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Ali Gencay Özbeklera, Alexandros Kontonikasa, Athanasios Triantafylloua,∗

aEssex Business School, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK

Abstract

In this paper we examine the predictive power of the Heterogeneous Autoregressive (HAR)

model on Treasury bond return volatility of major European government bond markets.

The HAR-type volatility forecasting models show that short term and medium term volatil-

ity is a robust and statistically significant predictor of the term structure of intraday-

volatility of bonds with maturities ranging from 1-year up to 30-years. When decomposing

volatility into its continuous and discontinuous (jump) component, we find that the jump

tail risk component is a significant predictor of bond market volatility. We lastly show that

approximately half of the monetary policy announcement dates coincide with the presence

of jumps in bond returns, and the pre-announcement drift is present in the bond market.

Hence, the monetary policy announcements are important determinant of European bond

market volatility.

Keywords: Treasury Bonds, Jumps, Realized Volatility, Macroeconomic

Announcements, Volatility Forecasting

∗Corresponding author

Email address: a.triantafyllou@essex.ac.uk (Athanasios Triantafyllou)

Preprint submitted to International Journal of Forecasting April 19, 2020



1. Introduction

Financial market participants, banks, firms and policymakers pay close attention to

interest rate volatility since it plays a key role in a variety of settings, ranging from risk

management ( Faulkender (2005); Markellos & Psychoyios (2018)) and asset pricing (

Flannery et al. (1997)) to firms’ investment decisions ( Bo & Sterken (2002)) and the trans-5

mission mechanism of monetary policy ( Landier et al. (2013); Hoffmann et al. (2018)).

The market for government bonds is essential for the analysis of interest rate volatility

since sovereign yields provide the basis for the pricing of other securities, derivatives and

loans. Moreover, this market has been the object of significant interventions by central

banks (CBs) during Quantitative Easing programs, whereby the CB purchases assets from10

banks and other financial companies, in both the US and Europe. Hence, it is impor-

tant to develop models that generate good forecasts of bond market volatility in order to

enhance the information set of various economic agents. Surprisingly, despite the im-

portance of this exercise, only a few previous studies attempted to forecast bond market

volatility, mainly in the context of the US market for Treasuries (Remolona & Fleming15

(1999); Balduzzi et al. (2001); Andersen et al. (2007b)). At the same time, the literature

on the forecasting of stock and commodity market volatility is richer (Bollerslev et al.

(2018); Dueker (1997); Bollerslev et al. (2016); Bollerslev & Mikkelsen (1996); Luo et al.

(2019)).

In this paper we attempt to fill this gap in the bond market volatility forecasting lit-20

erature by analysing the predictive power of the Heterogeneous Autoregressive model of

Realized Volatility (HAR-RV), developed by Corsi (2009), for the volatility term structure

of European bond markets. HAR-type volatility forecasting models utilize the continu-

ous and the discontinuous (jump) component of volatility and are popular in studies of
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stock and commodity markets (Degiannakis et al. (Forthcoming); Luo et al. (2019)) 1. Our25

primary motivation to focus on the European bond markets is the increased turbulence

in European economies, especially in the post-2007 crisis period. During the 2007-2008

global financial crisis and the subsequent European sovereign debt crisis, the volatility of

government bond markets was raised to the unprecedented levels and therefore became a

major concern for fixed income investors, banks, firms and European policy makers. We30

use government bond data for two major euro-area markets (France and Germany) and

two important non-euro-area members (Switzerland and the UK) between 2005 and 2019.

We collect intraday bond market data for these four economies over the period Jan-

uary 2005 to October 2019. Specifically, we use data between 10:00 am and 16:00 pm in

10-minute intervals to estimate the realized volatility of bond returns. In order to compute35

the zero-coupon prices for 1-year, 2-year, 5-year, 10-year, 20-year and 30-year maturity

securities, we employ the Nelson & Siegel (1987) (NS) model in the intraday basis. We

then estimate HAR-type volatility forecasting models for daily, weekly and monthly fore-

casting horizon.

Our results reveal that the HAR components of realized volatility are robust and statis-40

tically significant predictors of European bond return volatility across different maturities

at the 1-day, 5-day and 22-day horizon. The in-sample R2 values range from 40% up

to 80%. Out-of-sample forecasts show that HAR models can be used for real time fore-

casting since the respective out-of-sample R2s remain high, ranging from 20% to 70%,

especially for bonds with short-term maturities. Our results provide the evidence long-45

1The relevant literature on HAR modeling and volatility forecasting in bond markets has been extensively

focused on US Treasury bond market. Andersen et al. (2007a) and Corsi et al. (2010) depend on US T-bond

future data for fixed income market. Also, Andersen & Benzoni (2010) employ HAR-type model to show

the unspanned stochastic volatility phenomenon using US bond data.
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memory property of government bond volatility, since regardless of forecasting horizon

1-day to 22-day components of HAR models are found to be effective on future volatility.

Moreover, including price jumps as an additional predictor in the HAR model, the jump

tail risk component is found to be a significant predictor of bond return volatility.

We proceed by examining the role of monetary policy announcements within HAR-50

models of bond return volatility. We show that large jumps in realised bond market volatil-

ity tend to coincide with monetary policy announcements. More specifically, 80% of all

policy announcement dates for the case of Switzerland, 40% in Germany and the UK, and

34% in France overlap with at least one statistically significant bond price jump in the

respective bond market. In addition, using HAR-model framework, we identify the im-55

pact of monetary policy announcements on the volatility forecasts. Our findings indicate

that there is a positive and significant monetary policy pre-announcement impact on fu-

ture bond market volatility. This analysis is motivated by Lucca & Moench (2015), which

document larger excess returns on US stock markets one day ahead of the FOMC meet-

ings. Although, Lucca & Moench (2015) show the presence of pre-FOMC drift on equity60

market, the drift is found be not present for fixed income securities. On the contrary, our

findings verify the monetary policy pre-announcement drift on the European bond market

volatility. In addition, we report that the pre-announcement drift is effective through the

continuous part of the volatility, integrated variation, not the jump variation.

Our work is related, and contributes, to several strands of the literature. This is the first65

study to demonstrate the in-sample and out-of-sample forecasting power of HAR-type

models on the term structure of European bond volatility. Thus, it extends the literature

that developed following the seminal work by Corsi (2009) and identified the success-

ful forecasting performance of HAR-type for the stock and commodity market volatility

(Bollerslev et al. (2018); Dueker (1997); Bollerslev et al. (2016); Bollerslev & Mikkelsen70

(1996); Degiannakis et al. (Forthcoming); Gong & Lin (2018); Luo et al. (2019); Franses
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& Van Dijk (1996); Tian et al. (2017); Wen et al. (2016)). Furthermore, our findings on

the importance of jumps for bond market volatility forecasting reveal differences between

European markets and the US. While the bond volatility literature (see for example An-

dersen et al. (2007a) ) identifies a negative and insignificant jump effect on future US bond75

volatility, we show that bond price jumps have a positive impact on European bond return

volatility. Our results are in line with those of Corsi et al. (2010) who find that US bond

price jumps have a positive and significant impact on US bond return volatility. We also

show that the monetary policy announcements are important determinant of bond market

volatility and the pre-announcement drift is present in the European bond market using80

HAR-model structure.

Our analysis is also related to the extant literature that considers the effect of macroe-

conomic and monetary policy announcements on stock and commodity market volatility

forecasting and shows that such announcements, and the associated jumps, are key drivers

of volatility releases (Bomfim (2003); Engle & Siriwardane (2018); Evans (2011); La-85

haye et al. (2011); Miao et al. (2014); Papadamou & Sogiakas (2018); Rangel (2011);

Andersen et al. (2003b); Andersen et al. (2007a); Andersen et al. (2007b); Corsi et al.

(2010), Huang (2018); Lee (2012); Prokopczuk et al. (2016); Schmitz et al. (2014))2. It

is also linked to previous work on the impact of such announcements for US treasuries (

Remolona & Fleming (1999); Balduzzi et al. (2001); Andersen et al. (2007b); Corsi et al.90

(2010); Andersen & Benzoni (2010); Arnold & Vrugt (2010); de Goeij & Marquering

2For example, Huang (2018) finds that large stock-price jump variations are more frequently observed

during macroeconomic announcement days. Lahaye et al. (2011) show that the US stock market co-jumping

behavior is positively affected by macroeconomic news and monetary policy announcements, while Miao

et al. (2014) show that macroeconomic news announcements coincide with approximately three-fourths of

the intra-day US stock-market index price jumps.
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(2006); Ederington & Lee (1993); Jones et al. (1998); Perignon & Smith (2007)) and FX

markets (Andersen et al. (2003b); Andersen et al. (2007b)). The empirical studies on the

determinants of European bond return volatility tend to focus on the effects of the ECB’s

QE programme ( Zhang & Dufour (2019); Ghysels et al. (2016)) and the link between95

volatility and liquidity ( Beber et al. (2009); O’Sullivan & Papavassiliou (2020)).

The rest of the paper is structured as follows. In Section 2, we provide the information

regarding data and methodology. In Section 3 we present the results of our econometric

analysis. In Section 4 we report our robustness checks and in Section 5 we provide a brief

conclusion along with some policy recommendation and suggestions for further research.100

2. Data and Methodology

2.1. Data

In our analysis we include the European sovereign bond markets (UK, Germany, France

and Switzerland) using intraday data in the January 2005 – October 2019 period by relying

on Thomson Reuters Tick History (TRTH) database. We use 1-, 2-, 5-, 10-, 20- and 30-105

year maturity bonds in our analysis. The dataset relies on quotes for ”on-the-run”, generic,

instruments which are more liquid in terms off-the-run securities.

There is a wide strand of the literature on optimal intraday sampling frequency using

high frequency data in computation of RV (for example Barndorff-Nielsen & Shephard

(2004) and Aı̈t-Sahalia et al. (2005) ). Zhang et al. (2005) provide a comprehensive re-110

view on the causes and effects of sampling bias in the high frequency data dependent

volatility estimators. Although, it is inevitable to remove all the microstructure noise from

the high frequency data, the problems resulting from sampling frequency are limited when

the sampling frequency is 5 minute to 10 minute periods (Zhang et al. (2005) ). Andersen

et al. (2011) give a detailed framework on robust volatility estimation and how to cope115
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with possible ramifications resulted by microstructure noise. In this paper, we prefer to

take into account not only the sampling effect of microstructure noise, but also the liquid-

ity component of noise. While a large part of the RV literature on equity market volatility

utilizes 5-minute intervals for the estimation of realized volatility, in the case of European

bond markets, we decide to use 10-minute time intervals due to liquidity considerations.120

The ten-minute sampling frequency for European government bond markets is consistent

with the bias-variance tradeoff and large part of the bias is assumed to be vanish at this

frequency (Hansen & Lunde (2006) ). We additionally control for remaining microstruc-

ture noise by employing realized kernel estimators for volatility and provide results using

alternative volatility estimators that are more jump robust (see Section 4).125

The bonds used in the analysis bear coupon payments and they are subject to changes

in terms of underlying notes. Thus, we convert the instruments to zero-coupon securities

using the underlying bonds. In zero-coupon estimation, we take into account the changes

in the underlying instruments in the daily basis for all securities. When there is a change

in the underlying bond of the generic security, we assume the change takes place at the be-130

ginning of the trading day. Then, we aggregate the tick data bond returns using 10-minute

intraday time intervals between 10:00 am and 4:00 pm to compute daily variations, since

the liquidity in the fixed income markets may not be representative during the market open-

ing and closing hours. Also, when defining the volatility indicators as a sum of squared

intraday daily logarithmic bond returns, we include the price change between 10:00 am of135

the next day (t+1) and 4:00 pm of today (t) for the estimation of daily (t) realized volatility.

2.2. The Nelson-Siegel Model

In this paper, we use the Nelson & Siegel (1987) model to obtain zero coupon gov-

ernment bond returns. This model estimates the relationship between interest rates with

various maturities by fitting a discount function to bond price data. It assumes the follow-
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ing functional form for the instantaneous forward rates (BIS (2005) ).

ft,m = βt,0 + βt,1 exp(
−m

τt,1

) + βt,2

m

τt,1

exp(
−m

τt,1

) (1)

where, the forward rates ft,m are defined as the instantaneous rates and m is maturity.

The parameters, βt,0, βt,1, βt,2 and τt,1 are estimated by minimizing the squared deviations

of theoretical rates of equation (1) and observed rates.140

The zero-coupon spot interest rates st,m, are then related to the NS procedure by defin-

ing forward rates as instantaneous rates and continuously compounding the forward rate

up to given time to maturity as shown below:

st,m = −
1

m

∫ m

0

f (u)du (2)

Thus, the NS function for zero coupon interest rates could easily be obtained by com-

bining equations (1) and (2):145

st,m = βt,0 + (βt,1 + βt,2)
τt,1

m

(

1 − exp(
−m

τt,1

)
)

− βt,2 exp(
−m

τt,1

) (3)

For each 10-minute time interval, the zero-coupon curves of European government

bonds are fitted using equation (2). The zero-coupon rates and bond prices of correspond-

ing maturities which are obtained using the NS model, are then used for the estimation of

the realized volatility. In this study, we use bond prices (not yields) to estimate bond return

volatility.150

Since P(t,T ) = exp(−τst,m), the return series using prices are scaled to τ,

r(t + h, h, τ) = p(t + h, τ) − p(t, τ) (4)

where p(t, τ) = log(P(t, τ)). Then, the intraday return of zero-coupon bond is com-
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puted according to equation 5 below:

rτ

(

t +
ih

n
,

h

n

)

= −τ
(

sτ

(

t +
ih

n

)

− sτ

(

t +
(i − 1)h

n

))

(5)

2.3. Realized Volatility Measurement and Jump Detection

We follow the methodology of Andersen & Bollerslev (1998) for the estimation of re-155

alized volatility and jumps in the European sovereign bond markets. As the intraday sam-

pling frequency increases sufficiently, the cumulative sum of intraday returns converges to

genuine unobserved volatility, which is the so-called realized volatility (RV) (Andersen &

Bollerslev (1998); Andersen et al. (2003a); Barndorff-Nielsen & Shephard (2002, 2004)).

Since, the returns are scaled to τ, the volatility series also become proportional to τ2 as160

follows:

vol2
rτ

(t + h, h) =
1

h

n
∑

i=1

τ2
(

sτ

(

t +
ih

n

)

− sτ

(

t +
(i − 1)h

n

))2

(6)

Therefore, intraday bond volatility increases by the square of time to maturity. We then

re-scale the volatility series, vol2
rτ

(t + h, h), by τ2 to obtain comparable realized volatility.

