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Abstract—Analyzing video for traffic categorization is an
important pillar of Intelligent Transport Systems. However, it
is difficult to analyze and predict traffic based on image frames
because the representation of each frame may vary significantly
within a short time period. This also would inaccurately represent
the traffic over a longer period of time such as the case of video.
We propose a novel bio-inspired methodology that integrates
analysis of the previous image frames of the video to represent the
analysis of the current image frame, the same way a human being
analyzes the current situation based on past experience. In our
proposed methodology, called IRON-MAN (Integrated Rational
prediction and Motionless textbfANalysis), we utilize Bayesian
update on top of the individual image frame analysis in the videos
and this has resulted in highly accurate prediction of Temporal
Motionless Analysis of the Videos (TMAV) for most of the chosen
test cases. The proposed approach could be used for TMAV using
Convolutional Neural Network (CNN) for applications where
the number of objects in an image is the deciding factor for
prediction and results also show that our proposed approach
outperforms the state-of-the-art for the chosen test case. We
also introduce a new metric named, Energy Consumption per
Training Image (ECTI). Since, different CNN based models have
different training capability and computing resource utilization,
some of the models are more suitable for embedded device
implementation than the others, and ECTI metric is useful to
assess the suitability of using a CNN model in multi-processor
systems-on-chips (MPSoCs) with a focus on energy consumption
and reliability in terms of lifespan of the embedded device using
these MPSoCs.

I. INTRODUCTION AND MOTIVATION

RECENTLY there has been a huge increase in utilizing
Convolutional Neural Networks (CNNs) [1]–[3] to solve

several real-life challenges such as traffic categorization [4],
[5], weather forecasting [6], [7], etc due to its high prediction
accuracy/categorization in the aforementioned target applica-
tions. One particular case for harnessing the efficacy of visual
CNN based prediction model is Intelligent Transportation
Systems (ITS), which is becoming an important pillar in the
modern “smart city” framework.

Traffic load categorization is challenging given the increase
in vehicles on road. Some of the popular ways of monitoring
and categorizing traffic load from videos include vehicle based
assess method [4], [10]–[12] and holistic approach [13]–[15].
In vehicle based assess methodologies, either vehicles are
first localized on the road with a background subtraction
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(a) Frame predicted as Light traffic
category

(b) Frame predicted as Heavy traffic
category

Fig. 1. Frames (Images) from the same Light traffic category of UCSD dataset
[8] and associated prediction by a trained CNN model [9]

method [10], [16], [17] or the vehicles are localized with
moving feature keypoints [11], [12], [18]. Whereas, in holistic
approach, a macroscopic analysis of traffic flow is understood
through global representation of a scene, which is obtained by
accounting for spatio-temporal features except tracking using
background subtraction and moving feature keypoints [13],
[14], [19].

In recent times, there has also been emergence of several
methods capable of monitoring and analyzing traffic using
motionless analysis of videos [4], [9], [20], where videos of
traffic are broken into frames instead, and the frames are
analyzed for further computation or prediction. The main
motivation to utilize methodologies consisting of motionless
analysis of video is that it is difficult to stream high-frame
rate videos gathered by a large network of interconnected
cameras due to bandwidth limitation. Hence, streaming low-
frame rate videos on these camera networks is very common.
In many cases, it is challenging to stream more than 2 frames
per second due to the limited bandwidth of the network when
these cameras stream over a WIFI network [4], [9]. Moreover,
to analyze video in real-time without motion features over a
WIFI network is difficult due to communication bandwidth
constraint and hence, it is better to analyze the image fames
on the camera enabled embedded device itself [9] instead of
relying on a server system over th WIFI network. Another mo-
tivation to devise such approaches in embedded devices is the
afford-ability of such devices instead of employing powerful
server systems used for analysis purposes [9]. Therefore, the
approach of analyzing videos without motion features on the
embedded device is not just beneficial for categorizing traffic
load but could be extended to several computer vision based
real-world application that requires analysis of low-frame rate
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videos. Although motionless analysis of videos have their own
benefits, they also come with limitations described with the
following observations.
Observation 1: Although several implementations of such
methods were able to achieve high prediction accuracy on
known dataset [4], [9], [20], but in some test cases the
analysis were not accurate at all. The reason for failed predic-
tion/analysis is that in some cases it is difficult to predict the
label of an image frame from a video if the ground truth of
the image is overlapping with several other categories (labels)
instead of falling under one category. For example, in the
dataset of traffic released by UCSD [4], [8], which consists of
light, heavy and traffic jam categories, two frames (images) be-
longing to the same category of video are predicted differently
by the CNN model [9]. The reason for such behavior is that the
CNN predicts the label and probability of it occurring on the
instantaneous image frame. In Fig. 1, we notice that a trained
CNN model [9] with an overall prediction accuracy of 81.25%
predicted the wrong label for a frame, which falls under Light
category but was instead predicted as Heavy. However, both
the fames belong to the same video under the Light category. If
the ground truth1 of the two images ((a) & (b)) are compared
then it is justifiable that the prediction by the CNN is in
fact accurate due to the fact that the traffic projected in Fig.
1.(b) is more congested than the traffic projected in 1.(a). In
reality the analysis of each image frame of the video should
also portray the overall analysis2 for the video instead of the
frame itself in order to convey the temporal prediction. Since,
each individual image frame of a video could lead to different
analysis result (prediction/label), the temporal prediction is the
prediction analysis over time. This limitation is due to the fact
that the trained CNN model only predicts the label or analyzes
the current image frame without taking past image frames
into consideration. Therefore, the challenge is to analyze and
predict videos just from the image frames without motion
features of the video and yet give accurate temporal prediction
results for the video as well. Although there have been some
recent studies, which focused on future predictions of motion
in ego-centric videos [21], [22], such as predicting the future
position of a person based on the current image frame, but no
study to our best knowledge have tried to predict the scene3

[23], [24] of a video from image frames taking predictions
from immediate previous frames into account to provide a
more holistic analysis over a time period. Hence, we call
such an analysis as Temporal Motionless Analysis of Video
(TMAV) and several target applications of CNN such as traffic
categorization require such kind of analysis in comparison
with traditional one [4], [9], [25].
Observation 2: In the study [9], Dey et al. proposed a method-
ology to implement a CNN which is trained on a configurable

1Ground truth of the image frame in this case is the information gained
through empirical evidence as opposed to the inference made by the CNN
model.

