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Abstract—Intelligent Transportation Systems (ITS) have be-
come an important pillar in modern “smart city” framework
which demands intelligent involvement of machines. Traffic load
recognition can be categorized as an important and challenging
issue for such systems. Recently, Convolutional Neural Network
(CNN) models have drawn considerable amount of interest
in many areas such as weather classification, human rights
violation detection through images, due to its accurate prediction
capabilities. This work tackles real-life traffic load recognition
problem on System-On-a-Programmable-Chip (SOPC) platform
and coin it as MAT-CNN-SOPC, which uses an intelligent re-
training mechanism of the CNN with known environments. The
proposed methodology is capable of enhancing the efficacy of
the approach by 2.44x in comparison to the state-of-art and
proven through experimental analysis. We have also introduced
a mathematical equation, which is capable of quantifying the
suitability of using different CNN models over the other for a
particular application based implementation.

Index Terms—Convolutional neural network (CNN), traf-
fic analysis, traffic density, transfer learning, system-on-a-
programmable-chip (SOPC).

I. INTRODUCTION

Some of the popular ways of traffic monitoring and analysis
for categorization of traffic load is either using vehicle based
assess method [1]–[8] or a holistic approach [9]–[12]. But
analysis of traffic using these popular methods require high
frame rate videos with a stable environmental condition, which
could be the biggest limiting factor in many places. Without
these conditions being met [8], [13]–[15], reliable motion
features cannot be extracted, which might result in corrupted
output.

Because of large-scale camera network not being able to
stream and store high-frame rate videos gathered by a network
of interconnected cameras due to bandwidth limitation and
limited on-board storage capacity, streaming low-frame videos
on these camera is very common. In many cases when these
cameras stream over a WIFI network, it is often difficult to
stream more than 2 frames per second due to the limited
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bandwidth of the network [8], [14]. Moreover due to cost
constraint of such interconnected camera networks and associ-
ated servers, many developing countries might not be able to
adopt and implement such sophisticated state-of-the-art traffic
analysis and categorization methodologies. On the other hand
image processing [16]–[23] and computer vision applications
[16], [24], [25] are very well known for their thread, task and
data level parallelism. Recently we could also notice a huge
increase in integrating Convolutional Neural Networks [26]–
[30] in computer vision to solve several real-life challenges
such as human rights violation detection through images [31],
[32], weather forecasting [33], [34], etc. Due to high level
of data parallelism in computer vision applications using
Convolutional Neural Networks and reducing cost factor of
field-programmable gate array (FPGA) based system-on-a-
programmable-chip (SOPC) [35], [36], such SOPC serves as
a cost-effective option to analyze and categorize traffic.

In this paper, we propose a novel methodology to analyze
and categorize traffic using Convolutional Neural Networks on
SOPC without the need of streaming the video-frames to the
server for further categorization as is usually done in state-
of-the-art traffic categorization methodologies. The proposed
methodology is coined as Motionless Analysis of Traffic Using
Convolutional Neural Networks on SOPC: MAT-CNN-SOPC
and we have also introduced a Quality of Experience variable,
which would enhance the predicting mechanism of the chosen
CNN model. The remainder of this paper is organized as
follows. Section II mentions the related work in the field and
Section III provides a breakdown of the software and hardware
infrastructure used for the implementation and validation pur-
poses of the proposed methodology along with the dataset used
and problem definition solved using this solution. Section IV
provides a comprehensive view of the proposed methodology
and in Section V we could analyze the experimental results.
Section VI briefly mentions some related discussion on the
proposed methodology. Finally, Section VII concludes the
paper.
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II. RELATED WORK

Before 2015, majority of traffic analysis and categorization
was mostly performed using the following methodologies:

• Vehicle based methodologies where either vehicles are
first localized on the road with a background subtraction
method [3]–[5] or the vehicles are localized with moving
feature keypoints [6], [7]. In these methodologies the
resulting tracks are concatenated together to identify key
features of traffic such as traffic lanes, average traffic
speed, average traffic density, etc.

