorithm
WRNG Wildcard Receiving Node Group
BGA The basic GA
ESS-GA The GA enhanced by Evaluating of Scheduling Sequences

RUS-GA
The GA enhanced by exploiting Relationship between Uncovered
nodes and Scheduling sequences

ESS-RUS-GA The algorithm combining ESS-GA with RUS-GA

Notations

P A parallel program
P i The (i+ 1)-th process in P
ni
j The j-th node in P i

p A path in a parallel program
pi The path of process P i and a sub-path in p
|pi| The length of pi

p∗ A target path
s(p∗, p) The similarity of the two pathes, p∗ and p
rij A WRNG starting with ni

j in P i

X The decision variable or an individual
DX The value domain of X
xi The i-th input variable
rj The scheduling sequence corresponding to the j-th WRNG
F (X) The fitness of X
A An archive that deposits the generated individuals
|A| The size of A
m The number of scheduling sequences in A
si The i-th scheduling sequence in A

2

{si} The set of individuals with si in A
F ({si}) The evaluation of si
R The set of all the WRNGs in P
ni The i-th uncovered node in the target path
c The number of uncovered nodes in the target path
Ri The set of all the WRNGs that influence ni

R1
i The set of WRNGs in R that are located at the same process as ni

R2
i The set of WRNGs in R that are located at different processes with ni

g The number of generations
t The time consumption
Rg The reduction rate in the number of generations
Rt The reduction rate in the time consumption

1. Introduction

Software testing is an important method to guarantee software quality and fo-
cuses on detecting errors in a software product [1]. Only when test data touch
an element of a program in execution, bugs associated with the element could be
potentially detected. In other words, test data that cover the element of a program
are necessary for detecting its bugs. Therefore, generating test data for a prede-
fined coverage criterion plays a very important role in testing a software [2]. This
study emphasizes the problem of test data generation and proposes an enhanced
genetic algorithm based on feedback information during the evolution to tackle
this problem.

A parallel program, containing two or more processes that execute in par-
allel [3], can conduct large-scale parallel computing. Although there are other
ways to design a parallel program, extending traditional programming languages
by using message-passing environments is the most commonly used method [4].
In addition, message-passing interface(MPI) has become one of the most notable
and important parallel programming environments [5]. In view of this, we focus
on the problem of test data generation for message-passing parallel programs in
this paper.

Path coverage has a strong capability of detecting faults [6], and is widely
used in software testing [7]. The specific implementation of generating test data
for path coverage is as follows: for a target path of a program given by a tester,
seeking test data in the input domain of the program against which the covered
path is exactly the target one [8, 9]. To generate test data for path coverage auto-
matically and efficiently, an optimization problem can be formulated and solved

3

by optimization methods, especially by search-based methods. A lot of attempts
using search-based methods to solve the problem have been reported in the liter-
ature [10], such as genetic algorithms(GAs) [11], simulated annealing [12], and
particle swarm optimization [13]. In addition, recent emerging meta-heuristics
techniques [14], such as firefly [15–17], cuckoo search [18], bee algorithm [19]
and bat algorithm [20], can also be applied in search-based software testing.
Among these methods, GAs are very popular and have advantages in solving
problems with large-scale search spaces and nonlinear objectives [21, 22].

MPI library provides various functions to implement either point-to-point or
collective communication, where point-to-point communication means sending a
piece of message from one process to another, whereas collective communication
signifies a one-to-many or many-to-many massage passing pattern [23]. With re-
spect to point-to-point communication, a receiving statement, which calls a MPI
primitive, can receive a piece of message from any source due to the wildcards,
MPI ANY SOURCE and MPI ANY TAG [24]. The receiving sequence of these
statements forms a scheduling sequence, resulting in the non-deterministic pro-
gram execution, which increases the difficulty of test data generation [25].

Taking the feature of the non-deterministic execution of a parallel program into
consideration, this paper focuses on an enhanced GA based on feedback informa-
tion during the evolution to generate test data for path coverage. The proposed
GA takes full advantage of information provided by a population’s evolution to
evaluate scheduling sequences to guide the subsequent evolution, and analyzes
the relationship between uncovered nodes and scheduling sequences to narrow
down the search space. More specifically, a scheduling sequence is firstly evalu-
ated according to the relationship between the execution path of an evolutionary
individual and the target path. Following that, the probability of the crossover
and mutation points being located in any particular region is determined based
on the above evaluation. If the crossover and mutation points are located in the
scheduling sequence, the subsequent search space can be further narrowed down
according to the relationship between uncovered nodes and scheduling sequences.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. The preliminary knowledge of message-passing parallel programs is
introduced in Section 3. Section 4 details the proposed approach, which includes
methods of evaluating a scheduling sequence, determining the probability of the
crossover and mutation points being located in the region, seeking the relationship
between uncovered nodes and scheduling sequences, and locating the crossover
and mutation points in the scheduling sequence. Experimental results and analysis
are provided in Section 5. Finally, Section 6 concludes the paper.

4

2. Related Work

If a program includes multiple execution flows that progress simultaneously
and interact with each other, it is called a concurrent program [26]. Concurrent
program testing has received increasing attention from the community of software
testing [26, 27]. The following reviews the related work from the aspects of multi-
thread program testing and multi-process program testing. Here, a multi-thread
program means a program that adopts the mechanism of shared-memory for inter-
leaving execution flows, while a multi-progress program employs message pass-
ing to perform the interaction between execution flows within distributed-memory
environments.

Nistor et al. [28] proposed a random-based approach to producing multi-threaded
test data to trigger concurrency bugs. Terragni et al. [29] proposed a coverage-
based approach which develops concurrency-related coverage requirements and
generates method call sequences that achieve such requirements. Given that these
methods are subject to special kinds of concurrency bugs and demand an expen-
sive computation, Choudhary et al. [30] presented a coverage-guided approach
which can detect arbitrary concurrency bugs with an inexpensive computation.

Symbolic execution is a promising technique for software testing and replaces
a concrete program input with the symbolic one to run a program [31]. Guo
et al. [32] used the method of symbolic execution to explore intra-thread paths
and inter-thread interleaving of a multi-thread program. [33] further extended the
above work to regression testing of multi-thread programs to explore interleaving
affected by changed codes. In addition, Zhang et al. [34] emphasized definition-
use data flow instead of interleaving. Khanna et al. [35] combined the symbolic
execution and dynamic verification to analyze MPI programs.

Reachability testing is another important approach to testing multi-thread pro-
grams. It is based on prefix-based testing, which allows test data to run deter-
ministically up to a desired program state, and thereafter run to proceed non-
deterministically [36]. Carver et al. [37] proposed a distributed reachability test-
ing algorithm. Qi et al. [38] presented another reachability testing method, which
integrates the variable strength strategy into a testing framework to balance the
effectiveness and the efficiency. [39] also claimed a parallel approach for reacha-
bility testing.

Based on the above, studies on multi-thread program testing mainly focus
on method sequence generation and thread interleaving exploration. Different
from them, detecting deadlock and resource competition are the focus of multi-
process parallel program testing. Along this line, Vakkalanka et al. [40] proposed

5

a model-checking tool which executes all the processes of a parallel program by
an interleaving scheduler. Leungwattanakit et al. [41] proposed a cache-based
model checking method for distributed parallel programs. Vetter et al. [42] de-
tected programming errors in parallel programs by monitoring MPI operations.
Park et al. [43] checked the communication concurrency between processes for
detecting and reporting race conditions. Krammer et al. [44] checked the usage of
Application Program Interface of MPI at run time. Ayub et al. [45] implemented
model checking for MPI Java programs and modeled processes as threads. In ad-
dition, Gong et al. [46] presented an approach to reducing process interleaving
when generating test data for statement coverage.

Due to the high adaptability, parallelism and global search ability [47, 48],
GAs have been the most widely used search-based methods in the literature for
generating test data of parallel programs. Tian et al. [49] proposed a co-evolutionary
GA to generate test data for path coverage of message-passing parallel programs.
However, the work does not take the non-determinism of parallel programs into
consideration. In other words, the method in [49] focuses on a kind of parallel
programs with the deterministic execution, whereas this study emphasizes non-
deterministic parallel programs. In addition, Cao et al. [50] generated test data
under the strong mutation testing criterion by combining the symbol execution
with evolutionary algorithms. Ghiduk et al. employed genetic algorithms to gen-
erate test data that kill concurrency mutants [51]. Anbunathan et al. utilized ge-
netic algorithms when generating test data from activity diagrams with concurrent
behaviors [52].

