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Abstract

This paper introduces a new nonparametric estimator of the spectral density that is

given by smoothing the periodogram using Beta kernel density. The estimator is proved

to be bounded for short memory data and diverges at the origin for long memory data.

The convergence in probability of the relative error and Monte Carlo simulations show

that the proposed estimator automatically adapts to the long- and the short-range de-

pendency of the process. A cross-validation procedure is studied in order to select the

nuisance parameter of the estimator. Illustrations on historical as well as most recent

returns and absolute returns of the S&P500 index show the performance of the Beta

kernel estimator.

keywords: Beta kernel smoothing; Cross-validation; Long range dependence; Nonpara-

metric estimation; Periodogram; Short memory; Spectral density.

1 Introduction

The estimation of a spectral density often requires the knowledge of whether a stationary time

series is short or long memory. Short memory time series is well known by its autocovariance

function that decreases rapidly as the time difference increases. In the case of long memory
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time series, there is much stronger dependence between values at different times and the

decay of the autocovariance function is slow. Long memory or long range dependence is

characterized by a spectral density that is unbounded at frequency zero, see Robinson (2003)

and Palma (2007). Therefore, the choice of an optimal nonparametric estimator will be

different if the spectral density is bounded or not. It is our goal to go beyond that limitation

and propose an estimator that is applicable to any stationary data, being long or short range

dependent.

A well-established nonparametric estimation procedure consists of estimating the pa-

rameter d0 of the long memory process, where the spectral density f is assumed to behave

like

f(λ) = |λ|−2d0L(λ) (1)

as λ→ 0+, for d0 ∈ (0, 1/2) and L(λ) is a slowly varying function with 0 < L(0) <∞. The

estimation of d0 was studied by Robinson and Henry (2003), Andrews and Sun (2004) and

Henry (2007), among others. See also the recent surveys by Doukhan et al. (2003), Robinson

(2003) and Palma (2007). Inference on d0 allows us to test whether d0 is significantly larger

than zero if the process is long memory (see Lobato and Robinson (1998), Lobato and Velasco

(2000), Ohanissian et al. (2008)). The testing step is important because the asymptotic

distribution of the spectral density estimator is usually not the same for d0 = 0 and d0 > 0.

If the process is short memory, the nonparametric estimation of its spectral density becomes

a classical problem of inference. Ferreira and Rodriguez-Poo (1998), for instance, studied

this problem by proposing symmetric kernel smoothing of the periodogram. If the time

series is long memory, Robinson (1995) among others proposed to estimate the spectrum for

λ close to zero by Ĉ|λ|−2d̂0 for a consistent estimator of d0 and C. Away from the origin, a

classical symmetric kernel can be used in order to evaluate the spectrum for λ away for zero.

Different studies employed standard kernel smoothing to estimate the spectral density.

For instance, see Riedel and Sidorenko (1996), Lee (1997, 2001), Fan and Kreutzberger

(1998), Ferreira and Rodriguez-Poo (1998), Hannig and Lee (2004) and Birr et al. (2017),

among others. Such approach, however, is known to not account for the boundaries bias.

Hence, using the standard kernel methods for the spectral density are not recommended
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because they will provide a severe bias at and near zero. In this paper, we propose a new

estimator for the spectral density based on Beta kernel smoothing of the periodogram. Our

methodology is nonparametric and can be applied for processes not necessarily Gaussian.

The Beta kernel is a non-symmetric density function with a shape varying according to the

frequency where the spectrum is estimated. Beta kernel smoothing was initially introduced

by Brown and Chen (1999) for estimating a compactly supported regression curve. It has

then been used to address the boundary bias problem for regression and density functions

estimation (Chen (1999, 2000)). Because Beta kernel diverges at zero when its bandwidth

shrinks, it is an appealing smoother of the periodogram when the process is long memory.

In fact, we show below that it adapts automatically to the dependence range of the time

series. If the process is short memory, the resulting estimation of the spectral density is

automatically bounded, whereas the estimator diverges at the origin when it is applied to

long range dependent data.

The paper is organized as follows. In Section 2, we introduce the Beta kernel estimator of

the spectral density. The asymptotic properties of the estimator and the bandwidth selection

are discussed in Section 3. First, we study the behaviour of the estimator away from the

origin and establish its uniform convergence on any compact set of frequencies. Second,

we show that the estimator is unbounded in probability at the origin for long range time

series, and is bounded for short memory processes. Third, we derive a stronger result by

establishing the relative convergence of the estimator at the origin. Finally, we study a

cross-validation method for selecting the smoothing parameter following the general method

of Hurvich (1980). In Section 4, we study the finite sample properties of the Beta kernel

estimator. By considering three parametric (FARIMA) models, we show the adaptation of

the proposed estimator to the range of memory of the process and we compare the empirical

performance of our estimator with the semiparametric estimator of Robinson (1995). The

Beta kernel estimator of the spectral density is then applied for analyzing the returns and

absolute returns of the S&P500 index and shows that the proposed estimator detects the

long- (resp. short-) range dependence of the absolute returns (resp. the return) time series.

Appendix A contains the proofs of the theoretical results.
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2 The Beta kernel estimator of the spectral density

Our goal is to develop a kernel smoothing method for estimating the spectral density for a

short or long memory time series that is free of boundary bias. This is valuable since the

nonparametric kernel estimator of the periodogram is not necessarily adapted at the border,

especially if there is a pole at frequency λ = 0. Suppose we observe X1, . . . , XT from a

stationary process spectral density

f(λ) =
∑
k∈Z

γ(k) exp(−2πiλk), λ ∈ (0, 1),

where γ(k) = Cov(Xt, Xt+k) is the covariance function that satisfies one of the statements,

(?) γ ∈ L1 or (??) lim
k→∞

γ(k)kα = c for some constants 0 < α < 1 and c > 0. For more details

about the two statements, see Gubner (2005) and Proposition 2.3 in Hu et al. (2015). If the

covariance function satisfies (?), then the spectral density f(λ) exists and is a nonnegative

bounded function. Therefore, we have a time series with short-range dependence. Whereas,

if (??) is fulfilled, then the spectral density exists and satisfies lim
λ→0
|λ|1−αf(λ) = cf for some

constant cf > 0, and therefore we have a long memory time series.

