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Abstract

Two novel image denoising algorithms are proposed which employ goodness of fit (GoF)

test at multiple image scales. Proposed methods operate by employing the GoF tests locally

on the wavelet coefficients of a noisy image obtained via discrete wavelet transform (DWT)

and the dual tree complex wavelet transform (DT-CWT) respectively. We next formulate

image denoising as a binary hypothesis testing problem with the null hypothesis indicating

the presence of noise and the alternate hypothesis representing the presence of desired sig-

nal only. The decision that a given wavelet coefficient corresponds to the null hypothesis or

the alternate hypothesis involves the GoF testing based on empirical distribution function

(EDF), applied locally on the noisy wavelet coefficients. The performance of the proposed

methods is validated by comparing them against the state of the art image denoising

methods.

1 Introduction

The acquisition and transmission normally corrupt an image by introducing an additive noise.

In this regard, image denoising algorithms are utilized to suppress noise while preserving the

desired image features. Let xp,q denote a pixel of a noisy N × N sized image X at location (p, q),

acquired from an acquisition device, a transmission medium or a reconstruction process as

xp;q ¼ sp;q þ Zp;q; ð1Þ

where sp,q denotes the pixels of the true image S while ηp,q denotes noise at pixel location (p, q).

In matrix form, the above equation can be written as

X ¼ Sþ η: ð2Þ

The goal of denoising is to estimate the true signal S from its noisy observation X. Here, η is

considered an independent Gaussian noise N ð0; s2Þ with zero mean and arbitrary variance σ2.

Earlier, denoising was achieved by linear methods such as Weiner filtering in the Fourier

domain [1]. However, the scope of such techniques is only limited to stationary data because
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the Fourier transform is incapable of handling non-linear or non-stationary data. That resulted

in multi-scale denoising methods employing non-linear operations such as thresholding in the

transform domain [2]. For that purpose, discrete wavelet transform (DWT) was employed

which decomposes a dataset into multiple scales that gives a sparse representation of the signal

in transform domain [3]. The DWT based denoising algorithms exploit the sparsity of the

wavelet coefficients [4–6] through simple yet powerful nonlinear thresholding operations [7,

8] to obtain the denoised image. Similar principle is adopted while denoising with variants of

the DWT like double density discrete wavelet transform (DDDWT), complex wavelet trans-

form (CWT), dual tree complex wavelet transform (DT-CWT) etc.

Among the wavelet based denoising methods, VisuShrink [9] is one of the simplest tech-

niques; it employs a universal threshold for all the scales depending largely on image size and

noise level. The disadvantage of this method is that it tends to over smooth large sized images.

This is due to the dependence of the estimated threshold on the input image size. Therefore,

comparatively better performance is shown by the adaptive data driven techniques which esti-

mate the threshold separately for each scale [10–18]. An example of such a method is the Sur-
eShrink [10], which exploits the Stein’s unbiased risk estimator (SURE) to get an unbiased

estimate of the threshold to perform signal/image denoising. An extension of the SureShrink is

the Surelet [12], which employs the principle of SURE along with the linear expansion tech-

niques (LET) to cast the denoising problem as the one with linear system of equations. The

BayesShrink [13], on the other hand, operates within the Bayesian framework with prior appli-

cation of Generalized Gaussian Distribution (GGD) on wavelet coefficients. An empirical

Bayes approach of denoising based on the Jeffrey’s non-informative prior [14] exploits the

sparsity and de-correlation properties of DWT for denoising purposes. Recently, empirical

Bayes approach of denoising has been extended to 2D scale-mixing complex valued wavelet

transform, namely cSM-EB [15].

Sparsity based signal recovery methods have also been explored as an avenue for image

denoising. To that end, a compressive sensing based image denoising algorithm is proposed in

[19] where L1-minimization has been used to recover the true signal. In [20], sparse and

redundant signal representation over learned dictionaries is used for denoising images. Clus-

tering based locally learned dictionaries are employed for image denoising in [21] whereby

clusters of local patches are obtained based on likewise geometrical structures. Similarly, clus-

tering based sparse representation (CSR) method for image denoising combines the dictionary

learning with structured clustering to exploit enhanced sparsity in [22]. A hybrid image

denoising algorithm is proposed in [23] based on wavelet transform in combination with the

learned and redundant dictionaries. In this method, the wavelet transform is used to obtain

multiscale feature and sparse prior for wavelet coefficients which leads to the sparse represen-

tation in wavelet domain. Subsequently, the K-SVD algorithm is used to build sparse over-

complete dictionaries of wavelet coefficients resulting in a state of the art image denoising

algorithm. Patch based noisy image specific orthogonal dictionaries are learned using PCA in

[24] to threshold the patch coefficients for image denoising, namely PaPCA.

A collaborative hard thresholding based filtering technique is used within BM3D [25] to

exploit enhanced sparsity of transform domain. Here, a complex multistage process is adopted

starting with the grouping of similar fragments of 2D transformed coefficients which are then

arranged into 3D data arrays. Subsequently, attenuation of noise is achieved via spatial collabo-

rative hard-thresholding followed by the collaborative Weiner filtering on the 3D arrays of the

transformed coefficients. Despite its efficacy, the computational complexity of BM3D is con-

siderably large owing to its complicated multi-step procedure [25].

Sparsity driven iterative algorithms are also used to solve total variation (TV) minimization

for image denoising. For instance, several iterative algorithms have been designed for TV

GOF test based multiscale image denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0216197 May 10, 2019 2 / 25

https://doi.org/10.1371/journal.pone.0216197


denoising including iterative soft thresholding algorithm (ISTA), fast ISTA (FISTA) and a

monotone version of FISTA [26]. In addition, split Bregman algorithm has been used for effi-

cient isotropic and anisotropic TV image denosing in [27]. Similarly, Beltrami regularization

is considered in [28] for image denoising and has been shown to outperform TV based

methods.

Spatial domain filtering techniques such as mean and median filtering are commonly used

but are known to produce sub-optimal denoising. However, an efficient spatial domain non

local mean (NLM) filtering technique for image denoising is proposed in [29], which happens

to be a gold standard denoising method owing to its effective denoising performance. In this

technique, image pixels having smallest euclidean distance from each other are grouped

together leading to weighted mean of these pixels for noise smoothing. Hence, for each pixel,

similar pixels are searched, grouped and averaged leading to very high computational com-

plexity. Though, this technique yields visually pleasing denoising results but it is known to

over-smooth details of an image.

Mostly, classical thresholding strategies exploit sparsity in transform domain by consider-

ing that coefficients corresponding to the signal have higher amplitudes compared to the noisy

coefficients. Contrarily, Cai and Silverman [16] observed that wavelet coefficients correspond-

ing to signal are distributed in the locality of each other while coefficients corresponding to

noise are distributed uniformly. They used this fact to introduce neighbourhood based thresh-

olding strategies for 1D signals [16] in which a coefficient is classified as signal if it is sur-

rounded by likewise coefficients and vice versa. NeighShrink [17] introduces neighbourhood

based thresholding to image denoising which operates by classifying a wavelet coefficient sur-

rounded by higher amplitude coefficients as desired signal while a coefficient surrounded by

the lower amplitude coefficients is classified as noise. Similarly, NeighSure [18] refines neigh-

bourhood based thresholding via the SURE to achieve image denoising. A simple yet effective

image denoising method exploiting the statistical neighbourhood dependencies of wavelet

coefficients is proposed in [30]. A statistical model for neighbourhoods of oriented pyramid

coefficients is developed in [31], which is based on Gaussian scale mixtures of empirical wave-

let coefficients. The intra-scale dependencies within the wavelet coefficients have been mod-

eled using fuzzy features in Fuzzy-Shrink [32], where a fuzzy feature distinguishes between the

image discontinuities and noise.