2Here, overall analysis of video means the analysis of the video as a whole
as opposed to the analysis of each image frame of the video.

3Scene is a place where a human being could navigate or can act within.

embedded device and it was utilized to categorize traffic on
the same device. Although this study gave a novel approach on
analyzing traffic using video cameras in low bandwidth net-
work without the need to communicate the image frames over
the WIFI network, the study also had energy consumption and
device lifespan reliability issues (shown later in the section).
Due to wide consumer adoption of mobile devices utilizing
multi-processor system-on-a-chip (MPSoC) [26]–[28], which
implements several different types of processing elements such
as CPU/GPU on the platform, MPSoCs are perfect candidates
for implementing computing resource demanding algorithms
such as CNN based methodologies. When the CNN model
proposed in the study [9] is implemented and trained on a
MPSoC such as Odroid XU4 [29] (more on the hardware
of Odroid XU4 in Sec. V-B), the maximum temperature of
the CPU reached 93.72°C on an average and the power
consumption peaked at 10.63 Watt on an average during the
training period. Reaching a high operating temperature for a
long period of time is an important factor in the reduction of
lifespan of the device. In some studies [30]–[32] it has been
found that an increase in the operating temperature by 10-
15° centigrades could reduce the lifespan of the device by 2×.
An increase in operating temperature of the device could be
both temporal and spatial [31], where increase in temperature
over a time period is known as an increase in temporal
thermal gradient and an increase in operating temperature
with respect to space is called an increase in spatial thermal
gradient. Additionally, an increase in energy consumption on
embedded devices is harmful for battery operation itself [33],
[34], especially in low-power embedded devices. Thus it is
important to design not just an energy-efficient CNN model,
which is able to achieve desired analysis of video without
motion features, but at the same time does not affect the
lifespan reliability of the system adversely.

In order to overcome the limitations of the existing ap-
proaches we propose IRON-MAN: Integrated RatiONal pre-
diction and Motionless ANalysis of videos using CNN, which
is capable of performing TMAV , in MPSoCs. To this end,
this paper makes the following contributions:

1) An energy efficient prediction methodology (IRON-
MAN) which integrates predictions of previous frames
of a video to predict the current frame and hence analyze
the video without using motion features.

2) A new metric named Energy Consumption per Training
Image (ECTI), which will enable the choice of suitable
CNN model for real-world applications on embedded
devices keeping energy-efficiency in mind.

3) Validation of the proposed approach on a real hardware
platform, the Odroid-XU4 [29].

4) Comparative study of energy consumption using ECTI
metric and temporal thermal gradient on the device while
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training the model on the device and off the device4.
5) Effect on lifespan of the device utilizing CNN based

approaches on such platforms

II. RELATED WORK

Majority of traffic analysis and categorization approaches
before 2015 were mostly performed using the following
methodologies:

• Vehicle based methodologies where either vehicles are
first localized on the road with a background subtraction
method [10], [16], [17] or with moving feature keypoints
[11], [12]. In these methodologies the resulting tracks are
concatenated together to identify key features of traffic
such as traffic lanes, average traffic speed, average traffic
density, etc.

• A holistic approach, where a macroscopic analysis of
traffic flow is understood through global representation of
a scene. The scene is obtained by accounting for spatio-
temporal features except tracking using background sub-
traction and moving feature keypoints [13], [14], [19].

Although the aforementioned methodologies are highly ef-
fective to analyze traffic, the biggest limiting factor is the cost
of sophisticated camera-network involved and the requirement
for high-frame-rate videos to compute reliable motion features.
To break away from this trend of traffic analysis, Luo et al.
[4] proposed a methodology to use various image processing
and CNN based approaches to analyze traffic without moving
features. In this paper the authors used four different visual
descriptors: bag of visual words (BOVW), Vector of Lo-
cally Aggregated Descriptors (VLAD), improved Fisher Vector
(IFV) and Locality-constrained Linear Coding (LLC). They
have also used pre-trained deep CNN models such as Caffe
and VGG to analyze traffic and predict categorization of the
same. The approach taken by Luo et al. to use popular image
processing and CNN methods to classify traffic is novel and
solves the low-frame-rate video streaming issue. In another
extended paper published by Luo et al. [20], the researchers
have used SegCNN and RegCNN to analyze and classify
traffic. Using SegCNN [20] the goal is to segment/predict a
pixel in the image frame into 3 categories: Road, Vehicle,
Background, since traffic density can be estimated by counting
vehicles, road and background pixels in a traffic image. Due
to SegCNN being a compute intensive and time consuming
approach, instead of predicting pixel wise semantic label of an
image frame, a section or patch of the image frame is predicted
and this is called RegCNN [20]. In both the aforementioned
works [4], [20] the authors are training and classifying traffic
images after the video frames are transferred to the server
from the interconnected camera network. However, installing
and implementing such hardware infrastructure to analyze