• A holistic approach, where a macroscopic analysis of
traffic flow is understood through global representation
of a scene, which is obtained by accounting for spatio-
temporal features except tracking using background sub-
traction and moving feature keypoints [9]–[11].

Although the aforementioned methodologies are highly ef-
fective to analyze traffic, the biggest limiting factor is the cost
of sophisticated camera-network involved and the requirement
for high-frame-rate videos to compute reliable motion fea-
tures. To break away from this trend of traffic analysis, in
2015 Luo et al. [8] proposed a methodology to use various
image processing and CNN based approaches to analyze
traffic without moving features. In this paper the authors used
four different visual descriptors such as bag of visual words
(BOVW), Vector of Locally Aggregated Descriptors (VLAD),
improved Fisher Vector (IFV) and Locality-constrained Linear
Coding (LLC), and have also used pre-trained deep CNN
models such as Caffe and VGG to analyze traffic and predict
categorization of the same. The approach taken by Luo et
al. to use popular image processing and CNN methods to
classify traffic is novel and solves the low-frame-rate video
streaming issue. However, the experimental setups and results
provided in the paper is susceptible to some biasness as
the cross-dataset validation was not performed. In Section
VI we have compared our experimental setup and achieved
results with the ones mentioned in [8]. In another extended
paper published by Luo et al. [14], the researchers have used
SegCNN and RegCNN to analyze and classify traffic. In
both the aforementioned papers the authors are training and
classifying traffic images after the video frames are transferred
to the server from the interconnected camera network. But
installing and implementing such hardware infrastructure to
analyze traffic in developing countries is a challenging issue
[37].

Other state-of-the-art methodologies include detecting &
counting the numbers of cars and computing traffic density
based on that using CNN-based vehicle detectors with high
accuracy at near real time [38]–[40]. Although this way of
detecting traffic density could still be classified as a vehicle
based approach and has become popular in recent times but
there are associated challenges with these methods as follows:

• Training and test data should belong to the same dataset
taken from the same camera with same configuration and
hence require consistency in training.

• Cars detected need to be within a particular range or
scope of the image and these methodologies fail to detect
cars, which are far away in the images captured.

• These methodologies performed poorly if the captured
images were occluded, especially in case of heavy traffic
& jam.

From the aforementioned list of issues with the state-of-
the-art methods, although Deep Learning [41] could solve
the problem of detecting occluded objects properly but such
method usually requires large dataset to be trained with. But
for the application of traffic categorization there is no such
publicly available dataset and hence using Deep Learning
would be inefficient.

Compared to all the aforementioned works, we propose an
easy to train CNN model, which do not require a lot of images
in the training dataset, with combination of transfer learning
1 and continuous learning 2 capabilities on SOPC without the
need of communicating the traffic images to the connected
server for further analysis.

III. SYSTEM AND PROBLEM FORMULATION

A. Hardware Infrastructure & Software Infrastructure

It is worth mentioning that the CNN based traffic analysis
will demand a huge amount of computing resources. Rather
than high performance general purpose processing unit, the
application specific computing could also be a lucrative way
out. From the recent literature studies [41], [42], it has been
observed that software based execution could provide the
required flexibility but not the performance efficiency in terms
of execution. On the other hand, a dedicated hardware based
execution will provide performance efficacy but will under
perform when the flexibility becomes the major concern.

Thus, hardware software co-execution ecosystem is emerg-
ing as a bright prospect and modern FPGA (ZYNQ) platform
is a good solution to implement such functionality 3. In order
to carry out the functionality in FPGA, we have chosen the
vivado HLS [43] framework. This framework also extracts the
parallelism inside the code. The entire CNN model is created
in high level language (C/C++, Matlab, Python). Then it has
been converted in to RTL 4 format through vivado high level
synthesis. Once the code has been converted, the VIVADO
framework will synthesize to the bitstream to make the design
executable. Our code (in Matlab, Python & C/C++) is provided
on our GitHub repository [44].

1Learning achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new randomly initialized classifier

2Learning achieved by re-training the classifier with wrong predictions till
operating period of the system

3Even though GPUs could be an efficient accelerators for CNNs. However,
such devices are expensive & very power hungry and thus, make them not
suitable in the aforementioned power-constrained scenarios

4 RTL: Register-transfer level is a design abstraction, which models a
synchronous digital circuit in terms of the flow of digital data between
hardware registers and the logical operations performed on those signals.