Recently, statistical methods have emerged as a strong tool in the wavelet based image

denoising. These methods exploit statistical dependencies within the wavelet coefficients for

estimating the thresholds for denoising. BiShrink [33] models inter-scale dependencies in

wavelet coefficients (obtained via the DWT as well as the DT-CWT) based on a new non-

Gaussian bivariate distribution for threshold estimation. The method also includes a nonlinear

bivariate shrinkage function driven through a maximum a posteriori (MAP) estimator. The

ProbShrink [32] estimates a threshold based on the probability that a given coefficient contains

significant information (signal of interest) by assuming a generalized Laplacian prior for noise

free data.

A major issue in the conventional DWT is the lack of translation invariance in the tradi-

tional wavelet basis functions resulting in artifacts in the aftermath of denoising. These arti-

facts could be explained by the Gibbs phenomena in the neighbourhood of discontinuities.

Stationary DWT, which is rotation invariant, can render partial translation invariance to the

denoising results and can be implemented via cycle spinning approach [34]. In cycle spinning,
noisy data is first shifted left or right, denoised via a wavelet based method and subsequently

un-shifted. This process is repeated several times and all the results are averaged to produce a

denoised signal/image with lesser artifacts. It has been shown in [34] that denoising results can

GOF test based multiscale image denoising
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be improved considerably by making the DWT partially translation invariant through cycle

spinning.

In contrast to DWT, the DT-CWT enjoys near translation invariance and directional selec-

tivity at the cost of a higher degree of redundancy [35]. The redundancy in DT-CWT is due to

the fact that real and imaginary parts of the complex wavelet coefficients are dealt as indepen-

dent wavelet coefficients which makes it twice redundant. However, in order to incorporate

directional selectivity in the two dimensional DT-CWT, the complex wavelet coefficients are

obtained at six directions compared to the three directions of the DWT (i.e. horizontal, vertical

and diagonal), which further increases the redundancy by two. Hence, the two dimensional

DT-CWT is 4:1 redundant as compared to the DWT [35]. In the two dimensional DT-CWT,

dual tree of filters oriented at 6 directions are employed, yielding six bands of real parts and six

bands of imaginary parts of the complex wavelet coefficients at each scale.

The directional selectivity in DT-CWT preserves orientation of the edges or discontinuities

having a line or a curve shape, unlike DWT which only preserves the point discontinuities. In

addition, the directional selectivity in DT-CWT helps avoid the checker-board artifacts during

denoising process by differentiating between the edges oriented at 45˚ and −45˚ [35].

The redundancy, in combination with the filter banks designed to achieve complex number

representation, makes DT-CWT approximately translation invariant. The maximal decima-

tion in DWT causes aliasing in the decomposed wavelet coefficients. In order to cancel the

effect of aliasing and achieve perfect reconstruction, the synthesis filters for inverse DWT

operation are designed to fulfill the aliasing-free condition. However, the aliasing can only be

avoided if the wavelet coefficients are not perturbed, which is not the case in wavelet based

denoising. Contrarily, in DT-CWT, the inherent redundancy (4:1) suppresses aliasing to a

large extent, yielding better denoising results.

Several denoising methods have been reported in literature which utilize the above desirable

properties of the DT-CWT: In [30], dependencies among three scales of DT-CWT coefficients

are exploited. NeighSure [18] employs Stein’s unbiased risk estimator (SURE) on complex

wavelet coefficients of the DT-CWT to find an optimum threshold and a window size. Fur-

thermore, image denoising methods reported in [36–41] are some of the recent methods

which exploit near translation invariance and directional selectivity of the DT-CWT for

improved denoising performance.

In this paper, two image denoising methods are proposed which employ statistical goodness

of fit (GoF) tests on multi-scale wavelet coefficients obtained via DWT and DT-CWT. The

decision process regarding the presence of noise at multiple scales is based on the statistical

GoF tests, wherein Anderson Darling (AD) statistic is used as a measure of similarity between

the local wavelet coefficients and reference Gaussian noise distribution. A coefficient is

detected as corresponding to noise if its associated AD measure is less than a threshold, which

is a function of probability of false alarm. Those coefficients are then eliminated (set to zero)

while the remaining coefficients are retained. We demonstrate the effectiveness of the pro-

posed methods by comparing them against the state-of-the-art in wavelet based image denois-

ing on both natural and medical input images.

In our previous work [42–45], we had employed GoF test on multiple 1D signal scales,

obtained via the 1D DWT, for signal denoising. Also, Poisson denoising in the context of

CMOS/CCD images has also been proposed in [46]. In this work, we employ GoF test on mul-

tiple image scales for image denoising. To this end, a novel framework is developed for GoF

testing on multiple scales of DWT as well as the DT-CWT, which offers better translation

invariance and directional selectivity. The proposed methodology is significantly different

from classic wavelet thresholding techniques in which the wavelet coefficients are directly

compared against a threshold. In the proposed thresholding method, decision regarding the

GOF test based multiscale image denoising
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noisy image coefficients is made based on the statistical distance between the distribution or

model of the local wavelet coefficients from the reference noise distribution.

This paper is organized as follows: Section II gives the background of wavelet based image

denoising along with an insight into the GoF testing and its operation. A detailed discussion

on the proposed algorithms is presented in Section III. Section IV presents the experimental

results and discussion, while Section V concludes the paper while also highlighting possible

avenues for future work.

2 Theoretical background

2.1 Wavelet transform based image denoising

Let W denote the wavelet transform operated over a noisy image X to decompose it into wave-

let coefficients at multiple scales as

W ¼WðXÞ; ð3Þ

where W denotes the matrix composed of wavelet coefficients wj
i with j denoting the scale of

decomposition, i denotes location of a coefficient at multiple scales. The operator W may refer

to the DWT or the DT-CWT operation: when W refers to DWT, W is a two dimensional

matrix of wavelet coefficients wj
i and its formation is depicted in Fig 1 (left), where each scale

of decomposition contains three bands of wavelet coefficients, each of which is associated to a

direction namely horizontal, vertical and diagonal. The location index i first lists the horizontal

coefficients (column wise) followed by the listing of vertical and diagonal wavelet coefficients.

On the other hand, when the operator W denotes the DT-CWT operation, W is a three

dimensional matrix of wavelet coefficients as shown in Fig 1 (right), where each scale of

decomposition contains twelve bands of wavelet coefficients. In order to achieve this represen-

tation we placed the redundant wavelet coefficients, yielded via DT-CWT, in four different

two dimensional matrices in accordance with the formation shown in Fig 1 (left) and then

those four matrices are placed above each other to make four layers of a three dimensional

Fig 1. Difference in the formation of wavelet coefficient matrix W in case of the DWT and the DT-CWT

operation; (left) arrangement of the empirical wavelet coefficients in a 2D matrix W in case of the DWT

operation; (right) arrangement of the complex wavelet coefficients in a 3D matrix W in case of the DT-CWT

operation, where first two layers contain the real parts and the last two layers contain the imaginary parts of the

complex wavelet coefficients.

https://doi.org/10.1371/journal.pone.0216197.g001
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matrix as shown in Fig 1 (right). It must be noted that first two layers contain the real parts of

the complex wavelet coefficients and last two layers contain the imaginary parts of the complex

wavelet coefficients for each scale).