Feedback-directed mechanism has been incorporated into software testing tech-
niques. Along this line, Pacheco et al. [53] [54] proposed a feedback-directed ran-
dom test data generation method to avoid redundant or illegal method sequences.
Tan et al. [55] employed feedback-directed GA to optimize software configura-
tions. When evolutionarily generating test data, Dang et al. [56] also dynamically
reduced the search domain based on the optimal solution of each population. In
addition, Luo et al. [57] proposed a feedback-directed method for performance
testing.

Table 1 summarizes the software testing techniques proposed for multi-thread
and multi-process programs in terms of bugs-oriented test data generation, sym-
bolic execution, reachability testing, deadlock detection and resource competition,
GA-based test data generation, and feedback-directed mechanism in software test-
ing. In particular, for GA-based test data generation, Table 2 analyses the current
research gaps by specifying the issues identified from related works, and presents
how the proposed method could fill the gap.

6

Table 1: Summary of test data generation techniques proposed in the context of multi-thread and
multi-process program testing.

Techniques of test data generation Sources of literature
Bugs-oriented test data generation [28–30]
Symbolic execution for parallel programs [32–35]
Reachability testing [36–39]
Deadlock detection and resource competition [40, 41, 43–46]
GA-based test data generation for parallel programs [49–52]
Feedback-directed mechanism in software testing [53–57]

Table 2: Issues identified from related works and their relation to the proposed solution of this
study

Open questions in literatures Solutions in the proposed method
(1) The feedback-directed mechanism
is not applied in GA-based test data
generation for unit testing [49–52].

Presenting a GA-based test data generation method
incorporating the information feedback.

(2) The test data generation method is
for the parallel programs with a fixed
schedule sequence and no non-determinism [49].

Confronting the impacts of different schedule
sequences on the execution trace of parallel programs

(3) The information during the evolution
is not utilized to improve
the efficiency of test data generation [49, 50].

Utilizing the feedback information related to
the schedule sequence during the evolution.

This paper takes the characteristics of message-passing parallel programs into
consideration, and proposes a feedback-directed GA that focuses on the utilization
of feedback information during the evolution, so as to enhance the efficiency of
test data generation. Before we illustrate the proposed approach, the background
related to message-passing parallel programs is first introduced as follows.

3. Foundation of evolutionary test data generation for Parallel Programs

3.1. Notions for Parallel Programs
A parallel program contains num(num > 1) processes executed in par-

allel and can be represented as P = {P 0, P 1, . . . , P num−1}. Fig. 1(a) shows
an example of a parallel program, which includes four processes, that is, P =
{P 0, P 1, P 2, P 3}. For the purpose of clarity, the functions, send and recv, are
used for placing MPI primitives to interpret sending and receiving a piece of mes-
sage. For example, send(a1,1) in P 0 means that P 0 sends the value of a1 to P 1

while recv(a1,0) in P 0 implies that P 1 receives a value from P 0 and stores it by
a1. Specifically, recv(x1,ANY) in P 0 refers to that P 0 receives a piece message
from any process and stores it by x1.

7

P
0

1 initialize();

int a1,a2,b,x1,x2,y1,z;

2 send(a1,1);

3 send(a2,2);

4 recv(x1,ANY);

5 recv(x2,ANY);

6 if(x1>x2)

7 z=x1-x2;

else

8 z=x2-x1;

9 printf(“z=”,z);

10 recv(b,2);

11 y1=(b-5)*z;

12 send(y1,2);

13 finalize();

P
2

1 initialize();

int a2,x2,b,y1,y2,t;

2 recv(a2,0);

3 x2=a2/2;

4 send(x2,0);

5 send(b,0);

6 send(b,3);

7 recv(y1,ANY);

8 recv(y2,ANY);

9 if(y1*y2>=0)

10 t=y1;

 else

11 t=y2;

12 printf(“t=”,t);

P
1

1 initialize();

 int a1, x1;

2 recv(a1,0);

3 if(a1>=0&&a1<=20)

4 x1=a1*2;

else

5 x1=a1*3;

6 send(x1,0);

7 finalize();

P
3

1 initialize();

int b, y2;

2 recv(b,2);

3 y2=b-15;

4 send(y2,2);

5 finalize();

(a) Example program

1

2

3

4

5

6

7 8

9

10

11

12

13

1

2

3

4 5

7

6

1

2

3

4

5

P
1

P
0

P
3

1

2

3

4

5

6

7

8

9

10 11

12

13

P
2

(b) Flow chart

Figure 1: An example of the message-passing parallel program and its flow chart.

8

Let us define a basic block as a node in which either all its statements are
executed or none of them is executed. For the process, P i, in P, its j-th node is
denoted as ni

j . In Fig. 1(a), n0
1 implies the first basic block of P 0. In the example

program, P 0 sends a1 and a2 to P 1 and P 2, respectively. P 1 receives the value
sent from P 0 for making some calculations and returns the result to P 0. P 2 also
takes the value from P 0 and sends the results to P 0. P 0 receives message from
P 1 and P 2, gets the value of z, receives b from P 1, and finally sends y1 to P 2.
P 2 sends b to P 0 and P 3, and receives message from P 1 and P 3. Accordingly,
some operations are performed. P 3 receives b from P 2, and sends the calculation
result to P 2. The four processes execute in parallel and block when encountering
sending and receiving operations, until the operation is finished.

For any two nodes, ni
k and ni

l in P i, if ni
k is executed immediately after ni

l

against a certain input, there will be a control edge between the above two nodes,
denoted as < ni

k, n
i
l >. Assume ni

k is a node that sends a piece of message
(sending node, for short) and nj

l is a receiving node that matches with the sending
node in P j . There will be a communication edge, < ni

k, n
j
l >. For example, in

the flow chart of the example program, Fig. 1(b), < n0
2, n

1
2 > is a communication

edge between P 0 and P 1, and < n0
6, n

0
7 > is a control edge in P 0.

3.2. Path coverage problem of parallel programs
If P is executed against a program input, a sequence of nodes that the input

traverses constitute a path, denoted as p = p0p1 pnum−1. Here, pi, i =
0, 1, ..., num− 1, is the sub-path of process i. The number of nodes contained in
pi is referred to as the length of the sub-path, denoted as |pi|. For two paths, p∗ =
p0
∗
p1
∗
...pnum−1

∗ and p = p0p1...pnum−1, their similarity is calculated by [49]:

s(p∗, p) =
1

num

num−1∑
i=0

|pi∗ ∩ pi|
max{|pi∗|, |pi|}

(1)

where |pi∗ ∩ pi| is the number of consecutively identical nodes when comparing
the sub-paths of process i in these two paths, i.e., pi∗ and pi, from the first node.
For two sub-paths

p0
∗

= n0
1n

0
2n

0
3n

0
4n

0
5n

0
6n

0
7n

0
9n

0
10n

0
11n

0
12n

0
13

and
p0 = n0

1n
0
2n

0
3n

0
4n

0
5n

0
6n

0
8n

0
9n

0
10n

0
11n

0
12n

0
13

of the process, P 0, in Fig. 1, both |p0∗| and |p0| are 12, and |p0∗ ∩ p0| is 6.

9

In P, there may exist some wildcard receiving statements which do not specify
their message sources. When more than one sending statements match a wildcard
receiving statement, different executions of a parallel program under the same
input may experience different traces, which is called non-determinism.

More specifically, assume that ni
j1, ..., n

i
jm are m wildcard receiving state-

ments in P i with the same message envelope, and each of them matches the
same sending statements, then ni

j1, ..., n
i
jm constitute a Wildcard Receiving Node

Group (WRNG, for short), denoted as rij . Its receiving sequence is composed
of communication edges whose receiving nodes belong to the WRNG. Conse-
quently, a scheduling sequence consists of receiving sequences of all WRNGs.
A program may traverse different paths in different runs with the same input due
to different scheduling sequences.

For instance, in the program shown in Fig. 1, n0
4 and n0

5 form a WRNG, de-
noted as r04, while n2

7 and n2
8 form another WRNG, r27. (< n1

4, n
0
4 >,< n2

4, n
0
5 >)

is a receiving sequence of r04 in addition to (< n2
4, n

0
4 >,< n1

4, n
0
5 >). Similarly,

(< n0
12, n

2
7 >,< n3

4, n
2
8 >) and (< n3

4, n
2
7 >,< n0

12, n
2
8 >) are two receiving

sequences corresponding to r27. Correspondingly, (< n2
4, n

0
4 >,< n1

4, n
0
5 >,<

n0
12, n

2
7 >,< n3

4, n
2
8 >) is a scheduling sequence. The order of receiving messages

in r04 and r27 has an influence on the execution trace of the example program.