B. Dataset

For our research we are using the same dataset used by
Luo et al. [8], [14] to validate performance of our proposed
methodology and theories. Mainly two dataset are used. The
first one is the dataset released by UCSD traffic control
department [45]. This dataset contains 254 highway video
sequences, all filmed by the same camera containing light,
heavy and traffic jams filmed at different periods of the day
and under different weather conditions. Each UCSD video has
a resolution of 320 X 240 with a frame rate of 10 fps.

The second dataset consist of the 400 images5 captured
from highway cameras deployed in all over the UK and also
consist of several examples of different weather and lighting
conditions in order to provide a better training performance.
These 400 images are segregated into 4 categories: Jam,
Heavy, Fluid, Empty (as shown in Fig. 1), and each category
having 100 images.

Fig. 1. Random images from 4 Categories of Traffic Classification: Jam,
Heavy, Fluid, Empty [8]

C. Problem Definition

The main focus of this research is to be able to implement
a hardware-software ecosystem, which is able to analyze and
predict traffic effectively on the System-on-programmable-
chip without streaming the video-frames to the server over
a communication channel even in severe hardware impaired
conditions such as poor video recording capabilities of the
camera. Since a practical application such as categorization
of traffic using CNNs methodologies requires a desirable
“Quality of Experience” (QoE) in order to be a successful
implementation, we also need to define the governing equation
to quantify QoE so that we could understand the overall
desirability of the CovNet methodology being used for the
problem in hand. Let us consider the (QoE) that will decide
whether the accuracy of the CovNet methodology is desirable
as Q and the predicted label (categorization) of the CovNet as
Pi for any image (i) from a dataset of images (I) at an instance.

5Only 400 images were available in the existing dataset provided by Luo
et al. [8]

Fig. 2. MAT-CNN-SOPC Model Work flow

Then the governing equation which could be used to predict
the label (category) of the traffic as desirable at an instance is
as follows:

∀{i ∈ I : i > 1}, Pi ≥ Q (1)

In the aforementioned equation (1), we are not taking the
training time of the CovNet model into consideration as part
of QoE since it is assumed that training is mandatory and
completed while the hardware-software ecosystem is setup
on the section of the road or highway for the purpose of
categorizing traffic. Later in Section VI we would also provide
a minimum threshold value for QoE for the given problem in
hand based on the experimental results (Section V) performed.

IV. PROPOSED METHODOLOGY: MAT-CNN-SOPC
In this section we propose the hardware-software ecosystem,

MAT-CNN-SOPC, which would be utilizing the categorization
power of a pre-trained CNN model to be trained to effectively
categorize traffic based on the desired categories. We propose a
two fold module of MAT-CNN-SOPC: Training & Prediction
(as shown in Fig. 2). Both the Training and Prediction mod-
ules are implemented in application layer of the SOPC. For
this hardware-software ecosystem we assume that a camera
is connected to the system-on-a-programmable-chip and the
primary training of the classifier of the pre-trained CNN model
is performed 6 while the SOPC is setup on the section of the
road in the first place.