4Training a CNN model could be performed both on the embedded
device or off the device. During ‘off the device training’ it could be
performed on a more resourceful device with higher computing resources
(CPU/GPU/Memory) and then the weights and parameters of the trained
CNN model are saved and transfered to the embedded system for predic-
tion/analysis.

traffic is a challenging issue [35] due to the associated
implementation costs [9]. In another study [25], Luo et al.
utilizes image segmentation, Deep Learning [36] and analysis
techniques with CNN to learn features from the traffic scene
and categorize without motion features. The traffic analysis
methodologies proposed in [4], [20], [25] are not capable of
being implemented on low powered embedded devices during
the training phase because such methodologies utilize a lot of
computing resources due to the computational cost involved.
Therefore, training of the CNN model is performed on a
powerful computer with a lot of computing resources and then
use the trained CNN on the device for prediction/analysis,
which makes the methodologies inflexible to new training
dataset. This requires the models to be trained on a powerful
computing device and only be used on the embedded device
for prediction/analysis.

In a study, Dey et al. [9] proposed a traffic categorization
methodology using CNN where the training could be per-
formed on the device mimicking a human being’s ability to
learn from its surroundings and makes such an approach more
flexible in terms of learning adaptation than compared to [4],
[20], [25]. Further, neither of the studies in [4], [9], [20],
[25] are capable of performing temporal analysis of video,
where a holistic analysis of video could be provided instead
of analyzing each image frame.

Other state-of-the-art methodologies include detecting and
counting the numbers of cars and computing traffic density
based on that using CNN-based vehicle detectors with high
accuracy at near real time [37]–[39]. This way of detecting
traffic density could be classified as a vehicle based approach
and has become popular in recent times but there are associ-
ated limitations [9] with these methods as follows:

• Training and test data should belong to the same dataset
taken from the same camera with the same configuration
and hence require consistency in training.

• Cars detected need to be within a particular range or
scope of the image as these methodologies fail to detect
cars that are far away in the images captured.

• These methodologies performed poorly if the captured
images were occluded, especially in case of heavy traffic
and jam.

In contrast to all the aforementioned works, we propose an
easy to train CNN model, which does not require a lot of
images in the training dataset. The model uses combination
of transfer learning, continuous learning and Bayesian update
capabilities on the multi-processor system-on-a-chip (MPSoC)
platform, utilizing different types of processing elements. In
transfer learning, the learning is achieved by taking the con-
volutional base of a pre-trained network, running the new data
of 4 traffic categories through it and training a new randomly
initialized classifier [9], whereas, in continuous learning, the
learning is achieved by re-training the classifier with wrong
predictions till operating period of the system [9]. Bayesian
update is the ability to update the probability for a hypothesis
as more new information or evidence becomes available [40].
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III. SYSTEM AND PROBLEM FORMULATION

A. System Description

Multi-processor systems-on- chips (MPSoCs) consisting of
different types of cores such as CPU and/or GPU. These
architectures provide opportunities to exploit distinct features
of CPU and/or GPU cores to meet performance and energy
consumption requirements. One of the most popular MPSoCs
is the Samsung Exynos 5422 SoC [41], which is an excellent
playground for demanding computer vision applications due
to its powerful processing elements (see Sec. V-B for more
details on the hardware setup for the experiments performed).
Since most recent computer vision applications such as image
recognition with CNN [42], consist of task and thread level
parallelism as well as data level parallelism [43], [44], such
applications are really good candidates for utilizing the full
computing capacity of MPSoCs such of the Exynos 5422.
Moreover, nowadays MPSoCs are used extensively in smart
phone devices such as the Exynos 5422 MPSoC is utilized in
several of the Samsung Note and Galaxy smart phones. Hence,
implementing our proposed methodology to solve TMAV on
an MPSoC is the focus of our paper.

B. Problem Definition

If we consider a video (V ) consists of m number of image
frames (f ) such that V = {f1, f2, ....fi, ....fm}, instead of us-
ing CNN to analyze and predict (Pi) an instance of the image
frames (fi) of the video such that Pi = PredictionOf(fi)
(where PredictionOf(fi) is a function to evaluate prediction
of fi), our goal is to analyze and predict (P ) n number of
image frames out of m number of frames of the video in a
holistic manner, where n ≤ m. Here, by the term ‘holistic’ we
try to provide the overall analysis and prediction of n image
frames rather than just providing the prediction of one instance
(fi) of the image frames. Therefore, in this paper we tackle
the problem as defined below:

Given a video (V ) consisting of m number of image frames
and F is a set of images frames consisting of n frames of V
such that F = {fi, fi+1, ...fi+n−1}

Compute holistic prediction (P ) of F such that P =
PredictionOf(F )

Subject to n ≤ m.

IV. PROPOSED METHODOLOGY: IRON-MAN
In our proposed approach, we utilize the concept of Hybrid

Training Method [9], where we train our model both dur-
ing offline (training period) and online (runtime/post-training
period) modes. IRON-MAN (Integrated RatiONal prediction
and Motionless ANalysis of videos) has two modules in it:
Training and Prediction (as shown in Fig. 2). The strength of
our approach is that it provides temporal analysis of videos
without motion features i.e. TMAV.