RVτ(t + h, h) =
1

τ2

(

vol2
rτ

(t + h, h)
)

(7)

The scaled estimator of volatility as shown in equation (7), ensures that realized bond

return volatility satisfies the asymptotic properties of quadratic variation.165

In addition to intraday volatility we also focus on the importance of jumps in the intra-

day basis. In order to decompose realized volatility into its continuous and discontinuous

components, we follow the procedure suggested by Barndorff-Nielsen & Shephard (2004).

This provides a partial generalization of latent volatility, namely bipower variation (BV),

which approaches the continuous part of volatility in continuous sample paths and equally170
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spaced discrete data. In estimating realized BV, we also need to re-scale the return series

by the factor of τ. Therefore, the modified BV process is measured as:

BVτ(t + h, h) =
( 1

τ2

)

µ−2
1

( n

n − 1

)

n
∑

i=2

|∆i−1 p
(

t +
(i − 1)h

n

)

||∆i p
(

t +
(i)h

n

)

| (8)

where µ1 =
√

2/
√
π.

The first term in equation (8), 1/τ2, modifies the BV parameter proposed by Barndorff-

Nielsen & Shephard (2004) as an extension for bond returns which have different time to175

maturity. In this article, we follow the jump separation process of Barndorff-Nielsen &

Shephard (2004), where the realized volatility is assumed to have a continuous, quadratic

variation, and a discontinuous, jump, component. The logarithmic price of government

bond is assumed to follow a semi martingale process, which can be formalized as a drift

term plus a local martingale. Thus, a general class of arbitrage free return process is given180

below:

dp(t) = µ(t)dt + σ(t)dw(t) + κ(t)dq(t), 0 6 t 6 T. (9)

where µ(t) is a drift term having a locally finite variation process and the rest constitutes

local martingale. σ(t) is a strictly positive continuous volatility process with discrete jumps

κ(t). Barndorff-Nielsen & Shephard (2004) show that the quadratic variation equals to the

integrated variance of instantaneous returns as given in Equation 10 below:185

vol2 −→ QV ≡
∫ t

t−1

σ2(s)ds +
∑

t−1<s6t

κ2(s) (10)

Therefore, equation (10) ensures that the realized volatility estimator does not con-

verge to integrated volatility due to presence of the discrete jump process even under ob-

serving no noise in the prices. Barndorff-Nielsen & Shephard (2004) extend the analysis
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on volatility and indicate that BV is an unbiased estimator of integrated variance (IV),

asymptotically. Then BV is approximated as shown below:190

BV −→ IV ≡
∫ t

t−1

σ2(s)ds, f or n −→ ∞ (11)

Thus, using equations (10) and (11), it is trivial to obtain an approximation of jump

variation3.

RV − BV −→
∑

t−1<s6t

κ2(s), f or n −→ ∞ (12)

Under the assumption of absence of jumps:

√
n
(

RV − BV) −→ MN
(

0, 2IQ
)

, (13)

where IQ is integrated quarticity.

In addition, integrated variation (IQ) could be represented by a generalized realized195

power quarticity measure, namely tripower quarticity (TQ), which is a robust and consis-

tent estimator of IV even in the presence of jumps (Barndorff-Nielsen & Shephard (2002)

3Barndorff-Nielsen & Shephard (2004) give the definitions of realized volatility (RV) and bipower vari-

ation (BV) for a general asset class, which does not have any time to maturity. Since our estimations are

based on bond data, in order to have a comparable estimates, we scaled the return series by 1/τ and thus RV

and BV series by 1/τ2.
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and Andersen et al. (2007a)). We compute TQ as follows4:

T Q ≡ nµ−3
4/3

n
∑

i=3

|∆i−2 p
(

t +
(i − 2)h

n

)

|4/3|∆i−1 p
(

t +
(i − 1)h

n

)

|4/3

|∆i p
(

t +
(i)h

n

)

|4/3,

where T Q −→
∫ t

t−1

σ4(s)ds f or n −→ ∞

(14)

Since, we assume that there exists a discrete jump variation process in the asset re-

turns, we follow the jump detection methodology, according to which a jump occurs when200

the ratio statistic is significant. In the literature, there are plenty of jump detection tech-

niques, which are compared in Huang & Tauchen (2005). They find that the usage of

ratio-statistics gives more powerful results than the test-statistics provided by Barndorff-

Nielsen & Shephard (2004). We use the following ratio statistic to identify statistically

significant bond price jumps following Huang & Tauchen (2005):205

z = n−1/2

[

RV − BV
]

RV−1

√

(

µ−4
1 + 2µ−2

1 − 5
)

max
{

1, T Q

BV2

}

∼ N(0, 1) (15)

We use z-test statistics in order to identify the statistically significant bond price jumps

in our sample. This test has powerful properties and is quite accurate at detecting asset

price jumps (Huang & Tauchen (2005); Andersen et al. (2007a); Wright & Zhou (2009);

and Tauchen & Zhou (2011)).

2.4. Realized Semivariance210

The dynamic dependencies between volatility and underlying returns is also the re-

search focus in the empirical volatility literature. In this study, we look for the relevance

4Similar to RV and BV estimations, TQ measure also requires scaling with respect to time to maturity.

Hence T Q
′
= T Q/τ4.
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of feedback effect, which is defined as the relationship between contemporaneous returns

and volatility by Bollerslev & Zhou (2006), in the government bond markets 5.

To observe the feedback effect we follow the seminal procedure of Barndorff-Nielsen215

et al. (2010) by estimating realized semivariance, which is then extended by Patton &

Sheppard (2015) to incorporate the impact of signed jumps.

Realized semivariances (RSV) for positive and negative intraday returns are computed

as follows:

RS V+τ =
1

τ2

n
∑

i=1

|∆i p
(

t +
(i)h

n

)

|2I

(

∆i p
(

t +
(i)h

n

)

> 0
)

, (16)

RS V−τ =
1

τ2

n
∑

i=1

|∆i p
(

t +
(i)h

n

)

|2I

(

∆i p
(

t +
(i)h

n

)

< 0
)

, (17)

where RVτ = RS V+τ + RS V−τ220

In the equation (16) and (17), I(.) corresponds to indicator function. RS V series are

calculated in the intraday basis in line with RV .

2.5. Heterogeneous Auto-Regression Model

In the HAR model of Corsi (2009), it is assumed that the heterogeneous markets hy-

pothesis (HMH), which depends on market participants’ non-homogeneity in terms of ex-225

pectations and behaviors, is valid. Therefore, the general pattern of volatility structure can

be generated from three different frequencies. The high frequency component for short-

term traders is reflected by daily volatility, for medium-term traders by weekly volatility

5The asymmetric response of current volatility to the lagged returns with respect to the sign of returns

was firstly introduced by Black (1976). Although the empirical findings of the literature indicate that such an

asymmetry exists, its power is found to be weak and insignificant ( Nelson (1991) and Bekaert & Wu (2000)).

In addition, Bollerslev & Zhou (2006) provide empirical evidence that there is no significant relationship

between contemporaneous returns and volatility, therefore they reject the presence of feedback effect.
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and for investors focusing on long term trends by monthly volatility. Although the HAR

structure does not externally impose long memory in the volatility process, the cascade230

type model generates slow decaying memory for the forecast horizons.

To represent weekly and monthly trends, we use simple averages as below.

RVt1:t2 =
1

t2 − t1 + 1

t2
∑

t=t1

RVt, where t1 6 t2. (18)

Then, weekly and monthly averages6 are given in the (19) below:

RVt−5:t−2 =
1

4

t−2
∑

t=t−5

RVt. (19)

RVt−22:t−6 =
1

17

t−6
∑

t=t−22

RVt. (20)

Then, HAR-RV model 7 is given in (21):

RVt+h−1:t = β0 + βdRVt−1 + βwRVt−5:t−2 + βmRVt−22:t−6 + ǫt, (21)

h corresponds to forecast horizon.235

We decompose the continuous and discontinuous part of RV by following Barndorff-

Nielsen & Shephard (2004). Using the discontinious jump variations, we can employ

extended HAR models such as HAR-RVJ model and HAR-CJ model of Andersen et al.

(2007a). The inclusion of jump parameters in the volatility forecasting regressions en-

able us to measure the possible magnitude of daily jumps on the future volatility and its240

6We prefer to use non-coinciding periods in the HAR variables to avoid double counting lagged obser-

vations.
7For simplicity, we report the general form of HAR model, while the estimations are conducted using

realized volatility, RV1/2, in exchange for realized variance, RV .

14



significant life span in the investment horizon.

We identify the significant jump series using jump ratio test of Huang & Tauchen

(2005):

Ĵt = Izt>ψα(RVt − BVt)
+, (22)

where ψα is the cumulative distribution function at α confidence level. In this paper we

choose α = 0.999, which corresponds to a critical value of 3.0902. In addition (RVt−BVt)
+

245

stands for max(0,RVt − BVt) and Izt>ψα is the indicator function that takes values of unity

when there is a significant jump.

Then, the continuous part quadratic variation accounting for the significant jumps

given in (23).

Ĉt = RVt − Ĵt (23)

We also compute weekly, Ĉtt−5:t−2, and monthly, Ĉtt−22:t−6, continuous variation series,250

Ĉt similar to (19) and (20).

Ĉtt−5:t−2 =
1

4

t−2
∑

t=t−5

Ĉtt. (24)

Ĉtt−22:t−6 =
1

17

t−6
∑

t=t−22

Ĉtt. (25)

Therefore, it becomes natural to extend the HAR-RV model to include the effect of

continuous and jump variation separately.

HAR-RVJ model:

RVt+h−1:t = β0 + βdRVt−1 + βwRVt−5:t−2 + βmRVt−22:t−6 + β j Ĵt−1 + ǫt (26)

15



HAR-CJ model:

RVt+h−1:t = β0 + βdĈt−1 + βwĈt−5:t−2 + βmĈt−22:t−6 + β j Ĵt−1 + ǫt (27)

3. Empirical Findings

3.1. Descriptive Statistics255

In this section we present the descriptive statistics of our time series sample. Table 1

and 2 below shows the descriptive statistics for our explanatory time series variables.

[Table 1 about here.]

[Table 2 about here.]

We report summary statistics of realized volatility,
√

RV , and significant realized jumps,260

√

Ĵ, for European treasury bond markets. Our descriptive statistics reveal that the volatil-

ity term structure of European government bond markets indicates U-shaped pattern in

the intraday basis since the mean of RVs for short and long term maturities is higher than

the mean of medium term maturities. The same pattern is followed for the volatility-of-

volatility term structure (standard deviation of RVs) of European treasury bonds. On the265

other hand, there is no clear evidence of similar behavior for the realized jump series in

Table 2.

Figure 1 shows the boxplots of intraday volatility across European T-bond markets

across the maturity span.

[Figure 1 about here.]270

16



In all of the markets except France the volatility shows a U-shaped path for all the

maturities. Moreover, the 1-year and 30-year maturities are more volatile compared to

the other maturities. Also, the volatility of the volatility can be inferred from the spread

between 1st and 3rd quartile of the plots. It is obvious that volatility of volatility is higher

for short-term maturities, while some upward outliers are observed for the longer-term275

maturities.

Figure 2 and 3 show the boxplots of the realized semivariances (RSV).

[Figure 2 about here.]

[Figure 3 about here.]

Similar to the realized volatility in Figure 1, RSV series indicate a U-shaped pattern in280

the volatility yield curve with respect to 2nd and 3rd quartiles. In addition, the interquartile

range for 1-year and 30-year securities is higher than the other maturities. In any quartile

of the boxplot figures, we do not observe any fraction between negative and positive semi-

variances so any feedback effect. Therefore, in line with the literature (Nelson (1991);

Bekaert & Wu (2000); and Bollerslev & Zhou (2006)) we reject asymmetry hypothesis285

between contemporaneous bond returns and volatility.

The most straightforward comparison is likely to be made between France and Ger-

many sovereign bond markets due to euro-denomination. Except for 1-year T-bill, French

markets are found to be reflecting higher level of volatility in median and other quartiles.

Figures 4 to 7 gives the realized volatility series for the major European bond markets290

between January 2005 to October 2019.

[Figure 4 about here.]

17



[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]295

These figures reveal a high degree of volatility co-movement across the maturity and

market spectrum. We observe that government bond volatility peaks in the GFC period

and also the sovereign debt markets are faced with another common high volatility period

during the European debt crisis of 2010. These periods constitutes the most important

disruption periods in the sample period.300

In addition to the crisis impact on the bond yields and volatility, another key driver

of heightened European bond volatility is the 2016 United States presidential elections.

In addition to the surprising result of the election, the promises of expansionary fiscal

policies in tax-cuts and infrastructure expenditures resulted in euphoria mood in the stock

markets and at the same time triggered a sell-off in the bond markets in the November305

2016 due to heightened risk in the US budget balance. Andersson et al. (2009) study

the causes that moves bond markets in the Euro area and shows that bond markets are

more sensitive to the US related news due to investor perceptions on US as a main global

factor. In this perspective, our findings validate Andersson et al. (2009) since we show that

the uncertainty generated by the elections at the end of 2016 is transmitted to the major310

European bond markets.

Moreover, from Figures 4 to 7 we can easily see that Brexit referendum on June 2016

has a positive impact on the volatility term structure of the UK government bond market.

On the contrary, the low reaction of 1-year UK T-bond volatility shows that the effect of

UK’s decision to leave EU had an effect in medium to long-run UK bond market expec-315

tations. Also, before and after the Brexit vote, financial market participants tried to hedge
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their positions by increasing their allocations of safe haven securities, specifically Japanese

yen and Swiss franc denominated assets. This created a gradual rise in the volatility of

Swiss bond market.

In terms of idiosyncratic volatility periods, our analysis shows that the most signifi-320

cant country-specific event was the removal of Swiss franc peg to euro, which resulted an

immense volatility clustering in Swiss financial markets. On 15th January 2015, the Swiss

National Bank unexpectedly removed the peg of franc to euro, which was effective since

2011. This decision led to massive impact on Swiss FX and bond markets and resulted to

increase Swiss bond return volatility during this period. In addition, our analysis shows325

that German bond volatility increased during May-June 2015, which is known as ”bund

tantrum”. The tantrum in the bond markets is mainly attributed to the ECB’s Public Sector

Purchase Program (PSPP) that is introduced in early 2015. While, low interest rate and

quantitative easing policies tame the market volatility in the bond markets, its impact on

liquidity makes the government bond markets more fragile and open to sudden volatility330

spikesBIS (September 2015)8. During this period the large price swings in the intraday ba-

sis lead to volatile bond markets due to deterioration of liquidity especially in the medium

to long run securities (see Figure 7). These initial descriptive results are some preliminary

evidence showing the significant effect of major macroeconomic events (e.g Brexit) on the

volatility term structure of European bond markets.335

3.2. HAR Results

In this section we present the volatility forecasting results of our HAR-type mod-

els. The econometric results for the Swiss, German, French and UK realized bond return

8In BIS (September 2015), it is stated that the ECB purchased 46.3 billion of German bonds by June 30,

2015 since the start of PSPP.
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volatility term structure are given in Tables 3 to 10 9 10.

