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‘Why should I practice running slow?  

I already know how to run slow. I want to learn to run fast.’ 

Emil Zatopek 
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Summary 

High intensity interval training (HIIT) is often regarded the most effective training modality to improve 

cardiorespiratory and metabolic functioning, and, in turn endurance performance. HIIT incorporating 

repeated long work intervals (up to 16 min) can be described as ‘aerobic interval training’ (AIT), as work 

intensities are undeniably high - but ultimately submaximal. Collating the results of ~80 unique AIT 

interventions, significant small to moderate improvements were evident in both V̇O2max and performance. 

The of results our meta-analysis further suggested that AIT improved V̇O2max and performance 

significantly more than moderate intensity continuous training, and to a similar extent as sprint interval 

training. 

It was suggested that the time athletes spent at high percentages of V̇O2max (≥ 90% V̇O2max (t90V̇O2max) 

could serve as a good criterion to judge the effectiveness of AIT protocols. Even though AIT is common 

practice in training regimes of (traditionally) endurance athletes, surprisingly little research has explored 

the overall impact and potential moderating role of recovery durations on the overall effectiveness of AIT 

protocols. In both runners and cyclists, we show that in a six 4 min self-paced AIT protocol (performed 

under ‘isoeffort’ conditions), longer recovery intervals facilitated higher external training loads (higher 

running velocities / higher power outputs), whilst the internal training load in these sessions (t90V̇O2max) 

was not moderated by an increased recovery duration. 

In the context of a pre-season conditioning period of collegiate rugby players, we show that in AIT 

protocols of matched work intensities and training volume, the use of short recovery intervals (1 min) did 

not offer any advantage over the use of longer recovery intervals (3 min). The results of this thesis indicate, 

that when athletes incorporate self-paced AIT sessions in their training programs, long recovery intervals 

will allow athletes to train on higher external loads, which potentially triggers greater training adaptations. 
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Understanding optimal training to maximize physiological adaptations and improve performance is 

important for coaches and athletes to gain a competitive advantage over opponents. Training can be 

defined as the systematic and regular participation in exercise, which aims to overload the human body 

and therewith deliberately disturbs the body’s homeostasis (1–3). As a consequence of a single intense 

training session or training period, an athlete may experience acute feelings of fatigue, but after adequate 

rest these feelings can be followed by positive cardiovascular and metabolic adaptations that can result in 

improvements in performance. The process known as supercompensation, the positive adaptations after a 

training stimulus, deviating the athletes’ physiological capacity from prior resting homeostasis during 

subsequent exercise sessions, is the basis of effective training programs (4)  

Although world class athletes undoubtedly possess genotypes and demonstrate training responses that are 

uncharacteristic of most other athletes (5), training regimes of these successful athletes can be considered 

as optimal. Substantial retrospective studies assessing the training intensity distribution of elite and well-

trained endurance athletes showed that most adopt a ‘polarized’ training distribution (6,7). In this 

distribution, 80 to 85% of the total training volume is performed at low-to-moderate intensities (Zone 1). 

The remaining 15 to 20% comprises high intensity training (Zone 3), at exercise intensities close to those 

that elicit a maximum oxygen uptake (V̇O2max; see Figure 1.1 A). These retrospective studies show that 

elite endurance athletes perform large volumes of Zone 1 training (6,7), however, it is also evident that an 

additional increase in the volume of just Zone 1 training did not further enhanced endurance performance 

or associated physiological variables in trained endurance athletes (8–10), and many, if not most elite 

endurance athletes have already reached the threshold of maximal feasible injury-free training volumes. 

1.1 Introduction 
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Figure 1.1: A) Conceptual training intensity distribution of the polarized training model and B) the three-intensity-

zone model The model presented in figure 1.1 A emphasizes the large training volume endurance athletes perform 

in Zone 1, combined with significant doses of training in Zone 3 - aimed to elicit 90 - 100% V̇O2max. Figures adapted 

from Seiler & Kjerland (11) and Seiler (6) 

Zone 1 training, typically performed as moderate intensity continuous training (MICT), is an indispensable 

constitutes of successful endurance training programmes. However, Zone 3 training, performed as high 

intensity interval training (HIIT), is regarded the most effective training modality to further improve 

cardiorespiratory and metabolic functioning (12–14). In HIIT, repeated periods of vigorous exercise are 

interspersed with recovery periods (15), and a complex interplay between the number of intervals, the 

exercise intensities and the duration of both the work and recovery intervals determine the workload of a 

HIIT session (16,17). The rationale behind such programmes is that the total accumulated time of vigorous 

exercise is higher than could be achieved during a single bout of continuous exercise at the same intensity 

until exhaustion (17,18). By maximizing the total accumulated time at exercise intensities at or near 

V̇O2max and the athletes’ maximum heart rate (HRmax), the metabolic overload is greater than possible 

with traditional continuous training.  

When it comes to the programming of HIIT sessions, the duration and the exercise intensities of both the 

work and recovery intervals are important determinants that need consideration to create a successful 

training session (19). Previously, interventions to optimize the intensity and duration of work intervals 

have received considerable scientific interest (e.g. (20–23)), however, little research has explored the 

overall impact of recovery intervals, and a better understanding of optimum exercise intensities and 

recovery durations in HIIT protocols is therefore timely. 

A B 
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The main metabolic processes that take place during recovery from intense exercise bouts are the repletion 

of phosphocreatine stores (PCr), the removal of hydrogen ions (H+) and restitution of the acid-base 

balance of the exercising muscles (14,24,25). These processes proceed at different rates (24,25), with PCr 

having a much faster half-life (~30 sec) and complete restoration time (~3 min), compared with the blood 

lactate concentration [BLa] and pH recovery (6 - 10 min). In order to work at the required exercise 

intensity during subsequent work intervals, recovery intervals need to be long enough to accomodate the 

return to metabolic homeostasis, or at least partially buffer intramuscular acidosis (26,27). The paradox 

is, that recovery intervals are ideally as short as possible to to maintain a minimal V̇O2, to reduce the time 

needed to reach V̇O2max (i.e. starting from an elevated ‘baseline’ (28)).An imbalance between the 

demands of the work intervals and the recovery potential of the recovery intervals can lead to premature 

fatigue, which potentially reduces the number of planned intervals, or lowers the work intensity during 

subsequent intervals. An example of an inadequate recovery duration is seen in the study by Laursen et 

al. (21), who reported that two groups of well trained cyclists completed only 64% of the total prescribed 

number of work bouts over a 4 week training cycle. Participants were ‘pushed to exhaustion’ in each 

session, as inadequate recovery had been prescribed given the intensity of the work interval, resulting in 

failure to complete the session. While this particular training intervention still improved time trial 

performance, peak power output (PPO) and V̇O2max (21), a protocol involving a longer recovery interval 

may have evoked even greater improvements. 

In two recent meta-analysis, both Weston et al. (29) and Milanovic et al. (30) reported equivocal effects 

on changes in V̇O2max with an increase in work:recovery ratio (W:R ratio) in sprint interval training 

sessions (SIT; e.g. greater recovery between subsequent 30-sec sprint intervals). For HIIT sessions 

incorporating long work intervals (up to 16 min), which can be described as ‘aerobic interval training’ 

(AIT), no clear scientific evidence is available to determine the optimal duration of recovery intervals. 

Previously, studies have evaluated manipulations in W:R ratio (or similar terminology) in a variety of 

HIIT protocols (e.g. (31,32)). While the W:R ratio is a term often used in the description of HIIT protocols, 

the construct holds limited information on the adequacy of the duration of recovery intervals, as it fails to 

1.2 Aims of the research  
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incorporate the demands of the work intervals. For example; 1-min recovery between repeated 1-min work 

intervals performed at 75% PPO (W:R ratio = 1:1) is likely sufficient to complete numerous intervals, 

however, a similar W:R ratio in repeated 30-sec sprints at 130% PPO will most likely only allow for two 

/ three repeats. Diverting from the use of the term W:R ratio, the main aim of this research is to assess the 

potential moderating role of the recovery interval duration in AIT sessions.  

In a series of studies in runners and cyclists, we aim to provide new empirical data on the acute 

physiological and perceptual responses to AIT sessions – only differing in the recovery duration between 

work intervals. Theoretically, an AIT session in which athletes maximize their total accumulated time at 

exercise intensities at or near V̇O2max and HRmax is expected to yield larger improvements in both the 

oxygen consumption and oxygen utilization capacity of individuals, however, how this can be achieved is 

an ongoing question across sports science departments worldwide. Many studies have tried to optimize 

the work intervals of AIT protocols by manipulating work intensities (33,34) and work durations (20,35–

37), where others examined different recovery intensities (38), pacing strategies (39), and even the use of 

additional aids like muscle vibration (40). Surprisingly little research has explored the overall impact of 

recovery intervals, and a better understanding of optimum exercise intensities and recovery durations in 

HIIT protocols is therefore timely. 

Understanding the acute response to manipulating recovery durations is important when designing HIIT 

sessions. Smilios et al. (41) noted that an increased recovery duration (2, 3 or 4 min) did not affect the 

percentage of V̇O2max attained and the total time spend ≥ 80%, 90% and 95% of V̇O2max or HRmax 

during four 4 min intervals, ran at 90% maximal aerobic velocity (MAV). Although the data from the 

above study is informative (41), it also is a prime example of most published data, as acute physiological 

responses are evaluated to predefined fixed work intensities. In contrast to standardized exercise protocols, 

it was recently proposed that athletes measure and pace their work in training sessions on ratings of 

perceived exertion (RPE) and accumulated fatigue (42). In this so called ‘isoeffort’ or self-paced HIIT, 

the actual work intensity per interval therewith is not a stable function of power or velocity over time, but 

rather the integrative outcome of feedback from external and internal receptors, and knowledge of the 

session demands (43,44). In the current thesis we expand on the findings of Smilios et al. (41), using a 
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similar framework of manipulating only the recovery duration between work intervals, and examine if 

similar conclusions will be drawn in self-paced AIT sessions. This self-paced approach further allows for 

the evaluation of the potential trade-off between the internal and external training load (physiological and 

psychological strain vs work intensities). Longer recovery intervals might facilitate higher exercise 

intensities in AIT sessions, which in turn might alter the athletes’ performance capacity. 

Modern day cycling ergometers reproduce the power-speed relationship flat road cycling. This 

characteristic, and the typical highly reliable measures of power output by ergometers enable a valid 

assessment of self-paced cycling performance in lab setting. To assess running performance, motorized 

treadmills are an indispensable piece of laboratory equipment, however, they do not allow to study the 

quick, unconscious and frequent adjustments in running velocities that occur during self-paced exercise 

(45). Besides the main aim of this thesis specified above, we evaluated if a commercially available curved 

non-motorized treadmill would enable self-paced HIIT running in a lab setting. 

Lastly, a tertiary aim of this thesis was to evaluate the long term training adaptations to AIT interventions, 

again, only differing in the recovery duration received between subsequent work intervals. In highly 

trained male cyclists (21) and recreationally active female team sport players (46), previous studies 

demonstrated a limited effect of  the recovey duration between work intervals, when AIT protocols were 

matched for total training volume and work intensities. Whilst insightfull, both these studies administered 

a cycling intervention to their participants (21,46), and how these results generalize to running based AIT 

interventions is questionable. Diverting from the self-paced approach that is adopted throughout the 

remainder of this thesis, it was important to further fix all other variables to establish a better understanding 

of this relationship in runners. 

A schematic overview of the scheduled studies is presented in Figure 1.2. The experimental studies in the 

present thesis (presented in Chapter4 – Chapter 8), are designed based on the outcomes of a critical 

evaluation of the scientific literature (Chapter 2), and the results of the meta-analysis presented in 

Chapter 3. 