In the training module, we use transfer learning5 [45],
[46] by utilizing an existing pre-trained network and train

5Learning achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new randomly initialized classifier

the classifier with our data categories. First, we train the pre-
trained CNN with our dataset, which could be either performed
on the MPSoC or on a powerful computing system, which has
a lot more computing resources than the MPSoC that could be
leveraged to improve the training time. After the initial phase
of training is complete, we evaluate the overall prediction
accuracy of the trained CNN. If the overall prediction accuracy
(Pi) of the CNN is equal or more than the desired quality of
experience (Q) [9], then we utilize the CNN for prediction
in the prediction module. However, if the desired prediction
accuracy is not achieved then we retrain the CNN with the
failed predicted images. This retrain methodology is bio-
inspired as it mimics one of the key intelligence feature
of a human being, which is learning from the surrounding
environment to adapt. When a human being meets a new
environment and is not aware of the rules and regulations
associated with it, the human tries to adjust and adapt by
learning the new set of rules and regulations. We have utilized
the same concept in our approach as well, which is described
subsequently in Sec. IV-A.

After the retraining of the CNN, when the desired pre-
diction accuracy is achieved we use the trained CNN in
the prediction module. Now, instead of providing prediction
result for each individual image frame, we integrate the final
prediction by taking previous image frames into account. Our
CNN model’s prediction is inspired by Bayes’ theorem and
sequential Bayesian updating [40], where the model updates
the possibility of the prediction label occurring by taking
the probability of the label occurring in the previous frames.
This approach is again bio-inspired as it is adopted from the
ideology of humans updating their knowledge using Bayesian
inference logic. Detailed algorithm and inner working of the
IRON-MAN is provided in the following two subsections.

Fig. 2. IRON-MAN Model Work-flow
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A. Training Module

The algorithm for the Training (Learning) module is pro-
vided in Algo. 1. For the proposed approach, any pre-trained
CNN model such as VGG [3], ResNet [47], etc could be
selected. The training module itself consist of two part train-
ing: Offline and Online mode. During the offline mode, the
CNN is trained with stock images from a dataset stored on a
memory. After the initial training period (offline) the CNN is
then fed with live images from the camera and the prediction
for each image frame is evaluated. Upon failure in prediction
for each image, the image is stored in a stack implementation
called “reFeed Image Stack". After utilizing cross-validation
technique [48], where validation testing is performed on a
separate dataset such as live image frames from the camera
stream, the overall prediction accuracy (Pi) of the CNN model
is evaluated. If the overall prediction accuracy is equal or more
than the desired quality of experience (Q) then the training
process concludes and the CNN is ready to start predicting
categories in the prediction module. The governing equation
to check for the suitability of the CNN for further prediction
is provided in Eq. 1 [9], where I is the dataset consisting of
images, i is an image in the dataset and Pi is the prediction
accuracy of the CNN for i. However, if the desired quality of
experience is not met in terms of prediction accuracy then the
CNN is trained with the failed prediction images, which are
stored in the reFeed image stack (using the function S.Push(i)
as mentioned in Algo. 1, where S is the reFeed image stack).
We call this as the reTrain approach so that the CNN can
achieve a higher localized prediction accuracy. Here, the term
localized prediction accuracy means the prediction accuracy
of the model for a set of images that is restricted to a specific
task or place. The retrain mechanism is bound to improve
prediction accuracy because we train the CNN model with
the failed images6 saved in the reFeed image stack and this
approach mimics a human being’s ability to rectify his/her
mistake after making one.

∀{i ∈ I : i > 1}, Pi ≥ Q (1)

Note: Using the proposed approach, training could be per-
formed both on the MPSoC or on a more powerful computing
device. If the CNN is trained on a device other than the
MPSoC, then after the aforementioned training phases (offline
and online) are complete, the CNN model’s parameters and
weights could be saved and migrated to the MPSoC to act
as the Prediction module. Utilizing this method of training
the CNN can also improve reliability (lifespan) and energy
efficiency of the device due to the required operating resources
during the training period being high. Here, the operating
resources represent the computing resources such as CPU
and/or GPU, memory, etc. required during the operation of
an executing application.

6Here, failed images are the image frames which were predicted/labeled
incorrectly during the testing of the trained CNN model.

Algorithm 1: Training Module Execution
Input:
1. I: set of n Images from training & validation dataset
2. C: set of m Images from camera (for cross-validation)
Output: P : prediction accuracy after training
Initialize: Q = 0.7; . Quality of experience is set to 70% by

default
S.Count = 0; . S: reFeed image stack
Offline Training:
Train (pre-trained CNN model , I); . Train model with I

dataset
Online Training:
for each image i ∈ C do

Prediction = Test ( CNN model ); . Test(CNN model) is
a function which outputs whether prediction is correct
or wrong

. Prediction.IsWrong() is a function to return True when
Prediction.Label ! = Original.Label of test image i

if Prediction.IsWrong() then
S.Push(i);

Pi = CalculatePredictionAccuracy();
. CalculatePredictionAccuracy() is the function to

evaluate the overall prediction accuracy of the CNN
and return the value (Pi)

{re-Train with reFeed Image Stack if Pi < Q}
if Pi < Q then

. Need to satisfy condition of Eq. 1
if S.Empty() == False then

{Traing CNN with reFeed image stack}
Train (CNN model , S );
P f
i = CalculatePredictionAccuracy();

. CalculateMeanPredictionAccuracy() is the function
to evaluate the overall prediction accuracy of the
CNN after retraining and return the value (P f

i )

P = P f
i ;

S.Count = 0; . reset reFeed image stack
else

return P ;

B. Prediction Module

The detailed algorithm for the Prediction module implemen-
tation is provided in Algo. 2. From Bayes’ Theorem [40] we
can represent the expression representing the Bayesian Update
Scheme as follows:

posterior ∝ prior × likelihood (2)

In Eq. 2, posterior is the revised probability of an event
occurring after taking new information into consideration,
prior is the probability of the event assessed before revising
posterior and likelihood is the probability that an event which
has already occurred would yield a specific outcome. Now,
using sequential update scheme where we take the past into
account and the modified expression for Bayesian Update
Scheme is as follows:

new posterior ∝ current× new likelihood (3)

In Eq. 3, current is the probability of some entity occurring
whereas the new likelihood is the Bayesian Update taking
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posterior from the past into account. This approach sometimes
is also called a Recursive Bayesian Update. For our scenario,
we are trying to predict the current probability for the label
(category), which becomes the new posterior in the equation,
current is the probability prediction of the category of the
image frame provided by the CNN and new likelihood is
the probability of the category occurring in some previous
time steps. Here, the reason to mention some previous time
steps is because the number of previous time steps to take
into consideration will be a heuristic choice of the user. In
our case, we call the number of previous frames (images),
which is considered to provide an integrated prediction for the
chosen category, as Frame Window. Frame Window consists
of N number of frames, which are taken into consideration.