3.3. Notions for evolutionary test data generation
For a target path, p∗, when the decision variable, which is denoted as X in the

range of DX executes P, the traversed path is denoted as p(X). The problem of
generating test data for path coverage can be formulated as:

max s(p∗, p(X))

s.t. X ∈ DX

(2)

Since the closeness between the path covered by an individual, X , and the tar-
get path can be reflected by s(p∗, p(X)), we represent the fitness of the individual
as

F (X) = s(p∗, p(X)) (3)

For two individuals,X1 = (x11, x12, ..., x1i, ..., x1ns , r11, r12, ..., r1nr) andX2 =
(x21, x22, ..., x2i, ..., x2ns , r21, r22, ..., r2nr), we perform the single-point crossover
operation on them, and the crossover point is located in the i-th component of
the program input, then two new individuals, denoted as X ′

1 and X ′
2, will be gen-

erated. Further, we conduct the single-point mutation on X1, the mutation point
is also located in the i-th component of the program input and the new allele at

10

Figure 2: The process of the crossover and mutation operations.

this locus is x̄1i, then the individual after mutation, denoted as X ′′
1 , will also be

produced. The process of the crossover and mutation operations is depicted as
Fig. 2.

4. The Proposed Approach

This section presents a new evolutionary optimization method with the pur-
pose of improving the efficiency in generating test data, which will be described
as follows. The probability of the crossover and mutation points being located in
the region is determined based on the evaluation of scheduling sequences. In the
case that the crossover and mutation points are located in the scheduling sequence,
the range of the crossover and mutation points can be further narrowed down ac-
cording to the relationship between uncovered nodes and scheduling sequences.

4.1. The Evaluation of a Scheduling Sequence
Note that the decision variable of the problem that generates test data for path

coverage formulated in (2) contains the program input and the scheduling se-
quence. As a result, an individual obtained by encoding methods also consists
of these two parts. In the following, the method of evaluating a scheduling se-
quence will be given.

Starting from an initial population, traditional evolutionary optimization is
employed for a number of generations, and all the generated individuals are put
into an archive, denoted as A, with its size being |A|, until |A| is equal to a thresh-
old value set in advance. The scheduling sequences contained in A are retrieved.
Based on these scheduling sequences, individuals in A are divided into a number
of classes, with each representing a set of individuals with the same scheduling
sequence. Assume that m is the number of scheduling sequences and s1, s2, · · · ,

11

and sm are the scheduling sequences in A. The i-th class is presented as {si},
which contains Xi1, Xi2, · · · , Xi|{si}| with |{si}| representing the number of in-
dividuals in {si}. Based on formula (3), the fitness of Xij , denoted as F (Xij),
j = 1, 2, · · · , |{si}|, can be calculated. Finally, si can be evaluated as follows:

F ({si}) =
1

|{si}|

|{si}|∑
j=1

F (Xij) (4)

4.2. The Probability of the Crossover and Mutation Points Located in the Schedul-
ing Sequence

To determine the probability, the influence of a scheduling sequence on the
target path coverage is firstly analyzed. It is evident that different scheduling
sequences have their own difficulties in covering the target path, which can be
observed from the fact that a number of program inputs are able to cover the
target path under one scheduling sequence, whereas only a few of them can cover
it under another scheduling sequence. Sometimes, none of the program inputs can
cover the target path under a specific scheduling sequence.

In the program shown in Fig. 1(a), (< n1
4, n

0
4 >,< n2

4, n
0
5 >,< n0

12, n
2
7 >

,< n3
4, n

2
8 >) and (< n2

4, n
0
4 >,< n1

4, n
0
5 >,< n0

12, n
2
7 >,< n3

4, n
2
8 >) are two

scheduling sequences associated with r04 and r27, respectively. The ranges of the
program input, a1, a2, and b, are [0, 20]. To cover the following target path,

p∗ = n0
1n

0
2n

0
3n

0
4n

0
5n

0
6n

0
7n

0
9n

0
10n

0
11n

0
12n

0
13

n1
1n

1
2n

1
3n

1
4n

1
5

n2
1n

2
2n

2
3n

2
4n

2
5n

2
6n

2
7n

2
8n

2
9n

2
11n

2
12n

2
13

n3
1n

3
2n

3
3n

3
4n

3
5

under the first scheduling sequence, the program input is given as {(a1, a2, b)|a24 <
a1 ≤ 20, 0 ≤ a2 ≤ 20, 5 < b < 15} whereas, for another scheduling sequence,
the program input becomes {(a1, a2, b)|0 ≤ a1 <

a2
4
, 0 ≤ a2 ≤ 20, 5 < b < 15}.

Given the fact that under the first scheduling sequence, the program input domain
is much lager than that under the second scheduling sequence, generating test data
to cover the target path is much easier under the first scheduling sequence.

For a scheduling sequence under which the target path is easy to cover, the
destruction to such a scheduling sequence should be as little as possible when
conducting the crossover and mutation operations. Therefore, the crossover and
mutation points should have a low probability of being located in such scheduling
sequence. Otherwise, they should have a high probability to be located in it.

12

From formulas (1), (3), and (4), F ({si}) is in the range of [0, 1]. If a schedul-
ing sequence is assumed as good based on F ({si}), the crossover and mutation
operations should not impact the chromosome encoding of the sequence much.
In other words, a good scheduling sequence always means a low probability of
the crossover and mutation points being located in the sequence. Accordingly, the
probability of applying the crossover and mutation operations in the scheduling
sequence is given as 1 − F ({si}) while the probability of conducting crossover
and mutation in the program input is assigned as F ({si}).

During the population evolution, A is continuously updated along with the
generation of new individuals, and the probabilities are thus updated based on in-
formation provided by elements inA until the termination criteria of the algorithm
are met.

4.3. The Location of the Crossover and Mutation Points in a Scheduling Sequence
(1) WRNGs That Affect Uncovered Nodes
If the operations are conducted on the scheduling sequence, we need to further

determine the specific positions of crossover and mutation points. To this end, we
analyze the influence of WRNGs on uncovered nodes. The reason lies in that the
path covered by an individual consists of a series of nodes, in which some are the
same as those of the target path, whereas the others are not. Such different nodes
will make the path covered by the individual different from the target path. For an
uncovered node in the target path, it is affected by some or all the WRNGs. As
a result, it is possible to cover this node by changing the order of a WRNG, i.e.,
changing the scheduling sequence. Since the order of the scheduling sequence
can be changed by crossover and mutation operations, determining the specific
positions of crossover and mutation points becomes very important to conduct
such operations.

Although a parallel program generally has multiple WRNGs, not all of them
have an influence on an uncovered node. Considering that different WRNGs have
different positions and thus different influences on an uncovered node, we can
classify these WRNGs based on their positions.

Denote the set formed by all the WRNGs in a program as R , and the i-th
uncovered node of the target path as ni, i = 1, 2, · · · , c, where c is the number
of uncovered nodes. The set of all the WRNGs that have an influence on ni is
denoted as Ri. Initially, Ri = ∅. The elements in R can be divided into the
following two subsets based on whether they are located at the same process as
ni. One is formed by WRNGs that are located at the same process as ni, denoted
as R1

i , and the other consists of WRNGs that are located at different processes

13

from ni, denoted as R2
i . If R1

i 6= φ, WRNGs that have front positions than ni may
have an influence on ni, and will be put into Ri.

As for R2
i , the influence of its WRNGs on ni resulted from communications

among processes is investigated. To fulfill this task, the receiving nodes located
before ni are considered, and all their matched sending nodes form a subset. For
each sending node in the subset, the WRNGs in R2

i located before the sending
node are sought. If at least one variable in a WRNG affects the variable(s) sent by
the sending node, the WRNG will be put into Ri.

Using the above method, we can get the corresponding WRNGs for each un-
covered node. As a result, the WRNGs that affect all the uncovered nodes can
now be obtained, which form a set, denoted as

c
∪
i=1

Ri.

For the program shown in Fig. 1, R = {r04, r27}. Suppose that the program
input is a1 = 10, a2 = 10, b = 3, and the scheduling sequence is (< n2

4, n
0
4 >

,< n1
4, n

0
5 >,< n0

12, n
2
7 >,< n3

4, n
2
8 >). Then the executed path will have two

uncovered nodes (i.e., n0
7 and n2

11) compared with p∗. For convenient illustration,
the two nodes are denoted as n1 and n2. For n2, initially R2 = φ, R1

2 = {r27} and
R2

2 = {r04}. Since r27 in R1
2 is located before n2, it may have an influence on n2.