[Table 3 about here.]340

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]345

[Table 9 about here.]

[Table 10 about here.]

In order to compare the results of the volatility forecasting models we follow the pro-

cedure proposed by Patton (2011) according to which the QLIKE loss function gives the

most robust estimator in assessing volatility forecasts using imperfect volatility proxies.350

9We exclude the Swiss Treasury bond with 2-year maturity from our analysis due to some non-

convergences in the estimations.
10We report in-sample and out-of-sample forecast results for 1-day and 22-day forecast horizons. The

results regarding 5-day forecast horizon are given in the Online Appendix.
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Additionally, we use Mincer-Zarnowitz (MZ) R2 of forecasting regressions’ for evaluating

performance.

QLIKE =
1

T

T
∑

t=1

(RVt

ˆRVt

− log(
RVt

ˆRVt

) − 1
)

, (28)

where RVt is estimated using equation 21, 26 and 27.

We also report the QLIKE and MZ R2 when there is a jump at time ”t-1”, which is

denoted with J, and when the path is continuous for RVt−1, denoted with C. These HAR-355

type models are similar to those of Corsi et al. (2010) for US financial markets.

The results presented in Tables 3 to 10, indicate that daily, weekly and monthly trends

of volatility are robust determinants of future bond market volatility, regardless of forecast-

ing horizon and time to maturity of the securities. More specifically, the estimated coeffi-

cients of daily, weekly and monthly realized variance are positive and statistically signifi-360

cant when forecasting European government bond volatility term structure in the short (1-

day) and medium term (weekly and monthly) horizons. In the HAR-type models of Corsi

(2009), we aggregate realized volatilises over diverse set of horizons, which is assumed

to reflect the MDH and therefore relative contributions (weights) of non-homogeneous in-

vestors in the market volatility. As a result, short-term traders are found to have a largest365

impact on the volatility for one day forecasting horizon, while the impact of longer term

traders seem to increase as the forecasting horizon extends.

When the realized volatility is decomposed into its continuous and jump components,

the jump variations have a high and positive effect on future volatility. The jump tail risk

measure have a significantly positive effect on the volatility forecasts and its impact on370

volatility is found to be persistent for 1-day to 22-day horizons. Although, the contribution

of jump variation is present, its magnitude and effectiveness are relatively reduced as the

forecasting horizon increases. Our contribution in the relevant literature, is that we show
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for the first time in the volatility literature that jump tail risk is a significant determinant

of volatility in European Treasury bond markets. While the relevant literature so far has375

shown that the jump coefficient in the HAR-CJ model on equity (Forsberg & Ghysels

(2006); Giot & Laurent (2007); Busch et al. (2011)) and bond market volatility (Corsi

et al. (2010);Andersen et al. (2007a)) is negative and/or insignificant, we show that jumps

play a significant role when forecasting European bond market volatility.

Moreover, our analysis is the first to show the superior forecasting power of HAR-380

type when used for European bond volatility forecasting, when compared to those of the

literature focusing on US bond volatility forecasting. For example, we report in sample

R2 values ranging from 40% to 80%, while Andersen & Benzoni (2010), when testing the

HAR regression model for US treasury bond market their R2 values ranging from 15% to

20%. Hence, our analysis is the first to show that HAR-type volatility models explain a385

much larger part of time varying volatility in European bond markets as opposed to US

bond markets.

We additionally examine the out-of-sample forecasting performance of the HAR-type

volatility models using a rolling window. Tables 11 and 12 below report the out-of-sample

forecasting results.390

[Table 11 about here.]

[Table 12 about here.]

Our results are in-line with those of the literature (see Andersen et al. (2007a); Corsi

et al. (2010); Bollerslev et al. (2016); and Bollerslev et al. (2018)), as we find that the

inclusion of jump variation as an explanatory variable helps to reduce forecast errors.395

According to Diebold-Mariano forecast comparison test results, extending HAR model as
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HAR-RVJ and HAR-CJ improves the QLIKE loss functions significantly for most of the

government bonds.

In addition, we report average out-of-sample forecast regression R2s. Our out-of-

sample forecasting exercise show that the HAR-type models produce significant out-of-400

sample forecasts with out-of-sample R2s ranging from 20% to 70%. As expected, the out-

of-sample forecasting power is higher when forecasting the volatility of treasury bonds

with short-term maturity11.

3.3. Monetary Policy and Bond Market Volatility

Through risk taking and uncertainty channels monetary policy is the determinant of405

market volatility. In the literature, US stock and bond market volatility is largely attributed

to monetary policy shocks and to the news regarding monetary policy(see Bekaert et al.

(2013); David & Veronesi (2014); Bruno & Shin (2015); Triantafyllou & Dotsis (2017);

and Mallick et al. (2017)). Motivated by these findings, we examine the impact of mone-

tary policy meetings on realized volatility of European government bonds in the intraday410

basis. Figure 8 shows the response of financial markets to the monetary policy announce-

ments among major European central banks. Firstly, the announcement calendar of Swiss

National Bank (SNB) is irregular in the estimation period. SNB announces the policy

decision on 8:30 (GMT), 12:00 (GMT) and 13:00 (GMT), while the most frequent time

is 8:30 (GMT). As we observe, on the top left of Figure 8, the volatility of Swiss bonds415

during these announcement dates is higher at the focused interval and its impact persists

for one day long. Secondly, European Central Bank (ECB) always announces the decision

11For brevity, we do not include the forecasting regression results for weekly (5-day) forecasting horizon.

These additional results can be found in the Online Appendix. These estimations also verify that the inclu-

sion of the jump variation into HAR-type models improves out-of-sample volatility forecasts for European

government bond markets.
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on 12:45 (GMT). It is obvious that for France (bottom left of Figure 8), and Germany (top

right of Figure 8), bond markets exhibit a gradual rise in the volatility especially after the

ECB announcement and during the governor’s press conference. Lastly, the Bank of Eng-420

land (BoE) monetary policy meeting announcements are released on 12:00 (GMT), that is

when UK gilt volatility (bottom right of Figure 8), shows a sudden spike12.

[Figure 8 about here.]

[Figure 9 about here.]

The jump variations for bond markets signal at least one jump in 80% of all central425

bank monetary policy announcement days for Swiss market, at least one jump in 42% for

German market, at least one jump in 34% for French market and at least one jump in 40%

for UK market. Therefore, our results show that monetary policy (MP) announcements are

key drivers and early warning signals of increasing turbulence in European government

bond markets. Figure 10 reports the average jumps and volatility of the yield curve on the430

announcement dates13.

[Figure 10 about here.]

The volatility spikes and presence of jumps in the MP announcement days pave us the

way for studying the timing and the dynamics of the bond market volatility. In this frame-

work, we investigate whether there exist any impact of the meeting days on the volatility435

forecasting dynamics in the HAR framework. Lucca & Moench (2015) document that

there is a presence of excess return in the US equity market before the FOMC meetings,

12The absolute returns for time of the day basis given in Figure 9.
13The distribution of jumps are available upon request.
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which is then called as pre-FOMC drift. The excess return is justified by bearing non-

diversifible risk and systemic risk around the meeting (see Lucca & Moench (2015) for

more detail). In addition, Guo et al. (2020) show that pre-FOMC drift is depended on440

underlying economic sentiment and uncertainty. In this paper, we focus on the impact of

pre-announcement and announcement day drifts on bond market volatility forecasts.

In this paper, we focus on pre-MP announcement, called as pre-announcement, impact

on European bond market volatility. As to our knowledge it is the firs paper trying to

explain the pre-meeting impact in the volatility forecasting framework.445

In order to test the impact of MP announcement, we simply extend HAR-RV models

with incorporating a pre-announcement date and announcement date dummy variables,

separately. Therefore, HAR-RV model14 becomes:

RVt+h−1:t = β0 + β
1
dRVt−11(pre − announcement) + βdRVt−1 + βwRVt−5:t−2 + βmRVt−22:t−6 + ǫt,

(29)

and

RVt+h−1:t = β0 + β
1
dRVt−11(announcement) + βdRVt−1 + βwRVt−5:t−2 + βmRVt−22:t−6 + ǫt.

(30)

Table 13 gives the results for extended HAR-RV model using pre-announcement day

dummy variable. Firstly, the contribution of daily lagged volatility onto future volatility450

in the non-announcement day forecasts is only material apart from the results in the pre-

vious section, which validates the robustness of estimations. In this study, we call the

relationship between forecast period and daily lag as volatility transmission. Our results

14Similar to the previous subsection, we conduct our analysis using realized volatility,
√

RV . For simplic-

ity, we continue to give general HAR model representation.
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indicate that the volatility transmission sensitivity of forecasts increases by almost 40%

in pre-announcement days. Increased sensitivity to the daily volatility in terms of 1-day455

forward volatility corresponds to faster movement of the markets before the monetary pol-

icy announcements. This outcome can be interpreted as an evidence on the presence of

pre-announcement drift in the bond market. Therefore, inclusion of day dummy variable

highlights the importance of pre-announcement drift in the European bond market.

In addition, we analyze the announcement drift after the European central banks’ meet-460

ings using equation 30. Table 14 shows that there is no change on the underlying dynamics

of HAR forecasting relationship after the MP announcement. This result provides the idea

that the after the announcement short term tension is tamed by the central banks in the

European government bond markets, which can be interpreted as an evidence of ”buy the

speculation, sell the fact” behavior of financial market agents. After the monetary pol-465

icy announcements generally the opportunity to speculate in the markets evaporates and

markets tends to turn back its own fundamentals.

[Table 13 about here.]

[Table 14 about here.]

Moreover, we test the source of pre-announcemet drift in the integrated variation and470

jump variation framework. Therefore, we estimate the extended model of HAR-CJ as

follows:

RVt+h−1:t = β0 + β
1
dCt−11(pre − meeting) + β1

j Jt−11(pre − meeting) + βdĈt−1 + βwĈt−5:t−2+

βmĈt−22:t−6 + β j Ĵt−1 + ǫt

(31)
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[Table 15 about here.]

Table 15 show that the transmission effect is still significantly higher on the days before

policy announcements, even though its magnitude is weaker. Our results indicate that the475

pre-announcement drift is mostly resulted by the continuous component of the daily lagged

volatility not the jump variation.

4. Robustness

4.1. Market Microstructure Noise

In the realized volatility (RV) literature, the estimates are assumed to provide perfect480

estimators of quadratic variation (QV) under continuous time and without measurement

error. Therefore, using the highest possible homogeneous discrete time frequency sum of

squared returns is assumed to approximate true QV as the sampling frequency increases

up to tick-by-tick observation.

On the other hand, in practice it is emphasized that the presence of microstructure noise485

causes the bias in the estimates that significantly increases the error in the high frequency

based estimators (see Zhou (1996) and Hansen & Lunde (2006)). The market microstruc-

ture noise is generally documented by providing the intraday sampling frequency impact

on estimates15. Even though, using high frequency data poses the microstructure related

noise, volatility signature plots indicate that there is a trade-off between frequency and490

RV estimation ( Hansen & Lunde (2006)). Therefore, the estimations are constructed by

using moderate frequency, as 5 minutes to 20 minutes, to handle the bias (see Zhang et al.

(2005)). In addition to using optimal sampling frequency, there are some filtering ( Ander-

sen et al. (2003a)), two-scales estimator ( Zhang et al. (2005)) and kernel-based techniques

15Zhang et al. (2005) document a review on the impact of sampling bias using volatility signature plots.
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( Barndorff-Nielsen et al. (2008, 2009)) used in the literature in providing remedies to the495

market microstructure noise.

Since the seminal work by Zhou (1996), realized kernels in the volatility estimation

became popular. In this paper, we follow Barndorff-Nielsen et al. (2008, 2009) to con-

struct realized kernels, RK, which help in controlling the noise generated by microstruc-

ture noise. The RVKernel is formed as follows:500

RVKernel =

H
∑

h=−H

k

(

h

H + 1

)

γh, (32)

where γh =
∑n

i=1 ∆pi,n∆pi−h,n
16 and k(x) is non-stochastic weight function.

Following 32, Hansen & Lunde (2006) propose RVAC1
to correct bias in the realized

volatility measure, where k(x) is equal to unity, which is a restricted version of kernel-type

estimators.

RVAC1
is given as follows:505

RVAC1
=

n
∑

i=1

∆p2
i,n +

n
∑

i=1

∆pi,n∆pi−1,n +

n
∑

i=1

∆pi,n∆pi+1,n, (33)

This estimator provides more efficient measure and reduces the noise compared to RV

estimators ( Hansen & Lunde (2006)).

In this paper, we estimate RVAC1
and RVKernel as alternative realized variance estima-

tors. Unfortunately, the intraday based volatility estimator using AC − type model suffers

from negative values. In order to overcome the negativity problem, we employ the Parzen510

kernel, which guarantees the non-negative estimates of volatility17.

16∆pi,n corresponds to logarithmic change in prices.
17In the Parzen kernel weighting function, we follow Zhou (1996), where H is equal to one (Barndorff-

Nielsen et al. (2008)).
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Hansen & Lunde (2006) assert that the asymptotic variance of RVAC1
increases as the

sampling frequency n increases. As a result of the trade-off between sampling frequency

and estimation noise, intraday returns should not be sampled at the highest possible fre-

quency. In addition to using a moderate sampling frequency, utilization of the realized515

kernel based estimators helps more in reducing microstructure noise in the estimations.

The robustness results indicate that there our main findings remain unaltered if we RK

instead of RV in the volatility modelling. Table 16 reports the out-of-sample regression

results of volatility forecasts. It verifies that inclusion of jump variation into the HAR

model improves volatility forecasts for most of the European bond markets.520

[Table 16 about here.]

4.2. Alternative Volatility Estimator

In addition to market microstructure noise, realized volatility models suffer from fi-

nite sample jump distortion that can result in upward bias in jump estimators. In order

to achieve asymptotically more feasible results, we employ the estimators proposed by525

Andersen et al. (2012), which use nearest neighbor truncation. We estimate ”MinRV” and

”MedRV” as jump robust estimators in exchange for bipower variation (BV) and their rel-

evant tripower variation measures, namely ”MinRQ” and ”MedRQ” in order to measure

the significance of daily jumps.