If we consider that the prediction for the category in the
current frame as P category

this , prediction for the same category
in the previous frame as P category

this−1 and the total prediction
accuracy of the model as PCNN then the updated equation
for Bayes’ Theorem is as follows:

P category
updated ∝ P category

this−1 × P category
this (4)

Eq. 4 could be utilized to predict the frame using the
prediction of previous frame as follows:

P category
updated =

P category
this−1 × P category

this

(P category
this−1 × P category

this ) + PCNN

(5)

In Eq. 5, P category
updated is the updated prediction using Bayes’

Theorem for the same category by the CNN model. We should
also note that both P category

this−1 and P category
this are conjugate

priors for our scenario since they belong to the same category
as the posterior (P category

updated ) and hence in the same probability
distribution family. Now, depending on the Frame Window,
the evaluation of P category

updated will vary, which leads us to an
updated equation as follows:

P category
updated =



P category
this , if N = 0

P category
this−1 ×P category

this

(P category
this−1 ×P category

this )+PCNN
, if N = 1

∏N
1

P category
this−N ×P category

this−(N−1)

(P category
this−N ×P category

this−(N−1)
)+PCNN

, if N > 1

(6)
Eq. 6 is the governing equation, which is utilized to predict

the probability of the category during the Frame Window.
In the Prediction module, IRON-MAN has a queue imple-

mentation of the image stack (called as Image Queue), where
the N number of frames are stored and N is defined by
the user to denote the size of the Frame Window. When an
(N + 1)

th image frame comes from the camera for prediction,
the images stored at 1st position of the Image Queue is
popped out and the (N + 1)

th image frame is pushed in the
N th position of the queue while everything getting shifted

a place in the middle just like in a first-in-first-out (FIFO)
queue implementation. When prediction for a particular frame
is required, the prediction of the frame by the CNN model
is provided as well as the prediction of the Frame Window is
provided by using the Eq. 6. After utilizing Eq. 6 the updated
prediction (P categoryi

updated ) for a specific category i is compared
with the the updated prediction of other categories and the
label for the maximum value of the prediction is provided as
output.

Algorithm 2: Prediction Module Execution
Input:
N : number of frames in the frame window
Output:
1. Plabel: prediction label
2. P category

updated : updated prediction label using Eq. 6
Initialize: I.Count = 0; . I: Image queue of size N
while Camera is feeding image frames do

if I.Count > 0 then
I.Pop();
. Pop() is a function to remove the object/image in
the 1st position of the image queue

I.Push(Current Frame);
. Push(Image) is a function to remove the object/image
in the N th position of the Image Queue

Plabel = PredictCurrentFrame();
. PredictCurrentFrame() is a function to predict the label

(category) for the current frame

P category
updated = UpdatedPrediction(N );

. UpdatedPrediction(N ) is a function to predict the label
taking prior N sequential frames into account by
utlizing the Eq. 6 for all available categories and
retunring the label for the category with higgest
probability

C. ECTI: Energy Consumption per Training Image

A new metric, ECTI (Energy Consumption per Training
Image), is introduced to choose the suitability of a CNN
model in embedded systems. If we consider ET as the total
execution time period required to train the CNN with a dataset
I consisting of n number of images to achieve a validation
prediction accuracy of P , Q as the quality of experience, and
the average power consumption per second during the training
period as e then the equation for ECTI could be defined as
follows:

ECTI = (
ET

n
× e) iff P ≥ Q (7)

The unit of ECTI is kilo−watt−hour (kWh), where ET
is represented in hours and e in kilo-Watt (kW ). To choose
the most suitable CNN for an embedded application we have
to select the CNN with the least value of ECTI .

V. EXPERIMENTAL RESULTS

A. Dataset Used

We have performed our validation on two different test
cases: traffic categorization and pedestrian obstruction.