1.3 Thesis structure 
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In Chapter 6 and Chapter 7, we evaluate the effect of recovery interval durations in self-paced HIIT 

protocols. Self-paced cycling in laboratory settings is possible with modern day cycling ergometers 

(Chapter 7), however, to study the potential trade-off between the internal and external training load 

(physiological and psychological strain vs work intensities) in runners (Chapter 6), the validation of a 

curved non-motorized treadmill was needed (Chapter 4 and Chapter 5). 

Concluding this thesis, we evaluated the moderating role of the recovery interval duration in HIIT 

protocols, in the context of a three-week pre-season conditioning period of collegiate rugby players 

(Chapter 8). To isolate, and solely study the role of the recovery interval duration, it was important to 

further match the protocols of two training groups. 

 

Figure 1.2: Schematic overview of thesis structure 
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1.4.1 Chapter 3: The effects of aerobic interval training on V̇O2max and performance in 

runners and cyclists: A systematic review and meta-analysis 

This study was carried out to provide a systematic review of running or cycling based AIT interventions 

and meta-analyse their effects on changes in V̇O2max and / or performance outcomes. Pooled estimates 

of effect sizes (ES, Hedges’ g) for change in V̇O2max (n = 57) and performance (n = 20) across studies, 

were calculated using an inverse-variance random effects model for meta-analyses. Standardised mean 

differences, showed a significant increase of a small to moderate magnitude in V̇O2max (ES = 0.54, 95% 

confidence intervals (CI): [0.38 to 0.69]), which corresponds to a mean increase of 3.07 mL·kg·min−1. 

Improvements in V̇O2max were similar between cycling and running interventions. Performance 

improved on average by 4.0% after AIT, which was of a small to moderate magnitude (ES = -0.49, CI: [-

0.75 to -0.23]). Compared with different training modalities, the results suggest that AIT improves 

V̇O2max and performance significantly more than MICT interventions and non-training control groups 

(CON), and to a similar extent compared to SIT. 

1.4.2 Chapter 4: The physiological and perceptual demands of running on a curved non-

motorised treadmill: Implications for self-paced training 

The aim of this study was to compare the physiological and perceptual response of running on a curved 

non-motorized treadmill (cNMT) with running on a motorized treadmill (MT). A secondary aim was to 

determine the running velocity at which a physiological response ≥ 90% V̇O2max was elicited on both 

treadmills. Thirteen trained male runners performed an incremental running test on a MT to determine 

V̇O2max and the accompanying MAV. After a familiarization session on the cNMT, participants ran for 

4-min at five/six progressively higher velocities (40 - 90% MAV) on the cNMT and MT in two separate 

visits in a randomized and counterbalanced order. Our results show that running on the cNMT has higher 

physiological and perceptual demands than running on a MT, and running cadence is influenced. When 

using the cNMT, it is advised to lower the running velocity by 20% compared to MT runs, to generate a 

comparable physiological stimulus. 

1.4 Overview experimental studies 
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1.4.3 Chapter 5: The physiological and perceptual responses while running on a curved non-

motorized treadmill compare to a 6 - 8% motorized treadmill grade 

The current study compared the physiological and perceptual demands of running on a commercially 

available curved non-motorized treadmill (cNMT) to different incline grades on a motorized treadmill 

(MT). Ten male team-sport athletes completed, after a familiarization session, a 6-min run at a target 

velocity of 2.78 m·s-1 on the cNMT (cNMTrun). Mean individual running velocity of cNMTrun was then 

used as warm-up and experimental running velocity in three subsequent visits, in which participants ran 

for 6-min on the MT set at different grades (4%, 6% or 8%). The relationship between V̇O2 and MT grade 

was highly linear, and using linear interpolation, the concave curved design of the cNMT was estimated 

to mimic a 6.9 ± 3% MT grade. This was further evidenced by similar RPE responses between cNMTrun 

and the 6 - 8% MT grade trials. These findings can be used as reference value by athletes and coaches in 

the planning of cNMT training sessions, and amend running velocities accordingly. 

1.4.4 Chapter 6: The effects of recovery duration on physiological and perceptual responses 

of trained runners during four self-paced HIIT sessions 

This study examined the effects of different recovery durations on self-selected running velocities, 

physiological responses, and ratings of perceived exertion (RPE) in a commonly used high intensity 

interval training (HIIT) protocol. Twelve trained runners performed an incremental running test to 

determine maximum oxygen uptake (V̇O2max) and heart rate (HRmax). In four subsequent visits, 

participants performed a HIIT session comprising six 4-min work intervals, in which the recovery duration 

between work intervals equalled either a fixed (1MIN, 2MIN, 3MIN) or a self-selected duration (ssMIN). 

The results indicated that in a self-paced HIIT session, the length of recovery durations had a limited effect 

on the total physiological strain endured in the training, however, running velocities were higher when 

participants received the longest recovery period (3MIN). Longer recovery durations may facilitate a 

higher external training load (faster running), whilst maintaining a similar internal training load 

(physiological stimulus), and may therefore allow for greater training adaptations. 
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1.4.5 Chapter 7: The moderating role of recovery interval duration in simulated high 

intensity interval training sessions of trained cyclists 

The total time spent at high percentages of V̇O2max (≥ 90% (t90V̇O2max)) per high intensity interval 

training (HIIT) could serve as a good criterion to judge the effectiveness of HIIT protocols. This study 

compared the physiological and perceptual responses and accompanying exercise intensities to changes 

in the recovery interval durations. After completing an incremental cycling test, eleven male cyclists 

performed four HIIT sessions comprising six 4 min work intervals. Work intervals were separated by 

either 1, 2, 3 min or a self-selected recovery duration (1MIN, 2MIN, 3MIN, ssMIN respectively), and 

were performed under ‘isoeffort’ conditions. No statistical differences were found in t90V̇O2max between 

protocols, however, participants spent a notable ~200 sec extra in t90V̇O2max in 1MIN compared to 

2MIN, 3MIN and ssMIN. Power output (PO) across work intervals was higher in 3MIN and ssMIN than 

in 1MIN, and the decrease in PO between the first and final interval in 1MIN was greater compared to all 

other protocols. This study demonstrates a trade-off between the physiological stimulus and the external 

workload of a simulated HIIT session in cyclists. 

1.4.6 Chapter 8: The moderating role of the recovery interval duration in predefined HIIT 

protocols is limited in team sport athletes – an intervention study 

In the pre-season of contact team sports like rugby, a further increase in game-based conditioning might 

be undesirable considering potential injuries, and generic running HIIT might be beneficial to improve 

aerobic fitness. Prior to and immediately after a three week pre-season conditioning period, 25 collegiate 

rugby players performed 1) an incremental run test and 2) a time to exhaustion test. All participants 

completed a training program prescribed by the club, with no additional HIIT (CON), or an extra five 

HIIT sessions. These sessions comprised six 4-min work intervals, separated by either 1-min (1MIN) or 

3-min (3MIN). The physiological load in the HIIT sessions of 1MIN and 3MIN was similar when 

expressed as time ≥ 90% HRmax. The addition of 2-hr generic HIIT resulted in improvements in V̇O2max 

and increased time to exhaustion in 1MIN and 3MIN, but not significantly different between training 

groups. These results indicate that the duration of the recovery intervals in HIIT sessions, run on 

predefined exercise intensities, did not attenuate the magnitude of changes in these outcome variables. 
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High intensity interval training (HIIT) is by no means a new phenomenon, but instead a training concept 

long appreciated by endurance athletes to improve cardiorespiratory and metabolic functioning, and, in 

turn endurance performance. Over recent years, many studies have tried to optimize the work intervals of 

HIIT protocols. A demanding ‘work interval’ is needed to facilitate training adaptations, but a successful 

HIIT protocol can only be achieved when work bouts are separated by an adequate recovery interval. In 

order to work at the required exercise intensity during subsequent intervals, recovery intervals need to be 

long enough to accommodate the return to metabolic homeostasis. An imbalance between the demands of 

the work intervals and the recovery potential of the recovery intervals can lead to premature fatigue, which 

potentially reduces the number of planned intervals, or lowers the work intensity during subsequent 

intervals. Surprisingly little research is available, evaluating the moderating role of recovery durations in 

HIIT protocols. Manipulations in the recovery duration in repeated sprint training (RST), and sprint 

interval training (SIT) protocols results in different acute physiological and perceptual responses, and most 

likely in different training adaptations. In aerobic interval training (AIT), the physiological strain endured 

per training protocol appears not to be moderated by the recovery intervals, unless the recovery interval 

is too short and causes premature fatigue. Longer recovery durations in RST, SIT and AIT protocols 

facilitate a higher external training load (higher exercise intensities in work intervals), and may therefore 

allow for greater training adaptations. 

 

   

Summary 
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High intensity interval training (HIIT) is regarded a highly effective training modality to improve 

cardiorespiratory and metabolic functioning, and is common practice in training regimes of many athletes, 

particularly those involved in endurance events (14). HIIT sessions aimed at improving endurance 

performance have been used for almost a century. In a detailed historical review by Billat (47), training 

schedules of successful middle- and long distance runners were analysed. It was found that, for example, 

the training programs of Hannes Kolehmainen (3-time Olympic champion) and Pavoo Nurmi (9-time 

Olympic champion) included interval training close to, or above, their race pace (47). Interval training 

was further popularized by Emil Zatopek (3-time Olympic champion), who used interval training sessions 

that included running up to 100 x 400 m bouts interspersed by 200 m recovery. HIIT received its first 

scientific attention in the early 1920s when Hill invented the concept of athletes’ ‘maximum oxygen 

uptake’ (V̇O2max) and oxygen deficit (48). It was in the 1960s when Åstrand and colleagues published 

their pioneering work on the acute physiological responses to HIIT, which created the scientific basis for 

long (16) and short duration (49) interval training. 

Since the early days of scientific research, the use of HIIT has evolved and multiple new training methods 

have emerged from both the applied field and the laboratory. Recently, Buchheit & Laursen (14) published 

a comprehensive review, detailing nine key components that influence the effectiveness of HIIT sessions. 

The work intensity, the duration of work intervals, the recovery intensity, and the duration of recovery 

intervals are the key factors of an interval training session, and, depending on the number of intervals 

performed, form the total workload of a HIIT session (16,17). Based on the duration and exercise 

intensities of work intervals, HIIT can be divided into multiple training forms or subcategories, for which 

many terms exist. In this thesis we will use and discuss the terms repeated sprint training (RST), sprint 

interval training (SIT) and aerobic interval training (AIT) as the three main subcategories of HIIT, each 

targeting different physiological, neuromuscular and mechanical adaptations (14). 

2.1 A brief history of high intensity interval training in endurance sports 

2.2 HIIT terminology and subcategories 
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2.2.1 Repeated sprint training & Sprint interval training 

Repeated all-out (or sometimes labelled ‘supramaximal’(50)) sprint training has received a growing 

research interest, as it replicates the demands of maximal-intensity sprint efforts typically performed in 

field-based team sports and endurance sports (51,52). In practical terms, based on the duration of the 

sprints and the subsequent recovery duration, sprint training can be divided into either short (3 to 10-sec; 

RST) or long (15 to 30 s; SIT) sprints. Whilst not exclusively - certainly not in the final sprints of RST 

and SIT sessions - this type of HIIT is expected to utilize and trigger the anaerobic energy pathway for 

the production of adenosine triphosphate (ATP; (53)). Adaptations after RST and SIT are mostly attributed 

to improvements in neuromuscular signalling and peripheral O2 utilization capacity (such as an increased 

skeletal muscle mitochondrial content and capillary density). Weston et al. (29) showed that a low-volume 

protocol of cycling SIT produced a moderate increase in V̇O2max of active non-athletic males (6.2%  ± 

3.1%), and active non-athletic females (3.6%; ± 4.3%). However, the effect of SIT on the V̇O2max of 

athletic males (baseline V̇O2max ≥ 60 mL·kg·min−1) was unclear (2.7 % ± 4.6 %), and low-volume SIT 

had an unclear effect on peak and mean sprint power in both males and females. 