For the sake of simplicity, we assume the stationary process to be zero mean. The

periodogram defined by :

IT (ωj) =
1

T

∣∣∣∣∣
T∑
t=1

Xt exp(−2πiωjt)

∣∣∣∣∣
2

, ωj =
j

T
for j = 1, 2, . . . , T, (2)

is known to be an asymptotically unbiased and inconsistent estimator of the spectral density

f , for details see Brillinger (2001). However, one can derive a consistent estimator by using

appropriate smoothing of IT over frequencies ωj. For this purpose, we propose the estimator

f̂(λ) =
1

T

T∑
j=1

Kb,λ (ωj) IT (ωj) , (3)

where Kb,λ is a Beta kernel density defined as

Kb,λ(ω) =
ωλ/b(1− ω)(1−λ)/b

B
(
λ
b

+ 1, 1−λ
b

+ 1
)I{0≤ω≤1}, (4)
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with B the Beta function, b a real nonnegative real value playing the role the smoothing

parameter, and I(.) the indicator function. The Beta kernel, Kb,λ, is the density function of

a Beta distribution with parameters 1 + λ/b and 1 + (1− λ)/b.

In contrast to most kernel estimators, the estimator f̂(λ) does not use a symmetric kernel

but a kernel whose shape varies with λ. As noticed by Chen (1999), the variance of the Beta

random variable with parameters 1 + λ/b and 1 + (1− λ)/b is of order

bλ(1− λ) +O(b2). (5)

Hence, the amount of smoothing given in (5) is small at the border of the support and tends

to zero when b converges to zero.

3 Properties of the estimator

In this section, we explore the asymptotic properties of the estimator and a data-driven

bandwidth parameter of the proposed estimator. In the sequel, we use the notation h1(λ) ∼

h2(λ), for some functions h1 and h2, if there exists two nonnegative finite constant c1 and

c2 such that c1 ≤ h1(λ)/h2(λ) ≤ c2 for all λ. We suppose that the following assumption is

satisfied:

Assumption 1 The spectral density f is such that f(λ) ∼ λ−β as λ → 0+, for 0 ≤ β < 1.

For λ > 0 , f is a positive and bounded Lipschitz continuous function on [λ, 1).

3.1 Behavior of the estimator outside the origin

Given a stationary zero mean time series {Xt; t = 1, . . . T} with a spectral density f(λ),

we derive below the convergence rate of the bandwidth b = b(T ) for which the bias and

the variance of the Beta kernel estimator vanish asymptotically. We also prove the uniform

convergence of the estimator on any compact set in (0, 1).
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Proposition 1 Suppose that f is twice differentiable and Assumption 1 holds. Then,

the expectation of f̂ at frequency λ 6= 0 is given by

E(f̂(λ)) = f(λ)− b{(1− 2λ)f ′(λ) +
1

2
λ(1− λ)f ′′(λ)}+ o

(
b+

1

T 1/2b1/4

)
,

where f ′ and f ′′ are the first and second derivatives of f , respectively.

The variance of f̂ is

Var(f̂(λ)) =
1

T
√
b

f 2(λ)

2
√
πλ(1− λ)

+ o((Tb1/2)−1) + ρT

if λ/b → ∞ and (1 − λ)/b → ∞, with ρT = O(logr(T )/(bT 2−2β)) for some r > 0, and is

equal to

Var(f̂(λ)) =
C(κ)

Tb
{f(λ)2 +O(T−1)}+ ρT

if λ/b→ κ or (1−λ)/b→ κ, with κ > 0 a constant and C(κ) = Γ(2κ+1)/ (21+2κΓ(κ+ 1)2) .

For λ 6= 0, Proposition 1 implies that the Beta kernel estimator is asymptotically unbiased

with vanishing variance if β < 1/2 and the bandwidth b = b(T ) satisfies

b+
1

T
√
b
→ 0 (6)

as T → ∞ and b → 0 (which imply that the bias and variance tend to zero). Also, the

optimal convergence rate of the mean integrated squared error of the Beta kernel estimator

is O(T−4/5), which is the well known rate for smoothing nonparametric approaches. The

constraint on β imposes that the spectrum is square integrable around the pole, and therefore,

the mean square error is invariant to the explicit variation of f around frequency 0. Following

Robinson (1994b), it is possible to go beyond that constraint under more assumptions on f ,

but leading to different expressions for the mean square error. In the next result, we state

the uniform convergence of the estimator on a compact set I ⊂ (0, 1). This result is valid

for short and long memory time series.

Proposition 2 Suppose that Assumption 1 is fulfilled with β ∈ [0, 1/2). If b satisfies (6)

and (b2+εT )→∞ as T →∞ for some ε > 0, then, for any compact set I ⊂ (0, 1)

sup
λ∈I

∣∣∣f̂(λ)− f(λ)
∣∣∣ P−→ 0 as T →∞.
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The proof of Proposition 2 is given in the appendix. The uniform convergence of the Beta

kernel estimator on a compact set I is valid for short (β = 0) and long memory (β ∈ (0, 1/2))

time series. This implies that our proposed estimator is adaptive for both type of time series.

3.2 Behavior of the estimator close to the pole

One special interest is to study the behavior of the estimator close to the zero frequency

when the spectrum is bounded or not at λ = 0.

Proposition 3 Suppose that Assumption 1 holds for β ∈ [0, 1/2). If b satisfies (6) and

T 1−2βb→∞ as T →∞, then

(i) if β ∈ (0, 1/2) (long memory process), we have

f̂(0)
P−→ +∞ as T →∞.

(ii) if β = 0 (short memory process), we have

f̂(0)
P−→ f(0) as T →∞.

We conclude that the Beta kernel estimator is automatically adapted to the “nature

of memory” of the spectral density (long or short range). This result has been already

illustrated in Figure 4. Note that the symmetric kernel estimator proposed by Ferreira and

Rodriguez-Poo (1998) is not consistent at the pole, even for short memory, when the spectral

density is not nul at zero.