A threshold value T is next estimated to classify the coefficients as belonging to signal or

noise i.e. a popular universal threshold T ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðN � NÞ

p
[9] is based on image size N × N

and noise standard deviation σ which is estimated as

s ¼
medianðjfwi

1
8 i � diagnal coefficientsgj

0:6745
; ð4Þ

here i denotes the index of only the diagonal wavelet coefficients at the scale j = 1. A threshold-

ing operator U is next applied individually on each wavelet coefficient as given below

ŵj
i ¼ Uðw

j
iÞ; ð5Þ

where ŵj
i are thresholded empirical wavelet coefficients, U could be soft or hard thresholding

rule which exhibit near optimal properties in minimax sense and better convergence rates for

approximating functions in Besov spaces [7, 8]. In the soft thresholding operation, the signal

elements less than threshold T are floored to zero and the amplitudes of the remaining signal

elements are reduced (shrunk) by T. The hard thresholding operation keeps the signal ele-

ments whose values are greater than T and sets the remaining coefficients to zero.

After performing thresholding operation, inverse wavelet transform [3] is applied on the

noise suppressed wavelet coefficients to get an estimate Ŝ of the true image S in the spatial

domain

Ŝ ¼W � 1fŴg; ð6Þ

where Ŵ are thresholded empirical wavelet coefficients ŵj
i (see Fig 1).

2.2 Statistical goodness-of-fit testing

The goodness-of-fit (GoF) test indicates how well a specified model or distribution fits a given

set of observations. The GoF test performs hypothesis testing whereby the case with observa-

tions or data fitting the specified model/distribution is termed as null hypothesisH0 and the

case where observation reject the specified model/distribution is termed as alternate hypothe-

sis H1. In order to quantify the difference between the observed values and the values expected

under the specified distribution, different statistics/measures of GoF have been defined [47,

48]. Several measures of GoF test are employed in practice [49–52], each having unique prop-

erties of their own but only the Anderson Darlington (AD) statistics [51] will be discussed

here because of its relevance with our work. A detailed discussion on the topic is presented in

[53].

Let FðtÞ ¼
P

t1ðz > tÞ denote the empirical cumulative distribution function (ECDF) of

input samples z with support t and F rðtÞ ¼
R

tpðz > tÞdz represent the hypothesized cumula-

tive distribution function (reference CDF) corresponding to a probability density function p
(z). The AD statistic τ is given as follows

t ¼

Z 1

� 1

ðF rðtÞ � FðtÞÞ2cðF rðtÞÞdðF rðtÞÞ; ð7Þ

where cðF rðtÞÞ is the weighting function responsible for giving more weight to the tail of the

GOF test based multiscale image denoising
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distribution function F rðtÞ is given as

cðF rðtÞÞ ¼ ðF rðtÞð1 � F rðtÞÞÞ
� 1
: ð8Þ

In order to compute τ, numeric expression for the AD statistic relation in (7) is as follows

t ¼ � L � H; ð9Þ

where L denotes the size of the given observations xt or the size of window in case of local oper-

ation of GoF test and H is defined as

H ¼
XL

t¼1

ð2t � 1Þ

L
ðlnðF rðztÞ � lnðF rðzLþ1� tÞÞÞ: ð10Þ

The probability distribution of distance τ is specified asymptotically as window lengths

L!1.

Within the framework of GoF test, a threshold T is computed for error probability of given

observations falsely reject the reference distribution. In spectrum sensing related literature

[54–56], the probability of falsely rejecting a candidate distribution is termed as the probability

of false alarm Pfa, defined as follows,

Pfa ¼ Probft > TjH0g ¼

Z

fz s:t: t>lg
pðzjH0Þdz ð11Þ

where the range {z s.t. τ> λ} are the values yielding false alarm. Pfa is generally kept very very

low to estimate an appropriate threshold T [57].

Next, hypothesis testing defined in (15) is performed to validate the null hypothesis H0 or

reject it i.e. the alternate hypothesis H1.

H0 : t � T;

H1 : t > T:
ð12Þ

3 GoF based multiscale image denoising

Two novel image denoising methods are proposed which employ GoF test on the wavelet coef-

ficients of the noisy image obtained by using DWT and DTCWT respectively. The DT-CWT

exhibits approximate translation invariance and directional selectivity which helps it to sup-

press the artifacts otherwise present in the DWT based denoising results. We denote the pro-

posed denoising methods as the GoFShrink based on the DWT and the DT-CWT.

Conventionally, GoF tests have been applied to detection problems where they operate

directly on input data to test the binary hypothesis of noise only and signal plus noise cases e.g.

spectrum sensing [54–56], as follows

H0 : x 2 noise;

H1 : x 2 signal þ noise:
ð13Þ

Contrarily, in the denoising problem, the alternate hypothesis H1 must correspond to the

detection of signal only case. To achieve that, we propose to employ multiscale wavelet trans-

forms on the input noisy data before applying the GoF test. The DWT and DT-CWT distribute

the signal coefficients sparsely as compared to noise coefficients which are distributed uni-

formly across the scales, thus segregating signal and noise into separate coefficients at multiple

GOF test based multiscale image denoising
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scales. The modified binary hypothesis using the GoF test at multiple scales are given bellow

H
0

0
: wj

i 2 noise;

H
0

1
: wj

i 2 signal;
ð14Þ

where H
0

0
and H

0

1
denote modified null and alternate hypothesis at multiple scales respectively

and wj
i denotes multiscale wavelet coefficients obtained through DWT or the DT-CWT opera-

tion as specified in (3).

Given a scale dependent threshold Tj, the proposed framework first computes a test statistic

τi for a sub-image centered around the coefficient wj
i at scale j and then compares it with the

threshold Tj. The decision regarding the null hypothesis H
0

0
or alternate hypothesis H

0

1
, as

defined in (14) is taken as follows

H
0

0
: ti � Tj; i:e: wj

i 2 noise;

H
0

1
: ti > Tj; i:e: wj

i 2 signal:
ð15Þ

Finally, the coefficients identified as noise (i.e. H
0

0
) samples are rejected at each scale, while the

remaining coefficients are retained as part of the desired signal (i.e. H
0

1
). The steps of the pro-

posed algorithm are listed in the Algorithm 1 and are graphically depicted in Fig 2.

Remark 1: For the GoF testing, the reference CDF F rðtÞ (i.e. CDF describing noise in the

signal) must be known a-priori. In our case, the reference distribution is white Gaussian noise

which means specifying mean and variance completely specifies Fr(t).
Remark 2: τ could be computed using any GoF based empirical distribution function

(EDF) statistic e.g. Anderson Darling (AD), Cramer Von Mises (CVM) and Kolmogrov Smir-

nov (KS) statistics etc. AD and CVM have been found to be relatively robust as compared to

other EDF statistics. An insight into how these statistics ensure detection of signal only and

noise only cases, is shown in Fig 3.