Therefore, r27 is put into R2. After this, we have R2 = {r27}.
The receiving nodes, n2

7 and n2
8, are located before n2, and their matched send-

ing nodes are n0
12 and n3

4, respectively. Since r04 in R2
2 is located before n0

12, and
a variable , (x1) , in r04 affects variable y1 sent by n0

12, r04 is therefore put into R2.
Then we have R2 = {r04, r27}. Note that for the sending node, n3

4, there are no
WRNGs in R2

2 that are located before n3
4. As a result, the set of WRNGs affecting

the uncovered node, n2, is finally given as R2 = {r04, r27}.
Similarly, for the uncovered node, n1, R1 = {r04}. WRNGs that affect the

above two uncovered nodes, n1 and n2, form the set represented as R1 ∪ R2 =
{r04, r27}.

(2) The Crossover and Mutation Points in a Scheduling Sequence
When the crossover and mutation operations are conducted on the scheduling

sequence to generate individuals for covering the target path, we aim to change the
encoding order of WRNGs that affect uncovered nodes and to retain the encoding
order of the other wildcard receiving nodes unchanged. As a result, the crossover
and mutation points should be chosen at the part of the encoding corresponding to
the WRNGs that affect uncovered nodes.

Suppose that there are two individuals, X1 andX2. Their covered paths can be
obtained after decoding and executing the program under test. By comparing each
of the two paths with the target one, the uncovered nodes of the target path can

14

also be achieved. Furthermore, WRNGs that affect uncovered nodes in the above
two paths are denoted as R(X1) and R(X2), respectively, and can be obtained by
using the method proposed in the previous subsection.

Following that, the crossover point is randomly selected among the encoding
that corresponds to the WRNGs in R(X1) and R(X2). The offspring individual of
X1 consists of the following two parts: one owns the genes before the crossover
point, which has the same alleles as those of X1; the other has the genes after
the crossover point. For the latter, if the WRNGs corresponding to the allele of
a particular locus belong to R(X1), the allele of this locus will be swapped with
that in X2; otherwise, it will remain unchanged. The offspring individual of X2

can also be generated similarly by the above approach.
Processes where the sending nodes are located can be employed to repre-

sent the receiving sequence of a WRNG. As a result, the receiving sequence, (<
n1
4, n

0
4 >,< n2

4, n
0
5 >), of r04 can be denoted as (P 1, P 2). Correspondingly, assume

that two test data for the program shown in Fig. 1 areX1 = (4, 18, 8, P 1, P 2, P 3, P 0)
and X2 = (10, 10, 3, P 2, P 1, P 0, P 3), respectively, the individuals correspond-
ing to them are obtained by encoding the program input with binary encoding
and the scheduling sequence with integer encoding, which are given as follows:
X1 = (0010010010010001230) and X2 = (0101001010000112103).

It is worth noting that an offspring may have an illegal scheduling sequence
after conducting the crossover and mutation operations. The following method
can be adopted to repair it. Starting from the first locus, we investigate whether it
has the same encoding as each of the others. If yes, the encoding at this locus will
be changed into a different one; otherwise, it will remain unchanged. Following
the rule, the encoding at each locus before the crossover point is checked until the
scheduling sequence becomes legal.

The sets of WRNGs that affect all the uncovered nodes in X1 and X2 are
achieved via the method proposed in the previous subsection, and are given as
follows: R(X1) = {r04} and R(X2) = {r04, r27}. The crossover point is randomly
selected between the locus corresponding to the WRNGs in R(X1) and R(X2).
That is, the locus is located between the 16th and the 19th loci. Suppose the
crossover point is selected at the 17th locus, as r04 is in R(X1), its corresponding
encoding will be changed. In contrast, r27 is not inR(X1), therefore its correspond-
ing encoding will remain unchanged. By further performing the repair strategy,
the offspring individual of X1 becomes X1

′
= (0010010010010002130). Simi-

larly, the offspring individual of X2 becomes X2
′
= (0101001010000111230).

As for the mutation operation, if X1 is selected for mutation, the mutation
point should be chosen at the locus corresponding to the WRNG in R(X1). Fol-

15

lowing that, a traditional mutation operation is employed to generate the offspring
individual. Similarly, the offspring individual can be further repaired if necessary.

4.4. Pseudo-code of the Proposed Method
To sum up, the pseudo-code of the method proposed in this paper is provided

in Algorithm 1. In each generation, the fitness of each individual is calculated in
Line 4. If test data that cover the target path are generated, the iteration will be ter-
minated in Line 6. Otherwise, the genetic operation are applied on the next evolu-
tion in Lines 8-20. Lines 11-16 evaluate the performance of a scheduling sequence
and further select the location of the crossover and mutation operations based on
subsection 4.2. In Lines 17-18, if the location is in the scheduling sequence, the
WRNGs that affect uncovered nodes will be determined and the crossover and
mutation operations will be performed according to subsection 4.3. Overall, the
proposed method improves the techniques of evolutionary test data generation for
parallel programs from the following two aspects.

(1) The probability of which region the crossover and mutation points are lo-
cated is determined based on the Evaluation of Scheduling Sequences, which cor-
responds to the first contribution of this study. The GA that employs the above
method is called ESS-GA.

(2) The indexes of the decision variables where the crossover and mutation op-
erations can be applied is reduced according to the Relationship between Uncovered
nodes and Scheduling sequences. The corresponding GA is referred to as RUS-
GA and maps the second contribution of this study.

Finally, the proposed method that integrates the above two improvements is
described in Algorithm 1 and called ESS-RUS-GA. Correspondingly, the critical
parts for ESS-GA and RUS-GA are highlighted in Algorithm 1.

5. Experiments

In this section, the proposed method is applied to test eleven benchmark pro-
grams and evaluated through a series of experiments. The questions to answer in
the experiments are firstly raised. Secondly, the benchmark programs are briefly
illustrated. Following that, the experimental environment and process are intro-
duced. Finally, the experimental results are provided and analyzed and the main
threats to validity are illustrated.

16

Algorithm 1 ESS-RUS-GA
Require: a program, P, and a target path, p∗.

1: A ← ∅, psi ← 0.5. /* psi is the probability of the crossover and mutation
points located in the scheduling sequence, si, of an individual.*/

2: Generate an initial population, pop(1).
3: for k from 1 to Count, step 1 do /* Count is the maximal number of genera-

tions.*/
4: Calculate the fitness value of each individual in pop(k).
5: if a test datum that covers p∗ is generated then
6: Print the test datum.
7: Break.
8: else
9: Conduct selection in pop(k).

- -ESS −GA-
10: A← pop(k).
11: if the threshold value of A is achieved then
12: Calculate F ({si}).
13: psi ← 1− F ({si}).
14: A← ∅.
15: end if
16: Conduct crossover and mutation based on the updated psi .

- -
- -RUS −GA-

17: if crossover(mutation) is performed at the scheduling sequence then
18: Locate the point of crossover(mutation) operations.

- -
19: end if
20: end if
21: end for

17

5.1. The Questions to Answer
In order to evaluate the proposed method, ESS-GA should be evaluated to

verify that the efficiency of evolutionary generation of test data can be improved
by exploiting feedback information related to the performance of scheduling se-
quences in evolution. Similarly, RUS-GA is implemented for evaluating the uti-
lization of feedback information of WRNGs that impact on uncovered nodes. Fi-
nally, the combination of the two techniques, ESS-RUS-GA, should be investi-
gated for verifying how it contributes the efficiency of test data generation. There-
fore, taking basic GA (abbreviated as BGA) as a baseline method, the following
three questions are raised:

Q1: Can the efficiency in generating test data for path coverage be improved
by using ESS-GA?

Q2: Can the efficiency in generating test data for path coverage be improved
by using RUS-GA?

Q3: Can the efficiency in generating test data for path coverage be further
improved by using ESS-RUS-GA? In addition, the following question is also be
presented to investigate the difference between the proposed method and other test
data generation techniques.

Q4: What is the difference between the proposed method and model checking
as well as symbolic execution?

5.2. The Programs Under Test
Eleven benchmark programs are selected. Firstly, Max triangle seeks the

largest three from four numbers and judges whether they can constitute a trian-
gle. For Min, it seeks the minimum one of a series of numbers. Regarding Index
and ASCII, they are parallelization of common functions which retrieve the char-
acter information and judge the type of elements in a character string, respectively.
With respect to Including, it judges the relationship in position between a point
and a polygon. For Matrix, it multiplies two matrixes and seeks for two maxi-
mum values in the resulting values. In addition, Convex quadrilateral and Cre-
ator consumer judge whether four angles can constitute a convex quadrilateral,
and simulate the process of production and consumption, respectively. They are
often utilized for coverage testing of MPI programs, which are selected from [46].
Secondly, Integrate mw calculates the integral of a trigonometric function, which
is selected from the FEVS benchmark parallel programs [58]. Search function is
composed of Search and Function, where Search seeks a series of numbers in an
array, and Function stems from mpi mm and mpi wave in [59], with its function

18

of matrices multiplication and solving a concurrent wave equation. Finally, Kfray
from [60] is a ray tracing program that can create realistic images.