2.2.2 Aerobic interval training 

HIIT incorporating long work intervals (up to 16 min) can be described as ‘aerobic interval training’ 

(AIT), as work intensities are undeniably high - but ultimately submaximal (54). In contrast to the 

anaerobic energy pathway utilized in RST and SIT, the ATP production in AIT sessions is dependent on 

a mix of energy from (primarily) the aerobic and (secondary) anaerobic energy systems (13). The longer 

work interval protocols elicit maximal oxygen uptake, or at least a very high percentage of V̇O2max, and 

may therefore provide a more effective stimulus for enhancing the V̇O2max compared to SIT (5). It was 

suggested by Thevenet et al. (55) that the time athletes spent in their ‘red zone’ per AIT could serve as a 

good criterion to judge the effectiveness of a protocol. The ‘red zone’ refers to the intensity domain close 

to V̇O2max (≥ 90% V̇O2max) in which the oxygen delivery and utilization systems are maximally stressed, 

a near to maximal cardiac output is attained, and it is thought that more (type II muscle fibres) motor units 

are recruited (14). 
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Whilst the dose response relationship between the time spent at or near VO2max (t90V̇O2max, (28)) per 

HIIT sessions and subsequent improvements in physical capacity and performance is unclear, sport 

scientist have strived to optimize HIIT protocols in general, and AIT specifically in a way that athletes 

maximize t90V̇O2max per session. In the next section, we review how manipulations in the different key 

components of AIT are previously studied in attempts to construct an optimal AIT session. When it comes 

to the manipulations of the recovery duration, next to its importance in AIT sessions, we further review 

the moderating role of this key component in RST and SIT. 

2.3.1 Prescription of the exercise intensity in work intervals 

In an attempt to individualize HIIT programmes, the speed or power output associated with V̇O2max 

(vV̇O2max and pV̇O2max respectively) are shown to be useful reference intensities (56,57). In theory, 

vV̇O2max and pV̇O2max are the lowest exercise intensities that elicit V̇O2max, and therewith integrate a 

measure of both V̇O2max and the energetic cost of running / cycling into a single factor (14). It was 

suggested by Åstrand et al. (16) that the exercise intensity of work intervals in AIT sessions does not need 

to be maximal to elicit V̇O2max, because V̇O2 is likely to increase after repeated exercise bouts with the 

development of a V̇O2 slow component. Research suggests that for longer duration intervals, an exercise 

intensity that corresponds to approximately 80 - 90% of an individuals’ maximal workload can elicit 

physiological responses ≥ 90% V̇O2max (21,58,59). 

Multiple training studies examined the effectiveness of individualized protocols in both running and 

cycling. In only one study (35), improvements were shown in V̇O2max in already highly trained runners, 

after 8 – 12 training sessions, using 50 – 70 % tLim as interval duration (tLim is the time to exhaustion 

when athletes ran on vV̇O2max). Other studies in incorporating individualized protocols failed to influence 

V̇O2max (60–63). However, despite no improvements in V̇O2max, runners improved 1500 m (62), 3000 

m (35,60), or their vVO2max (61,63), which all highlight improvements in endurance performance. In less 

trained runners, V̇O2max increased using similar protocols (64–67). This improvement was often 

accompanied by improvements in vVO2max and / or timed running performance (66,67). Although the 

2.3 Optimizing HIIT protocols – Considerations for HIIT prescription 
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use of individualized interval intensities and interval durations proved to be successful in lab settings, it 

has to be acknowledged that (especially in running research) vVO2max appears to be inversely related to 

the terrain or treadmill slope (68) and therefore has a limited ecological validity. 

A more generic training protocol that has been adopted in running research is the so called ‘Helgerud 

protocol’ (69,70). In this protocol, the exercise intensity in work intervals is based on an athletes’ 

individual maximal heart rate (HRmax). In short, the interval training session consists of four 4 min 

running intervals at an exercise intensity of 90 – 95% HRmax, separated by periods of 3 min jogging at 

50 – 70% HRmax (69). As little as five training sessions resulted in substantial improvements in 3000 m 

running performance (pre intervention time: 815 ± 123 s, post intervention time: 766 ± 93 s) in military 

recruits from Norway (71). The same protocol was shown to be effective at improving V̇O2max in junior 

elite football players (69,72) and in trained student populations (70,73,74). Although these studies were 

effective in improving performance and / or physiological capacity, the protocol has not been tested in 

highly trained participants. Furthermore, the use of heart rate (HR) to control or adjust exercise intensity 

in AIT may be limited. HR cannot inform the intensity of physical work performed above the speed / 

power output associated with V̇O2max. In an attempt to evaluate the physiological responses to a cycling 

based ‘Helgerud protocol’, Tucker et al. (75) showed that average power output was reduced by 20% from 

the first (226 ± 51 W) to the fourth work interval (179 ± 37 W). Despite this reduction in power output, 

HR still reached ~98% HRmax during the last three work intervals. The dissociation between HR, V̇O2, 

blood lactate concentration ([BLa]) and exercise intensities limits the ability to accurately estimate 

intensities during AIT sessions using HR alone. This is mostly due to the HR lag at exercise onset, which 

is much slower compared than the V̇O2 response (76). With this considered, the average HR over a work 

interval would underestimate the actual effort. Further, the HR inertia at exercise cessation (i.e. HR 

recovery) can also be problematic in this context, and this can create an overestimation of the actual work 

/ physiological load that occurs during recovery periods (77,78). 

A third commonly used method to prescribe the exercise intensity in interval training sessions, is using 

the ratings of perceived exertion (RPE, (79,80)). In this approach, coaches or scientists generally prescribe 

independent variables such as the duration of work and rest intervals (22), in which the athletes then can 
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self-regulate their exercise intensity based on their perceived effort. In a recent study by Seiler et al. (42), 

participants were instructed to complete their AIT sessions at ’the maximal tolerable cycling intensity’ for 

respectively four 16 min, four 8 min or four 4 min intervals. Post intervention analysis showed that training 

sessions were performed at 88 ± 2, 90 ± 2, and 94 ± 2% of HRmax, in the 16 min, 8 min, and 4 min groups 

respectively. Both the ’16 min’ and ‘8 min’ groups improved V̇O2max, whilst all groups increased their 

peak power output (PPO). In another study (81), there was no improvement in the V̇O2max or PPO of 

trained cyclists after six training sessions incorporating three 4 min work intervals, also based on the 

maximal sustainable effort. However, a 2.3 ± 4.2% improvement in 16.1 km time trial performance 

showed the usefulness of this RPE based short training intervention. Although more research is needed 

comparing RPE training to HR based and / or individualized training protocols, RPE appears be a good 

‘exercise regulator’, which controls for day-to-day variations in fitness levels and environmental 

conditions (14). The RPE method does have some limitations, since it is does not allow the precise 

manipulation of the physiological response to a given AIT session. Exemplary for this delicate 

relationship, Tucker et al. (75) evidenced that RPE increased from ~5 – 6 during the first minute to ~7 – 

8 during the fourth minute (in a 4 min work interval), despite the aforementioned 20% reduction in 

exercise intensity from the first to the last minute. There is also evidence to suggest that the ability to 

adjust exercise intensities based on RPE may be fitness (82) and / or exercise intensity dependent (83). 

This in fact could limit the ability to target a specific adaptation, and might constitute to a suboptimal 

pacing in AIT sessions. It is widely recognized that an athlete's 'pacing strategy', or how an athlete 

distributes work and energy throughout an exercise task, can have a significant impact on performance 

(84). Earlier research highlighted the negative effects on work intensities later on in AIT sessions, when 

the initial work intervals in simulated AIT sessions were performed on (retrospectively) too high work 

rates (39,85). It can be assumed that experienced / trained athletes are likely more attuned to internal 

pacing cues, and are able to maintain high and stable work intensities throughout AIT sessions. To 

successfully implement isoeffort AIT training (and mainly avoid poor pacing in the initial work intervals 

of AIT sessions), preventive instructions on ‘attainable’ target intensities can help athletes to perform 

better in these sessions. 
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2.3.2 Prescription of the duration of work intervals 

If V̇O2max is to be reached during the first interval of a sequence, logically, the duration of work intervals 

must at least be equal to the time needed to reach V̇O2max. Although trained subjects are unlikely to reach 

V̇O2max in their first interval bout (86), an adequate warm up may accelerate V̇O2 kinetics, and so, 

decrease the time needed to reach V̇O2max (87). The time needed to reach V̇O2max is affected by exercise 

intensity (88), training status (89,90), and is accelerated during running compared to cycling exercise 

(90,91). Even with these possible confounders considered, the time needed to reach V̇O2max remains 

highly variable and has a high inter-subject variability. For instance, Hill & Rowell (58) reported that in 

single isolated runs, V̇O2max was achieved after 234 ± 49 s (range 157 – 301 s, coefficient of variation 

(CV) = 21%) and maintained for 56 ± 48 s (range 10 – 155 s, CV = 86%) in 12 of 13 trained females, 

running at their individual vV̇O2max. In contrast, V̇O2max was attained by only 6 of 11 recreationally 

active runners after 155 ± 48 s (range 113 – 233 s, CV = 31%) and then maintained for 82 ± 28 s. (range 

20-93 s, CV = 34%) (92). These results (58,92) not only highlight the variation in the time needed to reach 

V̇O2max, but also show a large variation in the time to exhaustion (TTE) when V̇O2max is attained. 

Fixed work durations are most commonly prescribed by sport scientists or coaches. Depending on the 

intensity of the work interval and training status, athletes are able to perform exercise around their V̇O2max 

for ~10-min (18,56), when adequate recovery intervals are present. In an attempt to identify the optimal 

duration of work intervals, Stepto et al. (23) modelled the duration of work intervals as a polynomial 

function, after analysing the effects of five different training interventions on 40 km time trial 

performance. The polynomial function predicted a maximum enhancement in performance after work 

bouts of 3 - 6 min and an intensity of ~85% PPO. These findings were supported by Seiler & Sjursen (22), 

who reported that a work duration of 4 min approximated an optimal duration for achieving peak 

cardiovascular responses under self-paced conditions in male runners. These findings were later evidenced 

by Laurent et al. (2014) assessing female runners. However, another study by Seiler et al. (42) showed a 

greater increase in physiological capacity when AIT sessions consisted of four 8 min intervals compared 

to four 4 min intervals. Although the total training time between these two training groups differed, which 

might have influenced the magnitude of adaptations, an interval duration of 8 min (performed on 90 + 2 
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% HRmax) showed an appropriate stimulus and in fact strengthens the descriptive findings of Billat & 

Koralsztein (56) and Billat et al. (94). 

As an alternative to using fixed work durations, using 50 - 70 % of tLim at vVO2max / pVO2max has been 

suggested as an alternative to individualize AIT (21,35). While the rationale of this approach is sound, 

tLim is only a moderately reliable measure (95), and there in not a strong link between tLim and the actual 

time to reach V̇O2max (96). Finally, intervals lasting over 70% tLim are extremely hard to execute (14). 

In the prescription of work duration, it appears more logical to use the time needed to reach V̇O2max to 

individualize interval length instead of fixed percentage of tLim (e.g. time needed to reach V̇O2max + 1 

to 5 min). If no data on tLim are available, it has been suggested to use intervals of between 4 – 6-min to 

maximize cardiovascular responses (22,23,93). 