Proposition 3 does not provide any information about the closeness of the estimator to

the spectral density near the origin. In order to have an idea about this closeness. The next

result gives more details about the relative convergence of the Beta kernel estimator near

the origin.

Proposition 4 Suppose Assumption 1 is fulfilled for β ∈ [0, 1/2). If the bandwidth param-

eter satisfies (6) and Tb→∞ as T →∞, then∣∣∣∣∣ f̂(λ)

f(λ)
− 1

∣∣∣∣∣ P−→ 0, as T →∞

if λ→ 0 such that λ/b→ κ for some constant κ > 0.
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3.3 Data-driven choice of the bandwidth parameter

The selection of the bandwidth parameter of the smoothing nonparametric method is well

addressed in the literature for symmetric kernels. Here, we consider the generalized leave-

one-out spectral technique of Hurvich (1980) for selecting a practical bandwidth parameter

b of the Beta kernel estimator. Let’s define

I−jT (ωk) =

 IT (ωk) k 6= j

(IT (ωj−1) + IT (ωj+1)) /2 k = j,

for j = 1, . . . T . The Beta kernel smoothing, with bandwidth b, is applied to I−jT (ωk) and is

denoted f̂−jb (λ). The cross-validation (CV) is motivated by the approximate independence

between f̂−jb (ωj) and IT (ωj). In our context of the L1 loss, we consider

CV (b) =
∑
j∈J

|f̂−jb (ωj)− IT (ωj)| (7)

where J denotes a given discrete range of frequencies.

In order to evaluate the performance of CV (b) for the choice of the bandwidth, Table

1 reports the results of a Monte Carlo simulations on the three FARIMA models given in

Figure 1. For each sample size T , the bandwidth minimizing (7) is found and the table gives

the average and the standard deviation of the selected bandwidths over 1000 simulations. As

expected, the adaptive bandwidth decreases as the sample size increases. In the simulations,

the set J is chosen to be 100 equidistant points of the interval J = [T 1/5, T
2
−
√
T ]. For

each simulated time series we focus on the adaptive estimator computed at the bandwidth

minimizing (7). In Table 1, we estimated the error of the adaptive estimator. The error mea-

sure considered here is the RMAD computed over J (denoted by RMADJ ) and the RMAD

computed over all discrete frequencies in the interval (0, 0.5) (denoted by RMAD◦). The

deviation found by RMAD◦ is of course larger than the one based on RMADJ because the

bandwidth was optimized on frequencies J . Because RMAD◦ is computed over a fixed range

of frequencies (0, 0.5), it is comparable over sample size and Table 1 shows the improvement

of the estimator with that respect.
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T = 400 T = 600 T = 1000

FARIMA(1,H = 0.9,0) model:

b̂cv 0.118 (0.094) 0.107 (0.090) 0.089 (0.086)

RMADJ 0.503 (0.320) 0.504 (0.354) 0.549 (0.361)

RMAD◦ 1.466 (0.421) 1.412 (0.413) 1.340 (0.384)

FARIMA(1,H = 0.6,0) model:

b̂cv 0.421 (0.125) 0.411 (0.131) 0.394 (0.139)

RMADJ 0.335 (0.132) 0.370 (0.128) 0.400 (0.154)

RMAD◦ 1.056 (0.148) 1.045 (0.139) 1.039 (0.109)

FARIMA(2,H = 0.9,0) model:

b̂cv 0.280 (0.199) 0.250 (0.200) 0.213 (0.196)

RMADJ 0.537 (0.419) 0.500 (0.419) 0.584 (0.398)

RMAD◦ 13.291 (8.090) 12.203 (8.233) 10.791 (8.16)

Table 1: The performance of the adaptive Beta kernel estimator based on 1000 Monte

Carlo simulations of three FARIMA models. The row b̂cv gives the averages and the stan-

dard deviations s.d. (inside parentheses) of the adaptive bandwidth. The row RMADJ

gives the averages and s.d. (inside parentheses) of the RMAD adaptive estimator over

J = [T 1/5, (T/2)−
√
T ]. The row RMAD◦ gives the same statistic over all discrete frequen-

cies in (0, 0.5).

4 Empirical results

4.1 Finite sample properties

In this section, we examine the properties of the estimator through Monte Carlo simulations.

In order to evaluate the estimator quality, we provide a comparison with the semiparamet-

ric estimator of Robinson (1994a). The latter semiparametric approach assumes that the

spectrum satifies f(λ) ∼ Cfλ
1−2H as λ → 0+, where 1/2 < H < 1, and proposes consistent

estimators for H and Cf . Observing that the spectral distribution F (λ) =
∫ λ
0
f(t)dt satisfies
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F (uλ)/F (λ) ∼ u2(1−H) for all u ∈ (0, 1), Robinson (1994a) proposed to estimate H by

Ĥ = 1− log(F̂ (uλm)/F (λm))

2 log u

for a given u and frequency λm = m/T , and since F (λ) =
Cf

2−2Hλ
2−2H , he estimated Cf by

Ĉf = 2(1− Ĥ)F̂ (λm)λ2(Ĥ−1)m .

Consequently, the spectrum estimator near the origin is f̂(λ) = Ĉfλ
1−2Ĥ .

The semiparametric estimator depends on the choice of two parameters, u and m. In our

computations below, we set u = 0.5 as commonly used in the literature. The choice of m is

however more delicate. Based on the expansion of the asymptotic mean squared error, some

rules for the choice of m have been proposed by Robinson (1994b), and later been refined

by Delgado and Robinson (1996a,b).