6Using transfer learning of pre-trained CNN model



For our proposed model we could select any available pre-
trained CNN model such as AlexNet [29], VGG [28], ResNet
[30], etc. for the Training module. In this module we train
the system with various known images of traffic. Since FPGA
on the SOPC are excellent candidates for SIMD programming
exploration, we use FPGA on board as accelerators for the
Convolutional layers during the training. The training module
consists of both offline training as well as online training.
During the offline training, the model is trained on the dataset,
which is either pre-stored on the SOPC or stored on an external
storage connected to the system. After the initial (offline)
training is complete with the pre-stored dataset, the camera
connected on the SOPC is activated to send in images of
the current traffic/section of the road with determined labels
(categories) and the training of the model is validated. If
the model predicts a wrong category of the streamed image
then that image along with it’s correct category is stored
in a reFeed Image Stack, a special stack implementation to
hold images with labels, on the system for later (online)
training. If during this validation stage of the model, the
total prediction accuracy falls below the desired accuracy (Q
as mentioned in Eq. 1) of the model then the model is re-
trained with the images stored in the reFeed Image Stack.
After completion of every training process the validation phase
is re-executed till the prediction accuracy of the model is
equal or more than Q (Quality of Experience). Methodology
of the training module is algorithmically provided in Algo. 1.
The main motivation to re-train the CNN model with failed
prediction dataset of a known environment is to artificially
enhance the accuracy of the model and we call this enrichment
in performance as reFeed Gain factor (r). In Section V-B,
we have provided the value of reFeed Gain factor: r noted
from the performed experiments and we have also provided
a generic mathematical notation of this terminology for better
representation as follows:

r = |P f
i − P 0

i |,where P 0
i ≤ Q ≤ P f

i (2)

In the aforementioned equation (Eq. 2) Q is the Quality
of Experience (see Eq. 1), which is desired for the system
to perform well (related to predicting traffic categories), P f

i

is the prediction accuracy of the CNN model after re-trained
with reFeed Image Stack and P 0

i is the prediction accuracy in
the initial training.

Based on Eq. 2, if we consider S as the boost function in
prediction accuracy of the CNN model after re-training with
reFeed Image Stack feature, which we denote as reFeed Gain
(R), we could represent the reFeed Gain as follows:

R← S(P 0
i ) = (P f

i /P
0
i ) (3)

Therefore, using Eq. 2 & 3 we could generalize the rela-
tionship between P 0

i , R, r, Q 7 as follows:

7 P 0
i denotes initial prediction accuracy, R denotes reFeed Gain, r denotes

reFeed Gain Factor and Q corresponds to the Quality of Experience

R× P 0
i = r + P 0

i , where P 0
i ≤ Q (4)

Now, in the prediction module our CNN model keeps
predicting the traffic category (label) and it either broadcasts
the label over the network or it stores the labels along with the
video frames on a memory storage, which could be either on-
board or external. Later we could use the concept of “assistive
learning”, where a human being manually goes through the
stored video frames along with their predicted labels and
rectifies any label if there was a wrong prediction. Whenever
an image is classified as wrong by the assistive human being
then that image goes into the reFeed Image Stack of the
Prediction module and later the images from this stack is
transfered to the reFeed Image Stack in the Training module so
that the CNN model could be further trained with the images
from the reFeed Image Stack to enhance reFeed Gain (R). We
call this method to improving the prediction accuracy of the
existing CNN model as “Continuous Learning” of the CNN
Model for a specific category (as shown in Fig. 2). In this
particular work we are only focused on the implementation of
reFeed Image Stack and reFeed Gain in the Training module.

Algorithm 1: Training Module Execution
Input:
1. I: set of n Images from Training & Validation Dataset
2. T : set of m Images from Testing Dataset (for
cross-validation)
Output: P : prediction accuracy after training
Initialize: Q = 0.7; . Quality of Experience is set to 70% by

default
S.Count = 0; . S: reFeed Image Stack
Offline Training:
Train (pre-trained CNN model , I); . Train model with I

dataset
for each image i ∈ T do

Prediction = Test ( CNN model ); . Test outputs whether
prediction is correct or wrong
. Prediction.IsWrong() is a function to return True when

Prediction.Label ! = Original.Label of Test image i
if Prediction.IsWrong() then

S.Push(i);

Calculate mean Prediction Accuracy (P 0
i );

P = P 0
i ;

Online Training:
{re-Train with reFeed Image Stack if P 0

i < Q}
if P 0

i < Q then
. Need to satisfy condition of Eq. 1

if S.Empty() == False then
{Traing CNN with reFeed Image Stack}
Train (CNN model , S );
Calculate mean Prediction Accuracy (P f

i );

P = P f
i ;

S.Count = 0; . reset reFeed Image Stack
else

return P ;

The proposed methodology (MAT-CNN-SOPC) is bio-
inspired due to the fact that human beings constantly keep



learning even when they are introduced to a completely new
environment so that they could adjust to that environment
quickly and adapt to it. By using this same concept we could
enhance the learning mechanism of the CNN model for a
particular scene-based application.