2.3.4 Prescription of the intensity of recovery intervals 

There is a general belief that active recovery leads to better performance during subsequent periods of 

high-intensity exercise compared to passive recovery (14). Performing active recovery between interval 

bouts is appealing to reduce the time needed to reach V̇O2max and in turn, induce a higher fractional 

contribution of aerobic metabolism to the total energy turnover in the next work interval (28,97).  

In attempts to determine the optimal recovery intensity, multiple studies investigated the acute responses 

to manipulations in recovery intensity in isolated training sessions, but results are equivocal. Dorado et al. 

(97) showed that the sum of work performed in maximal sustainable cycling intervals was respectively 

13% and 9% greater after active recovery (20% V̇O2max) between work interval bouts, compared to 

passive recovery or stretching. In a later study, Menzies et al. (25) showed a decrease in accumulated 

[BLa] when treadmill running at 90% vVO2max was followed by active rather than passive recovery. 

However, they reported that active recovery at 80 – 100% of the individual lactate threshold (LT, i.e. at 

or just below LT) was more effective than active recovery at lower exercise intensities (25). Although 

[BLa] does not have a direct relationship with performance capacity (98), the proposed recovery intensity 

of Menzies et al. (25) around LT (~75% V̇O2max), is considerably higher than suggested by Dorado et al. 

(97). Independent of the prescribed recovery intensity, the current understanding is that an active recovery 

can lower muscle oxygenation (99), impair the re-synthesis of phosphocreatine (PCr) and trigger an 
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increased anaerobic engagement during the following work intervals (100). All these processes exacerbate 

metabolic and acid–base disturbances, and can hypothetically augment subsequent training adaptations 

(46). However, although active recovery at relatively high intensities is shown to be theoretically 

favourable, in practice, it is physically and psychologically difficult to apply for the majority of athletes 

(14). When moderately trained runners were asked to self-select the intensity and duration of their rest 

interval during a six 4 min sequence (running intensity 85% HRmax), they choose to walk for about 2 

minutes (77). The results of studies that adopted self-paced training sessions, incorporating a 

teleoanticipatory approach (101), highlight the discrepancy between scientific optimal results and the 

practical usefulness and feasibility of these results in a ‘real world’ training session. Active recovery might 

have physiological benefits, but as claimed by Buchheit & Laursen (14), passive recovery might be more 

realistic in recovery intervals. 

2.3.4 Prescription of the duration of recovery intervals 

A multitude of approaches are available for the prescription of recovery intervals in AIT sessions. The 

most common approach is the use of a fixed work:recovery ratio (i.e., W:R ratio = 2:1, 1:1, 1:8). A fixed 

W:R ratio separates work intervals by an a priori set recovery duration, for instance, when W:R ratio = 

1:2, the recovery duration is twice the duration of the work interval. 

In an attempt to individualize recovery intervals, the return of HR to a set threshold value or to a percentage 

of HRmax is used (10,21). However, the present understandings of the determinants of HR recovery 

suggest that this practice is not appropriate in the prescription of recovery durations (78), as HR is neither 

related to systemic O2 demand nor muscular energy turnover, but rather influenced to the magnitude of 

the central command and metaboreflex stimulations (14,78). This was for instance evidenced by Edwards 

et al. (101), who reported decreases up to ~10 - 15 s for each 1000 m running effort in five·1000 m repeats 

when recovery intervals where based on HR return, compared to a W:R ratio = 1:1 protocol, of which the 

latter resulted in ~80 s extra recovery time between repetitions.  

Lastly, a number of studies have used self-selected (SS) recovery durations in HIIT protocols, in which 

athletes started subsequent work intervals when they felt ‘adequately recovered to exercise at the required 

intensity’ (77,101–105). While a considerable amount of variation was evident in SS recovery durations 
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across different HIIT protocols, and SS recovery time selection is potentially dependent on maturation 

status (102,105), the current understanding is that athletes can adequately select recovery durations to 

achieve the required exercise intensities in subsequent work intervals in both RST and SIT (see Figure 

2.1) and AIT protocols (see Figure 2.2). Athletes new to the use of SS recovery intervals will likely choose 

a ‘shorter than optimal’ recovery time, as common HIIT protocols typically incorporate ‘short’ recovery 

durations (e.g. a 1000 m work : 200 m recovery sequences equates to 3 - 4 min work intervals, separated 

by 1 - 2 min recovery intervals), which potentially compromises training effects. 
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Figure 2.1: Self-selected recovery duration between 12 x 30 sec (103) , or 12 x 30m (102,105) intervals (mean ± standard deviation) 
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Figure 2.2: Self-selected recovery duration between 6 x 4 min (77,104) , or 5 x 1000m (101) intervals (mean ± standard deviation) 
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The acute responses to manipulations in recovery durations in RST, SIT and AIT protocols have recently 

begun to receive scientific interest however, limited studies have manipulated only the recovery duration 

in RST, SIT or AIT protocols to analyze the role of recovery durations on long term training adaptations 

(see Table 2.1). 

In RST, a positive effect on performance in subsequent 4 – 8 s supramaximal sprints in cycling power 

(106–109) and running speed (110,111) has been reported when longer recovery durations were employed. 

Longer recovery intervals resulted in a lower average HR and V̇O2 over the training session 

(106,107,109,112). Further, the fatigue index (percentage decline between PPO first and last sprint), [BLa] 

and RPE were lower when sprints were interspersed with longer recovery intervals (107,111), which was 

accompanied by a greater muscular re-oxygenation (112). 

In SIT protocols, similar beneficial performance outcomes were reported across a multitude of exercise 

modalities when recovery duration was increased between work intervals (103,113–115). McEwan et al. 

(103) compared the acute physiological responses and running performance in 12 × 30 s sprints, wherein 

the recovery duration was either fixed (30 s) or SS. SS recovery time increased over the protocol (see 

Figure 2.1) and averaged 51 ± 15 s. The longer recovery intervals in SS resulted in a reduced time ≥ 90% 

HRmax, but facilitated the attainment of significantly higher running speeds. In agreement with these 

findings, Gosselin et al. (116) reported a decrease in mean and peak V̇O2 and mean HR in a SIT protocol 

alternating 60 s work intervals with 60 s recovery, compared with 30 s recovery intervals. Less than 30 s 

recovery between ‘all out’ sprints seems to have a detrimental effect on power production in subsequent 

cycling sprints, whereas the aerobic demand in sprints separated by 120 s recovery are too low to induce 

endurance adaptations (114–116). Kavaliauskas et al. (115) therefore suggested 80 s recovery intervals 

between sprints are optimal when targeting both power and endurance adaptations. 

When it comes to the moderating role of recovery durations in AIT sessions, previous research showed 

that trained runners reach a steady state of around 90 - 95% V̇O2max / HRmax across repeated 4 min work 

intervals, independent of an increased recovery duration between bouts. (41,77,93,104) Both Smilios et 

2.4 The moderating role of recovery intervals in HIIT sessions 
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al. (41) and Schoenmakers & Reed (104) reported changes in the O2 and HR kinetics when recovery 

durations increased (more so, mean response time was faster when intervals started from a lower metabolic 

rate), resulting in similar time spent ≥ 90% and 95% V̇O2max and HRmax between the different recovery 

durations, suggesting a comparable physiological load of the AIT protocols (41,104). Increasing the 

recovery duration from 1 to 4 min did not significantly affect [BLa] responses following each 4 min work 

intervals in runners, suggesting a balance between lactate production and lactate buffering capacity 

(77,93). In a study where participants were working at a greater intensity, a greater [Bla] was evident when 

six 2 min cycling intervals were separated by either 1 min or 3 min passive recovery intervals. (46) The 

shorter recovery intervals induced a lower post exercise PCr content, however, these larger perturbations 

in muscle metabolites did not result in greater training adaptations in V̇O2max or PPO between the training 

groups (46). 

Using self-paced AIT protocols, in which work intensities were not predefined but rather determined by 

the integrative outcome of feedback from external and internal receptors, multiple research groups 

(77,93,101,104,117) have evaluated running performance across work intervals. In highly trained runners, 

increasing the recovery duration between repetitions in a ten 400 m sequence (60 vs. 120 vs. 180 s) resulted 

in a lower RPE (117). Trained male (77), and recreational active male and female runners (93) were able 

to increase their mean running speed in six 4 min intervals when the recovery duration was increased from 

1 min to 2 min. A further increase in recovery duration (4 min) did not provide extra performance benefits 

for trained runners (77), however, Laurent et al. (93) reported an additional increase in running speed 

when extra recovery time was available in lesser trained participants. Schoenmakers & Reed (104) 

reported the highest mean running speed when six 4 min intervals (ran on a curved non-motorized 

treadmill) were separated by 3 min, compared to 1 min, 2 min or a SS recovery interval. These results 

overall indicate that adequate recovery will result in the attainment of the desired work intensity within 

the limits and requirements of a specific protocol, however, the ‘optimum’ recovery duration, most likely 

is highly individual and depending on training status. 
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In RST and SIT protocols, longer recovery intervals (≥ 80 s) facilitate higher work intensities in 

subsequent sprints and lower the fatigue index, whereas a shorter recovery duration in these protocols 

increases the overall physiological demands of a training session (114,115). The current understanding is 

that training at higher workloads in RST and SIT protocols elicit greater adaptations in PPO and V̇O2max, 

however, this has only been evidenced in cycling protocols. Long recovery intervals in AIT protocols 

allow athletes to attain higher workloads (speed or power) in successive work bouts when exercise 

intensities are not fixed, without compromising the overall physiological stimulus of a training session 

(77,93,104). Training at higher workloads may allow for greater training adaptations, however, this is to 

be determined in future research. When work intensities are fixed in AIT protocols, the same training 

sessions is typically completed with a lower RPE when longer recovery intervals are available, again, 

without compromising in the physiological stimulus (41,46,117). Ultimately, depending on the exercise 

intensities of work intervals, a recovery interval of 3 min is expected to be sufficient to avoid premature 

fatigue in AIT protocols. Further empirical evidence on a variety of RST, SIT and AIT protocols in 

exercise modalities other than cycling are needed to fully determine the moderating effects of recovery 

duration in HIIT sessions. 

2.5 Conclusion and future research directions 
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Table 2.1: Summary of participant and training characteristics of studies evaluating the moderating role of recovery durations in RST, SIT or AIT protocols 

Study 
Sample Size, 

Age 

Exercise 

Modality 
High Intensity Interval Training Protocol 

Recovery 

Duration 
Key Findings 

Repeated Sprint Training  

   

Baker et al. (107) n = 8 

26.6 ± 7.8 

Cycling Participants performed 8 × 6 sec sprint on a cycling ergometer against     

0.75 g.kg-1 FFM or TBM 

30 s 

1MIN 

AR: Peak power output was higher in both the FFM and TBM conditions in 1MIN vs 30 sec, 

accompanied by a significantly lower fatigue index. HR was higher in both 30 sec protocols, 

with no differences in RPE and end [Bla] measures evident. 

Brownstein et al. (105) pre-PHV:  n = 14 

12 ± 0.4 

Running Participants performed a repeated sprint sequence twice, comprising            

10 × 30 m efforts (~5 sec) 

30 s 

SS 

AR: Recovery duration in SS significantly shorter (~12 sec). Mean sprint time faster in 30 sec, 

accompanied by smaller performance decrement. Mean and peakHR higher in SS. 

 Post-PHV: n = 14 

14 ± 0.5 

AR: Recovery duration in SS significantly shorter (~8 sec). Mean sprint time faster in 30 sec, 

accompanied by smaller performance decrement. Mean and peakHR higher in SS. 

Gibson et al. (102) n = 11 

14 ± 1 

Running Participants performed two repeated sprint assessment of 10 × 30 m sprint 

efforts (~5 sec) 

30 s 

SS 

AR: Training sequence shorter in SS, as SS recovery duration is significantly shorter (~10 sec). 