In order to facilitate the comparison between the semiparametric estimator and the Beta

kernel estimator, we have simulated below three FARIMA models that are also studied by

Delgado and Robinson (1996a). FARIMA model provide a well-established parametric spec-

ification of long memory processes which is given by the fractional autoregressive integrated

moving average FARIMA (p, d, q) model with the spectral density

f(λ) = |1− exp(iλ)|1−2Hh(λ), (8)

where λ, H ∈ [0, 1], and

h(λ) = σ2 |b(exp(iλ))|2

|a(exp(iλ))|2

with σ2 > 0, a(z) = 1 −
∑p

j=1 ajz
j and b(z) = 1 −

∑q
j=1 bjz

j. In Model (8), H = 1/2

corresponds to short memory process if 0 < h(λ) < ∞, whereas H > 1/2 corresponds to

long memory process.

Figure 1 displays the logarithm of the spectral density of three FARIMA generating mod-

els used in the simulation below. The estimators were computed based on 1000 Monte Carlo

simulations of the models, for sample sizes T = 400, 600, 1000. Since the semiparametric

estimator is a local estimator around the pole, we did not compare it with the Beta kernel

estimator over all frequencies but only in a neighbourhood of the frequency zero. Following
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H = 0.9

H = 0.6

(a) FARIMA(1,H,0) with a1 =

0.5 and two values of the memory

parameter H.

0.0 0.1 0.2 0.3 0.4 0.5

−
2

0
2

4

λ

(b) FARIMA(2,H = 0.9,0) with

a1 = 1.172, a2 = −0.707.

Figure 1: Logarithm of the three spectral densities of the FARIMA used in the simulations.

Robinson (1994a), we compute the error of estimation on the frequencies ωj ∈ (ωj0 , ωj1),

where j0 = [ 5
√
T ] and j1 = [

√
T ] with [a] the integer part of a. The computed empirical error

is the relative mean absolute deviation

RMAD[j0,j1] =
1

j1 − j0 + 1

j1∑
j=j0

∣∣f̂s ( jT )− f ( jT ) ∣∣
f
(
j
T

)
where f̂s is either the Beta kernel estimator or the seminparametric estimator of Robinson

(1994a). Taking the relative mean absolute deviation instead of the mean absolute deviation

is driven by the unboundesss of f at frequency zero. Because j0 and j1 depend on T , the range

of frequencies where the error is computed is different for different sample sizes. Therefore,

the values of RMAD presented in the empiricial study below are only comparable for a given

sample size.

The FARIMA time series were generated via the library ‘fracdiff’ in R. To avoid the

dependence of our conclusions on the choice of the bandwidths, we have computed the

RMAD for a range of bandwidths which is [0.01, 0.5]. The range of m in the semiparametric

estimation is [T 1/2, T 4/5] . Tables 2 to 4 display the five results that were the closest to the

best RMAD found.

Table 2 reports the results for FARIMA(1,H = 0.9,0) model with a1 = 0.5. The semipara-

metric estimator provides the best results whatever the sample size is. The corresponding
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T = 400 T = 600 T = 1000

Beta kernel:

b RMAD b RMAD b RMAD

0.08 0.416 (0.190) 0.08 0.364 (0.144) 0.08 0.324 (0.104)

0.115 0.339 (0.130) 0.115 0.302 (0.091) 0.115 0.288 (0.059)

0.15 0.307 (0.089) 0.15 0.287 (0.061) 0.15 0.298 (0.052)

0.185 0.299 (0.066) 0.185 0.296 (0.055) 0.185 0.329 (0.065)

0.22 0.304 (0.060) 0.22 0.317 (0.063) 0.22 0.366 (0.077)

Semiparametric:

m RMAD m RMAD m RMAD

63 0.173 (0.124) 95 0.146 (0.102) 157 0.145 (0.107)

70 0.132 (0.090) 105 0.109 (0.080) 172 0.103 (0.082)

77 0.123 (0.081) 116 0.099 (0.070) 188 0.086 (0.062)

84 0.133 (0.087) 126 0.112 (0.077) 204 0.087 (0.058)

91 0.151 (0.089) 136 0.139 (0.081) 219 0.101 (0.062)

Table 2: Results of the Monte Carlo simulation for FARIMA(1,H = 0.9,0) model with

a1 = 0.5. Standard errors of the relative mean absolute deviation (RMAD) are in parenthesis.

value of m varies with the sample size; the ratio between m and the sample size is around

λm ≈ 0.19. For T = 1000, the adaptive value of m found in Delgado and Robinson (1996a)

converges to 81 which corresponds to the frequency λm = 2π × 81/1000 ≈ 0.51. The con-

trast with the optimal value of m found here is explained by our use of the RMAD criterion,

whereas Delgado and Robinson (1996a) employed the mean squared error.

In Table 3, we consider the same process except that H = 0.6, that is, the simulated

time series still has a long range dependence but with a shorter memory than the case of

H = 0.9. In that situation, the Beta kernel shows a dramatic improvement compared to the

semiparametric estimator, agreeing with the expectation of the adaptivity of the Beta kernel

to the memory of the time series.

Another strongly dependent process with H = 0.9 is considered in Table 4 with a more

complex dynamical structure. As shown in Figure 1(b), the spectral density of the process

is not monotone and presents a cycle between frequencies 0.1 and 0.2. The semiparametric
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T = 400 T = 600 T = 1000

Beta kernel:

b RMAD b RMAD b RMAD

0.08 0.292 (0.160) 0.08 0.250 (0.132) 0.08 0.218 (0.102)

0.115 0.178 (0.106) 0.115 0.144 (0.078) 0.115 0.119 (0.053)

0.15 0.130 (0.067) 0.15 0.113 (0.048) 0.15 0.105 (0.039)

0.185 0.127 (0.058) 0.185 0.129 (0.057) 0.185 0.142 (0.056)

0.22 0.148 (0.068) 0.22 0.167 (0.070) 0.22 0.194 (0.061)

Semiparametric:

m RMAD m RMAD m RMAD

91 0.554 (0.183) 126 0.710 (0.192) 62 0.867 (0.255)

99 0.535 (0.174) 136 0.703 (0.184) 78 0.858 (0.242)

106 0.517 (0.165) 146 0.694 (0.176) 94 0.856 (0.235)

113 0.504 (0.160) 156 0.686 (0.168) 110 0.860 (0.229)

120 0.487 (0.150) 166 0.676 (0.163) 125 0.863 (0.223)

Table 3: Results of the Monte Carlo simulation for FARIMA(1,H = 0.6,0) model with

a1 = 0.5. Standard errors of the relative mean absolute deviation (RMAD) are in parenthesis.

estimator is not well-fitted to that situation of non monotone spectrum, as it is indicated by

the results of the Monte Carlo simulation. In contrast, the performance of the Beta kernel

is better and demonstrates a good finite sample behavior of the estimator. The spectral

density of FARIMA(2,H = 0.9,0) appeared to be very difficult to estimate and it was not

straightforward to select the bandwidth of the Beta kernel estimator.