Let an input noisy image X be decomposed into wavelet coefficients W at multiple scales

j = 1 ‥ J through the DWT operation W in (1). We next estimate the standard deviation of

noise σ in the input image via (4) and subsequently normalize the wavelet coefficients by the σ
to make the noise unit variance at multiple scales, as follows,

~W ¼
W
ŝ
: ð16Þ

where ~W denotes the normalized DWT coefficients.

Next, the level dependent threshold Tj must be computed for a probability of false alarm Pfa
which requires the estimation of F rðtÞ; the reference noise distribution at scale k. In this work,

the reference distribution at multiple scales corresponds to zero mean white Gaussian noise

i.e., N ð0; s2Þ since DWT and DT-CWT retain the Gaussianity of input noise at multiple scales

and can be computed as follows,

F rðtÞ ¼
Z t

� 1

1
ffiffiffiffiffiffiffiffi
2ps
p e

z2
s2dz ð17Þ

where z is a zero mean Gaussian random variable with arbitrary variance σ2 which can be esti-

mated using (4). The EDF F i
ðtÞ of local wavelet coefficients around the coefficient wj

i at scale j

GOF test based multiscale image denoising
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Fig 2. Block diagram of theGoFShrink based on DWT.

https://doi.org/10.1371/journal.pone.0216197.g002

Fig 3. Test for Gaussianity via GoF tests where the case (a) shows noise detection as τ is expected to small; and the

case (b) shows signal detection as τ is expected to large.

https://doi.org/10.1371/journal.pone.0216197.g003
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is computed as

F i
ðtÞ ¼

Xl�l

t¼1

1:ðwj
i > tÞ; ð18Þ

where l × l denote the window size.

For empirically estimating Tj at scale j, a large sized WGN η is decomposed using the DWT

and the resulting multiscale WGN coefficients Wη are divided into small windows of size l × l.
Let Lj be the total number of such windows at scale j. For each window centered at i, let τi be

the value of AD statistic computed via (7) by employing the F rðtÞ and F i
ðtÞ defined in (17)

and (18) respectively. If Tj be a chosen threshold then let Mj be the number of false alarms

where τi� Tj, then the PfaðTjÞ ¼
Mj
Lj

. This way, the Pfa versus threshold curve is estimated for a

range of values of threshold Tj as shown in Fig 4.

Remark 3: Owing to the orthogonal and linear nature of the DWT, the Tj versus Pfa
curves were found to be similar for all the scales as expected. The following mathematical

model for threshold selection based on Pfa was obtained using polynomial curve-fitting as

Fig 4. Threshold versus Pfa graph generated empirically for the first five scales of wavelet decomposed Gaussian noise

along with its curve fitted version.

https://doi.org/10.1371/journal.pone.0216197.g004
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shown in Fig 4.

Tl
kðpÞ ¼ 42950ðPfaÞ

8
� 193200ðPfaÞ

7
þ 357600ðPfaÞ

6

� 351900ðPfaÞ
5
þ 198400ðPfaÞ

4
� 64360ðPfaÞ

3

þ11470ðPfaÞ
2
� 1047ðPfaÞ þ 81:76:

ð19Þ

Remark 4: Probability of false alarm (Pfa), in this case, denotes the probability that a noise

coefficient is detected as a signal. That probability should be very small and is specified in the

range of Pfa = 10−3! 10−5.

Let ~wj
i be the wavelet coefficients which are part of ~W, the GoF test is applied on each ~wj

i

by taking a window of size l × l around ~wj
i and then computing their EDF F i

ðtÞ using (18).

Subsequently, the AD distance τi between the F iðtÞ and the reference CDF F rðtÞ at scale j is

estimated via (7). For a given Pfa, a threshold Tj is selected and the following GoF based thresh-

olding function is employed,

ŵj
i ¼

0 if ti � Tj

~wj
i if ti > Tj:

8
<

:
ð20Þ

Fig 5 reports an experimental estimation of a suitable choice of Pfa for selecting the threshold-

ing Tj.

Fig 5. Empirical selection of Pfa: Mean squared error (MSE) versus the Pfa relation obtained empirically for several test

images. Notice that the Pfa values closer to zero yield better results.

https://doi.org/10.1371/journal.pone.0216197.g005
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Remark 5: The thresholding function (20) performs hard thresholding on the wavelet coef-

ficients. This is in-line with the neighbourhood based thresholding rules reported in [16–18,

30, 31], whereby the central coefficient of a neighbourhood or a window is either retained as

desired signal or removed as noise based on statistical or deterministic dependencies between

the local wavelet coefficients.

Finally, the denoised empirical wavelet coefficients are reconstructed by inverse DWT oper-

ation to yield the estimate Ŝp;q of the true image Sp,q. However, before the reconstruction, the

normalization process in step 2 is reversed by multiplying all the retrieved signal coefficients

with the estimated variance of the noise.

Ŝ ¼ fW � 1
ðŝ � ŴÞg: ð21Þ

Subsequently, cycle spinning operation defined in [34] is performed to obtained denoised

image. We shall denote the proposed algorithm by GoFShrink-TI in the remainder of this

paper.

The above method can be extended to DT-CWT by applying the GoF test has been

employed on the complex wavelet coefficients obtained by applying the DT-CWT on the noisy

image. The DT-CWT exhibits near translation invariance and directional selectivity, which

enables it to suppress various artifacts otherwise present in the DWT based denoising results

[58].

The DT-CWT yields complex wavelet coefficients by separately calculating their real and

imaginary parts. We propose to apply GoF based denoising operation, namely GoFShrink,

separately on both sets of real and imaginary parts. These steps include: (i) calculation of the

scale dependent thresholds for the real and imaginary trees of noisy wavelet coefficients (a

graphical depiction of this process is shown in Fig 6 (middle)); (ii) computation of the complex

wavelet coefficients W of the noisy image by employing (1), where W denotes the DT-CWT

operation; (iii) normalization of the DT-CWT coefficients of the noisy signal by employing

(16); (iv) performing the GoF based thresholding in parallel, whereby AD statistics was

employed independently on the real and imaginary DT-CWT coefficients locally, followed by

the use of thresholding function in (20) for detecting and annihilating coefficients belonging

to noise while the remaining coefficients are retained as desired signal (the shaded region in

Fig 6 shows this process for imaginary parts while the unshaded region shows the same for

real parts); (v) taking the inverse-DT-CWT operation, after the reverse normalization opera-

tion, to yield the denoised signal. For the rest of the paper, we will denote this method by

GoFShrink-DT. Matlab code of both of the proposed methods is available online at https://

www.mathworks.com/matlabcentral/fileexchange/64531-gofshrink.