Concretely, Search function has the largest number of processes, 70, whereas
Matrix has the smallest number of processes, 4. These programs have in gen-
eral various numbers of input variables, among which Min has the largest number
of input variables, 125, whereas Including, Creator consumer, Integrate mw, and
Search function have only two input variables. Similarly, they are diverse in the
number of wildcard receiving statements with the maximum of 130 and the min-
imum of 3. The above aspects emphasize that there are various difficulties in
testing these programs. As a result, they are representative as the programs under
test, which is beneficial to demonstrating the applicability and scalability of the
proposed method.

Table 3: Basic information of programs under test.

Programs
under test # of processes # of

program input
of wildcard

receiving statements Lines of code # of
target paths

Max triangle 12 4 9 174 5
Including 10 2 8 191 7
Matrix 4 16 3 117 8
Index 7 15 5 157 7
Min 6 125 5 145 6
Convex quadrilateral 9 4 7 130 9
ASCII 8 10 6 124 6
Creator consumer 14 2 9 169 7
Integrate mw 27 2 12 231 12
Search function 70 2 130 1693 26
Kfray 8 20 116 12728(4129) 66

5.3. Experimental Environment and Process
Regarding the GA for generating test data to cover the target path, roulette

wheel selection, single-point crossover and single-point mutation operators are
adopted, and the probabilities of the crossover and mutation operators are set to
0.9 and 0.3, respectively, based on early experimental studies on GAs [61] and
our various experiments. The population size is set to 10, and the threshold value
of |A| is set to 100 when evaluating scheduling sequences.

To answer the first three questions proposed in subsection 5.1, the detailed pro-
cess of implementing BGA, ESS-GA, RUS-GA, and ESS-RUS-GA are provided
as follows. BGA, ESS-GA and RUS-GA are illustrated in Algorithms 2, 3 and 4.
Additionally, when test data that cover the target path have been generated or the

19

Algorithm 2 BGA
Require: a program, P, and a target path, p∗.

1: psi ← 0.5.
2: Generate an initial population, pop(1).
3: for k from 1 to Count, step 1 do
4: Calculate the fitness value of each individual pop(k).
5: if a test datum that covers p∗ is generated then
6: Print the test datum.
7: Break.
8: else
9: Conduct selection in pop(k).

10: Conduct crossover and mutation with psi .
11: end if
12: end for

Algorithm 3 ESS-GA
Require: a program, P, and a target path, p∗.

1: A← ∅, psi ← 0.5.
2: Generate an initial population, pop(1).
3: for k from 1 to Count, step 1 do
4: Calculate the fitness value of each individual in pop(k).
5: if a test datum that covers the target path is generated then
6: Print the test datum.
7: break.
8: else
9: Conduct selection in pop(k).

10: Put the individuals in pop(k) in archive, A.
11: if the threshold value of A is achieved then
12: Calculate F ({si}).
13: psi ← 1− F ({si}).
14: A← ∅.
15: end if
16: Conduct crossover and mutation based on the updated psi .
17: end if
18: end for

20

Algorithm 4 RUS-GA
Require: a program, P, and a target path, p∗.

1: psi ← 0.5.
2: Generate an initial population, pop(1).
3: for k from 1 to Count, step 1 do
4: Calculate the fitness value of each individual in pop(k).
5: if a test datum that covers p∗ is generated then
6: Print the test datum.
7: Break.
8: else
9: Conduct selection in pop(k).

10: Conduct crossover and mutation with the probability of psi .
11: if crossover(mutation) is performed at the scheduling sequence then
12: Locate the point of crossover(mutation) operations.
13: end if
14: end if
15: end for

maximal number of generations set in advance has been reached, the algorithm
will be ended and the obtained test data will be output.

(1) BGA
The initial population is first generated (Line 2). Based on the similarity be-

tween the target path and the one traversed by an individual, the fitness of each
individual is calculated (Line 4). The individuals with high fitness are reserved
by selection. The location of the crossover and mutation points with an equal
probability in the scheduling sequence and the program input is selected, forming
two sets of individuals that the crossover and mutation points are located either
in the scheduling sequence or in the program input. The single-point crossover
and mutation operations are conducted on these two sets to generate the offspring
population (Lines 8-10).

(2) ESS-GA
ESS-GA is first employed to evolve the population for a number of genera-

tions, until the number of individuals in A has achieved the threshold value (Lines
10). Following that, based on these individuals, each scheduling sequence is eval-
uated, and the probability of the crossover and mutation points located either in
the scheduling sequence or in the program input is calculated. During the evolu-
tion, once the number of new individuals in A achieves the threshold value, the

21

probability will accordingly be updated (Lines 11-15).
(3) RUS-GA
Firstly, the fitness of each individual is calculated and the selection operation

is conducted. Secondly, the population is divided into two sets, with the same
process as that in BGA and the crossover and mutation operations are conducted
on these two sets. For the set of individuals that the crossover and mutation points
are located in the scheduling sequence, the points are selected in the encoding
corresponding to the WRNGs that affect uncovered nodes (Lines 11-12).

(4) ESS-RUS-GA
When generating test data that cover the target path by using BGA, the process

of determining the probability of the crossover and mutation points being located
in a region is the same as the approach in ESS-GA. Further, if the crossover and
mutation points are located in the scheduling sequence, the process of narrowing
down the range of the crossover and mutation points is the same as the strategy in
RUS-GA.

5.4. Implementation Details and Indicators
In order to force a program to be under a scheduling sequence, the program

is tackled as follows. For WRNGs, MPI ANY SOURCE in each receiving state-
ment is replaced with a variable whose value is from the scheduling sequence of
a decoded individual. In this way, the source of message received by a statement
is specified by an individual during test data generation.

For the path diversity, branch coverage is employed as a criterion. The num-
ber of target paths for each program is listed in Table 3. If a path is likely to be
infeasible, it is deleted and another one is selected with its feasibility being further
judged, until the target number of feasible paths are selected, so that test data that
cover these paths cover all its branches. Consequently, these paths have various
characteristics in terms of the complexity of a branch condition, the path length,
the number of branches, and the difficulty in test data generation, which is bene-
ficial to keeping impartiality in path selection. In addition, this paper emphasizes
the problem of test data generation and proposes an enhanced GA based on feed-
back information during the evolution to tackle this problem. Although branch
coverage is accomplished in the experiments, other issues about branch coverage
are beyond the scope of this study.

For the proposed method, the overhead of evolutionary test data generation
mainly includes calculating the fitness of each individual, evaluating scheduling
sequences, and calculating the probability of the crossover and mutation points. In

22

order to reflect these overheads, we employ the time consumption and the num-
ber of generations to evaluate the proposed method and comparative ones. The
number of generations means the number that a population has evolved before
generating test data that cover a path. Accordingly, the time consumption refers
to time spent in evolving the population from the beginning to finding the desired
test data. The less the time consumption and the smaller the number of generations
of a method are, the higher its efficiency is.

Furthermore, to better explain the experimental results, the reduction rate is
utilized to reflect the relative difference between methods and defined as follows.

Rg(A,B) =
gA − gB
gA

× 100% (5)

Rt(A,B) =
tA − tB
tA

× 100% (6)

where g and t mean the number of generations and the time consumption, respec-
tively, Rg and Rt are the reduction rate in the number of generations and the time
consumption, respectively.

5.5. Experimental Results and Analysis
For each program under test, the maximal number of generations is set to

10000. For each target path, each method is run 20 times independently. For all
the target paths of each object, the sum of the number of generations and the sum
of the time consumption are calculated against the corresponding run. Figures 3-
12 show the number of generations and the time consumption of ten programs
under test in the form of box-plot graphs. The values of Rg and Rt of different
methods are listed in Tables 4 and 5.

Additionally, the results of the hypothesis testing between each pair of com-
parative methods are listed in Tables 6, 7 and 8 where‘+’ represents that the pro-
posed method is significantly different from the compared method, and ‘=’ means
that two methods have no significant difference.