Mean sprint time significantly faster in 30 sec. No differences in peakHR, [Bla] and RPE. 

Glaister et al. (106) n = 25 

20.6 ± 1.5 

Cycling Participants completed 20 × 5 sec maximal sprints on a friction-braked 

cycle ergometer 

10 s 

30 s 

AR: Peak (~4%) and mean (~26%) power output higher in 30 sec, with lower measures of 

fatigue, RPE and end [Bla]. Contrary, VO2, RER and HR measures were higher in 10 sec in 

both the work and recovery intervals. 

Lee et al. (108) n = 14 

18.7 ± 0.8 

Cycling Participants completed two intermittent sprint cycling tests (ISCTs), which 

were composed of 12 × 4 sec sprints. Tests were separated by 4 min active 

recovery 

20 s 

90 s 

AR: Peak and mean sprint power in both ISCTs higher in 90 sec vs 20 sec, with a lower fatigue 

index and RPE score. End [Bla] higher in 20 sec. 

Ohya et al. (112) n = 8 

25.5 ± 2.6 

Cycling Participants performed 10 maximal 5 sec sprints interspersed with either 

active recovery (ACT, cycling at 40% VO2max) or passive recovery      

(PAS, sitting) 

25 s 

50 s 

100 s 

AR: Mean and peak power decrement over sprints was lowest in 100 sec and, independent of 

ACT/PAS, inversely related to recovery time. Mean VO2 and [Bla] were higher in 25 sec > 50 

sec > 100 sec, whilst muscular reoxygenation was lower in 25 sec. 

Padulo et al. (111) n =17 

16 ± 0 

Running Participants completed three testing sessions, in which they performed six 

maximal 40 m shuttle sprints (20+20 m with a 180º change of direction,     

~6 sec) 

15 s 

20 s 

25 s 

AR: Total sprint time was ~3% faster in 25 sec compared to 15 sec, and ~1.3% compared to 

20 sec. [Bla] and fatigue index were highest in 15 sec, followed by 20 sec, and lowest in 25 

sec. 

Shi et al. (109) n = 13 

26.2 ± 6.2 

Cycling Participants finished three RST protocols, consisting of 40 x 6 sec all-out 

sprints on a cycling ergometer (with resistance equating 7.5% body mass) 

15 s 

30 s 

1MIN 

AR: Peak and mean power output was higher in 1MIN compared to 15 sec and 30 sec, with a 

notable lower RPE. Accumulated time ≥ 80% and 90% V̇O2max increased as recovery time 

decreased, however, for HR this was only evident in time ≥ 95% HRmax. 

Sprint Interval Training     

Gosselin et al. (116) n = 8 

23.1 ± 2.1 

Running Participants performed 2 different training protocols , in which they 

exercised at a workload corresponding to 90% V̇O2max for 60 sec 

30 s 

1MIN 

AR: Mean and peak VO2 and HR significantly higher in 30 sec compared to 1MIN, with no 

differences in RPE. Both protocols failed to achieve 90% V̇O2max. 

Hazell et al. (114) n = 48 

24 ± 3.2 

Cycling Participants completed 2 weeks of SIT (3 sessions a week), in which they 

performed 4-6 ‘all out’ sprint of either 30 sec (G1) or 10 sec (G2 & G3), 

against 100 g.kg-1. CON did not receive SIT 

G1: 4MIN 

G2: 4MIN 

G3: 2MIN 

AR: Peak and mean power output in sprints higher in G2 & G3, whilst G1 performed more 

total work. TA:  Improvements in 5 km TT were similar between groups, whereas the increase 

in VO2max and mean and peak Wingate power output were higher in G1 & G2 compared to 

G3 and CON. 

Iaia et al. (110) n = 13 

18.5 ± 1 

Running Participants completed nine SIT sessions, which focussed on speed 

endurance production (SEP; n = 6) or speed endurance maintenance 

SEP: 2MIN 

SEM: 40 s 

AR: Mean running speed were higher in SEP sprints compared to SEM, with a lower decrement 

in speed across subsequent sprints. TA: SEM improved their 200-m sprint time, distance 

covered in Yo-Yo test increased 10.1% after SEP and 3.8% after SEM. 
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(SEM; n = 7). Both SEP and SEM consisted of 6–8 reps of 20 sec all-out 

sprints 

Table 2.1: Continued     

Study 
Sample Size, 

Age 

Exercise 

Modality 
High Intensity Interval Training Protocol 

Recovery 

Duration 
Key Findings 

Kavaliauskas et al. (115) G1: n = 8, 41 ± 12 

G2: n = 8, 38 ± 7 

G3: n = 8, 42 ± 6 

Cycling Participants completed a total of six SIT sessions over a two week period. 

The SIT protocol consisted of six 10-second “all-out” cycling efforts 

against a resistance equalling 7.5% of body weight. CON received no SIT 

G1: 30 s 

G2: 80 s 

G3: 2MIN 

AR: Average HR was greater in G1 compared with G3 for all training sessions, and was greater 

in G2 compared with G3 for training sessions 1 and 2. TA: All three training groups increased 

3km TT to a similar extent.  V̇O2max increased in G1 & G2, but not in G3. Mean and peak 

Wingate power output increased after G2, whereas G3 only increased their mean power output. 

McEwan et al. (103) n = 14 

30 ± 7 

Running Participants performed 12 × 30 sec running intervals at a target intensity of 

105% MAS. 

30 s 

SS 

AR: Mean recovery duration longer in SS (~21 sec). Relative time ≥ 105% MAS and mean 

running speed greater in SS, whereas time ≥ 90% HRmax was higher in 30 sec compared to 

SS . No differences in end [Bla] or RPE. 

Toubekis et al. (113) n = 16 

21.2 ± 0.6 

Swimming Participants completed eight repetitions of 25-m sprints (~15 sec), 

followed by a 50-m sprint test 6 min later. Recovery was either ACT or 

PAS. 

45 s 

2MIN 

AR: Mean swimming velocity faster in PAS for both recovery durations, and faster in 2MIN 

compared to 45 sec with no differences in end [Bla]. 50-m sprint times were 2.4% faster in 

both ACT and PAS 2MIN conditions vs 45 sec. 

Aerobic Interval Training     

Edge et al. (46) n = 5 

21 ± 2 

Cycling Participants completed 6 × 120 sec intervals, on a power output 

corresponding to 92% V̇O2max 

1MIN 

3MIN 

AR: Average HR in intervals higher in 1MIN vs 3MIN. 1MIN induced a greater end [Bla], H+ 

and MLa content than 3MIN, while muscle PCr content was less after 1MIN. 

Edge et al. (46) G1: n = 6, 19 ± 1 

G2: n = 6 

Cycling Participants performed a total 15 HIIT sessions over a 5 week period, 

consisting of 6 – 10 × 120 sec intervals at a workload of 92%-111% power 

output at V̇O2max 

G1: 1MIN 

G2: 3MIN 

TA: Significant increase in V̇O2max, PPO and power output at lactate threshold, to a similar 

extent in both G1 and G2. Improvements in repeated sprint performance were similar. 

Edwards et al. (118) n = 11 

26 ± 7 

Running Participants completed a series of four (5 × 1000 m) track running 

sessions, each at the standardized perceived exertion of RPE 17. 

SS_PR1 

SS_PR2 

HR130 

W:R = 1 

AR: Recovery significantly shorter in HR130, accompanied by a significant lower mean 

running velocity and greater fatigue index. Similar HR and end [Bla] between all experimental 

conditions. 

Laurent et al. (93) G1: n = 8, 20.8 ± 2.1 

G2: n = 8, 21.9 ± 3.6 

Running Trained male (G1) and female (G2) runners completed three isoeffort 

(maximum sustainable intensity) training sessions, each comprising six 4 

min interval 

1MIN 

2MIN 

4MIN 

AR: SS running velocity increased in both groups when longer recovery was available. 

Independent of recovery duration, mean VO2, HR, [Bla] and RPE were similar across 

conditions in both G1 & G2. Relative exercise HR and VO2 was higher in G2. 

Laursen et al. (21) G1: n = 8, 26 ± 6 

G2: n = 9, 24 ± 7 

Cycling Participants performed eight AIT sessions over a 4 week period, 

comprising 8 intervals at Pmax for the duration of 60% Tlim 

G1: W:R = 0.5 

G2: 65HRmax 

AR: G1 had a significantly greater total mean recovery time (~110 sec) between bouts 

compared with G2. Both groups completed ~64% of prescribed interval bouts. TA: 

Improvements in V̇O2max, PPO, and 40 km TT were similar between groups. 
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Table 2.1: Continued     

Study 
Sample Size, 

Age 

Exercise 

Modality 
High Intensity Interval Training Protocol 

Recovery 

Duration 
Key Findings 

Seiler et al. (77) n = 9 

30 ± 4 

Running Participants performed three isoeffort (maximum sustainable intensity) 

training sessions, each comprising six 4 min intervals at a constant 5% 

treadmill incline. 

1MIN 

2MIN 

4MIN 

SS 

AR: Higher running velocity in 2MIN (85% vV̇O2max) and 4MIN (84% vV̇O2max) vs 1MIN    

(83% vV̇O2max). Higher mean VO2 in 2MIN and 4MIN vs 1MIN. No differences in end [Bla], 

HR, or RPE. 

Schoenmakers et al. (104) n =12 

34 ± 11 

Running Participants performed four isoeffort (maximum sustainable intensity) 

training sessions, each comprising six 4 min interval on a non-

motorized treadmill 

1MIN 

2MIN 

3MIN 

SS_PR1 

AR: Running velocity significantly higher in 3MIN compared to all other protocols, and higher 

in SS_PR1 vs 2MIN. No significant differences in RPE responses, time ≥ 90% and 

95% V̇O2max, or   ≥ 90% and 95% HRmax. 

Smilioset al. (41) n = 11 

22.1±1 

Running Participants executed, on three separate sessions, 4×4 min runs at 90% of 

MAS 

 

2MIN 

3MIN 

4MIN 

AR: Time ≥ 80 and 90% HRmax was higher in 2MIN and 3MIN compared to 4MIN, but did 

not differ for VO2 measures. Peak HR and VO2 were similar between conditions. RPE were 

higher in 2MIN and 3MIN vs 4MIN, as was 2MIN end [Bla]. 

Zavorsky et al. (117) n = 12 

24.8 ± 5.1 

Running Participants performed three interval running workouts of 10 x 400 m on a 

predefined running speed 

1MIN 

2MIN 

3MIN 

AR: Mean HR significantly higher in 1MIN, but no differences in peakHR between conditions. 

RPE increased with decrease in recovery time. 