A. Employed CNN Models

In order to prove the effectiveness of our proposed method-
ology we chose two popular object-centric CNN architectures,
VGG 16 convolutional-layer (VGG16) [28] and ResNet50 [30]
CNN. The selected CNN architectures contain 138 million pa-
rameters for VGG16 and 26 million parameters for ResNet50.

A typical approach to enable training of very deep networks
on small datasets is to use a model pre-trained on a very large
dataset, and then use the CNN as as an initialization for the
task of interest. This method, referred to as ‘transfer learning’
8 [42], [46] injects knowledge from other tasks by deploying
weights and parameters from a pre-trained network to the new
one. The rationale behind this is that the internal layers of the
CNN can act as a generic extractor of image representations
which have been pre-trained on one large dataset (source task)
and then re-used on other target tasks. Considering the size of
the dataset we have used (see Sec. III-B), the only way to apply
a deep CNN such as VGG16 and ResNet50, is to reduce the
number of trainable parameters. In order to achieve this the
first filter stages are held fixed during training (weights are
not updated) and overfitting 9 can be avoided. We initialize
the feature extraction modules using pre-trained models from
a large scale dataset, ImageNet [29], [47]. For the target task
(traffic analysis), we design a network that will output scores
for the 4 target categories of the dataset used.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

For this research we have taken the 400 highway images
(mentioned in Section III-B) and have used that for our
training and validation purposes. The dataset is partitioned
into two dataset consisting of training and validation sets and
during every test randomization algorithm was used on the
whole dataset to create the training and validation subsets.
We have selected 3 random videos from each category (light,
heavy and traffic) of the UCSD dataset and then converted
the video stream to image by processing 1 frame out of every
8 frames (˜1.3 fps). Since the videos from the UCSD dataset
is categorized based on light, heavy and traffic jams, we had
to manually categorized into our generic 4 categories: Jam,
Heavy, Fluid, Empty and generated 192 images (48 images
for each category) for testing purposes. We have performed the
following tests, which are separated into groups, as follows:

In Group 1 of tests (G1), in test G1.i we have broken the
400 training images into two dataset: 360 images for training

8 Transfer is achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new, randomly initialized classifier on top of the semantic image output
vector Yout.

9 Overfitting happens when the CNN model recognizes specific images in
your training set instead of general patterns.

TABLE I
TESTS PERFORMED

Test Groups
G1: VGG16
performance on
Dataset

G2: VGG16
performance on
UCSD Dataset

G3: ResNet50
performance on
UCSD Dataset

(i) 90% Training
/ 10% Validation

(i) 90% Training
/ 10% Validation

(i) 90% Training
/ 10% Validation

(ii) 80% Training
/ 20% Validation

(ii) 75% Training
/ 25% Validation

(ii) 75% Training
/ 25% Validation

(iii) 70% Train-
ing / 30% Valida-
tion

(iii) 50% Train-
ing / 50% Valida-
tion

(iii) 50% Train-
ing / 50% Valida-
tion

(iv) 60% Train-
ing / 40% Valida-
tion

(iv) 75%Training
/ 25% Validation
with reFeed Im-
age Stack Feature

(iv) 75%Training
/ 25% Validation
with reFeed Im-
age Stack Feature

and 40 images for validation (in 9:4 ratio) of VGG16 pre-
trained model. In test G1.ii we have broken the dataset into
320 for training and 80 for validation sets, whereas in G1.iii
it is broken in the ratio of 7:3 and in G1.iv it is broken in
3:2. No separate tests were performed to check the accuracy
of the categorization after training in Group 1 of tests, but the
main motivation was to check the performance of training the
VGG16 model on the 400 traffic images.