Page 6



This is a Preprint Version

Image frames Normal predictions without IRON-MAN Predictions by IRON-MAN

(Label)
∣∣ Empty

∣∣ Fluid
∣∣ Heavy

∣∣ Jam

(Fluid) | 0.0100 | 0.7930 | 0.1683 | 0.0286

(Label)
∣∣ Empty

∣∣ Fluid
∣∣ Heavy

∣∣ Jam

(Fluid)
∣∣ 0.01

∣∣ 0.793
∣∣ 0.1683

∣∣ 0.0286

(Heavy)
∣∣ 0.0131

∣∣ 0.3091
∣∣ 0.5098

∣∣ 0.1681 (Fluid)
∣∣ 0.0001

∣∣ 0.1986
∣∣ 0.0798

∣∣ 0.0048

(Jam)
∣∣ 0.0131

∣∣ 0.2754
∣∣ 0.3399

∣∣ 0.3717 (Fluid)
∣∣ 0.0

∣∣ 0.0524
∣∣ 0.0267

∣∣ 0.0018

TABLE I
PREDICTIONS OF TRAFFIC CATEGORIZATION IMAGE FRAMES WITH AND WITHOUT IRON-MAN

Image frames Normal predictions without IRON-MAN Predictions by IRON-MAN

(Label)
∣∣ No-Obstruction

∣∣ Obstruction

(Obstruction)
∣∣ 0.3270

∣∣ 0.6730

(Label)
∣∣ No-Obstruction

∣∣ Obstruction

(Obstruction)
∣∣ 0.3270

∣∣ 0.6730

(No-Obstruction)
∣∣ 0.5010

∣∣ 0.4990 (Obstruction)
∣∣ 0.1843

∣∣ 0.3166

(Obstruction)
∣∣ 0.4600

∣∣ 0.5400 (Obstruction)
∣∣ 0.1047

∣∣ 0.1908

TABLE II
PREDICTIONS OF PEDESTRIAN OBSTRUCTION IMAGE FRAMES WITH AND WITHOUT IRON-MAN

1) Traffic categorization dataset: For our traffic categoriza-
tion experimentation we are using the same dataset used by
Luo et al. [4], [20] and Dey et al. [9] for traffic categorization
to validate the performance of our proposed methodology.
Mainly two dataset are used in this experiment. The first
dataset is released by UCSD traffic control department [8].
This dataset contains 254 highway video sequences, all of
which are filmed using the same camera containing light,
heavy and traffic jams filmed at different periods of the

day under different weather conditions. Each UCSD video
has a resolution of 320 × 240 pixels with a frame rate
of 10 fps. The video streams from the UCSD dataset were
converted to images by processing 1 frame out of every 8
frames (~1.3 fps). This UCSD dataset was used as the testing
dataset. Since UCSD dataset is categorized into 3 labels: Light,
Medium and Heavy, we manually annotated the images into
our desired 4 categories: Jam, Heavy, Fluid, Empty. Another
dataset consisting of the 400 images, which is provided by
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Luo et al. [4] as well as Dey et al. [9], captured from highway
cameras deployed all over the UK and also consist of several
examples of different weather and lighting conditions in order
to provide a better training performance. These 400 images are
segregated into 4 categories: Jam, Heavy, Fluid, Empty; and
each category having 100 images. This dataset was used for
training and validation purposes. When the road was empty
the images were categorized as Empty and for light traffic it
is labeled as Fluid. When the traffic was heavy the images
are labeled as Heavy and for slow moving heavy traffic the
images are labeled as Jam.

2) Pedestrian obstruction dataset: For our pedestrian ob-
struction experimentation we have used the pedestrian dataset
used by Li et al. [49], which consists of more than 5 million
images for a total of 32361 labeled vulnerable road users
(VRUs), including cyclists, pedestrians, tri-cyclists and motor-
cyclists etc. To validate our proposed IRON-MAN approach
we have only used the training dataset of [49] consisting of
9742 images for both training and validation, whereas we used
the validation dataset from the same study for testing purposes.
The images were manually labeled into 2 categories: Obstruc-
tion, No-Obstruction. Whenever there were pedestrians in front
or nearby the camera view, then it is categorized as obstruction
and in contrary it is labeled as no-obstruction.

B. Hardware Setup

We have implemented the methodology on an Odroid-
XU4 [29], which employs Exynos 5422 MPSoC [41] used
in popular Samsung Note phones and phablets. Exynos 5422
implements ARM’s big.LITTLE architecture utilizing 4 ARM
Cortex A-15 big CPUs, 4 ARM Cortex A-7 LITTLE CPUs
and 6 MALI T628 MP6 GPUs. The Odroid-XU4 does not
have an internal power sensor, and we had to use an external
power monitor [50] with networking capabilities over WIFI to
take power consumption readings. Odroid-XU4 platform has
4 temperature sensors on 4 ARM Cortex A-15 big CPU cores,
which we have read to monitor temperature behavior during
our experiments. For all our experiments we have only utilized
4 A-15 big CPU cores to monitor the operating temperature
and power consumption.

C. Experimental Results

1) Prediction accuracy evaluation: We chose two pre-
Trained CNN models, which were trained on millions of
ImageNet images, for our validation. These two CNN models
are VGG16 [3] and ResNet50 [47]. In our experiments, we
have chosen the quality of experience (Q) to be 0.7 i.e.
70%. For VGG16 it took us 360 images to train the pre-
Trained CNN for traffic categorization using Transfer Learn-
ing and retrain approaches, (see Sec. IV-A) and gained a
testing prediction accuracy of 98.93%. The average power
consumption was 10.63 W on the Odroid-XU4 MPSoC and
the total execution time was 97 minutes 44 seconds. Therefore,
using the formula in Eq. 7, the Energy Consumption per
Training Image comes out to be 48.097×10−6 kWh (average)
(' (10.63× 1

1000 )×
(97×60+44)

3600 × 1
360 ).