4.2 Nonparametric analysis of S&P 500

We finish this study by an application of the Beta kernel estimator on the absolute value

of the log returns of the S&P 500 index. We consider the path between January 1973 and

December 1994. Also, we analyse two more recent segments of data: from January 1995 to

December 2001 and from January 2002 to May 2009.

In Figure 2, we draw the logarithm of the data-driven estimator obtained from the three

periods of time. In each time segment, the data are standardized by their standard deviation
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T = 400 T = 600 T = 1000

Beta kernel:

b RMAD b RMAD b RMAD

0.0011 0.9429 (0.396) 0.0062 1.3882 (0.428) 0.0415 1.8211 (0.341)

0.0016 0.9383 (0.394) 0.0071 1.3874 (0.422) 0.0432 1.8094 (0.338)

0.0021 0.9381 (0.391) 0.0076 1.3872 (0.419) 0.0449 1.7974 (0.334)

0.0027 0.9395 (0.388) 0.0085 1.3875 (0.413) 0.0466 1.7852 (0.330)

0.0032 0.9419 (0.384) 0.0095 1.3886 (0.408) 0.0483 1.7727 (0.327)

Semiparametric:

m RMAD m RMAD m RMAD

63 1.401 (0.475) 85 1.792 (0.605) 125 2.440 (0.698)

70 1.354 (0.451) 95 1.693 (0.589) 141 2.243 (0.712)

77 1.310 (0.434) 105 1.656 (0.568) 157 2.125 (0.688)

84 1.344 (0.409) 116 1.719 (0.542) 172 2.140 (0.675)

91 1.345 (0.381) 126 1.810 (0.512) 188 2.230 (0.655)

Table 4: Results of the Monte Carlo simulation for FARIMA(2,H = 0.9,0) model with

a1 = 1.172, a2 = −0.707. Standard errors of the relative mean absolute deviation (RMAD)

are in parenthesis.

for the sake of comparison. The bandwidths selected by the cross-validation method are

b = 1.514 × 10−4 for the period 1973–1994, b = 7.475 × 10−4 for the period 1995–2001 and

b = 2.815 × 10−5 for the period 2002–2009. The cross-validation does not provide a clear

minimum for the period 1995–2001 because it is flat for b > 7.475× 10−4.

Figure 2 shows clear similarities for the spectrum over periods 1973–1994 and 1995–2001,

whereas the most recent data shows a different behavior for low frequencies. Beyond the

frequency zero, the spetrum shows local minima corresponding to various periodocities in

the absolute returns. Some periodicities are coherent between the three segments of time.

Because the Beta kernel estimator is consistent whatever is the memory of the time series,

this empirical example shows that it might be a valuable ingredient in the economic study

of the hidden seasonality stock prices.

An eminent feature of the Beta kernel estimator is its adaptivity to the boundness or

14



Figure 2: The data-driven log-spectral estimator of the standardized absolute value of the

S&P 500 log returns is superimposed for three different periods of time.

unboundness of the spectrum at the origin λ = 0. To illustrate that property, we consider in

Figure 3 a segment of the daily absolute returns of the S&P500 that was analysed by Lobato

and Savin (1998). Using multiplier test, Lobato and Savin (1998) conclude that there is

no evidence of long memory in the levels of the returns, whereas their analysis favors long

memory of the squared returns.
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Figure 3: Daily log returns of S&P500, July 1962 to December 1972, 2016 data

In Figure 4(a) and (b), we display the empirical autocorrelation function of the log returns

and absolute log returns, respectively. Those pictures illustrate the conclusions of Lobato

and Savin (1998) recalled above.

Estimation of the log-spectrum by the Beta kernel of the log returns and the absolute log

returns is proposed in Figures 4(c) and (d), respectively. The estimator is drawn for several

15



values of the smoothing parameters, b = 0.005, 0.01 and 0.05. We observe that the smaller b

is, the more oscillating is the estimator. We therefore recover the usual regularity properties

of the estimator with respect to b. A data-driven choice of b is proposed in Section 4 below.

Also, Figures 4(c) and (d) show that the Beta kernel estimator of the spectrum at λ = 0

is bounded for the log returns and is diverging for the absolute log returns. This illustrates

how the estimator automatically adapts to the unknown memory structure of the process. In

other words, the estimator can be applied to time series of any type of memory, in contrast

to most estimators who are applicable either to short or to long memory processes.

For the sake of comparison, other kernel smoothing of the periodogram are displayed in

Figures 4(e) and (f) for the log returns and the absolute log returns, respectively. Three ker-

nel smoothing are superimposed: (i) The symmetric Daniell kernel estimator with bandwidth

0.036, (ii) a rectangular kernel estimator with bandwidth 0.043, and (iii) an asymmetric tri-

angular kernel (see Brillinger (2001) for the definition of these kernel functions). Although

the three competitors show a peak close to the frequency zero in Figure 4(f), the three ker-

nel methods do not clearly show the expected unboundedness at zero of the spectral density

function of the absolute return stock price. We could vary the bandwidth in order to un-

derline the peak close to the pole, but, in such a case, the quality of estimation far from

frequency zero would be very weak.
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Figure 4: Empirical autocorrelation function and Log spectrum estimation of the daily log

returns of S&P500 (July 1962 to December 1972)

5 Discussion

The estimation of a spectral density often requires to know whether we observe a long or short

memory time series. The periodorgam is a natural estimator for the spectral density, however,

it is asymptotically unbiased and its variance does not converges to zero. Consequently, the

periodorgam is not a consistent estimator. Smoothing the periodogram using symmetric
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kernels was proposed for short dependence memory time series, see Ferreira and Rodriguez-

Poo (1998). But, this method is not consistent for a spectral density that is not null near

zero. Furthermore, when we have a long memory time series, the symmetric kernel estimator

leads a severe bias at the boundary. The semi-paratemtric estimator proposed by Robinson

(1994a) is frequently used when we estimate the spectral density of long-range dependence

time series.