(1) Regarding Q1
ESS-GA consumes a smaller number of generations and less time to generate

test data than BGA. Creator consumer has the minimal reduction rate of 5.0%
in the number of generations whereas Rg(BGA, ESS-GA) achieves 41.5% for
Matrix. Meanwhile, Matrix also has the maximal Rt(BGA, ESS-GA) of 43.7%,
whereas ASCII and Integrate mw have the minimal reduction rate of 7.8% in the
time consumption. Table 6 reports that there are five programs having the symbol

23

0

500

1000

1500

2000

2500

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 3: Max triangle

0

5000

10000

15000

20000

25000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.2

0.4

0.6

0.8

1

1.2

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 4: Including

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.05

0.1

0.15

0.2

0.25

0.3

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o
n

(s
)

(b) The time consumption

Figure 5: Matrix

24

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g

en
er

a
ti

o
n

s

(a) The number of generations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 6: Index

0

10000

20000

30000

40000

50000

60000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.5

1

1.5

2

2.5

3

3.5

4

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o
n

(s
)

(b) The time consumption

Figure 7: Min

0

500

1000

1500

2000

2500

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.02

0.04

0.06

0.08

0.1

0.12

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o
n

(s
)

(b) The time consumption

Figure 8: Convex quadrilateral

25

0

200

400

600

800

1000

1200

1400

1600

1800

2000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 9: ASCII

0

50

100

150

200

250

300

350

400

450

500

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 10: Creator consumer

0

5000

10000

15000

20000

25000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a
ti

o
n

s

(a) The number of generations

0

5

10

15

20

25

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 11: Integrate mw

26

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g
en

er
a

ti
o
n

s

(a) The number of generations

0

5

10

15

20

25

30

35

40

45

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
co

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 12: Search function

0

10000

20000

30000

40000

50000

60000

BGA ESS-GA RUS-GA ESS-RUS-GA

 N
u

m
b

er
 o

f
g

e
n

er
a

ti
o

n
s

(a) The number of generations

0

100

200

300

400

500

600

700

800

900

1000

BGA ESS-GA RUS-GA ESS-RUS-GA

 T
im

e
c
o

n
su

m
p

ti
o

n
(s

)

(b) The time consumption

Figure 13: Kfray

Table 4: Rg of each pair of comparative methods(%).

(BGA, ESS-GA) (BGA, RUS-GA)
(BGA,

ESS-RUS-GA)
(ESS-GA,

ESS-RUS-GA)
(RUS-GA,

ESS-RUS-GA)

Max triangle 39.8 11.5 48.3 14.1 41.5
Including 27.6 6.2 37.8 14.1 33.7

Matrix 41.5 12.1 47.4 10.0 40.1
Index 16.3 6.3 35.8 23.2 31.4
Min 14.4 3.8 23.5 10.6 20.5

Convex quadrilateral 24.4 18.6 33.3 11.7 18.1
ASCII 7.4 0.9 8.6 1.3 7.7

Creator consumer 5.0 8.7 12.0 7.3 3.6
Integrate mw 8.8 51.5 66.9 63.7 31.7

Search function 35.0 47.8 70.7 54.9 43.8
Kfray 30.4 15.0 46.6 23.3 37.2

27

Table 5: Rt of each pair of comparative methods(%).

(BGA, ESS-GA) (BGA, RUS-GA)
(BGA,

ESS-RUS-GA)
(ESS-GA,

ESS-RUS-GA)
(RUS-GA,

ESS-RUS-GA)

Max triangle 40.5 12.2 48.1 12.7 40.9
Including 30.0 7.6 39.0 12.8 33.9

Matrix 43.7 15.8 49.5 10.3 40.0
Index 15.0 -4.6 31.9 19.9 34.9
Min 13.2 3.3 22.4 10.6 19.8

Convex quadrilateral 31.3 22.0 38.4 10.3 21.0
ASCII 7.8 1.5 8.6 0.8 7.2

Creator consumer 22.8 30.5 31.8 11.6 1.9
Integrate mw 7.8 51.1 66.6 63.8 31.7

Search˙function 35.5 48.8 70.8 54.8 43.0
Kfray 29.1 11.9 54.0 35.1 47.8

Table 6: The results of the Mann-Whitney U test on the number of generations and the time
consumption comparing ESS-GA with BGA.

Max triangle Including Matrix Index Min
Convex

quadrilateral ASCII
Creator

consumer Integrate mw
Search
function Kfray

Time
consumption = + + = + = = = = + +

of
generations = + + = + = = = = + +

Table 7: The results of the Mann-Whitney U test on the number of generations and the time
consumption comparing RUS-GA with BGA.

Max triangle Including Matrix Index Min
Convex

quadrilateral ASCII
Creator

consumer Integrate mw
Search
function Kfray

Time
consumption = = = = = = = = + + =

of
generations = = = = = = = = + + =

Table 8: The results of the Mann-Whitney U test on the number of generations and the time
consumption comparing ESS-RUS-GA with each of BGA, ESS-GA and RUS-GA.

Max
triangle Including Matrix Index Min

Convex
quadrilateral ASCII

Creator
consumer

Integrate
mw

Search
function kfray

Time
consumption

BGA = + + = + = = + + + +
ESS-GA = = = = = = = = + + +
RUS-GA = + + + + = = = = + +

of
generations

BGA + + + = + = = = + + +
ESS-GA = = = = = = = = + + +
RUS-GA = + + + + = = = = + +

28

‘+’ and six programs having the symbol ‘=’ in the two indicators. Based on the
above analyses, ESS-GA is significantly better than BGA for some programs, and
has no significant difference with BGA for the others.

(2) Regarding Q2
Compared with BGA, RUS-GA has a smaller number of generations and a

less time consumption. Among the ten programs, Integrate mw has the maximal
Rg(BGA, RUS-GA) and Rt(BGA, RUS-GA) of 51.5% and 51.1%, respectively.
In addition, the reduction rate of -4.6% shows that the average time consumption
of BGA is slightly less than that of RUS-GA for Index. Table 7 shows that RUS-
GA is significantly better than BGA for two programs.

The experimental results show that ESS-GA and RUS-GA can achieve a rel-
atively small reduction of the number of generations and the time consumption,
and the improvement in the efficiency of test data generation for path coverage is
limited.

(3) Regarding Q3
For all the programs, the average ofRg(ESS-GA, ESS-RUS-GA) andRt(ESS-

GA, ESS-RUS-GA) are 21.3% and 22.1%, respectively. Compared with RUS-
GA, ESS-RUS-GA averagely reduces the number of generation and time con-
sumption by 28.1% and 29.3%. For BGA and ESS-RUS-GA, the maximal Rg

and Rt are 70.7% and 70.8%, respectively, which corresponds to Search function.
With respect to ASCII, Rg(BGA, ESS-RUS-GA) and Rt(BGA, ESS-RUS-GA) of
8.6% is minimal. For all the programs, the average of Rg(BGA, ESS-RUS-GA)
and Rt(BGA, ESS-RUS-GA) are 39.2% and 42.0%, respectively. Table 8 reports
that ESS-RUS-GA is significantly better than BGA for eight programs in terms of
the number of generations or the time consumption, and ESS-RUS-GA is statisti-
cally superior to ESS-GA and RUS-GA for three and six programs, respectively.

(4) Regarding Q4
Two static methods are implemented based on classical symbolic execution [31]

and model checking [62] to generate test data for path coverage of parallel pro-
grams.

In order to generate test data based on symbolic execution, one path of each
program is first selected. The scheduling sequence is randomly selected for each
target path. Whether the path can be covered or not under a scheduling sequence
is determined by manual analysis. Then, for scheduling sequences under which
the path can be traversed when taking an input, the program input is represented
by symbolic values, and the program is symbolically executed to cover the path.
Finally, constraints for covering the path are collected and solved to produce test
data.

29

The experimental results of the symbolic execution method are listed in Ta-
ble 9, which reports that the number of branches in the target paths ranges from
23 to 412, and the number of symbolic values is the same as that of components
in the program input domain with the maximum of 125 and the minimum of 2.
In addition, the largest number of constraints is 532. Although the method can
generate test data, it is inferior to ESS-RUS-GA in terms of the success rate, due
to the fact that program execution is closely related to scheduling sequences, and
it is difficult for a path to be covered under any scheduling sequence. More specif-
ically, the symbolic execution method can successfully generate test data for all
target paths of two programs, whereas ESS-RUS-GA reaches the success rate of
100% for nine programs.

Table 9: The comparison results of ESS-RUS-GA and the symbolic execution method.