For ResNet50 it took us 117 minutes and 27 seconds,
and 330 images to train the pre-Trained CNN for traffic
categorization using transfer learning and retrain approaches.
The testing prediction accuracy attained by the model is
92.79%. The average power consumption was 10.59 W.
Therefore, using Eq. 7, the Energy Consumption per Train-
ing Image comes out to be 62.817 × 10−6 kWh (average)
(' (10.59 × 1

1000 ) ×
(117×60+27)

3600 × 1
330 ). Since both VGG16

and ResNet50 were able to achieve a prediction accuracy
higher than Q (70%) and the ECTI of VGG16 is lower
than ResNet50, we have chosen VGG16 as a more suitable
CNN model for training on the embedded device, i.e. Odroid-
XU4. During training VGG16 and ResNet50, the average
maximum temperature achieved by the big CPU cores are
93.60°C (average) and 93.72°C (average) respectively. The
maximum operating temperature of the big CPU cores for
different CNN models are shown graphically in Fig. 4. We
noticed that the maximum baseline temperature, which is the
operating temperature of the CPU core when idle i.e. only
executing background tasks while on Linux’s ondemand power
scheme, of the ARM Cortex A-15 big CPU core was 69.24°C
(average). Therefore, the deviation of operating temperature
while training and the baseline temperature was 24.36 °C
(average) for VGG16 and 24.48 °C (average) for ResNet50.
Max T. and Max Baseline T. stands for maximum operating
temperature and maximum baseline temperature in Fig. 4. In
Fig. 5 we show graphical representation of power consumption
for both VGG16 and ResNet50 training period. For both Fig. 4
and Fig. 5 we have only shown a snapshot of the total training
execution period due to repetition in behavior of the graph.

Now, to prove efficacy of our integrated rational prediction
of image frames from the video, we randomly chose a video
from UCSD traffic dataset [8] and broke the video into image
frames, which represents the same category as the video
itself. We chose a video from medium traffic category, which
corresponds to fluid category and utilized the VGG16 model
as the CNN model in IRON-MAN to predict the label of
a sequence of image frames as well as the label for video.
For the experiment we chose the Frame Window of 3 images
representing a video sequence of 4 seconds (approx.). Table.
I shows the prediction of labels if we only use VGG16 CNN
without our IRON-MAN approach and if we use IRON-MAN
as well. The table shows that VGG16 could predict the label
of the image frame, but that prediction did not match the label
for the whole video, whereas the prediction label for the video
using IRON-MAN was achieved with 100% accuracy.

In another experiment (pedestrian obstruction), we chose
simultaneous image frames having pedestrians as obstruction
from the pedestrian dataset [49] to validate efficacy of IRON-
MAN. Table II shows that IRON-MAN was again able to
predict whether the path is obstructed by a pedestrian or not
using integrated results from previous frames. ResNet50 CNN
was utilized in this experiment, which gained a testing predic-
tion accuracy of 72.50% after transfer learning and retraining
approaches for this application. For pedestrian obstruction
experiment we trained the classifier of ResNet50 and VGG16
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on a general purpose computer instead due to massive training
dataset and associated energy consumption, and migrated the
saved parameters and weights of the model to Odroid-XU4
for further prediction. ResNet50 was selected over VGG16
in this experiment because the model gained a better testing
prediction accuracy for this application, which outperformed
VGG16’s 66.87% testing prediction accuracy for the same.

2) Comparison between traditional method & IRON-MAN:
If we consider a video consisting of M number of image
frames need to be analyzed and predicted using CNN based
approaches such as VGG and ResNet, traditional method such
as VGG or ResNet would analyze each individual image
frames from M number of images and output the result.
Whereas, from the results of experiments provided in Sec.
V-C1, we could notice that IRON-MAN is capable of analyzing
N , where N ≤ M , number of image frames together and
provides a consolidated prediction of N frames. Therefore,
IRON-MAN is able to categorize video with 100% prediction
accuracy during testing and is able to perform TMAV, which
could not be performed by traditional CNN based approaches.

3) Comparative study of IRON-MAN: To evaluate the effi-
cacy of IRON-MAN, we compared the methodology with the
state-of-the-art approach for traffic categorization proposed by
Luo et al. [25]. Since, the methodology proposed in [25] is
closely related to the target application of traffic categorzation
without motion features, it is justifiable to use the proposed
methodology for a comparative study with IRON-MAN. Addi-
tionally, IRON-MAN being the first methodology to perform
TMAV in traffic categorization, it would be unjustified to
compare the methodology with any other existing approaches.

In [25], the researchers have used SegCNN and RegCNN to
analyze and categorize traffic. The main motivation of utilizing
SegCNN and RegCNN in their approach is to improve the
accuracy of the prediction model even without training the
CNN with a large dataset.

Although after the training, Luo et al.’s approach was able
to achieve a prediction accuracy of 94.8% during testing for
traffic categorization, which is slightly higher (' 2.01%) than
the prediction accuracy achieved by IRON-MAN, but when the
approach was tested for temporal analysis of image frames to
provide holistic prediction of the video instead, it achieved a
prediction accuracy of 65% for the same target application. In
comparison IRON-MAN was able to achieve 100% prediction
accuracy for temporal analysis of 9 sequential image frames
in the frame window as mentioned in Sec. V-C.

Moreover, given the computation complexity of [25], ex-
ecuting the approach also has an overhead of 5.2× on the
Odroid XU4 MPSoC than compared to IRON-MAN. Fig. 3
shows the execution time (in seconds) of analyzing 9 sequen-
tial image frames of the same video from the UCSD dataset
[8]. Each test was performed 5 times on the Odroid XU4,
utlizing all eight CPU cores (big.LITTLE CPU cores) and the
average execution time for image analysis for each number of
image frame is provided in Fig. 3. Since the concept of frame
window or temporal analysis of image frames of video does
not exist in [25] approach, we sequentially feed each image
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Fig. 3. Execution time taken to analyze 9 image frames sequentially from the
traffic video (Execution time in seconds vs number of image frames analyzed)

Fig. 4. Graphical representation of operating temperature peaks of VGG16
and ResNet50 training and baseline temperature (°C vs time interval)

frames from the video to the methodology to get the output
analysis.