Age is presented mean ± standard deviation 

Note: 1MIN; 1 min recovery; 2MIN; 2 min recovery; 3MIN; 3 min recovery; 4MIN: 4 min recovery; ACT: active recovery; AIT: aerobic interval training; AR: Acute responses; [Bla]: blood lactate concentration; 

CON: control group; FFM: fat-free body mass; H+: Hydrogen; HR: heart rate; HR130: recovery duration based on HR return to 130 bpm; HRmax: maximum heart rate; ISCTs: intermittent sprint cycling tests; 

MAS: maximal aerobic speed; MLa: muscle lactate; PAS: passive recovery; PCr: phosphocreatine; peakHR: peak heart rate; Pmax: minimal power output to elicit V̇O2max; post-PHV: post peak height velocity; 

PPO: peak power output; pre-PHV: pre peak height velocity; RER: respiratory exchange ratio; RPE: ratings of perceived exertion; RST: repeated sprint training SIT: sprint interval training; SS: self-selected 

recovery duration; SS_PR1 & SS_PR2: self-selected recovery duration based on perceived readiness scale; SEM: speed endurance maintenance; SEP: speed endurance production; TA: Adaptations to a period of 

training; TBM: total body mass; Tlim: time to exhaustion at Pmax; TT: time trial; VO2: oxygen consumption; V̇O2max: maximum oxygen consumption  vV̇O2max: minimum running velocity to elicit V̇O2max; 

W:R = 1: recovery duration equal to work interval duration 
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Chapter 3: 

 

 

 

 

  

The effects of aerobic interval training on V̇O2max and performance in 

runners and cyclists: A systematic review and meta-analysis 
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Based on the duration and exercise intensities of work intervals in high intensity interval training (HIIT), 

HIIT can be divided into repeated sprint training (RST), sprint interval training (SIT) and aerobic interval 

training (AIT). Previously, studies meta-analysed the effects of HIIT, RST and SIT on changes in 

V̇O2max, however, this far failed to isolate and evaluate the effectiveness of solely AIT. This study was 

carried out to provide a systematic review of running and cycling based AIT interventions, and meta-

analyse their effects on changes in V̇O2max and / or performance outcomes. After an extensive review of 

the literature (PubMed and Web of Science databases), pooled estimates of effect sizes (ES, Hedges’ g) 

across studies for change in V̇O2max (n = 57) and performance (n = 20) were calculated using an inverse-

variance random effects model for meta-analyses. Standardised mean differences, showed a significant 

increase of small to moderate magnitude in V̇O2max (7.6%, ES = 0.54, CI: 0.38 to 0.69), which 

corresponds to an increase in relative V̇O2max of 3.07 mL·kg·min−1. Improvements in V̇O2max were 

similar between cycling and running interventions, and were not moderated by baseline fitness. 

Performance improved by 4.0% after AIT, which was of a small to moderate magnitude (ES = -0.49, CI:-

0.75 to -0.23). The results suggest that AIT improved V̇O2max and performance significantly more than 

moderate intensity continuous training, and whilst the underlying mechanisms of adaptations may differ, 

improved V̇O2max to a similar extent as SIT. 

  

Summary 
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High intensity interval training (HIIT) is by no means a new phenomenon, but instead a training concept 

long appreciated by athletes and coaches to improve cardiorespiratory and metabolic functioning, and, in 

turn the performance of endurance athletes (9,14,47). For instance, it was reported that Hannes 

Kolehmainen, a 1912 Olympic gold medal winner, used HIIT in his training program: he would run five 

to ten 1000 m intervals in just over 3 min at a velocity close to his specific competition velocity (9,47). In 

the 1950s, HIIT was further popularized by Emil Zatopek, who allegedly repeated up to 100 × 400 m 

repetitions per day at a pace close to that of his 5000 m running velocity (9,47), interspersed by 200 m of 

recovery. In HIIT, repeated periods of vigorous exercise are interspersed with recovery periods, which 

allows for a greater accumulated time at these vigorous exercise intensities than can be achieved during a 

single bout of continuous exercise at this intensity (15,17,18). The workload of a HIIT session is 

determined by a complex interplay between the number of intervals, the exercise intensities and the 

duration of both the work and recovery intervals (16,17), and with the manipulation both within and 

between these variables, HIIT protocols are infinitely variable. 

Based on the duration and exercise intensities of work intervals, HIIT is typically differentiated in two 

categories to which we will refer in this study as sprint interval training (SIT) and aerobic interval training 

(AIT). SIT is characterized by short repeated ‘all-out’ or ‘supramaximal’ 8 - 30 sec sprints efforts, 

performed at exercise intensities equal to or greater than those that would elicit an athlete’s maximum 

oxygen uptake (V̇O2max). Contrary to SIT, AIT incorporates long intervals (1 - 16 min), in which exercise 

intensities are undeniably high - but ultimately submaximal. In this study, the term moderate intensity 

continuous training (MICT) is used for comparative purposes to describe exercise that is performed in a 

continuous manner and at lower intensities than both HIIT types (see Figure 3.1 A-C).  

3.1 Introduction 
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Figure 3.1: A graphical depiction of the main types of aerobic exercise, in which A–C are examples of A) sprint 

interval training (SIT), B) aerobic interval training (AIT) and C) moderate intensity continuous training (MICT). 

Workloads are depicted as a percentage of the peak power output (PPO) obtained during incremental cycling test. 

Figure adapted from MacInnis and Gibala (119) 

Numerous retrospective studies evaluating athletes’ training distributions, highlight that both HIIT and 

MICT are indispensable constitutes of successful endurance training programmes (for an extensive review 

see e.g. (7,11)), and both training modalities are important in the underlying physiological processes taking 

place that allow for increased physiological capacity (120,121). However, in trained athletes, an additional 

increase in the volume of MICT does not appear to further enhance V̇O2max, or other determinants of 

endurance performance (10,122,123), making HIIT a vital component of successful training programs. In 

patient populations, numerous meta-analytical reviews with a focus on HIIT have demonstrated superior 

outcomes compared to MICT for body composition (124,125), cardio-metabolic disease risk (126) and 

cardiorespiratory fitness (127,128). Additionally, HIIT was found similarly or more enjoyable than MICT 

(129,130), and given the shorter exercise time, HIIT is typically described a more time efficient training 

modality than MICT.  

Whilst both aerobic and anaerobic energy systems are important for the provision of ‘energy’ (stored in 

the molecule adenosine triphosphate (ATP)) during any type of exercise (i.e., ATP consumption / ATP 

re-synthesis), SIT is typically considered to trigger and utilize the anaerobic energy system. Commonly, 

SIT protocols incorporate repeated 30 s Wingate sprints, of which it is estimated that 70 - 80% of the 

energy turnover is derived from anaerobic metabolism (131,132), and the oxygen uptake (V̇O2) only 

exceeds 90% V̇O2max during the last 5 - 10 s of each sprint (131). Recently, both Tucker et al. (75) and 

Follador et al. (133) showed that participants attained higher mean and peak V̇O2 and heart rate (HR) in 
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AIT sessions compared to time matched SIT protocols. AIT intervals are performed on exercise intensities 

close to V̇O2max, and in doing so contrary to SIT protocols, maximally stress the oxygen transport and 

utilization systems (14). Further data on the respiratory exchange ratio (RER; V̇CO2 / V̇O2) during 

repeated AIT work intervals, highlights the dependency on the aerobic metabolism for ATP re-synthesis 

in AIT, with RER values typically found to be under the unit value across intervals, indicating at least a 

partial reliance on fat oxidation for energy turnover (104,134,135). While the picture is far from complete, 

different mechanisms are ascribed to the improvements in aerobic capacity after AIT and SIT. It is now 

thought that AIT foremost improves skeletal muscle buffering capacity and the ability to sustain high-

intensity exercise for prolonged periods (26,70,135), whereas improvements after SIT are attributed to an 

improved muscle oxidative potential (136,137). Given the higher endured physiological strain per HIIT 

sessions (75,133), AIT potentially provides a more effective stimulus to enhance V̇O2max than MICT and 

/ or SIT (5,14). 

Previously, multiple meta-analyses evaluated AIT in patient populations (138,139), however, limited 

knowledge on the effects of AIT in healthy, or trained subject is available. This gap in the literature was 

to some extent addressed by Bacon et al. (140) and Milanovic et al. (30), who both reported a moderate 

beneficial effect for longer HIIT intervals in the increase in V̇O2max. As a result of HIIT training 

programs, Bacon et al. (140) reported an average increase in V̇O2max of 0.51 L·min−1 (95% confidence 

intervals (CI): [0.43 to 0.60 L·min−1]). In a supplementary analysis, the protocols of nine studies that 

reported the largest mean increase in V̇O2max (0.87 ± 0.15 L·min−1) were compared to the nine studies 

that reported the smallest mean increase in V̇O2max (0.27 ± 0.05 L·min−1). Many of the nine studies 

reporting larger improvements, incorporated long work intervals (3 – 5 min), however, it was also evident 

that the total training interventions of these nine was longer (total training time 479 ± 246 vs 696 ± 264 

min) and that exercise intensities of the work intervals were higher than in the nine studies showing the 

smaller increase (140). Whether the larger changes in V̇O2max therefore solely can be attributed to 

differences in interval duration is questionable, and may be further attenuated by potential differences in 

pre-intervention V̇O2max between the subgroups. This was recently evidenced by Milanovic et al. (30), 

who, compared with non-exercising control groups (CON), reported a large beneficial effect of HIIT on 
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V̇O2max (5.5 mL·kg·min−1 ± 1.2 mL·kg·min−1), with a likely moderate greater increase for subjects with 

lower baseline fitness (3.2 mL·kg·min−1 ± 1.9 mL·kg·min−1). Additionally, small additional improvements 

for typically longer HIT repetitions (2.2 mL·kg·min−1; ± 2.1 mL·kg·min−1) were evident. Where both 

meta-analysis of Bacon et al. (140) and Milanovic et al. (30) provide valuable information on the 

effectiveness of HIIT as a whole, they both fail to isolate and evaluate the effectiveness of AIT 

interventions separately. For instance, interventions alike the traditional Tabata protocol (141) and 

concurrent training program of Hickson et al. (142) were included in these studies (30,140). A meta-

analysis on changes in V̇O2max after solely AIT interventions is therefore timely, and a further comparison 

between AIT vs MICT, and AIT vs SIT can provide valuable new insights in potential differences between 

these training modalities. 

The primary aim of the current study was to provide a systematic review of AIT interventions and meta-

analyse their effects on changes in V̇O2max. Next to this, we aimed to analyse the effects of AIT on 

changes in performance outcomes. V̇O2max is one, if not the main physiological factor determining 

endurance performance (143), however, improvements in performance can be achieved without an 

increase in V̇O2max. Improvements in V̇O2max are unlikely when highly trained athletes are subjected to 

AIT interventions, as it can be expected that they are already exercising close to their upper physiological 

limits, and the training times in AIT interventions are typically too short to improve the capacity of the 

cardiorespiratory system to deliver oxygen to the exercising muscles. Lastly, physiological responses are 

dependent on the exercise modality, and the amount of muscle mass involved (144). Therefore, similar 

AIT protocols using different exercise modes (e.g. running vs cycling) might result in different 

physiological responses, and therefore, divergent outcomes across studies. To avoid this possible 

confounding factor, the present study will evaluate changes in both running and cycling based AIT 

interventions together, but will also provide seperate analysis per exercise modality. 
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3.2.1 Experimental approach to the problem 

This review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses guidelines (145), and aimed to identify studies that examined changes in V̇O2max and / or 

timed performance after a minimum of 4 running or cycling based AIT sessions. Ethical approval in 

eligible studies was verified before inclusion. 

3.2.2 Literature search 

With no date restrictions, an extensive search of the PubMed and Web of Science databases was 

conducted, along with the reference lists of peer-reviewed original research and review articles published 

in English. Search terms, individually or in conjunction with each other, included MeSH terms provided 

for ‘running’, ‘cycling, ‘high intensity interval training’, ‘HIIT’, ‘AIT’, ‘aerobic interval training’, 

‘V̇O2max’, ‘oxygen uptake’, ‘aerobic capacity’, ‘endurance adaptations’ and ‘performance’. The initial 

search for this study was conducted in January 2017, and was updated monthly hereafter. 