In this paper, we propose a new nonparametric estimator of the spectral density by

smoothing the periodogram using Beta kernel. Beta kernel is an asymmetric function with a

shape varying according to the frequency where the spectrum is estimated. This estimator

doesn’t require the knowledge of the nature of the dependence range of the process, and it is

adapted for both short and long memory time series. We proved its consistency and showed

its finite sample performance. Here, we propose a global bandwidth for the Beta kernel

estimator but we suggest to investigate the local bandwidth parameter selection in order to

improve the performance of the Beta kernel estimator as proposed for the symmetric kernel

estimator.

A Appendix: Proofs

In this section, we provide the proofs of the theoretical results given in Section 3.

Proof of Proposition 1. The expectation of the Beta kernel estimator at frequency λ 6= 0

is given by

E(f̂(λ)) =

∫ 1

0

Kb,λ(u)f(u)du+R1 +R2

where R1 and R2 are two approximation terms that are given by

R1 =
1

T

∑
j

Kb,λ(ωj)f(ωj)−
∫ 1

0

Kb,λ(u)f(u)du

and

R2 = E
[ 1

T

∑
j

Kb,λ(ωj)(IT (ωj)− f(ωj))
]
.
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By the smoothness conditions assumed on f it is straightforward to check that the approxi-

mation term R1 has the rate O(T−1). The term R2 pools the periodogram over frequencies.

After calculation, R2 can be written as

R2 =
1

T

∑
j

Kb,λ(ωj)Aj,T ((0, 1)) with Aj,T (I) :=

∫
I

KT (u){f(u+ ωj)− f(ωj)}du.

The function KT (u) := (2πT )−1|
∑

s exp(2πius)|2 is the Fejér kernel, and satisfies

KT (u) = O

(
T

1 + T 2u2

)
, for 0 < |u| 6 1 and

∫ 1

0

KT (u)du = 2π,

(see Robinson (1994a)). Moreover, the Beta kernel satisfies Kb,λ(u) ≤ c1b
−1/2{λ(1−λ)}−1/2,

where c1 is a positive constant (see Chen (2000)). Let m = m(T ) be a sequence such that

m = o(T 1/2b1/4), for which ω1, . . . , ωm are sufficiently small. R2 is equal to the the sum of

the three following terms:

R21 =
1

T

m∑
j=1

Kb,λ(ωj)Aj,T ((0, 1)) ,

R22 =
1

T

T∑
j=m+1

Kb,λ(ωj)Aj,T ((0, ε]) ,

R23 =
1

T

T∑
j=m+1

Kb,λ(ωj)Aj,T ((ε, 1)) .

In the expression of R21, the rate of f(ωj) dominates that of f(u + ωj), which implies that

Aj,T ((0, 1)) = O(f(ωj)) for j = 1, . . . ,m. Hence,

R21 = O

(
m

T
√
b

m∑
j=1

ω−βj
m

)
= O

(
m

T
√
b

)
= o(T−1/2b−1/4).

Now, using the Lipschitz property |f(u + ωj) − f(ωj)| 6 Cu, for u > 0 and some constant

C, we find that

|R23| = O

(
1

T

T∑
j=m+1

Kb,λ(ωj)×
1

Tε

)
= O

(
1

Tε

)
,

and

|R22| = O

(
1

T

T∑
j=m+1

Kb,λ(ωj)× ε

)
= O(ε).
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By choosing ε = T−1/2, we find that

R2 = o(T−1/2b−1/4).

On the other hand, one can write

E(f̂(λ)) =

∫ 1

0

Kb,λ(u)f(u)du+R2 (9)

= E(f(ξλ)) +R2

where ξλ is a Beta random variable with parameters 1 + λ/b and 1 + (1 − λ)/b. A general

approximation bias of E(f(ξλ)) has been derived in Chen (2000) and leads to

f(λ)− E(f̂(λ)) = b{(1− 2λ)f ′(λ) +
1

2
λ(1− λ)f ′′(λ)}+ o(b) +R2.

This ends the calculation of the expectation of the Beta kernel.

Now, the variance of the estimator is

Varf̂(λ) =
1

T 2

T∑
s,t=1

Kb,λ(ωs)Kb,λ(ωt)Cov(IT (ωs), IT (ωt)).

First, for t 6= s we use the fact that Cov(IT (ωs)/f(ωs), IT (ωt)/f(ωt)) = rst where
∑
s<t

rst =

O(logr(T )) for some r > 0 (e.g. Moulines and Soulier (2003)). Recalling that the Beta kernel

satisfies Kb,λ(u) ≤ c1b
−1/2{λ(1− λ)}−1/2, the sum over s 6= t is then of order

1

bT

∑
s<t

rstf(ωs)f(ωt). (10)

Let’s examine Equation (10) for ωs close to 0 and away from 0. For s such that ωs > ω0 > 0

the rate is logr(T )/(bT 2). Now, Let {sT} be a sequence such that s−1T + Ts−1T → 0. For s

such that ωsT > ωs, the sum in (10) can be decomposed into two terms:

1

bT

sT∑
s=1

sT∑
t=s+1

rstf(ωs)f(ωt) +
1

bT

sT∑
s=1

T∑
t=sT

rstf(ωs)f(ωt),

where the first term is the dominant term, with rate

O

(
1

bT 2−2β

sT∑
s=1

sT∑
t=s+1

s−βt−βrst

)
= O

(
logr(T )

bT 2−2β

)
.
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Using similar arguments, we can obtain the same rate for s such that ω0 > ωs > ωsT .