Firstly, we compute ”MinRV” as summing the square of the minimum of two sequen-530

tial absolute returns as follows:

MinRVτ =
( 1

τ2

) π

π − 2

( n

n − 1

)

n−1
∑

i=1

min

(

|∆i p
(

t +
(i)h

n

)

|, |∆i+1 p
(

t +
(i + 1)h

n

)

|
)2

(34)

where, min(., .) corresponds to the minimum of the returns.
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MinRV benefits from one-sided truncation in estimating jump robust volatility estima-

tor. On the other hand, MedRV depends on two-sided truncation as taking the median

value of three consecutive absolute returns in volatility estimation as follows:535

MedRVτ =
( 1

τ2

) π

6 − 4
√

3 + π

( n

n − 2

)

n−1
∑

i=2

med

(

|∆i−1 p
(

t +
(i − 1)h

n

)

|, |∆i p
(

t +
(i)h

n

)

|,

|∆i+1 p
(

t +
(i + 1)h

n

)

|
)2

(35)

where, med(., ., .) corresponds to the median of the returns.

The jump robust estimators have their unique asymptotic distribution properties for

constructing jump statistics given in Andersen et al. (2012).

√
n
(

RV − MinRV) −→ MN
(

0, 3.81IQ
)

,

√
n
(

RV − MedRV) −→ MN
(

0, 2.96IQ
)

. (36)

where IQ is integrated quarticity.

Also, alternative to tripower quarticity given in 14, we estimate ”MinRQ” and ”MedRQ”.540

MinRVτ =
( 1

τ4

) πn

3π − 8

( n

n − 1

)

n−1
∑

i=1

min

(

|∆i p
(

t +
(i)h

n

)

|, |∆i+1 p
(

t +
(i + 1)h

n

)

|
)4

(37)

, and

MedRVτ =
( 1

τ4

) 3πn

9π + 72 − 52
√

3

( n

n − 2

)

n−1
∑

i=2

med

(

|∆i−1 p
(

t +
(i − 1)h

n

)

|, |∆i p
(

t +
(i)h

n

)

|,

|∆i+1 p
(

t +
(i + 1)h

n

)

|
)4

(38)

Then, we adjust the jump z-test with respect, 15 to the asymptotic distribution of trun-

cation based estimators, given in 36.

30



The volatility forecasting results of European bond markets are in line with the results

in Section 3. For the one-day forecasting in sample regressions indicate the jump variation

is a significant predictor of fuure volatility, while the impact of jump variation is tend to545

die out as the forecasting horizon increases18. In addition out-of-sample regression results

verifies that inclusion of jump variation into the HAR model improves volatility forecasts

for most of the bond markets.

5. Conclusion

In this paper, we study the forecasting power of HAR-type models on the volatility550

term structure of European government bond markets using intraday data covering the

period from January 2005 up until October 2019. Our econometric analysis shows that

the daily, weekly and monthly realized variance is a robust predictor of volatility in Euro-

pean government bond markets. In addition inclusion of jump variation helps to improve

volatilty forecasts. Overall, our HAR models exhibit extraordinary in-sample and out-of-555

sample forecasting power with in sample R2s ranging from 50% to 80% and out-of-sample

R2s ranging from 20% to 75%. Moreover, our analysis shows that 83% of central bank

rate decisions for Swiss market, 42% for German market, 34% for French market and 40%

for UK market coincide with at least one statistically significant bond price jump. In addi-

tion, our HAR-type models identify the significant predictive power of jumps on Treasury560

bond volatility. Hence our analysis implicitly reveals that monetary policy announcements

are early warning signals of rising volatility in European bond markets. Our results also

indicate the presence of pre-monetary policy meeting drift in the bond markets.

To the best of our knowledge, this is the first study that forecasts European bond volatil-

ity in the intraday basis using HAR-type cascade model. Secondly, our findings indicate565

18The results of estimators using nearest neighbor truncation are given in the Online Appendix.
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that the discrete jumps which are associated with monetary policy announcements, are

effective in ex-post bond return volatility forecasting. Thirdly, this paper reveals the dy-

namics of the volatility dependency structure of major European bond markets, where

findings indicate that the future volatility is significantly affected by its short and medium

term trend components. We also show that the monetary policy announcements are im-570

portant determinant of bond market volatility and the pre-announcement drift is present in

the European bond market using HAR-model structure.

The policy recommendation which comes out of our analysis, is that since monetary

policy announcements are key determinants (and significant early warning signals) of ris-

ing volatility in the respective Treasury bond markets, then the central banks are able to575

indirectly reduce instability in the respective bond markets if needed. For example, ac-

cording to our analysis, a reduction of monetary policy announcements during a given

time period, will result to less turbulence and instability in European treasury markets

during this period.
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Corsi, F., Pirino, D., & Renò, R. (2010). Threshold bipower variation and the impact of

jumps on volatility forecasting. Journal of Econometrics, 159, 276–288. doi:10.1016/

j.jeconom.2010.07.008.675

David, A., & Veronesi, P. (2014). Investors’ and central bank’s uncertainty embedded in

index options. The Review of Financial Studies, 27, 1661–1716. doi:10.1093/rfs/

hhu024.

36

http://dx.doi.org/10.1016/j.jeconom.2015.10.007
http://dx.doi.org/10.1016/j.jeconom.2015.10.007
http://dx.doi.org/10.1016/j.jeconom.2015.10.007
http://dx.doi.org/10.1016/j.jeconom.2005.01.006
http://dx.doi.org/https://doi.org/10.1016/S0378-4266(01)00211-4
http://dx.doi.org/https://doi.org/10.1016/S0378-4266(01)00211-4
http://dx.doi.org/https://doi.org/10.1016/S0378-4266(01)00211-4
http://dx.doi.org/10.1016/j.jmoneco.2014.11.011
http://dx.doi.org/10.1016/j.jmoneco.2014.11.011
http://dx.doi.org/10.1016/j.jmoneco.2014.11.011
http://dx.doi.org/10.1016/j.jeconom.2010.03.014
http://dx.doi.org/10.1016/j.jeconom.2010.03.014
http://dx.doi.org/10.1016/j.jeconom.2010.03.014
http://dx.doi.org/10.1093/jjfinec/nbp001
http://dx.doi.org/10.1016/j.jeconom.2010.07.008
http://dx.doi.org/10.1016/j.jeconom.2010.07.008
http://dx.doi.org/10.1016/j.jeconom.2010.07.008
http://dx.doi.org/10.1093/rfs/hhu024
http://dx.doi.org/10.1093/rfs/hhu024
http://dx.doi.org/10.1093/rfs/hhu024


Degiannakis, S., Filis, G., Klein, T., & Walther, T. (Forthcoming). Forecasting realized

volatility of agricultural commodities. International Journal of Forecasting, . doi:10.680

2139/ssrn.3446748.

Dueker, M. (1997). Markov switching in GARCH processes and mean-reverting stock-

market volatility. Journal of Business Economic Statistics, 15, 26–34. doi:10.2307/

1392070.

Ederington, L. H., & Lee, J. H. (1993). How markets process information: News releases685

and volatility. Journal of Finance, 48, 1161–1191. doi:10.2307/2329034.

Engle, R., & Siriwardane, E. N. (2018). Structural GARCH: The volatility-leverage con-

nection. Review of Financial Studies, 31, 449–492. doi:10.1093/rfs/hhx099.

Evans, K. P. (2011). Intraday jumps and US macroeconomic news announcements.

Journal of Banking Finance, 35, 2511–2527. doi:https://doi.org/10.1016/j.690

jbankfin.2011.02.018.

Faulkender, M. (2005). Hedging or market timing? selecting the interest rate exposure

of corporate debt. The Journal of Finance, 60, 931–962. doi:10.1111/j.1540-6261.

2005.00751.x.

Flannery, M. J., Hameed, A. S., & Harjes, R. H. (1997). Asset pricing, time-varying risk695

premia and interest rate risk. Journal of Banking Finance, 21, 315 – 335. doi:doi.

org/10.1016/S0378-4266(96)00044-1.

Forsberg, L., & Ghysels, E. (2006). Why do absolute returns predict volatility so well?

Journal of Financial Econometrics, 5, 31–67. doi:10.1093/jjfinec/nbl010.

37

http://dx.doi.org/10.2139/ssrn.3446748
http://dx.doi.org/10.2139/ssrn.3446748
http://dx.doi.org/10.2139/ssrn.3446748
http://dx.doi.org/10.2307/1392070
http://dx.doi.org/10.2307/1392070
http://dx.doi.org/10.2307/1392070
http://dx.doi.org/10.2307/2329034
http://dx.doi.org/10.1093/rfs/hhx099
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2011.02.018
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2011.02.018
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2011.02.018
http://dx.doi.org/10.1111/j.1540-6261.2005.00751.x
http://dx.doi.org/10.1111/j.1540-6261.2005.00751.x
http://dx.doi.org/10.1111/j.1540-6261.2005.00751.x
http://dx.doi.org/doi.org/10.1016/S0378-4266(96)00044-1
http://dx.doi.org/doi.org/10.1016/S0378-4266(96)00044-1
http://dx.doi.org/doi.org/10.1016/S0378-4266(96)00044-1
http://dx.doi.org/10.1093/jjfinec/nbl010


Franses, P. H., & Van Dijk, D. (1996). Forecasting stock market volatility using (non-700

linear) GARCH models. Journal of Forecasting, 15, 229–235. doi:10.1002/(SICI)

1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3.

Ghysels, E., Idier, J., Manganelli, S., & Vergote, O. (2016). A High-Frequency assess-

ment of the ECB Securities Markets Programme. Journal of the European Economic

Association, 15, 218–243. doi:10.1093/jeea/jvw003.705

Giot, P., & Laurent, S. (2007). The information content of implied volatility in light of the

jump/continuous decomposition of realized volatility. Journal of Futures Markets, 27,

337–359. doi:10.1002/fut.20251.

de Goeij, P., & Marquering, W. (2006). Macroeconomic announcements and asymmetric

volatility in bond returns. Journal of Banking& Finance, 30, 2659–2680. doi:10.1016/710

j.jbankfin.2005.09.014.

Gong, X., & Lin, B. (2018). Structural breaks and volatility forecasting in the copper

futures market. Journal of Futures Markets, 38, 290–339. doi:10.1002/fut.21867.

Guo, H., Hung, C.-H. D., & Kontonikas, A. (2020). Investor sentiment and the pre-

FOMC announcement drift. Finance Research Letters, (p. 101443). doi:10.1016/j.715

frl.2020.101443.

Hansen, P. R., & Lunde, A. (2006). Realized variance and market microstructure

noise. Journal of Business & Economic Statistics, 24, 127–161. doi:10.1198/

073500106000000071.

Hoffmann, P., Langfield, S., Pierobon, F., & Vuillemey, G. (2018). Who bears interest rate720

risk?. Working Paper 2176 European Central Bank.

38

http://dx.doi.org/10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3
http://dx.doi.org/10.1093/jeea/jvw003
http://dx.doi.org/10.1002/fut.20251
http://dx.doi.org/10.1016/j.jbankfin.2005.09.014
http://dx.doi.org/10.1016/j.jbankfin.2005.09.014
http://dx.doi.org/10.1016/j.jbankfin.2005.09.014
http://dx.doi.org/10.1002/fut.21867
http://dx.doi.org/10.1016/j.frl.2020.101443
http://dx.doi.org/10.1016/j.frl.2020.101443
http://dx.doi.org/10.1016/j.frl.2020.101443
http://dx.doi.org/10.1198/073500106000000071
http://dx.doi.org/10.1198/073500106000000071
http://dx.doi.org/10.1198/073500106000000071


Huang, X. (2018). Macroeconomic news announcements, systemic risk, financial market

volatility, and jumps. Journal of Futures Markets, 38, 513–534. doi:10.1002/fut.

21898.

Huang, X., & Tauchen, G. (2005). The relative contribution of jumps to total price vari-725

ance. Journal of Financial Econometrics, 3, 456–499. doi:10.1093/jjfinec/nbi025.

Jones, C. M., Lamont, O., & Lumsdaine, R. L. (1998). Macroeconomic news and

bond market volatility. Journal of Financial Economics, 47, 315–337. doi:10.1016/

S0304-405X(97)00047-0.

Lahaye, J., Laurent, S., & Neely, C. J. (2011). Jumps, cojumps and macro announcements.730

Journal of Applied Econometrics, 26, 893–921. doi:10.1002/jae.1149.

Landier, A., Sraer, D., & Thesmar, D. (2013). Banks’ Exposure to Interest Rate Risk

and The Transmission of Monetary Policy. Working Paper 18857 National Bureau of

Economic Research. doi:10.3386/w18857.

Lee, S. S. (2012). Jumps and information flow in financial markets. Review of Financial735

Studies, 25, 439–479. doi:10.1093/rfs/hhr084.

Lucca, D. O., & Moench, E. (2015). The pre-FOMC announcement drift. The Journal of

Finance, 70, 329–371. doi:10.1111/jofi.12196.

Luo, J., Klein, T., Ji, Q., & Hou, C. (2019). Forecasting realized volatility of agricultural

commodity futures with infinite Hidden Markov HAR models. International Journal of740

Forecasting, . doi:https://doi.org/10.1016/j.ijforecast.2019.08.007.

Mallick, S. K., Mohanty, M., & Zampolli, F. (2017). Market volatility, monetary policy

and the term premium. BIS Working Papers 606 Bank for International Settlements.

39

http://dx.doi.org/10.1002/fut.21898
http://dx.doi.org/10.1002/fut.21898
http://dx.doi.org/10.1002/fut.21898
http://dx.doi.org/10.1093/jjfinec/nbi025
http://dx.doi.org/10.1016/S0304-405X(97)00047-0
http://dx.doi.org/10.1016/S0304-405X(97)00047-0
http://dx.doi.org/10.1016/S0304-405X(97)00047-0
http://dx.doi.org/10.1002/jae.1149
http://dx.doi.org/10.3386/w18857
http://dx.doi.org/10.1093/rfs/hhr084
http://dx.doi.org/10.1111/jofi.12196
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2019.08.007


Markellos, R. N., & Psychoyios, D. (2018). Interest rate volatility and risk management:

Evidence from CBOE treasury options. The Quarterly Review of Economics and Fi-745

nance, 68, 190 – 202. doi:doi.org/10.1016/j.qref.2017.08.005.

Miao, H., Ramchander, S., & Zumwalt, J. K. (2014). S&P 500 index-futures price jumps

and macroeconomic news. Journal of Futures Markets, 34, 980–1001. doi:10.1002/

fut.21627.

Nelson, C., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. The Journal750

of Business, 60, 473–489. doi:10.1086/296409.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.

Econometrica, 59, 347–370. doi:10.2307/2938260.

O’Sullivan, C., & Papavassiliou, V. G. (2020). On the term structure of liquidity in the

European sovereign bond market. Journal of Banking Finance, 114. doi:10.1016/j.755

jbankfin.2020.105777.