In Group 2 of tests we have taken the pre-trained VGG16
model and have trained the model with training and validation
dataset in the ratio as mentioned in Table V-A. But in this
group of tests we have checked the categorization accuracy of
the model after training is complete with the 192 images of
UCSD dataset as mentioned earlier in this section. The UCSD
dataset was completely kept hidden during the training process
so that we could evaluate the desirability of using VGG16 in
scenarios of traffic analysis, which it has not been exposed to
in advance (cross validation using unseen UCSD dataset). In
Group 3 of tests we ran the similar set of tests as in Group 2
but we replaced the pre-trained CovNet model with ResNet50
and check the categorization accuracy with the UCSD dataset.
For each test in every group, we have completely re-trained
the CovNet model on our dataset to avoid bias of the model.

To prove our proposed MAT-CNN-SOPC model (Fig. 2)
and effective use of reFeed Image Stack for further training
(transfer learning), we have also performed a series of tests
where the model is further trained with images from reFeed
Image Stack, which is segregated into training and validation
set in the ratio of 75:25. Tests G2.iv and G3.iv represents those
tests for VGG16 and ResNet50 respectively. To check the
testing accuracy after this training method we used a different
set of 192 images of the UCSD dataset for the purpose. We
trained the CNN models for 10 epochs with a batch size of
10 images. Since we have worked with a small dataset for the
problem in hand, we have used several image augmentation



techniques such as Reflection 10, Translation 11, etc. to fit the
training of the CNN model. We also implemented the training
module on ZYNQ FPGA using Vivado HLS (see Section
III-A). This is an alternate attempt to accelerate some of the
functionalities of CNN.

B. Classification Results

For every single instance of the tests in each group (G1,
G2, G3) mentioned in the previous subsection (V-A), we have
performed the same tests to check consistency and only the
maximum result of those tests are reported in this section.
In Table V-B we could see the performance of each test,
where validation accuracy along with categorization accuracy
(testing) are reported.

TABLE II
TESTS PERFORMED

Results of Test Groups
G1: VGG16
performance on
Dataset

G2: VGG16
performance on
UCSD Dataset

G3: ResNet50
performance on
UCSD Dataset

(i) Validation Ac-
curacy: 92.50%

(i) Validation
Accuracy:
90.00%; Testing
Accuracy:
65.60%

(i) Validation
Accuracy:
92.50%; Testing
Accuracy:
40.00%

(ii) Validation
Accuracy:
87.50%

(ii) Validation
Accuracy:
89.50%; Testing
Accuracy:
60.00%

(ii) Validation
Accuracy:
88.00%; Testing
Accuracy:
33.33%

(iii) Validation
Accuracy:
89.17%

(iii) Validation
Accuracy:
90.00%; Testing
Accuracy:
62.30%

(iii) Validation
Accuracy:
84.50%; Testing
Accuracy:
61.67%

(iv) Validation
Accuracy:
89.38.50%

(iv) Validation
Accuracy:
94.59%; Testing
Accuracy:
87.50%

(iv) Validation
Accuracy:
95.50%; Testing
Accuracy:
81.25%

As we could see from Table V-B, initially after using the
stock traffic image dataset for training the testing prediction
accuracy in G2.i was 65.60%, which was the highest in that
group. But when we have used re-training mechanism (refer
to Algo. 1) on the CNN model with re-Feed Image Stack,
the testing prediction accuracy got boosted to 87.50% for
the same group (G2) and boosted to 81.25% in G3 group
compared to 33.33% (without re-training). Although, it is
a common knowledge that with more images for training
accuracy of the CNN model improves but the images used for
re-training did not exceed more than 10% of the initial training
(offline) dataset in size and given the size of the dataset we
are working on, the gain (reFeed Gain) in prediction accuracy
is solely because of the methodology (training with reFeed

10 Where each image is reflected horizontally.
11 Where each image is translated by a distance, measured in pixels.

Image Stack) used rather than the possibility of using more
images during training.

Now, using the Eq. 2 and the resulting values from Table V,
the calculated reFeed Gain Factor (r) is 47.92 and the reFeed
Gain (R) (using Eq. 3) is 2.44x for G3.iv. Example 1 sheds
some light on the phenomenon of enrichment of accuracy as
described through reFeed Gain.