Algorithm 1 GoFShrink based on DWT
1: i, j  0 ⊳ 2D Wavelet coefficient
indexes
2: W WðXÞ ⊳ DWT operation on input X
3: Pfa  0.005 ⊳ Pfa selection based on the experiment
given in Fig 5
4: Tl

k  T ðWZ;P
ðk;lÞ
fa Þ ⊳ Operation T implemented via the procedure given

at Fig 2 (left)

5: ŝ  
medianðjfw2

1
ði;jÞgi;j¼1; ::: ;N

2

jÞ

0:6745
⊳ Noise variance estimation

6: ~W  Wŝ ⊳ Normalisation of the wavelet
coefficient
7: for k = 1 to K do
8: for l = 1 to 3 do
9: for i; j ¼ 1 to N

2k
do
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10: tlkði; jÞ ¼ � L �
PL

n¼1

ð2n� 1Þ

L lnðF rð~wnÞÞ � lnðF rð~wLþ1� nÞ
� �

⊳ AD statistic
11: if tlkði; jÞ � Tl

k then
12: ŵl

kði; jÞ  0 ⊳ Noise detection during GoF test
13: else
14: ŵl

kði; jÞ  ~wl
kði; jÞ ⊳ Signal detection during GoF test

15: end if
16: end for
17: end for
18: end for
19: Ŝ  W� 1

ðŴ � ŝÞ ⊳ Inverse DWT

Fig 6. Block diagram of theGoFShrink based on DT-CWT.

https://doi.org/10.1371/journal.pone.0216197.g006
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4 Computational complexity

In this section we present the computational cost of the GoFShrink based on DWT. The

computational cost of the GoFShrink based on DT-CWT will be four times to that of GoFShrink
based on DWT, provided the length of filters used by both transforms is exactly the same.

The DWT operation on an image (of size N × N) involves separate filtering of the rows and

columns, where first rows are processed via 1D low and high pass filters followed by the deci-

mation by 2, and then the same process is applied on the columns of the input matrix.

If M denotes the size of the 1D low and high pass filters then the computation of the DWT

coefficients will take 2M multiplications and 2(M − 1) additions per sample point. Since at kth

level, the coefficients in the rows will be down sampled by 2k−1, the total cost of implementing

a filter at kth level will involve 2M(1 − 2−k) multiplications and 2(M − 1)(1 − 2−k) additions per

sample point. The total number of coefficients processed by row filters will be N2 as there are

N rows in the image with each row having N number of pixels. Hence, the total complexity for

implementing the row filters at all scales becomes 2N2 M(1 − 2−k) multiplications and

2N2(M − 1)(1 − 2−k) additions. After including the computational cost on image columns,

which is the same as that on the rows, the total computational cost of the 2D DWT operation

on the noisy image will be 4N2 M(1 − 2−k) multiplications and 4N2(M − 1)(1 − 2−k) additions.

Next, these DWT coefficients will be normalized by the estimated noise standard deviation

which required N2 multiplications.

The computation of the empirical CDF FðxÞ is an important part of GoF tests and will

require the computations of the order of O(LlogL) where L denotes total number of coefficients

in the
ffiffiffi
L
p
�

ffiffiffi
L
p

window which are to be used for the GoF test.

From (10), we can see that the computation of the AD statistics measure will require 3N2L
multiplication and 2L(L − 1)N2 additions for the N2 coefficients of the DWT.

At the end, the inverse DWT operation will be performed on the thresholded wavelet coeffi-

cients. The inverse DWT operation mirrors the operation of the forward DWT but with differ-

ent filters having the same length M. Therefore, the computational complexity of the inverse

DWT will be exactly the same as the forward DWT operation.

5 Experimental results

This section presents the performance comparison of the proposed algorithms against the

state of the art in image denoising. The peak signal to noise ratio (PSNR) has been employed

as the measure of quantitative performance, given as

PSNR ¼ 10 log
10
ð
2552

MSE
Þ dB: ð22Þ

The mean squared error (MSE) is calculated as

MSE ¼
1

N2

XN

p¼1

XN

q¼1

ðsp;q � ŝp;qÞ; ð23Þ

where sp,q denotes pixels of the true image S of size N × N and ŝp;q represents the pixels of the

denoised image Ŝ. Note that MSE of noisy image is equal to the variance of the noise σ2.

For qualitative analysis, we employ the structural similarity (SSIM) measure and feature

similarity (FSIM) measure. While SSIM evaluates the quality of a recovered image based on

the structure, the FSIM evaluates the subjective quality of the recovered image based on how

the human visual system (HVS) perceives the quality of an image [59].
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The set of input images used for experimentation consisted of standard test images includ-

ing Lena, Barbara, Peppers, Aeroplane and Cameraman images coupled with images used in

other practical applications such as medical Brain MRI image, a diffused Multi-focus image

and a natural View image. The Brain MRI image was taken from the NIH IMAGE program

ImageJ (https://imagej.nih.gov/nih-image/about.html), a public domain software package dis-

tributed freely by the National Institutes of Health. The Multi-focus image set was acquired

during the study in [60]. The View image was selected due to higher amount of details in it and

is captured by authors at COMSATS University Islamabad campus using a 13 mega-pixel digi-

tal camera. These test images were corrupted by Gaussian noise at multiple noise levels corre-

sponding to σ = 10, 20, 30, 40 and 50, which produces noisy images with PSNRs = 28.13, 22.11,

18.59, 16.07 & 14.15 respectively. The Multi-focus image and View image are displayed in Fig 7

along with their noisy versions, while Lena, Barbara, Peppers, Aeroplane, Cameraman and

Brain MRI have been provided as a supplementary material with this work in S1 Fig.

The performance of the proposed GoFShrink-TI and GoFShrink-DT methods have been

evaluated by comparing them against the well known state of the art image denoising methods

based on different variants of the wavelet transform: BayesShrink (DWT) [13], BiShrink
(DT-CWT) [33], Surelet (DWT) [12], NeighSure (DT-CWT) [18], cSM-EB (CWT) [15]. In addi-

tion to the wavelet based methods, sparsity driven methods like PaPCA [24], iTVD [27], aTVD
[27] and BeltDen [28] have also been considered for comparison. Computationally expensive

technique non local mean (NLM) filtering method [29] has also been used as a comparative

denoising method on practical images.

The DWT based denoising methods including the proposed GoFShrink-TI were imple-

mented using Daubechies wavelet filters of eight taps, namely db8. The noisy images were

decomposed into D = 5 wavelet levels. For the DT-CWT based image denoising methods,

namely the NeighSure, BiShrink, and the proposed GoFShrink-DT, the dual tree of wavelet fil-

ters developed by Kingsbury in [61] for complex wavelets, were employed to decompose the

noisy image into D = 5 levels. The parameters corresponding to the other comparative meth-

ods were used as specified by authors for best performance. The window size for performing

the GoF test in the proposed methods was selected to be 5 × 5, though experiments with other

window sizes including 3 × 3, 7 × 7 yielded similar results.

Table 1 presents the PSNR values obtained by applying various denoising methods on the

selected test images. These PSNR values represent the average values taken over twenty itera-

tions. The highest PSNR value is highlighted in shaded bold, while the second highest PSNR

value is highlighted in bold (without shade) to underline the two best performing denoising

algorithm at each noise level. The results in Table 1 demonstrate the superior performance of

the proposed GoFShrink-DT against the selected state of the art of image denoising at all the

noise levels for all the test images. Note that the GoFShrink-TI showed competitive

Fig 7. Selected input images along with their noisy versions at noise level σ = 30 namely, (a) Multi-focus image; (b)

View image.

https://doi.org/10.1371/journal.pone.0216197.g007

GOF test based multiscale image denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0216197 May 10, 2019 15 / 25

https://imagej.nih.gov/nih-image/about.html
https://doi.org/10.1371/journal.pone.0216197.g007
https://doi.org/10.1371/journal.pone.0216197


Table 1. Comparison of the proposed methods with the state-of-the-art image denoising methods in terms of output PSNR for a range of input noise levels σ = 10 to

σ = 50.