Papadamou, S., & Sogiakas, V. (2018). The informational content of unconventional

monetary policy on precious metal markets. Journal of Forecasting, 37, 16–36.

doi:10.1002/for.2461.

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies.760

Journal of Econometrics, 160, 246–256. doi:10.1016/j.jeconom.2010.03.034.

Patton, A. J., & Sheppard, K. (2015). Good volatility, bad volatility: Signed jumps and

the persistence of volatility. The Review of Economics and Statistics, 97, 683–697.

doi:10.1162/REST\_a\_00503.

Perignon, C., & Smith, D. R. (2007). Yield-factor volatility models. Journal of Banking765

& Finance, 31, 3125–3144. doi:10.1016/j.jbankfin.2006.11.016.

40

http://dx.doi.org/doi.org/10.1016/j.qref.2017.08.005
http://dx.doi.org/10.1002/fut.21627
http://dx.doi.org/10.1002/fut.21627
http://dx.doi.org/10.1002/fut.21627
http://dx.doi.org/10.1086/296409
http://dx.doi.org/10.2307/2938260
http://dx.doi.org/10.1016/j.jbankfin.2020.105777
http://dx.doi.org/10.1016/j.jbankfin.2020.105777
http://dx.doi.org/10.1016/j.jbankfin.2020.105777
http://dx.doi.org/10.1002/for.2461
http://dx.doi.org/10.1016/j.jeconom.2010.03.034
http://dx.doi.org/10.1162/REST_a_00503
http://dx.doi.org/10.1016/j.jbankfin.2006.11.016


Prokopczuk, M., Symeonidis, L., & Simen, C. W. (2016). Do jumps matter for volatility

forecasting? Evidence from energy markets. Journal of Futures Markets, 36, 758–792.

doi:10.1002/fut.21759.

Rangel, J. G. (2011). Macroeconomic news, announcements, and stock market jump in-770

tensity dynamics. Journal of Banking Finance, 35, 1263–1276. doi:https://doi.

org/10.1016/j.jbankfin.2010.10.009.

Remolona, E., & Fleming, M. (1999). The term structure of announcement effects. Staff

Reports 76 Federal Reserve Bank of New York.

Schmitz, A., Wang, Z., & Kimn, J. (2014). A jump diffusion model for agricul-775

tural commodities with bayesian analysis. Journal of Futures Markets, 34, 235–260.

doi:10.1002/fut.21597.

Tauchen, G., & Zhou, H. (2011). Realized jumps on financial markets and predicting credit

spreads. Journal of Econometrics, 160, 102–118. doi:10.1016/j.jeconom.2010.03.

023.780

Tian, F., Yang, K., & Chen, L. (2017). Realized volatility forecasting of agricultural com-

modity futures using the HAR model with time-varying sparsity. International Jour-

nal of Forecasting, 33, 132–152. doi:https://doi.org/10.1016/j.ijforecast.

2016.08.002.

Triantafyllou, A., & Dotsis, G. (2017). Option-implied expectations in commodity markets785

and monetary policy. Journal of International Money and Finance, 77, 1–17. doi:10.

1016/j.jimonfin.2017.0.

Wen, F., Gong, X., & Cai, S. (2016). Forecasting the volatility of crude oil futures using

41

http://dx.doi.org/10.1002/fut.21759
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2010.10.009
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2010.10.009
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2010.10.009
http://dx.doi.org/10.1002/fut.21597
http://dx.doi.org/10.1016/j.jeconom.2010.03.023
http://dx.doi.org/10.1016/j.jeconom.2010.03.023
http://dx.doi.org/10.1016/j.jeconom.2010.03.023
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2016.08.002
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2016.08.002
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2016.08.002
http://dx.doi.org/10.1016/j.jimonfin.2017.0
http://dx.doi.org/10.1016/j.jimonfin.2017.0
http://dx.doi.org/10.1016/j.jimonfin.2017.0


HAR-type models with structural breaks. Energy Economics, 59, 400–413. doi:https:

//doi.org/10.1016/j.eneco.2016.07.014.790

Wright, J. H., & Zhou, H. (2009). Bond risk premia and realized jump risk. Journal of

Banking Finance, 33, 2333–2345. doi:10.1016/j.jbankfin.2009.06.010.

Zhang, H., & Dufour, A. (2019). Modeling intraday volatility of European bond markets:

A data filtering application. International Review of Financial Analysis, 63, 131–146.

doi:10.1016/j.irfa.2019.02.002.795

Zhang, L., Mykland, P. A., & Aı̈t-Sahalia, Y. (2005). A tale of two time scales.

Journal of the American Statistical Association, 100, 1394–1411. doi:10.1198/

016214505000000169.

Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of

Business& Economic Statistics, 14, 45–52. doi:10.1080/07350015.1996.10524628.800

42

http://dx.doi.org/https://doi.org/10.1016/j.eneco.2016.07.014
http://dx.doi.org/https://doi.org/10.1016/j.eneco.2016.07.014
http://dx.doi.org/https://doi.org/10.1016/j.eneco.2016.07.014
http://dx.doi.org/10.1016/j.jbankfin.2009.06.010
http://dx.doi.org/10.1016/j.irfa.2019.02.002
http://dx.doi.org/10.1198/016214505000000169
http://dx.doi.org/10.1198/016214505000000169
http://dx.doi.org/10.1198/016214505000000169
http://dx.doi.org/10.1080/07350015.1996.10524628


Figure 1: Box Plot of RV
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Figure 2: Feedback Effect: Box Plots of Negative, RS V−, and Positive, RS V+, Semi-variances across

Maturity Span
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Figure 3: Feedback Effect: Box Plots of Negative, RS V−, and Positive, RS V+, Semi-variances Maturity

Span
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Figure 4: Realized Volatility: The squared root of realized volatility, RV1/2, is given in percentages.
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Figure 5: Realized Volatility: The squared root of realized volatility, RV1/2, is given in percentages.
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Figure 6: Realized Volatility: The squared root of realized volatility, RV1/2, is given in percentages.
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Figure 7: Realized Volatility: The squared root of realized volatility, RV1/2, is given in percentages.
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Figure 8: Realized Volatility Averages by Time of Day: The squared root of realized volatility, RV1/2, is

given in percentages. Averages correspond to the average of volatility in whole sample period of January

2005-October 2019. Lines represent the average volatility on the yield curves.
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Figure 9: Absolute Returns by Time of Day: Averages correspond to the average absolute return in whole

sample period of January 2005-October 2019.
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Figure 10: Average Volatility and Jump Variation: Averages correspond to the average variation in the

date of monetary policy committee meetings of SNB, ECB and BoE respectively. Numbers represents

number of meetings in the January 2005 and October 2019 period.
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Table 1: Summary Statistics for Bond Price Volatility Across the Maturity Spectrum

(a) Statistics for
√

RV

Swiss German

1- 2- 5- 10- 20- 30- 1- 2- 5- 10- 20- 30-

Mean 0.022 — 0.007 0.007 0.005 0.008 0.011 0.007 0.008 0.008 0.008 0.012

St. dev. 0.026 — 0.006 0.006 0.005 0.011 0.011 0.005 0.006 0.006 0.006 0.016

Skewness -0.545 — 0.113 0.393 -0.574 0.459 -0.112 -0.237 0.358 0.811 0.514 1.278

Kurtosis 4.605 — 5.277 4.620 6.902 6.677 2.549 2.907 2.725 4.066 3.523 5.073

Min 0.000 — 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001

Max 0.228 — 0.076 0.067 0.109 0.161 0.082 0.085 0.059 0.054 0.069 0.151

DF Test St. -16.838 — -19.695 -17.178 -27.217 -21.631 -11.826 -13.293 -14.162 -13.401 -14.874 -15.999

(b) Statistics for
√

RV

French UK

1- 2- 5- 10- 20- 30- 1- 2- 5- 10- 20- 30-

Mean 0.010 0.012 0.010 0.010 0.008 0.017 0.014 0.010 0.009 0.009 0.008 0.012

St. dev. 0.012 0.012 0.008 0.009 0.006 0.025 0.014 0.009 0.007 0.008 0.006 0.018

Skewness 0.488 0.314 0.361 0.860 0.551 1.363 0.753 0.825 0.880 0.949 0.849 1.459

Kurtosis 3.211 2.718 2.734 3.695 4.087 4.613 3.398 3.924 5.001 4.906 5.865 5.886

Min 0.000 0.000 0.001 0.002 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002

Max 0.209 0.090 0.070 0.092 0.075 0.206 0.225 0.113 0.111 0.115 0.101 0.266

DF Test St. -15.973 -11.564 -13.309 -14.931 -14.235 -17.717 -14.848 -15.615 -15.914 -16.429 -14.658 -18.410

This table gives summary statistics of realized volatility (
√

RV) for European government bond markets. Daily volatility series

are computed using 10-minute returns in the period of January 2005 - October 2019. The series are annualized by multiplying√
252. Rows of panels represent mean, standard deviation, skewness, kurtosis, minimum, maximum and Dickey-Fuller test

statistics, respectively. For skewness and kurtosis statistics, log(
√

RV) results are reported.
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Table 2: Summary Statistics for Bond Price Jumps Across the Maturity Spectrum

(a) Statistics for
√

Ĵ

Swiss German

1- 2- 5- 10- 20- 30- 1- 2- 5- 10- 20- 30-

Mean 0.014 — 0.005 0.006 0.005 0.006 0.006 0.007 0.007 0.007 0.007 0.009

St. dev. 0.017 — 0.005 0.004 0.004 0.005 0.006 0.006 0.005 0.004 0.005 0.008

Skewness -0.457 — -0.045 0.069 -0.489 -0.074 0.074 -0.134 0.177 0.206 0.339 0.765

Kurtosis 3.829 — 5.707 3.691 5.623 5.053 2.642 2.887 2.843 3.259 3.213 4.432

Min 0.000 — 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001

Max 0.134 — 0.063 0.035 0.058 0.095 0.056 0.051 0.038 0.035 0.055 0.088

DF Test St. -11.916 — -16.392 -13.375 -18.906 -17.613 -8.821 -6.411 -8.520 -9.053 -9.655 -10.287

(b) Statistics for
√

Ĵ

French UK

1- 2- 5- 10- 20- 30- 1- 2- 5- 10- 20- 30-

Mean 0.007 0.009 0.007 0.008 0.008 0.010 0.010 0.009 0.008 0.008 0.007 0.008

St. dev. 0.009 0.008 0.005 0.005 0.005 0.010 0.010 0.009 0.006 0.005 0.004 0.009

Skewness 0.171 0.133 0.382 0.569 0.078 0.913 0.793 0.881 0.647 0.481 0.418 1.061

Kurtosis 3.283 2.751 2.669 3.529 4.504 4.640 3.313 4.007 3.856 3.830 3.582 5.847

Min 0.000 0.001 0.002 0.001 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.002

Max 0.123 0.046 0.034 0.053 0.069 0.118 0.093 0.081 0.060 0.068 0.044 0.127

DF Test St. -8.980 -5.468 -7.893 -9.001 -8.682 -9.357 -7.380 -8.931 -11.221 -10.981 -9.489 -12.683

This table gives summary statistics of significant daily jumps (
√

Ĵ) for European government bond markets. Daily jump series

are computed using 10-minute returns in the period of January 2005 - October 2019. The series are annualized by multiplying√
252. Rows of panels represent mean, standard deviation, skewness, kurtosis, minimum, maximum and Dickey-Fuller test

statistics, respectively. For skewness and kurtosis statistics, log(
√

Ĵ) results are reported.
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Table 3: Regression Results of Swiss Market on 1-day Forecast Horizon (h=1)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.002 — — — 0.001 0.001 0.002

(3.01)*** (3.05)*** (5.37)*** — — — (3.07)*** (3.03)*** (4.5)***

βd 0.386 0.391 0.397 — — — 0.323 0.358 0.341

(7.68)*** (7.59)*** (7.3)*** — — — (9.08)*** (8.26)*** (7.76)***

βw 0.306 0.306 0.276 — — — 0.344 0.338 0.341

(5.72)*** (5.71)*** (4.76)*** — — — (7.29)*** (6.94)*** (5.88)***

βm 0.211 0.212 0.246 — — — 0.129 0.119 0.160

(4.82)*** (4.81)*** (5.19)*** — — — (2.61)*** (2.36)*** (2.51)***

β j -0.041 0.236 — — — -0.080 0.206

(-0.8) (4.38)*** — — — (-1.63) (4.35)***

R2 0.634 0.634 0.630 — — — 0.394 0.397 0.395

QLIKE 0.201 0.201 0.201 — — — 0.133 0.133 0.136

J − R2 0.518 0.518 0.515 — — — 0.285 0.285 0.283

J − QLIKE 0.324 0.324 0.328 — — — 0.152 0.152 0.155

C − R2 0.669 0.669 0.665 — — — 0.474 0.475 0.473

C − QLIKE 0.147 0.147 0.146 — — — 0.114 0.114 0.116

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.001 0.002 0.002 0.003 0.001 0.001 0.002

(2.74)*** (2.83)*** (6.31)*** (6.2)*** (6.46)*** (9.59)*** (2.38)*** (2.99)*** (5.92)***

βd 0.349 0.358 0.364 0.148 0.159 0.159 0.341 0.350 0.331

(8.91)*** (8.42)*** (8.31)*** (3.61)*** (3.23)*** (3.55)*** (6.08)*** (5.73)*** (5.87)***

βw 0.358 0.355 0.331 0.137 0.137 0.167 0.293 0.289 0.326

(6.56)*** (6.43)*** (6.05)*** (2.8)*** (2.86)*** (2.85)*** (4.88)*** (4.93)*** (5.27)***

βm 0.159 0.156 0.168 0.258 0.256 0.219 0.214 0.210 0.186

(3.77)*** (3.71)*** (3.9)*** (3.58)*** (3.51)*** (2.98)*** (3.8)*** (3.73)*** (3.18)***

β j -0.028 0.242 -0.030 0.111 -0.057 0.213

(-0.8) (6.93)*** (-0.67) (2.71)*** (-1) (3.24)***

R2 0.520 0.520 0.510 0.119 0.120 0.116 0.511 0.512 0.517

QLIKE 0.117 0.117 0.119 0.166 0.165 0.168 0.162 0.161 0.161

J − R2 0.431 0.432 0.412 0.128 0.127 0.126 0.259 0.257 0.273

J − QLIKE 0.129 0.128 0.131 0.161 0.161 0.163 0.162 0.162 0.162

C − R2 0.565 0.565 0.559 0.103 0.102 0.099 0.574 0.573 0.576

C − QLIKE 0.108 0.108 0.110 0.170 0.170 0.174 0.159 0.159 0.158

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 4: Regression Results of German Market on 1-day Forecast Horizon (h=1)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001