3.2.3 Study selection 

Specific criteria determined the eligibility of studies for inclusion in this meta-analytical review. We 

focused on lab or field-based AIT interventions, with work interval lasting between 1 – 16 min. Studies 

in which AIT was combined with other interventions, other than low intensity endurance training, were 

excluded from analysis. No inclusion criteria were set for baseline fitness, but studies must include 

healthy, non-obese adult participants (BMI ≤ 30.0 kg/m2). Baseline V̇O2max was used to assign 

participants into four performance levels (PL1 – PL4), in which PL1 included studies with a mean reported 

V̇O2max ≤ 40.0 mL·kg·min−1, PL2 40.0 ≤ 50.0 mL·kg·min−1, PL3 50.0 ≤ 60.0 mL·kg·min−1, and PL4 ≥ 

60.0 mL·kg·min−1. PL allocation for studies only assessing performance outcomes (71,146–148), was 

based on indirect estimations of V̇O2max from running velocities (149), or based on peak power output 

classification norms in cyclists (150). 

After removal of duplicate records, study selection involved a review of all seemingly relevant article 

titles and was followed by an evaluation of article abstracts and, then, full published articles. After this, 

3.2 Methods 



37 

reference lists were searched (see Figure 3.2). Following the initial selection process, there were 349 

potentially eligible studies. The final dataset combined 57 studies that comprised 69 individual AIT 

interventions evaluating changes in V̇O2max, and 20 studies providing 27 estimates for changes in 

performance after AIT. Descriptive statistics for studies included in the meta-analysis are presented in 

Table 3.1 and Table 3.2. 
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Figure 3.2: Flow diagram of study selection and screening process (n = number of studies, k = number of unique 

AIT interventions in the included studies) 
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3.2.4 Data extraction 

Data extraction was undertaken by two reviewers (PS and KR). All data was collected by PS in a 

standardized spreadsheet, before KR verified its accuracy and the eligibility of studies for inclusion. Full 

text articles were assessed for mean pre and post AIT intervention V̇O2max values (in L·min−1 or 

mL·kg·min−1) and / or measures of performance time along with the associated standard deviations (SD) 

or standard errors of the mean (SEM). When performance on more than one distance was reported, the 

longest distance was included for comparison. Corresponding authors were contacted by email when 

insufficient data was reported, however, this yielded no responses. For several studies mean and SD were 

re-calculated from individual data, or calculated by converting SEM or interquartile range values to SD. 

Graph digitizer software (DigitizeIt, Braunschweig, Germany) was used to obtain data when only 

available in figures. 

Besides V̇O2max and / or performance values, data of the following potential moderators were extracted 

for each study: participant characteristics (sex, age, body mass), training parameters (work interval 

duration and intensity, recovery interval duration and intensity, the total number of work intervals per 

training sessions, number of training sessions). 

3.2.5 Analysis and interpretation of results 

The meta-analysis was carried out in RevMan version 5.3 (Copenhagen: The Nordic Cochrane Centre, 

The Cochrane Collaboration, 2014), using an inverse–variance random-effects model, with the level of 

statistical significance set at p < 0.05. This model allocates a proportionate weight to trials based on the 

size of their individual standard errors and facilitates analysis whilst controlling for heterogeneity across 

studies. A random effect model was chosen over a fixed model because of the wide variation in AIT 

protocols in the included studies. The main meta-analytical comparisons included a within group analysis 

of all estimates for V̇O2max and performance outcomes (see Figure 3.3 and Figure 3.4). Similar within 

group analyses were performed for MICT and SIT interventions. Percentage change between the pre and 

post intervention measures were calculated to estimate the impact of AIT, MICT or SIT interventions on 

both outcome measures. As a further measure to estimate the impact of AIT on V̇O2max, V̇O2max data 

reported in L·min−1 were converted to mL·kg·min−1, and weighted mean differences (WMD) were 



40 

calculated and are presented next to the standardized mean differences (SMD). Notably, a negative 

percentage change in performance indicates an improvement in performance time. 

Separate analysis were performed to determine the pooled effect of change in V̇O2max for studies 

comparing AIT vs MICT, AIT vs SIT or AIT vs CON. Mean and SD for post-intervention V̇O2max in 

experimental and control groups were used to calculate an effect size. Studies that did not incorporate a 

control group were excluded from this analysis in order to allow for differentiation of the effects. In case 

there was more than one AIT intervention group in a given study, the control group (either MICT, SIT or 

CON) was proportionately divided to facilitate comparison across all participants. 

Effect sizes (ES) in all analyses are calculated and represented by Hedges’ g, to account for small sample 

sizes, and are presented alongside [95% confidence intervals (CI)]. The calculated effect sizes were 

interpreted using conventions outlined by Hopkins et al. (151) i.e., < 0.2 = trivial; 0.2 – 0.59 = small, 0.6 

– 1.19 = moderate, and 1.2 – 1.99 = large. 

To identify potential sources of heterogeneity, moderator variables were determined and assessed. A 

summary of these can be seen in Table 3.5. Analysed with a random-effects model, moderator variables 

were selected based on differences in participant characteristics (gender) or training programme 

configurations that could influence outcome measures (duration work interval, duration AIT session, 

duration total AIT intervention, duration recovery interval, calculated work:recovery ratio (W:R ratio)). 

The duration of the work intervals, AIT sessions, and total AIT intervention were selected because longer 

training programmes could lead to sustained performance improvements (30,140,152), and the W:R ratio 

was evaluated because previously unclear effect were reported (30,152). 

Study heterogeneity was confirmed via I2 statistics. Higgins & Thompson (153) stated that low, moderate 

and high heterogeneity corresponds to I2 values of 25%, 50% and 75%, respectively. In this study, no risk 

of bias quality scale was used to assess ‘quality’ of included studies. Studies of physical training have 

methodological constraints (e.g. blinding of participants, trainers and assessors), which can lead to lower 

scores relating to biases and study quality scores, making bias quality scales potentially inaccurate. 
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Table 3.1: Participant and training protocol characteristics of included studies evaluating changes in V̇O2max in cycling (C) or running (R) after AIT interventions   

     Training Protocol     

Study                 [group identifier] Group 
n 

(female) 
Age 

Baseline 

V̇O2max 
Reps Work Intensity Work Duration 

Recovery 

Intensity 

Recovery 

Duration 

Work 

Duration 
(hr:min:sec) 

Sessions 
Total 

Training 
(hr:min:sec) 

∆ 

V̇O2max 
% Change 

Performance Level 1               

C - Dudley et al. (154)* AIT 10 (?) 19.8 ± 1.0 38.8 ± 7.6 5 PPO F, 300 s  F, 300 s 00:25:00 21 08:45:00 6.3 16.2% 

C - Duffield et al. (155) AIT 10 (10) 20 ± 4 2.30 ± 0.37 4 - 12 130 - 180% POlt F, 120 s  F, 60 s 00:16:00 24 06:28:00 0.48 20.9% 

C - Keramidas et al. (156) AIT 10 (7) 22.7 ± 4.7 38.0 ± 5.5 7 - 9 90% PPO F, 120 s 50% PPO F, 120 s 00:33:00 18 09:54:00 -1.6 -4.2% 

C - Naves et al. (157) AIT 25 (25) 31.0 ± 6.0 37.7 ± 7.2 4 90 - 95% HRmax F, 240 s 50 - 60% HRmax F, 180 s 00:16:00 24 06:28:00 4.4 11.7% 

 SIT 24 (24) 29.8 ± 6.4 32.0 ± 7.2 4 All Out sprint F, 30 s No load F, 240 s 00:02:00 24 00:48:00 4.5 14.1% 

C - Robinson et al. (158) AIT 13 (?) 23.6 ± 3.7 38.9 ± 3.4 5 85 - 120% PPO F, 120 s Complete rest F, 60 s 00:10:00 12 02:00:00 1.4 3.6% 

 CON 8 (?) 21.0 ± 2.4 39.1 ± 4.5 CON continued their normal activity pattern    -0.2 -0.5% 

C - Talanian et al. (159)* AIT 7 (7) 22.1 ± 0.6 36.3 ± 10.5 10 90% V̇O2peak F, 240 s  F, 120 s 00:40:00 7 04:40:00 4.6 12.7% 

C - Tsai et al. (160)* AIT 20 23.0 ± 7.6 34.0 ± 6.3 5 80% V̇O2max F, 180 s 40% V̇O2max F, 180 s 00:15:00 30 07:30:00 6.9 20.3% 

 MICT 20 22.1 ±  4 33.1 ± 5.4 1 60% V̇O2max F, 30 min   00:30:00 30 15:00:00 4.6 13.9% 

 CON 20 22.5 ± 5.8 32.2 ± 4.5 CON did not undergo any extra exercise but were carefully monitored    2.9 9.0% 

C - Walter et al. (161)* AIT 19 (19) 21.7 ± 4.4 30.5 ± 5.1 5 90 - 115% PPO F, 120 s  F, 60 s 00:10:00 18 03:00:00 4.9 16.1% 

 CON 11 (11) 22.2 ± 4.1 32.3 ± 8.0 CON did not engage in exercise training or ingested any supplements    1.6 5.0% 

C - Warburton et al. (162) AIT 6 30 ± 5 38.7 ± 7.9 8 - 12 90% V̇O2max F, 120 s 40% V̇O2max F, 120 s 00:20:40 36 12:48:00 8.6 22.2% 

 MICT 6 30 ± 4 40.4  ± 6.3 1 1% < POlt F, 30 – 48 min   00:42:00 36 25:12:00 9.2 22.8% 

 CON 8 29 ± 3 39.0  ± 7.8 CON maintained their normal physical activity habits   -0.2 -0.5% 

C - Weber et al. (163)*       [female] AIT 7 (7) 22.7 ± 6.9 2.55 ± 0.29 3 82.5 - 100% MAOD F, 120 s  F, 360 s 00:06:00 24 02:24:00 0.07 2.7% 

R - Sijie et al. (164) AIT 17 (17) 19.8 ± 1.0 33.3 ± 3.9 5 85% V̇O2max F, 180 s 50% V̇O2max F, 180 s 00:15:00 60 15:00:00 2.8 8.4% 

 MICT 16 (16) 19.3 ± 0.7 32.9 ± 4.7 1 50% V̇O2max F, 40 min - - 00:40:00 60 40:00:00 1.6 4.9% 

 CON 19 (19) 19.5 ± 0.8 32.8 ± 4.1 CON maintained their individual habits of physical activity and refrained from any other forms of prescribed exercise training 0.8 2.4% 

R - Tsekouras et al. (165)* AIT 7 [20 - 40] 36.7 ± 7.1 4 90% V̇O2max F, 240 s 60% V̇O2max F, 240 s 00:16:00 24 06:24:00 7.2 19.6% 

 CON 8  39.8 ± 5.6 CON maintained their normal physical activity habits, and completely refrained from exercise during the last week  -1.4 -3.5% 

Performance Level 2               

C - Edge et al. (166)* AIT 10 (10) 19 ± 1 42.8 ± 6.3 4 - 10 120 - 140% POlt F, 120 s  F, 60 s 00:14:00 15 03:34:00 5.3 12.4% 

 MICT 10 (10)  41.5 ± 6.3 1 85 - 95% POlt F, 12 – 30 min   00:22:24 15 05:36:00 4.2 10.1% 

C - Edge et al. (167)* AIT 8 (8) 20 ± 1 42.7 ± 8 2 - 10 120 - 140% POlt F, 120 s ‘complete rest’ F, 60 s 00:12:40 15 03:20:00 6.0 14.0% 

 MICT 8 (8) 19 ± 1 40.5 ± 5.4 1 85 - 95% POlt F, 12 – 30 min   00:22:24 15 05:36:00 5.2 12.8% 

C - Edge et al. (46)                [1min] AIT 6 (6) 19 ± 1 45.6 ± 6.8 6 - 10 140 - 170% LTdmax F, 120 s ‘passive’ F, 60 s 00:16:00 15 04:02:00 4.4 9.6% 