σ 10 20 30 40 50 10 20 30 40 50

Input PSNR 28.13 22.11 18.59 16 14.15 28.13 22.11 18.59 16 14.15

Input Image Lena (512 × 512) Barbara (512 × 512)

BiShrink [33] 34.31 30.97 29.12 27.67 26.55 32.93 28.82 26.64 25.09 23.99

iTVD [27] 33.63 30.82 29.25 28.19 27.37 28.79 25.72 24.55 23.91 23.47

aTVD [27] 32.90 30.19 28.70 27.72 26.95 27.77 25.10 24.14 23.60 23.23

BeltDen [28] 34.15 31.12 29.32 27.41 27.32 30.15 26.57 25.01 24.01 23.56

PaPCA [24] 34.27 31.40 29.67 28.09 26.75 32.57 29.29 26.97 25.39 24.17

Surelet [12] 34.37 30.92 29.10 27.75 26.89 32.47 28.21 26.01 24.66 23.78

NeighSure [18] 34.61 31.36 29.68 28.30 27.31 33.32 29.27 27.18 25.84 24.79

cSM-EB [15] 34.09 30.95 29.18 27.97 27.05 32.53 28.57 26.46 25.15 24.27

GoFShrink-TI 34.67 31.46 29.69 28.29 27.28 33.39 29.47 27.31 26.08 25.01

GoFShrink-DT 34.72 31.74 29.97 28.67 27.68 33.78 30.06 27.89 26.29 25.10

Input Image Peppers (512 × 512) View (512 × 512)

BiShrink 32.51 28.66 26.65 25.22 24.15 33.74 30.27 28.61 27.67 26.74

iTVD 33.22 30.98 29.40 28.35 27.37 33.21 30.60 29.30 28.44 27.79

aTVD 32.74 30.54 29.20 28.20 27.14 32.57 30.14 28.95 28.17 27.58

BeltDen 33.48 31.06 29.47 27.52 27.01 33.86 30.91 29.32 27.49 27.51

PaPCA 33.24 30.95 29.46 28.00 26.74 34.17 30.97 29.19 27.65 26.32

Surelet 32.57 28.51 26.12 24.65 23.61 33.51 30.27 28.52 27.64 26.92

NeighSure 33.31 30.62 29.19 28.09 27.21 34.17 30.84 29.17 28.23 27.52

cSM-EB 32.72 29.14 26.11 26.01 24.91 33.71 30.61 29.16 28.27 27.61

GoFShrink-TI 33.00 30.77 29.24 28.08 27.13 34.11 30.67 28.93 27.85 27.11

GoFShrink-DT 33.07 31.06 29.64 28.56 27.61 34.45 31.09 29.51 28.69 28.11

Input Image Aeroplane (512 × 512) Cameraman (512 × 512)

BiShrink 34.29 30.64 28.57 27.18 25.97 32.09 28.18 26.03 24.67 23.71

iTVD 34.04 30.74 28.92 27.67 26.75 31.28 28.16 26.43 25.21 24.41

aTVD 33.28 30.10 28.36 27.17 26.30 30.53 27.57 25.88 24.77 23.95

BeltDen 34.52 31.07 29.09 27.10 26.88 32.07 28.37 26.40 25.20 24.48

PaPCA 34.62 31.34 29.47 27.77 26.44 32.80 29.16 26.91 25.42 24.21

Surelet 34.52 30.89 28.91 27.55 26.53 31.97 28.03 26.09 24.65 23.71

NieghSure 34.65 31.13 29.06 27.72 26.68 32.62 28.51 26.37 25.00 24.01

cSM-EB 34.01 30.51 28.63 27.35 26.43 32.04 28.14 26.11 24.76 23.81

GoFShrink-TI 34.87 31.31 29.28 27.87 26.77 32.33 28.35 26.36 25.07 24.11

GoFShrink-DT 35.23 31.72 29.70 28.29 27.26 32.46 28.57 26.71 25.34 24.36

Input Image Medical Side MRI Image (256 × 256) Multi-focus Image (256 × 256)

BiShrink 34.32 30.33 28.12 26.51 25.31 37.06 33.24 31.17 29.61 28.33

iTVD 32.91 29.42 27.61 26.37 25.40 37.27 34.02 32.18 30.88 29.86

aTVD 31.95 28.61 26.87 25.68 24.77 36.86 33.68 31.90 30.66 29.69

BeltDen 33.51 29.93 27.93 26.26 25.36 37.47 33.97 31.64 28.84 28.79

PaPCA 34.45 31.14 29.14 27.48 26.04 36.28 33.44 31.65 29.74 28.27

Surelet 34.51 30.44 28.23 26.72 25.56 36.84 32.99 30.67 29.25 28.15

NieghSure 34.91 30.69 28.49 26.98 25.73 37.64 34.01 32.11 30.60 29.66

cSM-EB 33.92 30.18 28.09 26.75 25.61 37.14 33.68 31.69 30.35 29.37

GoFShrink-TI 35.04 31.17 28.85 27.28 26.12 37.81 34.03 31.92 30.32 29.09

GoFShrink-DT 35.41 31.46 29.20 27.72 26.56 38.07 34.23 32.23 30.91 29.89

https://doi.org/10.1371/journal.pone.0216197.t001
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performance when with other comparative image denoising methods for natural as well as

medical images.

For the input image Barbara (of size 512 × 512), the GoFShrink-DT and the GoFShrink-TI
outperformed other denoising methods at all noise levels. The best results were shown by the

GoFShrink-DT which beat the rest of the denoising methods including the second best GoFSh-
rink-TI method by a considerable margin. The GoFShrink-DT also demonstrated superior per-

formance for Lena image (of size 512 × 512) at all noise levels while the second best results

were shown by GoFShrink-TI at noise levels 10� σ� 40 and iTVD at σ = 50, which outper-

formed GoFShrink-TI by a small margin.

For Aeroplane and Side MRI images, the proposed GoFShrink-DT outperformed all the

comparative methods at all noise levels, while second best results were obtained by GoFShrink-
TI and PaPCA alternatively at different noise levels. The second best performance was demon-

strated by the GoFShrink-TI for Aeroplane image at noise level σ = 10, 40 & 50, while the

PaPCA yielded second best results for σ = 20 & 30. Similarly, for Brain MRI image, the GoFSh-
rink-TI offered second best performance at input noise levels σ = 10, 20 & 50 while PaPCA
yielded second highest PSNR values for σ = 30 & 40.

For Peppers image (of size 512 × 512) at σ = 10 & 20, the BeltDen yielded best performance

in terms of output PSNRs followed by the NeighSure at σ = 10 and the GoFShrink-DT at σ = 20.

For noise levels σ� 30 GoFShrink-DT yielded best results.