(3.48)*** (3.69)*** (4.89)*** (2.93)*** (2.74)*** (3.16)*** (4.07)*** (4.85)*** (8.54)***

βd 0.600 0.603 0.602 0.319 0.355 0.388 0.372 0.412 0.427

(15.67)*** (15.82)*** (16.45)*** (8.15)*** (6.92)*** (6.65)*** (8.84)*** (7.67)*** (7.29)***

βw 0.246 0.247 0.247 0.356 0.337 0.328 0.389 0.361 0.353

(5.32)*** (5.37)*** (5.83)*** (6.61)*** (6.43)*** (6.07)*** (7.35)*** (6.12)*** (5.36)***

βm 0.087 0.085 0.085 0.237 0.236 0.242 0.135 0.133 0.123

(2.83)*** (2.73)*** (2.76)*** (4.23)*** (4.18)*** (3.98)*** (4.42)*** (4.44)*** (3.68)***

β j -0.055 0.279 -0.098 0.121 -0.116 0.130

(-0.96) (5.3)*** (-3.07)*** (4.66)*** (-2.91)*** (5.3)***

R2 0.753 0.754 0.755 0.623 0.626 0.616 0.603 0.607 0.603

QLIKE 0.119 0.119 0.121 0.062 0.061 0.062 0.074 0.073 0.074

J − R2 0.596 0.596 0.605 0.648 0.652 0.641 0.487 0.493 0.494

J − QLIKE 0.242 0.241 0.239 0.073 0.072 0.074 0.082 0.082 0.079

C − R2 0.772 0.772 0.772 0.620 0.621 0.611 0.631 0.632 0.626

C − QLIKE 0.097 0.097 0.098 0.059 0.059 0.060 0.071 0.071 0.072

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002

(4.03)*** (5.45)*** (8.37)*** (4.09)*** (4.49)*** (6.34)*** (4.28)*** (3.9)*** (4.97)***

βd 0.454 0.528 0.531 0.396 0.429 0.442 0.538 0.551 0.541

(11.79)*** (11.88)*** (11.68)*** (6.36)*** (5.32)*** (4.94)*** (9.32)*** (8.45)*** (8.11)***

βw 0.372 0.317 0.319 0.359 0.339 0.345 0.320 0.313 0.326

(8.3)*** (6.6)*** (6.02)*** (6.46)*** (4.99)*** (4.11)*** (5.68)*** (5.12)*** (5.05)***

βm 0.058 0.051 0.038 0.075 0.069 0.050 0.017 0.013 0.009

(1.82)* (1.68)* (1.14) (2.58)*** (2.51)*** (1.77)* (0.71) (0.55) (0.36)

β j -0.201 0.102 -0.073 0.190 -0.115 0.199

(-5.17)*** (3.77)*** (-1.28) (5.01)*** (-0.92) (1.65)*

R2 0.620 0.631 0.628 0.488 0.490 0.488 0.666 0.667 0.665

QLIKE 0.073 0.070 0.071 0.074 0.073 0.073 0.096 0.094 0.094

J − R2 0.421 0.426 0.418 0.474 0.477 0.491 0.403 0.403 0.378

J − QLIKE 0.068 0.067 0.068 0.075 0.074 0.075 0.089 0.088 0.090

C − R2 0.658 0.661 0.658 0.497 0.498 0.493 0.697 0.697 0.698

C − QLIKE 0.071 0.071 0.072 0.073 0.073 0.073 0.095 0.096 0.096

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 5: Regression Results of French Market on 1-day Forecast Horizon (h=1)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001

(4.32)*** (3.89)*** (2.97)*** (2.47)*** (2.63)*** (3.1)*** (2.73)*** (3.53)*** (5.38)***

βd 0.610 0.585 0.586 0.412 0.417 0.439 0.390 0.421 0.450

(16.65)*** (19.01)*** (19.66)*** (8.15)*** (8.15)*** (8.87)*** (9.54)*** (9.97)*** (10.32)***

βw 0.197 0.188 0.215 0.377 0.375 0.483 0.325 0.308 0.413

(2.77)*** (2.57)*** (3.98)*** (7.07)*** (7.02)*** (9.34)*** (7.9)*** (7.39)*** (9.85)***

βm 0.058 0.067 0.043 0.159 0.158 0.053 0.204 0.194 0.058

(1.65)* (1.75)* (2.29)** (4.77)*** (4.71)*** (2.88)*** (6.23)*** (6.06)*** (2)**

β j 0.348 0.618 -0.056 0.169 -0.131 0.118

(2.18)** (3.92)*** (-1.13) (3.32)*** (-3.43)*** (3.4)***

R2 0.626 0.637 0.637 0.782 0.782 0.779 0.659 0.662 0.658

QLIKE 0.107 0.107 0.108 0.062 0.062 0.063 0.068 0.067 0.069

J − R2 0.542 0.548 0.541 0.733 0.740 0.729 0.576 0.592 0.609

J − QLIKE 0.186 0.191 0.187 0.097 0.096 0.090 0.078 0.076 0.075

C − R2 0.663 0.664 0.665 0.786 0.786 0.784 0.668 0.669 0.662

C − QLIKE 0.099 0.099 0.099 0.060 0.060 0.061 0.066 0.066 0.068

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001

(3.81)*** (3.64)*** (4.7)*** (2.91)*** (3.33)*** (6.15)*** (4.82)*** (2.34)*** (3.34)***

βd 0.461 0.462 0.476 0.396 0.440 0.473 0.517 0.504 0.517

(10.23)*** (9.65)*** (10.18)*** (9.33)*** (8.53)*** (9.22)*** (12.39)*** (12.21)*** (12.7)***

βw 0.302 0.301 0.357 0.246 0.225 0.327 0.254 0.261 0.314

(6.8)*** (6.61)*** (7.75)*** (4.85)*** (4.24)*** (5.51)*** (4.95)*** (5.24)*** (7.09)***

βm 0.128 0.128 0.064 0.233 0.217 0.052 0.113 0.110 0.057

(4.16)*** (4.11)*** (2.17)** (5.5)*** (5.19)*** (1.67)* (3.5)*** (3.54)*** (1.54)

β j -0.008 0.253 -0.101 0.175 0.415 0.697

(-0.13) (5.11)*** (-2.44)*** (6)*** (3.5)*** (5.99)***

R2 0.621 0.621 0.623 0.523 0.526 0.522 0.638 0.646 0.645

QLIKE 0.077 0.077 0.077 0.066 0.065 0.066 0.103 0.112 0.113

J − R2 0.594 0.595 0.613 0.374 0.382 0.413 0.610 0.587 0.587

J − QLIKE 0.105 0.105 0.097 0.086 0.085 0.087 0.162 0.225 0.193

C − R2 0.630 0.630 0.629 0.569 0.570 0.559 0.665 0.665 0.664

C − QLIKE 0.073 0.073 0.073 0.060 0.060 0.062 0.096 0.096 0.099

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 6: Regression Results of the UK Market on 1-day Forecast Horizon (h=1)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002

(2.68)*** (2.65)*** (3.79)*** (4.24)*** (4.46)*** (6.19)*** (3.93)*** (4.84)*** (6.45)***

βd 0.522 0.520 0.553 0.472 0.529 0.582 0.500 0.591 0.608

(12.25)*** (12.1)*** (13.13)*** (6.49)*** (9.57)*** (10.66)*** (6.55)*** (8.19)*** (8.19)***

βw 0.247 0.247 0.293 0.259 0.227 0.257 0.201 0.152 0.135

(2.53)*** (2.53)*** (3.77)*** (3.05)*** (2.97)*** (3.79)*** (2.51)*** (1.91)* (1.74)*

βm 0.121 0.121 0.046 0.128 0.124 0.030 0.114 0.106 0.097

(1.86)* (1.87)* (1.84)* (2.86)*** (2.82)*** (2.82)*** (2.46)*** (2.4)*** (3.83)***

β j 0.015 0.317 -0.173 0.180 -0.232 0.133

(0.2) (4.08)*** (-2.96)*** (2.71)*** (-4.68)*** (3.56)***

R2 0.639 0.639 0.632 0.550 0.558 0.552 0.469 0.488 0.487

QLIKE 0.069 0.069 0.071 0.071 0.070 0.074 0.084 0.081 0.082

J − R2 0.647 0.646 0.641 0.378 0.395 0.437 0.347 0.362 0.358

J − QLIKE 0.096 0.096 0.098 0.093 0.089 0.090 0.089 0.088 0.090

C − R2 0.639 0.639 0.632 0.590 0.591 0.577 0.512 0.519 0.519

C − QLIKE 0.067 0.067 0.069 0.066 0.067 0.071 0.078 0.079 0.080

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002

(3.15)*** (4.41)*** (7.35)*** (4.12)*** (4.98)*** (4.44)*** (3.68)*** (3.78)*** (4.88)***

βd 0.483 0.525 0.502 0.583 0.630 0.620 0.576 0.574 0.552

(9.83)*** (9.79)*** (8.58)*** (8.46)*** (10.55)*** (9.61)*** (11.12)*** (10.54)*** (9.69)***

βw 0.286 0.260 0.283 0.146 0.118 0.112 0.233 0.234 0.248

(6.91)*** (6.65)*** (6.57)*** (1.65)* (1.41) (1.41) (4.78)*** (4.83)*** (5.13)***

βm 0.050 0.047 0.059 0.088 0.090 0.142 0.030 0.030 0.045

(1.46) (1.45) (2.78)*** (2.1)** (2.23)** (3.89)*** (1.03) (1.01) (2.32)**

β j -0.163 0.137 -0.159 0.187 0.037 0.339

(-2.89)*** (3.4)*** (-2.78)*** (2.9)*** (0.29) (2.99)***

R2 0.510 0.517 0.527 0.513 0.521 0.529 0.594 0.594 0.601

QLIKE 0.087 0.083 0.082 0.070 0.067 0.067 0.106 0.107 0.105

J − R2 0.466 0.477 0.505 0.462 0.470 0.493 0.693 0.692 0.701

J − QLIKE 0.085 0.083 0.081 0.075 0.074 0.076 0.103 0.104 0.100

C − R2 0.521 0.522 0.529 0.538 0.540 0.545 0.583 0.583 0.589

C − QLIKE 0.084 0.084 0.082 0.066 0.066 0.066 0.111 0.111 0.107

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 7: Regression Results of Swiss Market on 22-day Forecast Horizon (h=22)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.005 0.005 0.006 — — — 0.003 0.003 0.003

(7.1)*** (7.04)*** (8.86)*** — — — (4.48)*** (5.12)*** (7.55)***

βd 0.212 0.207 0.216 — — — 0.212 0.275 0.224

(10.35)*** (10.22)*** (9.69)*** — — — (6.22)*** (6.05)*** (6.3)***

βw 0.393 0.393 0.348 — — — 0.257 0.245 0.298

(6.43)*** (6.43)*** (6.49)*** — — — (4.75)*** (4.67)*** (5.71)***

βm 0.243 0.242 0.294 — — — 0.208 0.190 0.249

(4)*** (3.98)*** (5.17)*** — — — (2.65)*** (2.47)*** (3.15)***

β j 0.037 0.214 — — — -0.145 0.071

(0.81) (4.23)*** — — — (-3.82)*** (3.06)***

R2 0.695 0.696 0.685 — — — 0.425 0.439 0.482

QLIKE 0.096 0.096 0.100 — — — 0.058 0.057 0.055

J − R2 0.619 0.620 0.610 — — — 0.365 0.375 0.410

J − QLIKE 0.135 0.134 0.139 — — — 0.052 0.052 0.051

C − R2 0.723 0.723 0.713 — — — 0.444 0.446 0.494

C − QLIKE 0.079 0.079 0.083 — — — 0.062 0.063 0.059

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.002 0.002 0.003 0.003 0.003 0.004 0.002 0.002 0.003

(5.17)*** (5.34)*** (9.28)*** (5.78)*** (5.92)*** (10.47)*** (4.18)*** (4.65)*** (8.93)***

βd 0.192 0.204 0.194 0.103 0.121 0.124 0.194 0.208 0.198

(7.07)*** (6.12)*** (6.65)*** (3.42)*** (2.86)*** (3.18)*** (4.63)*** (4.43)*** (4.39)***

βw 0.246 0.243 0.240 0.174 0.173 0.177 0.244 0.238 0.241

(3.84)*** (3.83)*** (3.35)*** (2.84)*** (2.88)*** (2.71)*** (3.92)*** (3.88)*** (3.68)***

βm 0.376 0.372 0.395 0.315 0.311 0.280 0.416 0.410 0.409

(4.42)*** (4.33)*** (4.37)*** (3.77)*** (3.69)*** (3.3)*** (4.9)*** (4.79)*** (4.53)***

β j -0.039 0.132 -0.049 0.070 -0.094 0.081

(-1.14) (4.88)*** (-1.41) (3.98)*** (-2.23)** (3.43)***

R2 0.608 0.608 0.618 0.259 0.261 0.238 0.631 0.633 0.641

QLIKE 0.050 0.049 0.049 0.065 0.065 0.070 0.080 0.079 0.079

J − R2 0.567 0.567 0.581 0.261 0.259 0.239 0.429 0.426 0.470

J − QLIKE 0.046 0.046 0.045 0.059 0.059 0.063 0.079 0.078 0.074

C − R2 0.616 0.615 0.624 0.243 0.241 0.217 0.672 0.671 0.670

C − QLIKE 0.052 0.052 0.052 0.073 0.074 0.079 0.081 0.081 0.085

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 8: Regression Results of German Market on 22-day Forecast Horizon (h=22)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.003 0.003 0.003 0.001 0.001 0.001 0.002 0.002 0.003

(6.07)*** (6.13)*** (6.75)*** (4.93)*** (5.04)*** (5.97)*** (6.96)*** (7.04)*** (10.08)***

βd 0.325 0.323 0.330 0.208 0.198 0.243 0.230 0.243 0.263

(9.65)*** (9.39)*** (9.63)*** (8.43)*** (7.56)*** (7.44)*** (10.6)*** (9.3)*** (9.51)***

βw 0.283 0.283 0.276 0.313 0.318 0.282 0.298 0.289 0.271

(7.47)*** (7.46)*** (7.09)*** (6.46)*** (6.1)*** (6.92)*** (5.93)*** (5.55)*** (5.18)***

βm 0.187 0.188 0.186 0.341 0.341 0.366 0.280 0.279 0.276

(2.91)*** (2.91)*** (2.85)*** (6.38)*** (6.4)*** (7.12)*** (6.1)*** (6.1)*** (5.72)***