Second, for t = s, we use the fact that Var(IT (ωs)/f(ωs)) is asymptotically uniformly

bounded (e.g. Deo (1997)), so the sum in Varf̂(λ) is asymptotically equal to

1

T 2

∑
s

Kb,λ(ωs)
2f(ωs)

2 =
1

T
G(λ)E(f(ρλ)

2)

where ρλ is a Beta random variable with parameters 1 + 2λ/b and 1 + 2(1− λ)/b and

G(λ) =
B
(

2λ
b

+ 1, 2(1−λ)
b

+ 1
)

B
(
λ
b

+ 1, 1−λ
b

+ 1
)2 .

The final result is derived from a Taylor expansion and the asymptotic properties of G(λ),

which is analogous to Chen (2000) and therefore we skip the detail. This result will be useful

for proving Proposition 2.

�

The following lemma establishes the uniform convergence of the bias of the Beta kernel

estimator.

Lemma 1 If the spectral density f is a continuous function on the interval (0, 1), then for

any compact I in (0, 1)

sup
λ∈I

∣∣∣IE(f̂(λ))− f(λ)
∣∣∣ −→ 0

as T →∞ and b = b(T )→ 0.

Proof If µλ and σ2
λ are the respective mean and variance of the random variable ξλ, where

ξλ is the Beta random variable with parameters 1 + λ/b and 1 + (1− λ)/b, then there exists

a positive, finite constant M such that µx = λ+ b(1− 2λ) + ∆1(λ), σ2
λ = bλ(1− λ) + ∆2(λ)

and |∆j(λ)| ≤Mb2 for j = 1 and 2 (see Johnson et al. (2000)).

To prove the lemma, we first consider the approximation IE(f̂(λ)) by
∫ 1

0
Kb,λ(u)f(u)du
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given in (9). Consider the following decomposition of the dominant term in (9):∣∣∣∣∫ 1

0

{f(t)− f(λ)}K{t, λ/b+ 1, (1− λ)/b+ 1}dt
∣∣∣∣

≤ 2

∫
|t−µλ|<δ

|f(t)− f(λ)|K{t, λ/b+ 1, (1− λ)/b+ 1}dt+ 2

∫ 1

µλ+δ

(. . .) + 2

∫ µλ−δ

0

(. . .)

= I + II + III.

We want to show the convergence of I, II and III to zero.

First, since f is uniformly continuous on I, for any ε > 0 there exists a δ > 0 such that

|f(t)− f(λ)| < ε for |λ− t| < δ. Therefore I ≤ ε for all b ≤ bIε.

Second, since σ2
λ ≤ (b+ 4Mb2), then by Chebyshev’s inequality,

II ≤ 4 Pr(Z − µλ > δ) sup
t>µλ+δ

|f(t)|

≤ 4

δ2
σ2
λ sup
t>µλ+δ

|f(t)|

≤ 1

δ2
(b+ 4Mb2) sup

t>µλ+δ
|f(t)|

≤ ε for all b ≤ bIIε .

Finally, to address the convergence of III, we assume without loss of generality that f(t) >

f(λ) and that f(t) ∼ t−β for t close to the origin. If ξλ,β denotes the Beta random variable

with parameters 1+λ/b−β and 1+(1−λ)/b, then Var(ξλ,β) = bλ(1−λ)+O(b2). Therefore,

III ≤ 4

∫ µλ−δ

0

t−βK{t, λ/b+ 1, (1− λ)/b+ 1}dt

=
4B{λ/b− β + 1, (1− λ)/b+ 1}
B{λ/b+ 1, (1− λ)/b+ 1}

∫ µλ−δ

0

K{t, λ/b− β + 1, (1− λ)/b+ 1}dt

≤ 4B{λ/b− β + 1, (1− λ)/b+ 1}
B{λ/b+ 1, (1− λ)/b+ 1}

Var(ξ)

δ2

≤ ε for all b ≤ bIIIε .

Combining the three convergence results, that have been proved, we obtain supx∈[0,1] |IE {fb(x)}−

f(x)| < 3ε for all b ≤ min(bIε, b
II
ε , b

III
ε ).

�
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Proof of Proposition 2. Since Lemma 1 establishes a sufficient control of the bias term,

it remains to prove the weak convergence of the variation term supλ∈I |f̂(λ) − IE(f̂(λ))|.

Without loss of generality, we suppose that I = [η1, η2] where 0 < η1 < η2 < 1. The

derivative with respect to λ ∈ I of the Beta kernel is given by

dKb,λ(t)

dλ
=

1

b
Kb,λ(t)

{
ln

(
t

1− t

)
+ ψ

(
1− λ
b

+ 1

)
− ψ

(
λ

b
+ 1

)}
where ψ is the digamma function and satisfies ψ(x+1) = ln(x)+(2x)−1−

∑∞
j=1(2j x

2j)−1B2j

with B2j being Bernoulli numbers (see Abramowitz and Stegun (1972) for more details).

Also, from Chen (2000), there exists a positive and finite constant c1 such that Kb,λ(t) ≤

c1b
−1/2{λ(1− λ)}−1/2. We conclude that,∣∣∣∣dKb,λ(t)

dλ

∣∣∣∣ =
1

b
Kb,λ(t)

∣∣∣∣ln( t

1− t

)
+ ln

(
1− λ
λ

)
+
b

2

(
1

1− λ
− 1

λ

)
+O(b2)

∣∣∣∣
≤ C

b3/2
,

for some constant C depending on η1 and η2. Therefore, for λ and λ′ ∈ I, we have

|f̂(λ)− f̂(λ′)| = 1

T

T∑
j=1

|Kb,λ(ωj)−Kb,λ′(ωj)| IT (ωj)

≤ C

b3/2T
|λ− λ′|

T∑
j=1

IT (ωj).