For Cameraman image (of size 256 × 256), the PaPCA method demonstrated best perfor-

mance against the rest of the denoising methods for 10� σ� 40. However, at σ = 50, BeltDen
yields the best results. The GoFShrink-DT shows the second best performance for Cameraman
image at 20� σ� 40. The NeighSure exhibited second best performance at the noise level σ =

10, while at noise level σ = 50, iTVD yielded second highest PSNR values. Even though, the

GoFShrink-TI failed to be among top two performing methods for Cameraman image, it

showed competitive performance against the best methods.

Similarly, the GoFShrink-DT outperformed the comparative state of the art methods for

View and Multi-focus images (of size 512 × 512) at all noise levels. For Multi-focus image, the

GoFShrink-TI yielded next best results at noise level σ� 20, while the iTVD showed second

best performance at σ = 30 & 40. For the View image, the PaPCA yielded second best results

at σ� 20, while the BeltDen, iTVD and aTVD were second best respectively for noise levels

σ = 30, 40 & 50.

Table 2 presents the qualitative analysis of the denoised images obtained from the compara-

tive state of the art methods along with the proposed GoFShrink-DT method. For that purpose,

we obtain results for input images ‘Lena’, ‘Plane’, ‘Peppers’ and ‘MRI’. It can be observed that

the denoised images obtained from the proposed method yields highest SSIM and FSIM values

on most occasions. In cases where other methods yield better results, the proposed method

still remains quite competitive. Among the state of the art, PaPCA and BeltDen yields the best

results in terms of the SSIM and FSIM values.

The above results and discussion clearly demonstrate the efficiency of the GOF based meth-

ods against the state of the art denoising methods for a variety of practical input images. Simi-

larly, the GoFShrink-TI also showed competitive performance against the state of the art in

image denoising. From the state of the art methods, PaPCA and iTVD yielded good perfor-

mance against the proposed methods while the NeighSure and the Surelet have also been

competitive.

To show the visual quality of the recovered images by various denoising methods, we take a

specific case of a Brain MRI image in Fig 8, corrupted with WGN at σ = 20. The Fig 8(a) shows

noisy versions of the Brain MRI image while Fig 8(b)–8(h) show the corresponding denoised

images obtained by employing BiShrink, PaPCA, Surelet, NeighSure, cSM-EB, GoFShrink-TI
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Table 2. Comparison of the proposed methods with the state-of-the-art image denoising methods in terms of structural similarity (SSIM) and feature similarity

(FSIM) for a range of input noise levels σ = 10 to σ = 50.

σ 10 20 30 40 50 10 20 30 40 50

Input PSNR 28.13 22.11 18.59 16 14.15 28.13 22.11 18.59 16 14.15

Input Image Lena (512 × 512) Pane (512 × 512)

Input SSIM 0.436 0.251 0.167 0.119 0.089 0.396 0.253 0.181 0.137 0.106

FSIM 0.952 0.866 0.783 0.715 0.656 0.954 0.873 0.799 0.736 0.682

BiShrink SSIM 0.586 0.485 0.421 0.374 0.336 0.546 0.443 0.381 0.332 0.300

FSIM 0.976 0.946 0.917 0.891 0.867 0.973 0.937 0.905 0.875 0.847

iTVD SSIM 0.551 0.456 0.401 0.359 0.329 0.525 0.435 0.378 0.339 0.305

FSIM 0.969 0.944 0.925 0.908 0.894 0.966 0.938 0.916 0.898 0.882

aTVD SSIM 0.518 0.426 0.374 0.335 0.307 0.493 0.406 0.352 0.316 0.286

FSIM 0.962 0.934 0.913 0.894 0.879 0.958 0.925 0.901 0.883 0.867

BeltDen SSIM 0.599 0.490 0.420 0.352 0.334 0.572 0.460 0.392 0.331 0.314

FSIM 0.977 0.954 0.931 0.891 0.896 0.974 0.949 0.924 0.886 0.885

PaPCA SSIM 0.611 0.493 0.433 0.399 0.335 0.577 0.455 0.398 0.360 0.310

FSIM 0.976 0.956 0.932 0.926 0.873 0.976 0.951 0.924 0.911 0.864

Surelet SSIM 0.614 0.496 0.430 0.384 0.348 0.572 0.455 0.390 0.346 0.312

FSIM 0.976 0.944 0.916 0.892 0.873 0.973 0.937 0.907 0.881 0.860

NeighSure SSIM 0.608 0.502 0.436 0.392 0.357 0.559 0.452 0.388 0.346 0.313

FSIM 0.979 0.954 0.931 0.909 0.889 0.975 0.941 0.912 0.888 0.865

cSM-EB SSIM 0.610 0.497 0.431 0.386 0.352 0.551 0.443 0.381 0.338 0.307

FSIM 0.977 0.950 0.926 0.904 0.886 0.972 0.937 0.907 0.881 0.861

GoFShrink-DT SSIM 0.599 0.509 0.452 0.410 0.376 0.557 0.457 0.400 0.356 0.324

FSIM 0.979 0.957 0.937 0.921 0.906 0.977 0.949 0.925 0.905 0.888

Input Image Peppers (512 × 512) MRI (512 × 512)

Input SSIM 0.483 0.263 0.170 0.119 0.088 0.519 0.337 0.239 0.180 0.141

FSIM 0.952 0.865 0.784 0.713 0.655 0.886 0.761 0.665 0.594 0.538

BiShrink SSIM 0.492 0.418 0.371 0.338 0.313 0.664 0.558 0.477 0.417 0.373

FSIM 0.972 0.940 0.909 0.884 0.860 0.944 0.895 0.857 0.829 0.805

iTVD SSIM 0.507 0.425 0.378 0.348 0.323 0.618 0.505 0.433 0.381 0.347

FSIM 0.974 0.952 0.931 0.915 0.901 0.922 0.866 0.826 0.797 0.777

aTVD SSIM 0.477 0.400 0.358 0.330 0.306 0.586 0.465 0.393 0.342 0.308

FSIM 0.970 0.946 0.929 0.914 0.900 0.904 0.840 0.797 0.767 0.745

BeltDen SSIM 0.549 0.457 0.400 0.343 0.329 0.646 0.545 0.478 0.430 0.363

FSIM 0.975 0.951 0.933 0.907 0.893 0.937 0.890 0.858 0.829 0.789

PaPCA SSIM 0.587 0.471 0.410 0.378 0.325 0.668 0.563 0.493 0.425 0.393

FSIM 0.973 0.953 0.929 0.925 0.876 0.956 0.915 0.889 0.854 0.848

Surelet SSIM 0.597 0.458 0.396 0.359 0.330 0.670 0.569 0.494 0.439 0.394

FSIM 0.974 0.942 0.915 0.891 0.875 0.945 0.896 0.859 0.832 0.810

NeighSure SSIM 0.578 0.432 0.384 0.351 0.324 0.672 0.565 0.492 0.432 0.390

FSIM 0.975 0.946 0.921 0.901 0.880 0.950 0.902 0.865 0.836 0.815

cSM-EB SSIM 0.591 0.460 0.398 0.361 0.331 0.653 0.549 0.479 0.427 0.387

FSIM 0.973 0.946 0.920 0.901 0.882 0.942 0.896 0.860 0.836 0.815

GoFShrink-DT SSIM 0.514 0.435 0.393 0.362 0.338 0.687 0.586 0.506 0.442 0.393

FSIM 0.977 0.954 0.935 0.919 0.903 0.956 0.917 0.874 0.841 0.818

https://doi.org/10.1371/journal.pone.0216197.t002
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and GoFShrink-DT, respectively. It can be noticed that the GoFShrink-DT retained the image