β j 0.017 0.214 0.028 0.168 -0.038 0.118

(0.33) (4.22)*** (0.66) (3.62)*** (-1.11) (3.61)***

R2 0.634 0.634 0.629 0.714 0.714 0.695 0.626 0.626 0.618

QLIKE 0.123 0.123 0.127 0.036 0.036 0.038 0.044 0.043 0.045

J − R2 0.421 0.421 0.412 0.713 0.713 0.677 0.560 0.560 0.547

J − QLIKE 0.212 0.212 0.216 0.042 0.042 0.046 0.046 0.046 0.044

C − R2 0.666 0.666 0.663 0.715 0.715 0.700 0.643 0.643 0.637

C − QLIKE 0.105 0.105 0.109 0.035 0.035 0.037 0.042 0.042 0.044

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.003 0.003 0.004 0.003 0.003 0.004 0.006 0.006 0.006

(8.15)*** (8.52)*** (10.45)*** (8.11)*** (8.59)*** (10.91)*** (8.5)*** (8.73)*** (9.62)***

βd 0.288 0.317 0.327 0.236 0.272 0.267 0.360 0.378 0.363

(8.83)*** (7.81)*** (8.6)*** (10.36)*** (9.46)*** (9.04)*** (9.15)*** (8.79)*** (8.71)***

βw 0.313 0.292 0.278 0.213 0.191 0.196 0.242 0.233 0.245

(6.4)*** (5.63)*** (5.04)*** (3.7)*** (3.48)*** (2.97)*** (4.28)*** (4.05)*** (4.22)***

βm 0.066 0.063 0.066 0.210 0.203 0.217 0.057 0.052 0.059

(1.09) (1.05) (1.08) (5.05)*** (4.81)*** (4.48)*** (1.14) (1.05) (1.17)

β j -0.078 0.109 -0.078 0.093 -0.149 0.070

(-2.1)** (4.16)*** (-2.85)*** (4.56)*** (-1.61) (0.76)

R2 0.472 0.474 0.473 0.407 0.411 0.422 0.429 0.432 0.434

QLIKE 0.055 0.055 0.055 0.048 0.048 0.046 0.145 0.144 0.142

J − R2 0.377 0.382 0.390 0.442 0.447 0.478 0.296 0.298 0.290

J − QLIKE 0.057 0.056 0.054 0.042 0.041 0.038 0.099 0.098 0.098

C − R2 0.497 0.499 0.496 0.398 0.399 0.406 0.442 0.442 0.446

C − QLIKE 0.054 0.054 0.055 0.049 0.050 0.048 0.154 0.154 0.152

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 9: Regression Results of French Market on 22-day Forecast Horizon (h=22)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.004 0.004 0.002 0.001 0.001 0.001 0.001 0.002 0.002

(7.4)*** (7.19)*** (2.92)*** (4.49)*** (4.58)*** (2.4)*** (4.87)*** (5.25)*** (4.54)***

βd 0.285 0.273 0.249 0.253 0.255 0.287 0.203 0.221 0.260

(8.38)*** (7.91)*** (7.4)*** (7.27)*** (7.16)*** (9.39)*** (8.45)*** (7.85)*** (10.21)***

βw 0.156 0.151 0.224 0.373 0.372 0.550 0.289 0.279 0.473

(1.82)* (1.76)* (3.16)*** (6.51)*** (6.48)*** (13.21)*** (5.6)*** (5.44)*** (10.95)***

βm 0.254 0.258 0.283 0.283 0.283 0.178 0.386 0.381 0.186

(3.02)*** (3)*** (3.19)*** (4.44)*** (4.44)*** (3.3)*** (6.49)*** (6.38)*** (2.56)***

β j 0.170 0.151 -0.023 0.106 -0.075 0.063

(1.34) (1.33) (-0.64) (2.47)*** (-2.35)*** (2.46)***

R2 0.408 0.411 0.463 0.809 0.809 0.804 0.740 0.741 0.721

QLIKE 0.139 0.138 0.122 0.046 0.046 0.052 0.038 0.038 0.040

J − R2 0.327 0.322 0.369 0.842 0.843 0.810 0.641 0.648 0.647

J − QLIKE 0.174 0.179 0.148 0.052 0.052 0.053 0.046 0.046 0.045

C − R2 0.431 0.431 0.484 0.807 0.807 0.803 0.749 0.749 0.728

C − QLIKE 0.134 0.134 0.118 0.046 0.046 0.052 0.036 0.036 0.039

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.004 0.004

(6.13)*** (6.34)*** (4.11)*** (4.26)*** (4.36)*** (7.08)*** (5.62)*** (5.2)*** (4.26)***

βd 0.219 0.228 0.233 0.166 0.182 0.240 0.210 0.207 0.235

(7.7)*** (7.45)*** (9)*** (7.41)*** (5.89)*** (8.93)*** (7.24)*** (7.14)*** (9.09)***

βw 0.286 0.281 0.383 0.232 0.224 0.400 0.262 0.264 0.405

(5.04)*** (4.98)*** (7)*** (5.55)*** (5.63)*** (7.62)*** (4.47)*** (4.49)*** (7.82)***

βm 0.312 0.309 0.305 0.442 0.436 0.145 0.380 0.379 0.344

(4.99)*** (4.94)*** (3.81)*** (7.63)*** (7.29)*** (2.3)** (5.12)*** (5.11)*** (3.82)***

β j -0.060 0.065 -0.038 0.097 0.105 0.240

(-1.65)* (2.01)** (-1.33) (4.84)*** (1.33) (3.17)***

R2 0.614 0.615 0.632 0.652 0.653 0.595 0.635 0.636 0.620

QLIKE 0.055 0.055 0.053 0.031 0.031 0.033 0.108 0.109 0.117

J − R2 0.606 0.610 0.610 0.584 0.586 0.581 0.715 0.712 0.701

J − QLIKE 0.057 0.056 0.056 0.038 0.038 0.036 0.071 0.075 0.072

C − R2 0.612 0.612 0.631 0.664 0.664 0.597 0.625 0.625 0.609

C − QLIKE 0.055 0.055 0.053 0.030 0.030 0.033 0.117 0.117 0.126

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 10: Regression Results of the UK Market on 22-day Forecast Horizon (h=22)

1-Year 2-Year 5-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.004 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.004

(3.82)*** (3.86)*** (4.4)*** (5.66)*** (5.68)*** (8.56)*** (4.67)*** (4.82)*** (10.36)***

βd 0.290 0.288 0.309 0.231 0.242 0.292 0.193 0.229 0.214

(5.44)*** (5.17)*** (6.36)*** (7.27)*** (6.48)*** (8.75)*** (6.1)*** (6.28)*** (6.69)***

βw 0.304 0.305 0.384 0.235 0.229 0.370 0.151 0.131 0.196

(3.06)*** (3.07)*** (4.6)*** (4.66)*** (4.66)*** (7.22)*** (3.05)*** (2.71)*** (3.73)***

βm 0.191 0.191 0.168 0.290 0.289 0.061 0.348 0.345 0.258

(1.86)* (1.86)* (3.83)*** (4.57)*** (4.55)*** (3.27)*** (3.95)*** (3.89)*** (5.57)***

β j 0.028 0.194 -0.033 0.151 -0.092 0.048

(0.48) (4.08)*** (-0.73) (4.26)*** (-3.02)*** (2.09)**

R2 0.561 0.561 0.562 0.508 0.508 0.469 0.401 0.405 0.403

QLIKE 0.059 0.059 0.060 0.053 0.053 0.061 0.046 0.045 0.046

J − R2 0.544 0.546 0.560 0.465 0.466 0.487 0.405 0.412 0.391

J − QLIKE 0.063 0.063 0.060 0.059 0.059 0.060 0.040 0.039 0.041

C − R2 0.562 0.562 0.562 0.515 0.515 0.468 0.401 0.401 0.403

C − QLIKE 0.058 0.058 0.060 0.051 0.051 0.061 0.047 0.047 0.047

10-Year 20-Year 30-Year

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

β0 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.005

(3.96)*** (4.51)*** (9.42)*** (4.33)*** (4.45)*** (5.01)*** (4.34)*** (4.81)*** (8.05)***

βd 0.228 0.266 0.239 0.213 0.237 0.196 0.279 0.300 0.254

(4.03)*** (4.41)*** (3.55)*** (5.14)*** (5.25)*** (4.16)*** (4.47)*** (4.83)*** (3.88)***

βw 0.147 0.122 0.247 0.089 0.075 0.105 0.103 0.095 0.228

(2.15)** (1.93)* (4.31)*** (1.75)* (1.5) (1.91)* (1.56) (1.48) (4.26)***

βm 0.361 0.359 0.199 0.406 0.407 0.482 0.387 0.389 0.207

(4.13)*** (4.09)*** (4.31)*** (4.32)*** (4.32)*** (4.91)*** (4)*** (4.05)*** (4.23)***

β j -0.152 -0.004 -0.082 0.046 -0.283 -0.092

(-3.73)*** (-0.1) (-2.39)*** (1.5) (-3.92)*** (-1.91)*

R2 0.448 0.456 0.425 0.404 0.407 0.423 0.463 0.471 0.446

QLIKE 0.054 0.053 0.053 0.042 0.042 0.040 0.123 0.121 0.111

J − R2 0.320 0.334 0.262 0.337 0.336 0.398 0.366 0.399 0.288

J − QLIKE 0.049 0.048 0.053 0.042 0.042 0.037 0.083 0.082 0.085

C − R2 0.477 0.477 0.455 0.422 0.421 0.427 0.472 0.472 0.457

C − QLIKE 0.054 0.054 0.053 0.042 0.042 0.042 0.131 0.131 0.118

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 11: One-Day Ahead Out of Sample Forecast Results (h=1)

(a) QLIKE Estimates

Swiss German French UK

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

1-Year 1.000 1.001 1.006 1.000 0.998a 1.003 1.000 1.008 1.013 1.000 1.003 1.043

2-Year — — — 1.000 0.998a 1.017 1.000 1.004 1.037 1.000 0.994a 1.05

5-Year 1.000 0.996a 1.02 1.000 0.992a 1.013 1.000 0.979a 1.014 1.000 0.981a 0.999a

10-Year 1.000 0.999a 1.015 1.000 0.977a 0.993a 1.000 1.001a 1.009 1.000 0.99a 0.978a

20-Year 1.000 0.997a 1.006 1.000 1.003 1.015 1.000 1.000 1.033 1.000 0.996a 1.01

30-Year 1.000 0.996a 0.99 1.000 1.002a 1.014 1.000 1.016 1.047 1.000 1.016 0.999a

(1) QLIKE ratios are given in the table. (2) The ratios are scaled to QLIKE estimators of HAR-RV model. (3) Rolling

window, 1000 observation, forecasts are estimated. (4) a corresponds to significant Diebold-Mariano Test at 5% level.

(b) Average R2

Swiss German French UK

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

1-Year 51.5% 51.5% 51.1% 66.2% 66.2% 66.3% 57.2% 58.5% 58.5% 39.8% 40.1% 38.8%

2-Year — — — 48.3% 48.7% 47.9% 63.6% 63.8% 63.7% 38.2% 39.5% 38.6%

5-Year 27.3% 27.3% 26.0% 34.9% 35.4% 34.6% 47.8% 48.6% 48.6% 26.2% 27.2% 26.8%

10-Year 37.9% 37.9% 34.8% 39.4% 40.3% 39.5% 40.9% 41.5% 42.0% 28.7% 29.1% 29.0%

20-Year 10.6% 10.7% 9.7% 37.1% 37.6% 36.9% 35.3% 35.4% 35.2% 32.2% 32.5% 32.1%

30-Year 23.3% 23.4% 22.2% 46.5% 46.6% 46.1% 37.0% 38.2% 38.2% 35.5% 36.0% 35.4%

(1) Average R2’s are given in the table. (2) Rolling window, 1000 observation, forecasts are estimated.
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Table 12: One-Month Ahead Out of Sample Forecast Results (h=22)

(a) QLIKE Estimates

Swiss German French UK

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

1-Year 1.000 0.994a 1.041 1.000 0.997a 1.009 1.000 1.001 0.897 1.000 0.999a 1.049

2-Year — — — 1.000 1.002 1.087 1.000 0.999 1.208 1.000 0.995a 1.129

5-Year 1.000 0.974a 0.932 1.000 0.999 1.028 1.000 0.978a 1.167 1.000 0.993a 0.981a

10-Year 1.000 0.99a 0.953a 1.000 0.998a 1.008 1.000 0.994a 1.016 1.000 0.99a 1.039

20-Year 1.000 0.996a 1.044 1.000 1.001 0.995 1.000 1.004 1.109 1.000 0.994a 0.999a

30-Year 1.000 0.994a 0.973 1.000 0.999a 0.999a 1.000 1.005 1.312 1.000 0.991a 1.032

(1) QLIKE ratios are given in the table. (2) The ratios are scaled to QLIKE estimators of HAR-RV model. (3) Rolling

window, 1000 observation, forecasts are estimated. (4) a corresponds to significant Diebold-Mariano Test at 5% level.