From Fig. 3 we can notice that it takes 1.487275 seconds
for Luo et al.’s approach to analyze 9 sequential image frames,
whereas it takes 0.285775 seconds to analyze 9 sequential im-
age frames in the frame window for the IRON-MAN. Therefore,
the overhead associated with Luo et al.’s approach is 5.2×
(approx.) on the Odroid XU4 MPSoC, making the IRON-MAN
more suitable for real-time execution for traffic categorization
application on the embedded devices utilizing MPSoC.

4) Effect on lifespan of the device: In the studies [30]–
[32], it has been shown that an increase in the operating
temperature of an embedded device by 10-15°C could reduce
the lifespan of the device by 2×. In Sec. V-C and from the
knowledge on thermal deviation in Fig. 4, we have already
noticed that if training is performed on the device then there is
an increase in operating temperature of the device by 24.36°C
(average) for VGG16 and 24.48°C (average) for ResNet50.
Therefore, considering that the device lifespan reduces by
2× for every 10°C increase in operating temperature and if
training is performed on the device then the lifespan of the
same device reduces by 4.872× (' 24.36

10 × 2) for utilizing
VGG16 and 4.896× (' 24.48

10 × 2) for utilizing ResNet50.
Now, if we consider that lifespan reduces by 2× for an
increase of 15°C in operating temperature instead, then the
same evaluation changes to 3.248× for VGG16 and 3.264×
for ResNet50. Therefore, until the application requires the
CNN to be trained on the embedded MPSoC to continue
providing desirable analysis it is highly recommended that the
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CNN is not trained on the embedded system.

VI. LIMITATIONS AND DISCUSSION

Lemma 1. Updated prediction (P category
updated ) of the category

using Baye’s Theorem tends to zero as prediction (P category
this )

for the category in the current frame tends to zero.

In the Eq. 4, if P category
this −→ 0 then P category

updated −→ 0 (see
Eq. 8). Hence, for a lower value of P category

this we would be
achieving a lower value of P category

this if prediction (P category
this−1 )

for the same category in the previous image frame is less than
or equal to one7 (P category

this−1 ≤ 1).

P category
updated −→ 0 as P category

this −→ 0 (8)

Theorem 1. If N ≥ 1 in the frame window and P category
this −→

0 then the updated prediction (P category
updated ) of the category

converging to zero increases as N increases.

In Eq. 6, if the number of image frames (N ) is greater than
one then the updated prediction for the category is represented
by Eq. 9.

P category
updated =

N∏
1

P category
this−N × P category

this−(N−1)

(P category
this−N × P category

this−(N−1)) + PCNN

, if N > 1

(9)
In the Eq. 9, if we consider the term,

P category
this−N ×P category

this−(N−1)

(P category
this−N ×P category

this−(N−1)
)+PCNN

as Pk, since the preceding

term is part of the product series represented in Eq. 9 and
consider P category

updated as a function (FN,i) of N and i, where i
is the ith image in the frame window consisting of N image
frames, and both i and N are whole numbers (N, i ∈W and
N > i ≥ 1), then the aforementioned equation (Eq. 9) could
be represented as follows:

FN,i =

N∏
k=N−i+1

Pk (10)

Since P category
this is an integral part of Pk in Eq. 10 (see

Eq. 9), using the knowledge from lemma 1 we can say
that as P category

this −→ 0 then Pk −→ 0 as well. Now, as
N −→ ∞ and Pk −→ 0 then FN,i −→ 0. Therefore, using
this knowledge we could state that: 0 ≤ FN,i ≤ Pk and
proving the fact that as N gets larger and P category

this gets
smaller (close to zero), the updated prediction (P category

updated ) also
converges to zero.

Through our empirical data we noticed that the afore-
mentioned theorem holds true and this could be considered
as a potential limitation of using Bayes’ Theorem along
with CNN’s prediction as proposed in IRON-MAN. In our
experiments, when the number of image frames in the frame
window was selected to be more than 7, the prediction for the

7Prediction of an image frame could not be more than one since one
represents 100% probability of the category occurring and probability could
only range from 0 to 100.

Fig. 5. Power consumption for VGG16 and ResNet50 in Watts (Watt vs time
interval)

category became equal to zero for all the classes and hence,
a frame window of more than 7 image frames could not be
chosen for accurate predictions. Now, if we consider t seconds
as the time interval between two image frames in the video
then because of Lemma 1 and Theorem 1 using IRON-MAN
methodology we are only able to analyze a snippet of the
video of t × 7 seconds duration. If we consider the traffic
categorization problem where each image frames were taken
every 1.3 seconds (see Sec. V-A) interval then using IRON-
MAN we are able to analyze 9.1 (1.3 × 7) seconds of the
video with high prediction accuracy.

In order to overcome the aforementioned limitations of
IRON-MAN as mentioned earlier, we need to develop a more
robust algorithm so that we are able to analyze larger snippets
of videos (larger than 9.1 seconds for traffic categorization
problem) without motion features more accurately.

VII. CONCLUSION

In this paper, we propose IRON-MAN, which is capable of
providing Temporal Motionless Analysis of Videos (TMAV )
i.e. analyzing videos without motion features and providing
a holistic temporal analysis while utilizing predictions of
the past image frames into consideration. Our approach is
able to achieve 100% prediction accuracy in analyzing video
from the image frames for certain applications and it was
also noticed that for our chosen applications VGG16 had
better energy-efficiency on Exynos 5422 platform compared
to ResNet50 using Energy Consumption per Training Image
(ECTI) metric comparison. Based on the results we have
also shown that training CNN based approaches on MPSoCs
could lead up to 4.8× (approx.) reduction in lifespan of the
embedded device and therefore, it is recommended to perform
the training off the embedded device for improved longevity.
It is also shown that for traffic categorization application, our
approach outperforms the state-of-the-art.
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