Programs under test # of branches in
all target paths # of symbolic values # of constraints

Success rate of
symbolic execution(%)

Success rate
of ESS-RUS-GA(%)

Max triangle 23 4 31 100 100
Including 35 2 56 56.5 98.6

Matrix 28 16 34 72.3 100
Index 48 15 62 43.6 100
Min 41 125 53 57.1 75.8

Convex quadrilateral 53 4 64 100 100
ASCII 45 10 71 43.6 100

Creator consumer 31 2 58 75.5 100
Integrate mw 102 2 165 46.4 100

Search function 278 2 356 51.4 100
Kfray 412 20 532 41.6 100

ISP [40], a model checker for MPI programs, takes all scheduling sequences
into consideration when detecting deadlock. For each target path, 10000 inputs
are randomly sampled, and ISP is executed repeatedly with these inputs to verify
whether a path can be covered. It is worth noting that ISP cannot directly produce
test data for path coverage. As a result, we actually resort to ISP and random
program inputs to traverse target paths. Therefore, essentially, we combine the
random method and ISP when covering a path. Correspondingly, the method is
denoted as ISP-R. The experimental results of the model checking method are
listed in Table 10, where the third and last columns represent the best success
rate and time consumption of ESS-RUS-GA in 20 runs. It can be seen that the
model checking method has a smaller success rate and larger time consumption
than ESS-RUS-GA.

Based on the above experimental results and analysis, it is rational to draw the
following conclusions: (1) both ESS-GA and RUS-GA can improve the efficiency
in generating test data, and (2) with both methods combined, the enhanced GA

30

has a significant improvement in efficiency when generating test data. In addition,
the comparisons between ESS-RUS-GA and the two static methods support that
ESS-RUS-GA is more effective for path coverage of parallel programs.

Table 10: The comparison results of ESS-RUS-GA and the model checking method.

Programs under test Success rate
of ISP-R(%)

Success rate
of ESS-RUS-GA(%)

Time consumption
of ISP-R(s)

Time consumption
of ESS-RUS-GA(s)

Max triangle 60.0 100 2.81 0.38
Including 71.4 85.7 4.12 0.53

Matrix 100 100 0.79 0.12
Index 100 100 2.06 0.41
Min 33.3 50.0 29.50 3.50

Convex quadrilateral 100 100 3.43 0.06
ASCII 83.3 100 7.53 1.35

Creator consumer 100 100 2.33 0.01
Integrate mw 75.0 100 71.49 7.59

Search function 69.2 100 224.19 10.42
Kfray 59.1 100 8175.47 440.24

5.6. Threats to Validity
This section discusses the threats to the validity of experimental results from

internal and external factors.
The threats to internal validity depend on parameter settings in methods. GA is

intimately related to the crossover and mutation operators, the population size, as
well as the maximal number of generations. In order to fairly compare different
methods, we set the same parameters values for all the methods. It should be
noted that the threshold value of the archive also affects the performance of the
proposed method. Therefore, further studies are needed in the future to determine
the optimal values of corresponding parameters.

Threats to external validity deal with the limitation in generalizing the exper-
imental results. In order to minimize these threats, we select 11 programs for the
experimental study, which have various numbers of processes, communication
statements, wildcard receiving statements, WRNGS and lines of code. Further-
more, given the fact that the performance of a test data generation method may be
related to target paths, a number of feasible paths are selected as the target ones.
Even though they have various characteristics, test data generation methods may
still not be fully evaluated by the selected paths. Moreover, the experimental plat-
forms have an influence on the experimental results. To eliminate these threats,
we adopt the same hardware and software platforms to implement each method
for each program under test. In addition, the evaluation indicators of comparative

31

methods are another threat to external validity. Therefore, we select the time con-
sumption and the number of generations which are straightforward and intuitive
for the performance comparisons. The threat is further tackled by running each
method multiple times independently and performing a hypothesis test.

6. Conclusions

For the problem of path coverage of message-passing parallel programs, this
paper proposes a feedback-directed genetic algorithm to improve the efficiency of
test data generation. The experimental results show that the enhanced GA is very
efficient in generating test data for path coverage. More importantly, this paper
provides a new perspective to enhance GAs and to address other issues in software
testing.

This paper has the following contributions: (1) presenting an approach that
uses information provided by a population’s evolution to evaluate a scheduling
sequence; (2) proposing a strategy that narrows down the search space of the
scheduling sequence by the domain knowledge to further improve the GA.

Note that the present study focuses on the problem of one-path coverage for
parallel programs, i.e. generating test data to cover only one path in a run. The
problem of multi-path coverage can be tackled by running the proposed method
multiple times. Alternatively, the problem of multi-path coverage can be formu-
lated as a multi-objective optimization problem. Improved GAs could be devel-
oped to solve the problem, so as to generate test data that cover multiple paths in a
run, which will be further investigated in our future work. In addition, we intend
to explore new methods on path generation and selection.

Acknowledgment

This paper is jointly supported by National Natural Science Foundation of
China with grant No. 61773384 and 61503220, and National Basic Research
Program of China (973Program) with grant No. 2014CB046306-2, National Key
R&D Program of China with grant No. 2018YFB1003802-01.

References

References

[1] N. Fenton, J. Bieman, Software metrics: a rigorous and practical approach,
CRC Press, 2014.

32

[2] S. Scalabrino, G. Grano, D. Di Nucci, M. Guerra, A. De Lucia, H. C. Gall,
R. Oliveto, Ocelot: a search-based test-data generation tool for c., in: ASE,
2018, pp. 868–871.

[3] S. R. Souza, M. A. Brito, R. A. Silva, P. S. Souza, E. Zaluska, Research
in concurrent software testing: a systematic review, in: Proceedings of the
Workshop on Parallel and Distributed Systems: Testing, Analysis, and De-
bugging, ACM, 2011, pp. 1–5.

[4] T. Tian, D. Gong, Evolutionary generation approach of test data for multiple
paths coverage of message-passing parallel programs, Chinese Journal of
Electronics 23 (2) (2014) 291–296.

[5] Z. Du, S. Li, Y. Chen, P. Liu, Parallel programming technology of high prop-
erty computing–MPI parallel program design, Beijing: Tsinghua University
Press, 2001.

[6] X. Xie, B. Xu, L. Shi, C. Nie, Genetic test case generation for path-oriented
testing, Journal of Software 20 (12) (2009) 3117–3136.

[7] M. A. Ahmed, F. Ali, Multiple-path testing for cross site scripting using
genetic algorithms, Journal of Systems Architecture 64 (2016) 50–62.

[8] M. Khari, A. Sinha, E. Verdu, R. G. Crespo, Performance analysis of
six meta-heuristic algorithms over automated test suite generation for path
coverage-based optimization, Soft Computing (2019) 1–18.

[9] X. Yao, D. Gong, G. Zhang, Constrained multi-objective test data generation
based on set evolution, IET Software 9 (4) (2015) 103–108.

[10] D. B. Mishra, A. A. Acharya, R. Mishra, Evolutionary algorithms for path
coverage test data generation and optimization: A review, Indonesian Jour-
nal of Electrical Engineering and Computer Science 15 (1) (2019) 504–510.

[11] S. Xanthakis, C. Ellis, C. Skourlas, A. L. Gal, S. Katsikas, K. Karapoulios,
Application of genetic algorithms to software testing, in: Proceedings of the
5th International Conference on Software Engineering and its Applications,
1992, pp. 625–636.

[12] B. Li, Z. Li, Y. Chen, B. Li, Automatic test data generation tool based on ge-
netic simulated annealing algorithm, in: International Conference on Com-
putational Intelligence and Security Workshops, 2008, pp. 183–186.

33

[13] Y. Jia, W. Chen, J. Zhang, J. Li, Generating software test data by particle
swarm optimization, in: Asia-Pacific Conference on Simulated Evolution
and Learning, Springer, 2014, pp. 37–47.

[14] X. Yang, Nature-inspired metaheuristic algorithms, Luniver press, 2010.

[15] H. Wang, W. Wang, X. Zhou, H. Sun, J. Zhao, X. Yu, Z. Cui, Firefly algo-
rithm with neighborhood attraction, Information Sciences 382 (2017) 374–
387.

[16] H. Wang, W. Wang, L. Cui, H. Sun, J. Zhao, Y. Wang, Y. Xue, A hy-
brid multi-objective firefly algorithm for big data optimization, Applied Soft
Computing 69 (2018) 806–815.

[17] A. Pandey, S. Banerjee, Test suite optimization using firefly and genetic al-
gorithm, International Journal of Software Science and Computational Intel-
ligence (IJSSCI) 11 (1) (2019) 31–46.

[18] M. Mareli, B. Twala, An adaptive cuckoo search algorithm for optimisation,
Applied computing and informatics 14 (2) (2018) 107–115.

[19] S. Sheoran, N. Mittal, A. Gelbukh, Artificial bee colony algorithm in data
flow testing for optimal test suite generation, International Journal of System
Assurance Engineering and Management (2019) 1–10.