(b) Average R2

Swiss German French UK

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

1-Year 49.7% 50.0% 49.1% 49.3% 49.5% 49.7% 27.7% 28.1% 30.7% 38.8% 39.1% 38.4%

2-Year — — — 52.4% 52.7% 50.1% 63.4% 63.5% 61.9% 34.3% 35.0% 34.4%

5-Year 30.0% 30.7% 31.0% 34.0% 34.3% 33.7% 55.8% 57.1% 59.5% 24.0% 24.8% 26.1%

10-Year 40.0% 40.1% 38.7% 32.3% 32.5% 32.8% 38.4% 38.9% 44.2% 33.4% 34.0% 31.5%

20-Year 20.0% 20.2% 16.0% 33.3% 33.8% 35.6% 45.9% 45.9% 43.5% 35.4% 35.5% 32.4%

30-Year 28.9% 28.9% 26.2% 36.9% 37.0% 37.9% 37.7% 38.1% 40.9% 35.4% 35.8% 29.6%

(1) Average R2’s are given in the table. (2) Rolling window, 1000 observation, forecasts are estimated.
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Table 13: HAR-RV Model with Pre-Announcement Dummy Variable, Equation (29)(h=1)

Swiss German

1-Year 2-Year 5-Year 10-Year 20-Year 30-Year 1-Year 2-Year 5-Year 10-Year 20-Year 30-Year

β0 0.001 — 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.001 0.001 0.001

(3.21)*** — (3.07)*** (2.74)*** (6.27)*** (2.38)*** (3.48)*** (3.19)*** (4.26)*** (4.05)*** (4.18)*** (4.27)***

β1
d

0.159 — 0.021 0.051 0.288 0.070 -0.001 0.195 0.223 0.180 0.187 0.157

(1.13) — (0.18) (0.37) (1.72)* (0.35) (-0.03) (4.6)*** (5.22)*** (3.88)*** (4.46)*** (2.37)***

βd 0.377 — 0.323 0.348 0.145 0.340 0.600 0.304 0.356 0.444 0.380 0.527

(7.27)*** — (8.95)*** (8.86)*** (3.59)*** (6.02)*** (15.72)*** (8.28)*** (8.77)*** (11.51)*** (6.56)*** (8.97)***

βw 0.309 — 0.344 0.358 0.135 0.292 0.246 0.362 0.396 0.379 0.368 0.328

(5.71)*** — (7.28)*** (6.55)*** (2.76)*** (4.84)*** (5.37)*** (6.56)*** (7.61)*** (8.51)*** (6.61)*** (5.76)***

βm 0.210 — 0.129 0.160 0.258 0.214 0.087 0.235 0.130 0.053 0.071 0.013

(4.79)*** — (2.6)*** (3.76)*** (3.59)*** (3.8)*** (2.88)*** (4.22)*** (4.26)*** (1.67)* (2.46)*** (0.54)

R2 0.635 — 0.393 0.520 0.121 0.511 0.753 0.628 0.609 0.623 0.493 0.667

QLIKE 0.201 — 0.133 0.117 0.166 0.162 0.119 0.060 0.073 0.072 0.073 0.095

French UK

1-Year 2-Year 5-Year 10-Year 20-Year 30-Year 1-Year 2-Year 5-Year 10-Year 20-Year 30-Year

β0 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002

(4.32)*** (2.57)*** (2.75)*** (3.88)*** (2.94)*** (4.83)*** (2.7)*** (4.36)*** (3.98)*** (3.11)*** (4.08)*** (3.6)***

β1
d

-0.014 0.123 0.075 0.144 0.091 0.101 0.141 0.155 0.212 0.262 0.264 0.346

(-0.21) (2.08)** (2)** (1.67)* (1.34) (1.22) (1.68)* (2.08)** (2.63)*** (3.01)*** (3.18)*** (3.36)***

βd 0.611 0.404 0.388 0.452 0.387 0.513 0.514 0.461 0.490 0.477 0.577 0.567

(16.65)*** (7.88)*** (9.37)*** (10.58)*** (8.99)*** (12.24)*** (11.79)*** (6.22)*** (6.4)*** (9.7)*** (8.25)*** (11.05)***

βw 0.198 0.379 0.327 0.307 0.251 0.255 0.251 0.266 0.203 0.285 0.142 0.229

(2.77)*** (7.1)*** (7.86)*** (6.91)*** (4.85)*** (4.98)*** (2.56)*** (3.08)*** (2.55)*** (6.82)*** (1.63) (4.67)***

βm 0.058 0.158 0.202 0.125 0.232 0.112 0.118 0.124 0.111 0.049 0.087 0.029

(1.65)* (4.68)*** (6.13)*** (4.04)*** (5.39)*** (3.46)*** (1.82)* (2.76)*** (2.42)*** (1.43) (2.1)** (1.01)

R2 0.626 0.784 0.659 0.623 0.523 0.638 0.641 0.552 0.473 0.515 0.519 0.600

QLIKE 0.107 0.062 0.068 0.076 0.065 0.102 0.068 0.070 0.083 0.086 0.069 0.106

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 14: HAR-RV Model with Announcement Dummy Variable, Equation (30) (h=1)

Swiss German

1-Year 2-Year 5-Year 10-Year 20-Year 30-Year 1-Year 2-Year 5-Year 10-Year 20-Year 30-Year

β0 0.001 — 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.001 0.001 0.001

(2.71)*** — (3.06)*** (2.74)*** (6.2)*** (2.37)*** (3.49)*** (3.02)*** (4.12)*** (4.03)*** (4.2)*** (4.28)***

β1
d

-0.134 — 0.127 0.027 0.037 0.186 -0.036 0.039 0.022 0.045 0.128 0.014

(-2.88)*** — (1.39) (0.37) (0.47) (2.06)** (-1.26) (0.6) (0.44) (0.84) (1.48) (0.12)

βd 0.394 — 0.320 0.348 0.147 0.338 0.602 0.314 0.369 0.449 0.382 0.537

(7.71)*** — (8.9)*** (8.76)*** (3.56)*** (5.99)*** (15.59)*** (8.24)*** (8.68)*** (11.62)*** (6.53)*** (9.29)***

βw 0.304 — 0.345 0.358 0.137 0.293 0.247 0.358 0.389 0.374 0.365 0.320

(5.68)*** — (7.29)*** (6.56)*** (2.8)*** (4.86)*** (5.34)*** (6.56)*** (7.29)*** (8.35)*** (6.54)*** (5.67)***

βm 0.211 — 0.129 0.159 0.258 0.214 0.086 0.238 0.135 0.057 0.073 0.016

(4.84)*** — (2.62)*** (3.77)*** (3.58)*** (3.8)*** (2.76)*** (4.25)*** (4.43)*** (1.8)* (2.5)*** (0.68)

R2 0.635 — 0.394 0.519 0.119 0.512 0.753 0.623 0.603 0.620 0.491 0.666

QLIKE 0.201 — 0.133 0.117 0.166 0.162 0.119 0.062 0.074 0.072 0.073 0.095

French UK

1-Year 2-Year 5-Year 10-Year 20-Year 30-Year 1-Year 2-Year 5-Year 10-Year 20-Year 30-Year

β0 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002

(4.36)*** (2.46)*** (2.72)*** (3.83)*** (2.93)*** (4.84)*** (2.68)*** (4.28)*** (3.98)*** (3.23)*** (4.22)*** (3.92)***

β1
d

-0.094 -0.018 0.006 0.056 0.130 0.023 0.127 0.215 0.185 0.003 0.036 0.067

(-1.27) (-0.52) (0.12) (0.83) (1.89)* (0.2) (1.07) (1.73)* (1.14) (0.02) (0.22) (0.29)

βd 0.613 0.415 0.390 0.456 0.384 0.516 0.512 0.452 0.476 0.483 0.577 0.569

(16.9)*** (7.93)*** (9.37)*** (10.43)*** (9.08)*** (12.54)*** (11.74)*** (6.72)*** (7.41)*** (10)*** (10.15)*** (11.37)***

βw 0.198 0.376 0.325 0.304 0.252 0.254 0.250 0.269 0.211 0.286 0.149 0.236

(2.77)*** (6.98)*** (7.81)*** (6.87)*** (4.87)*** (4.98)*** (2.54)*** (3.27)*** (2.87)*** (6.73)*** (1.77)* (4.81)***

βm 0.059 0.159 0.204 0.128 0.233 0.113 0.121 0.126 0.113 0.050 0.088 0.029

(1.67)* (4.77)*** (6.24)*** (4.15)*** (5.42)*** (3.5)*** (1.86)* (2.8)*** (2.42)*** (1.49) (2.1)** (1.03)

R2 0.627 0.782 0.659 0.621 0.525 0.637 0.641 0.556 0.474 0.510 0.512 0.594

QLIKE 0.107 0.062 0.068 0.077 0.066 0.102 0.069 0.071 0.083 0.087 0.070 0.106

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 15: HAR-CJ Model with Pre-Announcemet Dummy Variable, Equation (31) (h=1)

Swiss German

1-Year 2-Year 5-Year 10-Year 20-Year 30-Year 1-Year 2-Year 5-Year 10-Year 20-Year 30-Year

β0 0.002 — 0.002 0.001 0.003 0.002 0.001 0.000 0.001 0.001 0.002 0.002

(5.51)*** — (4.47)*** (6.43)*** (9.73)*** (6)*** (4.8)*** (3.34)*** (8.79)*** (8.43)*** (6.63)*** (4.98)***

β1
d

-0.003 — 0.005 -0.010 0.007 -0.019 0.002 0.015 0.017 0.014 0.015 0.010

(-0.59) — (0.29) (-1.21) (0.54) (-3.14)*** (0.46) (4.9)*** (5.91)*** (3.56)*** (3.61)*** (2.23)**

β1
j

0.976 — -0.013 0.355 0.330 0.656 -0.182 0.070 -0.011 0.037 -0.009 0.054

(4.79)*** — (-0.09) (1.79)* (1.09) (4.91)*** (-1.42) (1.02) (-0.16) (0.46) (-0.14) (0.36)

βd 0.393 — 0.340 0.366 0.158 0.333 0.599 0.379 0.411 0.522 0.430 0.529

(7.04)*** — (7.68)*** (8.4)*** (3.53)*** (5.86)*** (16.73)*** (6.66)*** (7.11)*** (11.57)*** (4.95)*** (7.77)***

βw 0.287 — 0.341 0.331 0.165 0.327 0.251 0.326 0.362 0.325 0.352 0.334

(4.9)*** — (5.85)*** (6.04)*** (2.85)*** (5.26)*** (6.01)*** (6.1)*** (5.62)*** (6.22)*** (4.23)*** (5.13)***

βm 0.241 — 0.161 0.166 0.219 0.182 0.083 0.240 0.115 0.030 0.043 0.005

(5.12)*** — (2.51)*** (3.88)*** (2.99)*** (3.11)*** (2.75)*** (4.02)*** (3.52)*** (0.94) (1.48) (0.2)

β j 0.195 — 0.206 0.232 0.102 0.194 0.300 0.109 0.130 0.095 0.182 0.200

(3.55)*** — (4.2)*** (6.41)*** (2.54)*** (2.78)*** (5.28)*** (3.88)*** (5.19)*** (3.73)*** (5.28)*** (1.63)

R2 0.637 — 0.394 0.511 0.118 0.519 0.755 0.623 0.609 0.631 0.493 0.666

QLIKE 0.202 — 0.136 0.119 0.168 0.161 0.120 0.060 0.072 0.070 0.072 0.094

French UK

1-Year 2-Year 5-Year 10-Year 20-Year 30-Year 1-Year 2-Year 5-Year 10-Year 20-Year 30-Year

β0 0.001 0.000 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002

(2.84)*** (3.19)*** (5.43)*** (4.65)*** (6.03)*** (3.03)*** (3.79)*** (6.26)*** (6.91)*** (7.02)*** (4.42)*** (4.47)***

β1
d

0.005 0.009 0.007 0.015 0.016 0.004 0.011 0.013 0.014 0.017 0.020 0.021

(1.51) (2.14)** (3.04)*** (2.69)*** (5.12)*** (0.82) (1.81)* (2.71)*** (2.18)** (2.29)** (2.53)*** (2.09)**

β1
j

-0.879 -0.155 0.038 -0.288 -0.148 -0.169 -0.015 0.046 0.227 0.176 0.062 0.167

(-5.04)*** (-1.25) (0.47) (-3.39)*** (-2.73)*** (-0.79) (-0.1) (0.46) (1.29) (1.1) (0.35) (0.91)

βd 0.582 0.432 0.448 0.467 0.468 0.517 0.547 0.574 0.605 0.499 0.619 0.548

(19.48)*** (8.67)*** (10.19)*** (10.56)*** (9.24)*** (12.56)*** (12.79)*** (10.28)*** (8.14)*** (8.52)*** (9.62)*** (9.88)***

βw 0.213 0.482 0.412 0.358 0.328 0.312 0.294 0.259 0.130 0.278 0.104 0.243

(3.88)*** (9.37)*** (9.73)*** (7.9)*** (5.51)*** (7.02)*** (3.77)*** (3.76)*** (1.72)* (6.29)*** (1.37) (5)***

βm 0.046 0.052 0.057 0.063 0.049 0.057 0.044 0.028 0.094 0.057 0.138 0.043

(2.29)** (2.82)*** (1.97)** (2.15)** (1.56) (1.55) (1.76)* (2.7)*** (3.87)*** (2.64)*** (3.8)*** (2.22)**

β j 0.671 0.178 0.113 0.275 0.186 0.727 0.307 0.171 0.106 0.123 0.176 0.293

(4.43)*** (3.26)*** (3.06)*** (5.07)*** (5.22)*** (5.11)*** (3.29)*** (2.35)*** (3.51)*** (3.1)*** (2.63)*** (2.46)***

R2 0.640 0.781 0.659 0.627 0.527 0.645 0.633 0.555 0.495 0.532 0.537 0.606

QLIKE 0.107 0.062 0.068 0.076 0.065 0.114 0.071 0.073 0.081 0.081 0.066 0.103

(1) The results in the parenthesis indicates t-statistics. (2) ***, **, * show 1%, 5% and 10% statistically significant

coefficients, respectively. (3) Newey-West standard errors are used to calculate the t statistics.
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Table 16: Microstructure Bias Corrected One-Month Ahead Out of Sample Forecast Results (h=22)

(a) QLIKE Estimates

Swiss German French UK

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

1-Year 1.000 0.996a 1.042 1.000 1 1.016 1.000 1.003 0.903 1.000 0.999a 1.041

2-Year — — — 1.000 1.002 1.083 1.000 0.998 1.205 1.000 0.994a 1.115

5-Year 1.000 0.968a 0.929a 1.000 1.001 1.032 1.000 0.973a 1.127 1.000 0.993a 0.977a

10-Year 1.000 0.985a 0.947a 1.000 0.996a 1.004 1.000 0.994a 1.003a 1.000 0.989a 1.02

20-Year 1.000 0.996a 1.05 1.000 0.999a 0.987a 1.000 1a 1.08 1.000 0.995a 1.004a

30-Year 1.000 0.99a 0.967 1.000 0.999a 0.999a 1.000 1.004 1.207 1.000 0.99a 1.017

(1) QLIKE ratios are given in the table. (2) The ratios are scaled to QLIKE estimators of HAR-RV model. (3) Rolling

window, 1000 observation, forecasts are estimated. (4) a corresponds to significant Diebold-Mariano Test at 5% level.

(b) Average R2

Swiss German French UK

HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ HAR-RV HAR-RVJ HAR-CJ

1-Year 50.5% 50.7% 49.7% 48.6% 48.8% 49.0% 27.4% 27.7% 30.4% 36.8% 37.1% 36.6%

2-Year — — — 54.1% 54.3% 51.5% 62.8% 63.0% 61.5% 31.5% 32.2% 31.9%

5-Year 29.3% 30.2% 30.5% 34.0% 34.2% 33.5% 53.4% 55.1% 57.7% 23.4% 24.0% 25.7%

10-Year 39.6% 39.7% 38.6% 31.9% 32.1% 32.2% 37.2% 37.7% 43.2% 32.4% 33.0% 30.7%

20-Year 19.6% 19.7% 15.3% 33.0% 33.7% 35.6% 46.1% 46.1% 43.8% 36.2% 36.2% 33.4%

30-Year 28.1% 28.3% 25.5% 36.5% 36.7% 37.5% 38.9% 39.0% 41.5% 36.2% 36.6% 30.7%

(1) Average R2’s are given in the table. (2) Rolling window, 1000 observation, forecasts are estimated.
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