details and avoided artifacts thereby providing the best visual quality denoised image as com-

pared to the other denoising methods. The GoFShrink-TI though contains some artifacts but it

also manages to preserve important details as compared to NeighSure, Surelet and BiShrink
which also yielded artifacts. The cSM-EB performed comparatively better but fails to capture

the clarity as evident in GoFShrink-DT results. The PaPCA demonstrated visually pleasing

results with lesser artifacts, however, the denoised image is over-smoothed and it is hard to dif-

ferentiate between smoother regions and inherent image discontinuities. We also computed

the difference images corresponding to all the denoised images and then estimated the power

of the difference images. It was observed that least power of the difference image was yielded

by proposed methods i.e. 38.7 & 50.9 while the comparative methods yielded higher power dif-

ference images.

In Fig 9, the performance of the proposed GoFShrink-TI and the GoFShrink-DT is com-

pared with the iTVD, Surelet and NeighSure for the Multi-focus image. It can be observed that

Fig 8. Visual results for several state-of-the-art image denoising methods on the Side MRI image of a brain

corrupted with the noise level σ = 20. This figure is composed of (a) noisy image; (b) denoised image from Bi-Shrink;

(c) PaPCA; (d) Surelet; (e) NieghSure; (f) cSM-EB; (g) GoFShrink-TI; and (h) GoFShrink-DT.

https://doi.org/10.1371/journal.pone.0216197.g008
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the denoised image obtained through the proposed GoFShrink-DT bears striking resemblance

to the original image as it contains least artifacts and recovers all of the important details when

compared to the other methods. Second best results were shown by the GoFShrink-TI which

recovered all the details with few artifacts, see Fig 9(f). The NeighSure and the Surelet yielded

more artifacts in Fig 9(d) & 9(e) even though image details were preserved. Contrarily, the

iTVD over-smoothed the detailed regions leading to a poor estimate of the original image as

shown in Fig 9(c). Another evidence of the best visual performance by the proposed methods

is the least power of difference images (obtained by subtracting denoised images from original)

38.18 and 43.82 respectively while the comparative methods Surelet and NeighSure yield 45.64

and 54.71 respectively. Even though the iTVD yields lower noise power compared to the

GoFShrink-TI, the visual quality of its denoised image is not particularly impressive.

Fig 9. Results of several state of the art image denoising methods onMulti-focus image corrupted with noise with

standard deviation σ = 30; (a) original image (b) noisy image (c) denoised image by iTVD and a zoomed in region

(d) denoised image by Surelet and a zoomed in region (e) denoised image byNeighSure and a zoomed in region (f)

denoised image by GoFShrink-TI and a zoomed in region (g) denoised image by GoFShrink-DT and a zoomed in

region.

https://doi.org/10.1371/journal.pone.0216197.g009
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In Fig 10, shows the actual and noisy view image along with the denoised images obtained

from the BeltDen, aTVD and cSM-EB and the proposed for the input noise level σ = 40. Note

that the denoised image obtained from GoFShrink-DT in Fig 10(g) yielded few artifacts with

most details intact. The GoFShrink-TI also managed to recover important details when com-

pared against the state of the art methods but it also yielded considerable amount of artifacts.

The denoised images from other comparative methods including the BeltDen and the cSM-EB

show significant artifacts. The aTVD yielded lesser artifacts as compared to BeltDen, cSM-E,

albeit few line artifacts are still present while image details are missing.

In order to validate our work, the proposed GoFShrink-DT is also compared against the

NLM method, which is a computationally intensive state of the art method known for its effec-

tive denoising performance. For this purpose, Brain MRI and Multi-focus images have been

used. The denoised images obtained from the the NLM and the GoFShrink-DT, at input noise

Fig 10. Visual performance comparison of various denoising methods on the View image at higher noise level σ =

40. This figure is composed of (a) original image; (b) noisy image and denoised images from (d) aTVD; (e) cSM-EB; (f)

GoFShrink-TI; and (g) GoFShrink-DT.

https://doi.org/10.1371/journal.pone.0216197.g010

GOF test based multiscale image denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0216197 May 10, 2019 21 / 25

https://doi.org/10.1371/journal.pone.0216197.g010
https://doi.org/10.1371/journal.pone.0216197


level σ = 20 & 30 (i.e. noisy MRI image with PSNR = 22.11 & 18.59), have been displayed in S2

Fig which is provided as supplementary material with this work. S2 Fig also reports the corre-

sponding PSNR values of the noisy and the denoised images. The first column of the Auxiliary
Fig 2, shows noisy images while the second and third columns show denoised images obtained

from the NLM and the GoFShrink-DT respectively. It is evident that NLM method yielded

higher PSNRs and also managed to smooth out noise very effectively. However, NLM smooths

images discontinuities or edges thereby loosing important details of the MRI image. Con-

trarily, the GoFShrink yielded comparatively less PSNR but it recovered important signal

details which might be useful in the clinical diagnosis.

Similar trends can be observed in the bottom two rows of the Auxiliary Fig 2 where the

NLM over smooths the Multi-focus image at input noise level σ = 20 & 30 while yielding com-

paratively higher PSNR values than those of the proposed method. However, the proposed

GoFShrink gives sharper denoised image with more signal details.

6 Conclusion

A class of multiscale image denoising algorithms have been proposed which employ the good-

ness of fit test on multiple image scales obtained from discrete wavelet transform (DWT) and

dual tree complex wavelet transform (DT-CWT). The Anderson Darling (AD) statistics have

been employed, within the framework of GoF test, on the wavelet coefficients of the noisy

image to compute the distance between the empirical distribution function (EDF) of local

coefficients and the CDF of reference Gaussian noise. A local thresholding function is then

used to classify the wavelet coefficients as belonging to signal or noise depending on the given

probability of false alarm (Pfa) and the estimated AD statistic. The signal coefficients are

retained while the noise coefficients are discarded to yield the denoised image. While the cur-

rent work only deals with the case of Gaussian noise, the proposed scheme has potential to

remove any type of noise with prior knowledge of the noise distribution. The proposed meth-

ods have been shown to outperform the state-of-the-art image denoising methods on a variety

of input images ranging from standard test datasets to medical and diffusion images. The

results have revealed that from the two proposed methods, the GoFShrink-DT (based on

DT-CWT) has outperformed the GoFShrink-TI (based on DWT) which was expected given

directional selectivity and translation invariance of the DT-CWT transform.

Supporting information

S1 Fig. Standard Input test images (a) Lena (b) Barbara (c) Peppers (d) Plane (e) Camera-

man (g) Brain MRI.

(TIF)

S2 Fig. Comparison of the denoising performance of the proposed GoFShrink-DT against

the NLMmethod onMultifocus andMRI datasets, whereby first column displays the noisy

input images (at σ = 20 & 30) while second and third columns show denoised images by

the NLM and the GoFShrink-DT respectively. In addition, PSNR values of each image have

also been reported.

(TIF)
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