Hence, using similars arguments as for the smaller order approximation terms of the expec-

tation in Proposition 1, we obtain that

|Ef̂(λ)− Ef̂(λ′)| ≤ E|f̂(λ)− f̂(λ′)|

≤ C

b3/2
|λ− λ′|{γ(0) + o(1)}

Let ε > 0 and consider a partition of the interval [η1, η2] into N = [b−ε−3/2] subintervals {Ij}

of equal length, with center λj. Then

sup
λ∈Ij
|f̂(λ)− Ef̂(λ)| ≤ |f̂(λj)− Ef̂(λj)|+

C

Nb3/2
{γ(0) + op(1)}

Therefore,

sup
λ∈I
|f̂(λ)− Ef̂(λ)| ≤ max

1≤j≤N
|f̂(λj)− Ef̂(λj)|+

C

Nb3/2
{γ(0) + op(1)}.
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Using Proposition 1 and Chebychev’s inequality, we can show that f̂(λ)−IEf̂(λ) = OP (b−1/2T−1)

for all λ ∈ I. Therefore maxj |f̂(λj) − Ef̂(λj)| = OP (Nb−1/2T−1) = OP (b−2−εT−1) which

concludes the proof. �

Proof of Proposition 3.

Proof of (i): The divergence of the spectral density at the origin implies that for any C > 0

there exists δ > 0 such that f(t) > C for all t < δ. We first show that the expectation of

the Beta kernel estimator diverges at frequency zero when there is a pole at the origin of

the spectrum. In Equation (9) we have computed the expectation for λ 6= 0; the situation is

slightly different at λ = 0. Still, we can write that

E(f̂(0)) =

∫ 1

0

Kb,0(u)f(u)du+R1 +R2

where R1 = O(T−1). To evaluate R2 we note that Kb,0(ωj) = b−1(1 + b)(1 − j/T )1/b which

is bounded by b−1(1 + b) and then we can apply the arguments in the proof of Proposition

1 on the pooled periodogram in order to show that R2 = o(1) under the constraints on b

stated in the proposition. Therefore, for δ sufficiently small,

IE(f̂(0)) = b−1(1 + b)

∫ 1

0

(1− u)1/bf(u)du+ o(1)

> b−1(1 + b)C

∫ δ

0

(1− u)1/bdu+ o(1)

> C(1− (1− δ)1/b+1) + o(1)

→ C, as b→ 0.

Hence, the divergence of IE(f̂(0)) is proved. To show the convergence in probability, we use

the Chebychev’s inequality and Proposition 1. Indeed, for any ε > 0 and for a sequence λ

such that λ/b→ κ,

P
(
|f̂(λ)− IEf̂(λ)| > ε

)
= O

(
1

Tb1+2β

)
= o(1).

Now using the fact that Kb,λ(t) tends to Kb,0(t), as λ converges 0, we obtain∣∣∣∣∫ 1

0

Kb,λ(u)f(u)du−
∫ 1

0

Kb,0(u)f(u)du

∣∣∣∣ = o(1), asλ→ 0.
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Hence, IEf̂(λ)→ IEf̂(0), as λ→ 0. Which concludes the proof of (i).

Proof of (ii): Using that Kb,0(ωj) = b−1(1 + b)(1− j/T )1/b we can write

|IE(f̂(0))− f(0)| ≤ b+ 1

b

∫ 1

0

(1− t)1/b|f(t)− f(0)|+ o(1).

Since f is continuous on the right side of 0, for any ε > 0 there exists a δ > 0 such that

|f(t)− f(0)| < ε for t < δ. Calculating the integral over [0, δ] and [δ, 1], we get the bound

ε
b+ 1

b
[1− (1− δ)1+1/b] + 2M(1− δ)1+1/b

where M := supt∈[0,1] |f(t)|. Since b converges to 0 and the bound holds for every ε > 0,

we get |IE(f̂(0)) − f(0)| = o(1). Finally, as in the proof Proposition 3, we conclude with

Chebychev inequality and Proposition 1 that lead to P
(
|f̂(0)− IEf̂(0)| > ε

)
= O(b−1T−1)

and obtain the stated result.

�

Proof of Proposition 4. We start by proving the relative convergence of the bias term, that

is,
∣∣∣{IE(f̂(λ))− f(λ)}/f(λ)

∣∣∣ goes to zero as λ/b tends to κ. We proceed as in the beginning

of the proof of Lemma 1. Omitting the negligible terms, we use the decomposition∣∣∣∣∣IE(f̂(λ))− f(λ)

f(λ)

∣∣∣∣∣ =

∫
|f(t)− f(λ)|

f(λ)
K{t, λ/b+ 1, (1− λ)/b+ 1}dt

≤
∫
|t−µλ|<δ

(. . .)dt+

∫ 1

µλ+δ

(. . .)dt+

∫ µλ−δ

0

(. . .)dt

= I + II + III.

in which I ≤ ε for all b ≤ bIε and II ≤ ε for all b ≤ bIIε . The treatment of the term III is not as

in Lemma 1. Using Taylor expansion around λ and that f ′(λ) = O(λ−β−1) for small value

of λ, we obtain

III ' |f ′(λ)|
f(λ)

∫ µλ−δε

0

(λ− t)K{t, λ/b+ 1, (1− λ)/b+ 1}dt

≤ |λf ′(λ)|
f(λ)

V ar(ξλ)

δ2ε
(Chebyshev inequality)

≤ ε
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for all b ≤ bIIIε , where ξλ,β is a Beta random variable with parameters 1 + λ/b − β and

1 + (1−λ)/b, with Var(ξ) = bλ(1−λ) +O(b2). By combining the three terms, the bias term

is bounded by 3ε for all b ≤ min(bIε, b
II
ε , b

III
ε ).

Finally, we control the convergence of the variation term using the Chebychev’s inequality.

Indeed for λ such that λ/b→ κ

P

(
|f̂(λ)− IE(f̂(λ))|

f(λ)
> ε

)
≤ Var(f̂(λ))

f(λ)2ε2

=
C(κ)

Tbf(λ)2ε2
{f 2(λ) +O(T−1)}

= OP (b−1T−1),

which implies the weak convergence of the variation term and therefore ends the proof.

�
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