Observation:

Example 1. In G3.iv, the testing accuracy is 81.25% (P f
i ),

whereas in G3.iv the testing accuracy is 33.33% (P 0
i ), thus

from Eq. 3:

R = (81.25/33.33) = 2.4377 ≈ 2.44

Therefore, the boost in prediction accuracy for ResNet50 for
this example using reFeed Image Stack is 2.44x.

The hardware implementation is carried out on Zynq ZC-
Z7045. It is observed that near about 95% of DSP (858 out
of 900), 55% of BRAM (301 out of 545) and 41% of LUTs
(89626 out of 218600) have been utilized.

VI. DISCUSSION

In the work [8], [14], the authors have used the same 400
images dataset and have split it into two: Training and Testing,
which means that the authors have used the same dataset for
training, validation and testing, which is highly undesirable in
this field to evaluate accuracy of the implemented CNN 12.
For example, in [8] they have used the same UCSD dataset to
both train and test the VGG model (after splitting the dataset
into 75% for training and 25% for testing) and have achieved
an accuracy of 96.10%. This way of predicting accuracy of
an application based CNN model is highly biased. When we
trained our VGG 16 model with separate image dataset and
tested the accuracy on the UCSD one, we got an accuracy
of just 60.00% (refer G2.ii in Tab. V-B) in comparison.
Additionally given the small size of the dataset used, there
are two possible challenges, which could be faced. One of
those issues being overfitting 13 The other issue is that the
model might not be able to train properly and result into less
accurate predictions. In [8], the reported accuracy results of the
implemented models were on validation instead of reporting
the testing accuracy of the same. When the UCSD dataset was
used for testing and the curated 400 traffic images for training
in our model, we found out that the testing accuracy was very
less compared to the validation one, contradicting their results.
In order to improve the testing accuracy of CNN models for
traffic analysis we came up with MAT-CNN-SOPC Model.

In Table V, we could also see an anomaly in using
ResNet50, where with less training images it performed better.
One of the possible reasons being overfitting of images when
trained with less number of images but from the training
graphs (see Fig. V-B) we could understand that is not the case.

12 It is undesirable to use the same dataset for training, validation and
testing since it introduces high level of bias.

13 Overfitting happens when the CNN model recognizes specific images in
your training set instead of general patterns.



(a) Result: Validation Accuracy & Loss of VGG16 in G1.i Test (b) Result: Validation Accuracy & Loss of ResNet50 in G3.i Test

Fig. 3. Graph Showing Validation Accuracy & Loss

The other possible reason being mislabeling of the images
while testing. For our example we have noticed that sometimes
it was difficult even for a human to differentiate between
‘Heavy’ and ‘Fluid’ traffic and since the testing images were
labeled manually.

From the graphs in Fig. 3 we could also see that the model is
somehow underfitting rather than overfitting, but incorporating
the MAT-CNN-SOPC Model for the training and prediction
has actually made the gap between the training, validation and
testing accuracy narrower. Although it could be argued upon
that since we have used images from the same camera and
on the same road junction to improve the training quality of
the CNN model but given the practical application of traffic
analysis it is highly likely that the same camera system would
operate in the same junction/street region for its lifetime. Thus
training the camera system with known environment seems to
solve the problem of analyzing and categorizing traffic in a
cost effective way. Another noteworthy thing to mention is
that for this application and for our tests we have chosen the
value of Quality of Experience (QoE) as 70% 14 by default
but, this value could be modified based on the desired accuracy
for the problem in hand and we could also utilize Eq. 4 to fine
tune MAT-CNN-SOPC for the same purpose.

VII. CONCLUSION

In this paper, we have proposed a novel CNN based cat-
egorization model, which could categorize traffic effectively
on the programmable system board even with less number of
training images in the dataset. To effectively train the CNN to
improve prediction accuracy, we have used a combination of
transfer learning as well as a novel re-training mechanism on
pre-trained CNN models, where the model is re-trained with

14 For our traffic categorization issue we found out through testing that
chosing QoE value of 70% produced better result in re-training the model for
accuracy.

images from a known environment. We have also introduced
Quality of Experience, which researchers in this field could
use to choose the right CNN model for their problem and
achieve the desired results (in terms of accuracy).
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