[20] Y. A. Alsariera, H. A. S. Ahmed, H. S. Alamri, M. A. Majid, K. Z. Zamli,
A bat-inspired testing strategy for generating constraints pairwise test suite,
Advanced Science Letters 24 (10) (2018) 7245–7250.

[21] M. W. Przewozniczek, R. Datta, K. Walkowiak, M. M. Komarnicki, Split-
ting the fitness and penalty factor for temporal diversity increase in practical
problem solving, Expert Systems with Applications 145 (2020) 113–126.

[22] A. Chehouri, R. Younes, J. Perron, A. Ilinca, A constraint-handling tech-
nique for genetic algorithms using a violation factor, Journal of Computer
Science 12 (7) (2016) 350–362.

[23] B. Barney, Message Passing Interface (MPI), https://computing.
llnl.gov/tutorials/mpi/ (2017).

[24] B. Barker, Message passing interface (mpi), in: Workshop: High Perfor-
mance Computing on Stampede, Vol. 262, 2015.

34

[25] B. Sun, J. Wang, D. Gong, T. Tian, Scheduling sequence selection for gen-
erating test data to cover paths of mpi programs, Information and Software
Technology 114 (2019) 190–203.

[26] F. A. Bianchi, A. Margara, M. Pezzè, A survey of recent trends in testing
concurrent software systems, IEEE Transactions on Software Engineering
44 (8) (2017) 747–783.

[27] S. M. Melo, J. C. Carver, P. S. Souza, S. R. Souza, Empirical research on
concurrent software testing: A systematic mapping study, Information and
Software Technology 105 (2019) 226–251.

[28] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, D. Marinov, Ballerina: Au-
tomatic generation and clustering of efficient random unit tests for multi-
threaded code, in: 2012 34th International Conference on Software Engi-
neering (ICSE), IEEE, 2012, pp. 727–737.

[29] V. Terragni, S. C. Cheung, Coverage-driven test code generation for concur-
rent classes, in: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), IEEE, 2016, pp. 1121–1132.

[30] A. Choudhary, S. Lu, M. Pradel, Efficient detection of thread safety vi-
olations via coverage-guided generation of concurrent tests, in: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE),
IEEE, 2017, pp. 266–277.

[31] J. C. King, Symbolic execution and program testing, Communications of the
Acm 19 (7) (1976) 385–394.

[32] S. Guo, M. Kusano, C. Wang, Z. Yang, A. Gupta, Assertion guided symbolic
execution of multithreaded programs, in: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 854–865.

[33] S. Guo, M. Kusano, C. Wang, Conc-iSE: Incremental symbolic execution
of concurrent software, in: Proceedings of IEEE/ACM International Confer-
ence on Automated Software Engineering, 2016, pp. 531–542.

[34] X. Zhang, Z. Yang, Q. Zheng, P. Liu, J. Chang, Y. Hao, T. Liu, Automated
testing of definition-use data flow for multithreaded programs, in: 2017
IEEE International Conference on Software Testing, Verification and Vali-
dation (ICST), IEEE, 2017, pp. 172–183.

35

[35] D. Khanna, S. Sharma, C. Rodrı́guez, R. Purandare, Dynamic symbolic ver-
ification of mpi programs, in: International Symposium on Formal Methods,
Springer, 2018, pp. 466–484.

[36] Y. Lei, R. H. Carver, Reachability testing of concurrent programs, IEEE
Transactions on Software Engineering 32 (6) (2006) 382–403.

[37] R. H. Carver, Y. Lei, Distributed reachability testing of concurrent programs,
Concurrency and Computation: Practice and Experience 22 (18) (2010)
2445–2466.

[38] X. Qi, J. He, P. Wang, H. Zhou, Variable strength combinatorial testing of
concurrent programs, Frontiers of Computer Science 10 (4) (2016) 631–643.

[39] X. Qi, Y. Li, Parallel reachability testing based on hadoop mapreduce,
in: International Conference on Software Analysis, Testing, and Evolution,
Springer, 2018, pp. 173–184.

[40] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, R. M. Kirby, ISP: a tool for
model checking MPI programs, in: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, 2008, pp.
285–286.

[41] W. Leungwattanakit, C. Artho, H. M, Modular software model checking
for distributed systems, IEEE Transactions on Software Engineering 40 (5)
(2014) 483–501.

[42] J. S. Vetter, B. R. Supinski, Dynamic software testing of MPI applications
with Umpire, in: Proceedings of ACM/IEEE Conference on Supercomput-
ing, 2000, pp. 51–51.

[43] M. Y. Park, S. J. Shim, Y. K. Jun, H. R. Park, MPIRace-Check: detection of
message races in MPI programs, in: Proceedings of International Conference
on Grid and Pervasive Computing, 2007, pp. 322–333.

[44] B. Krammer, M. M. Resch, Correctness checking of mpi one-sided com-
munication using marmot, in: European Parallel Virtual Machine/Message
Passing Interface Users‘ Group Meeting, Springer, 2006, pp. 105–114.

36

[45] M. S. Ayub, W. U. Rehman, J. H. Siddiqui, Experience report: Verifying
MPI Java programs using software model checking, in: 2017 IEEE 28th In-
ternational Symposium on Software Reliability Engineering (ISSRE), IEEE,
2017, pp. 294–304.

[46] D. W. Gong, C. Zhang, T. Tian, Z. Li, Reducing scheduling sequences of
message-passing parallel programs, Information and Software Technology
80 (2016) 217–230.

[47] K. Sastry, D. E. Goldberg, G. Kendall, Genetic algorithms, in: Search
methodologies, Springer, 2014, pp. 93–117.

[48] P. Du, Y. Chu, The improved genetic algorithms apply on parameter esti-
mation of two parameters logistic model on item response theory, Advanced
Materials Research 756-759 (2013) 2620–2624.

[49] T. Tian, D. W. Gong, Test data generation for path coverage of message-
passing parallel programs based on co-evolutionary genetic algorithms, Au-
tomated Software Engineering 23 (3) (2016) 469–500.

[50] L. Cao, W. Zheng, D. Hu, H. Bai, Concurrent program semantic mutation
testing based on abstract memory model, in: 2015 IEEE International Con-
ference on Information and Automation, IEEE, 2015, pp. 1200–1205.

[51] A. S. Ghiduk, S. El-Zoghdy, Chomk: Concurrent higher-order mutants
killing using genetic algorithm, Arabian Journal for Science and Engineering
43 (12) (2018) 7907–7922.

[52] R. Anbunathan, A. Basu, Combining genetic algorithm and pairwise testing
for optimised test generation from UML ADs, IET Software 13 (5) (2019)
423–433.

[53] C. Pacheco, S. K. Lahiri, M. D. Ernst, T. Ball, Feedback-directed random
test generation, in: 29th International Conference on Software Engineering
(ICSE’07), IEEE, 2007, pp. 75–84.

[54] C. Pacheco, S. K. Lahiri, T. Ball, Finding errors in. net with feedback-
directed random testing, in: Proceedings of the 2008 international sympo-
sium on Software testing and analysis, 2008, pp. 87–96.

37

[55] T. H. Tan, Y. Xue, M. Chen, J. Sun, Y. Liu, J. S. Dong, Optimizing selec-
tion of competing features via feedback-directed evolutionary algorithms,
in: Proceedings of the 2015 International Symposium on Software Testing
and Analysis, 2015, pp. 246–256.

[56] X. Dang, X. Yao, D. Gong, T. Tian, Efficiently generating test data to kill
stubborn mutants by dynamically reducing the search domain, IEEE Trans-
actions on Reliability 69 (1) (2020) 334–348.

[57] Q. Luo, A. Nair, M. Grechanik, D. Poshyvanyk, Forepost: Finding per-
formance problems automatically with feedback-directed learning software
testing, Empirical Software Engineering 22 (1) (2017) 6–56.

[58] S. F. Siegel, T. K. Zirkel, FEVS: A functional equivalence verification suite
for high-performance scientific computing, Mathematics in Computer Sci-
ence 5 (4) (2011) 427–435.

[59] MPI Exercise, https://computing.llnl.gov/tutorials/
mpi/ (2016).

[60] H. Yu, Combining symbolic execution and model checking to verify mpi
programs, in: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, 2018, pp. 527–530.

[61] M. A. Ahmed, I. Hermadi, GA-based multiple paths test data generator,
Computers & Operations Research 35 (10) (2008) 3107–3124.

[62] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, R. Majumdar, Gener-
ating tests from counterexamples, in: Proceedings of the 26th International
Conference on Software Engineering, IEEE Computer Society, 2004, pp.
326–335.

38