[3min] AIT 6 (6) 19 ± 1 45.6 ± 4.4 6 - 10 140 - 170% LTdmax F, 120 s ‘passive’ F, 180 s 00:16:00 15 04:02:00 4.0 8.8% 
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Table 3.1: Continued  

     Training Protocol     

Study                 [group identifier] Group 
n 

(female) 
Age 

Baseline 

V̇O2max 
Reps Work Intensity Work Duration 

Recovery 

Intensity 

Recovery 

Duration 

Work 

Duration 
(hr:min:sec) 

Sessions 
Total 

Training 
(hr:min:sec) 

∆ 

V̇O2max 
% Change 

C - Graef et al. (168) AIT 17 22.6 ± 4.9 3.65 ± 0.59 5 90 - 120% PPO F, 120 s ‘passive’ F, 60 s 00:10:00 12 02:00:00 0.35 9.6% 

 CON 10  3.67 ± 0.71 CON neither supplemented nor completed HIIT    -0.13 -3.5% 

C - O’Leary et al. (169) AIT 10 (2) 27 ± 6 3.52 ± 0.71 6 - 8 PO∆50 F, 300 s  F, 60 s 00:35:00 18 10:30:00 0.28 8.0% 

 MICT 10 (2) 27 ± 4 3.33 ± 0.92 1 90% POlt F, 70 min   01:10:00 18 21:00:00 0.29 8.7% 

C - Perry et al. (170)* AIT 8 (3) 24 ± 3 3.29 ± 0.7 10 90% PPO F, 240 s  F, 120 s 00:40:00 18 12:00:00 0.29 8.8% 

C - Robinson et al. (171)          [HR] AIT 10 36.9 ± 16 48.5 ± 9.2 11 HR POlt F, 300 s 65% HRmax F, 240 s 00:55:00 8 07:20:00 -0.1 -0.2% 

                                                  [PO] AIT 10 30.9 ± 9.5 50.3 ± 9.7 11 POlt F, 300 s 65% HRmax F, 240 s 00:55:00 8 07:20:00 0.4 0.8% 

C - Smith et al. (172) AIT 18 22.2 ± 2.7 3.25 ± 0.63 5 - 6 90 - 115% PPO F, 120 s  F, 60 s 00:10:30 18 03:04:00 0.41 12.6% 

C - Weber et al. (163)*           [male] AIT 7 23.7 ± 4.2 3.58 ± 0.50 3 82.5 - 100% MAOD F, 120 s  F, 360 s 00:06:00 24 02:24:00 0.27 7.5% 

C - Weng et al. (173)* AIT 10 22.3 ± 0.6 46.5 ± 5.4 5 80% PPO F, 180 s 40% PPO F, 180 s 00:15:00 25 06:15:00 11.4 24.5% 

 MICT 10 22.5 ± 3.2 46.3 ± 4.7 1 60% PPO F, 30 min   00:30:00 25 12:30:00 5.6 12.1% 

 CON 10 22.4 ± 2.8 45.9 ± 5.4 CON did not receive any exercise but were carefully monitored   -1.5 -3.3% 

R - Born et al. (174) AIT 16 25 ± 4 49.0 ± 4.5 4 90 - 95% HRmax F, 240 s 70 - 75% HRmax F, 180 s 00:16:00 9 02:24:00 2.5 5.1% 

 MICT 12 25 ± 3 52.4 ± 4.8 1 70 - 75% HRmax F, 60 - 80 min   01:10:00 9 10:30:00 -0.6 -1.2% 

R - Chtara et al. (64) AIT 10 21.4 ± 1.3 49.8 ± 3.1 5 Vmax I, Tlim, 156 s 50% Vmax F, 156 s 00:13:00 24 05:12:00 4.9 9.8% 

 CON 9 21.4 ± 1.3 50.7 ± 6.3 CON maintained their normal physical activity habits   -0.1 -0.3% 

R - Estes et al. (175) AIT 12 (10) 19.9 ± 0.5 42.1 ± 1.6 4 90 - 95% HRmax F, 240 s 70% HRmax F, 180 s 00:16:00 25 06:40:00 2.4 5.7% 

Performance Level 3               

C - Etxebarria et al. (176) AIT 7 33 ± 8 4.47 ± 0.36 6 - 8 80% PPO F, 300 s ‘active’ F, 60 s 00:35:00 6 03:30:00 0.31 6.9% 

 SIT 7  4.53 ± 0.41 9 - 11 All Out sprint F, 10 -  40 s ‘active’ F, variable 00:11:40 6 01:10:00 0.32 7.0% 

C - Gaesser et al. (177)* AIT 6 22.3 ± 1.5 55.0 ± 11.1 10 PPO F, 120 s  F, 120 s 00:20:00 18 06:00:00 4.1 7.4% 

 MICT 5 21.4 ± 0.9 54.9 ± 4.6 1 50% PPO F, 40 min   00:40:00 18 12:00:00 1.5 2.7% 

C - Miyachi et al. (178)* AIT 6 23 ± 4 50.9 ± 5.6 5 PPO F, 180 s 50% PPO F, 120 s 00:15:00 48 12:00:00 10.7 21.0% 

 CON 5  49.9 ± 5.2 CON maintained their normal physical activity habits   1.9 3.8% 

C - Poole et al. (179)* AIT 8 22 ± 1.9 3.81 ± 0.59 10 105% PPO F, 120 s  F, 120 s 00:20:00 21 07:00:00 0.58 15.2% 

C - Seiler et al. (42)                  [4*4] AIT 9 (2) 43 ± 7 50.4 ± 5.8 4 Max session effort F, 240 s  F, 120 s 00:16:00 14 03:44:00 2.8 5.6% 

                                                 [4*8] AIT 9 43 ± 7 52.8 ± 4.8 4 Max session effort F, 480 s  F, 120 s 00:32:00 14 07:28:00 5.5 10.4% 

                                               [4*16] AIT 9 (2) 43 ± 4 51.1 ± 5.8 4 Max session effort F, 960 s  F, 180 s 01:04:00 14 14:56:00 3.3 6.5% 

 CON 8 (2) 40 ± 6 52.7 ± 8.0 CON maintained their normal physical activity with a  20-30% increased volume   59:30:00 1.8 3.4% 

C - Zieman et al. (180) AIT 10 21.6 ± 1.1 50.1 ± 3.1 6 80% PPO F, 90 s ‘passive’ F, 180 s 00:09:00 18 02:42:00 5.5 11.0% 
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Table 3.1: Continued 

     Training Protocol     

Study                 [group identifier] Group 
n 

(female) 
Age 

Baseline 

V̇O2max 
Reps Work Intensity Work Duration 

Recovery 

Intensity 

Recovery 

Duration 

Work 

Duration 
(hr:min:sec) 

Sessions 
Total 

Training 
(hr:min:sec) 

∆ 

V̇O2max 
% Change 

 CON 11 21.0 ± 0.9 48.2 ± 4.7 CON maintained their normal routine    0.3 0.6% 

R - Croft et al. (181) AIT 5 20 ± 1 55.9 ± 6.8 5 90% V̇O2max F, 180 s 25-50% V̇O2max F, 180 s 00:15:00 24 06:00:00 4.9 8.8% 

R - Czuba et al. (182) AIT 6 22 ± 2.4 53.0 ± 5.2 4 - 5 90% V̇O2max F, 240 s 60% V̇O2max F, 240 s 00:16:00 9 02:36:00 1.1 2.1% 

R - Denadai et al. (62)         [G95%] AIT 9 27.4 ± 4.4 59.1 ± 6.0 4 95% vV̇O2max I, Tlim, 332 s 50% vV̇O2max F, 166 s 00:22:10 8 02:56:49 -1.6 -0.1% 

                                          [G100%] AIT 8 27.4 ± 4.4 59.9 ± 6.0 5 vV̇O2max I, Tlim, 285 se 50% vV̇O2max F, 285 s 00:23:47 8 03:10:12 -0.1 -2.7% 

R - Esfarjani et al. (66)  AIT 6 19 ± 2 51.3 ± 2.4 5 - 8 vV̇O2max I, Tlim, 210 s 50% vV̇O2max F, 210 s 00:21:00 20 07:00:00 4.7 9.2% 

 MICT 5  51.8 ± 2.8 1 75% vV̇O2max F, 60 min   01:00:00 20 20:00:00 1.1 2.1% 

 SIT 6  51.7 ± 3.4 12 130% vV̇O2max F, 30 s  F, 270 s 00:06:00 20 02:00:00 3.2 6.2% 

R - Ferley et al. (63) AIT 12 (6) 27.4 ± 3.8 59.4 ± 8.9 4 - 6 vV̇O2max I, Tlim, 136 s  I, 65HR, 142 s 00:11:20 12 02:16:00 0.2 0.3% 

 SIT 12  63.3 ± 8.0 10 - 14 Vmax F, 30 s  I, 65HR, 135 s 00:06:00 12 01:12:00 -0.6 -0.9% 

 CON 8  59.9 ± 8.6 CON continued their normal weekly training programs away from the training facility    -1.6 -2.7% 

R - Ferrari Bravo et al. (183) AIT 13 21.1 ± 5.1 52.8 ± 3.2 4 90 - 95% HRmax F, 240 s 60 - 70% HRmax F, 180 s 00:16:00 14 03:44:00 3.5 6.6% 

 SIT 13  55.7 ± 2.3 3*6 40m Sprint I,  ~6 s  F, 20 s 00:01:48 14 00:25:12 2.8 5.0% 

R - Gojanovic et al. (67) AIT 5 38.4 ± 9.7 57.6 ± 2.5 4 - 5 vV̇O2max I, Tlim, 184 s 50% vV̇O2max F, 184 s 00:13:49 8 01:50:24 2.0 3.5% 

R - Hatle et al. (73)         [high freq] AIT 9 (3/4) 23.1 ± 2.3 51.5 ± 5.5 3 - 4 90 - 95% HRmax F, 240 s 70% HRmax F, 180 s 00:16:00 24 06:16:00 5.4 10.5% 

[moderate freq] AIT 10 (5/6) 23.7 ± 2.7 52.2 ± 7.0 3 - 4 90 - 95% HRmax F, 240 s 70% HRmax F, 180 s 00:16:00 24 06:16:00 1.5 2.9% 

R - Helgerud et al. (69) AIT 9 18.1 ± 0.8 58.1 ± 4.5 4 90 - 95% HRmax F, 240 s 50 - 60% HRmax F, 180 s 00:16:00 16 04:16:00 6.2 10.7% 

 CON 10  58.4 ± 4.3 CON performed extra technical training such as heading, practice free kicks, and exercises related to receiving the ball and changing direction 1.1 1.9% 

R - Helgerud et al. (70) AIT 10 24.6 ± 3.8 55.5 ± 7.4 4 90 - 95% HRmax F, 240 s 70% HRmax F, 180 s 00:16:00 24 06:24:00 4.9 8.8% 

 MICT 10  55.8 ± 6.6 1 70% HRmax F, 45 min - - 00:45:00 24 18:00:00 1.0 1.8% 

 SIT 10  60.5 ± 6.4 47 90 - 95% HRmax F, 15 s 70% HRmax F, 15 s 00:11:45 24 04:42:00 3.9 6.4% 

 LT 10  59.6 ± 7.6 1 85% HRmax F, 24:25 min - - 00:24:15 24 09:42:00 1.2 2.0% 

R - Lamboley et al. (65) AIT 8 (4) 23.4 ± 0.8 51.7 ± 2.7 5 vV̇O2max I, Tlim, 125 s 60% vV̇O2max F, 125 s 00:10:25 15 02:36:15 4.4 8.4% 

R - Silva et al. (184) AIT 8 35 ± 6 54.5 ± 8.1 5 vV̇O2max I, Tlim, 133 s 60% vV̇O2max F, 133 s 00:11:03 8 01:28:25 2.6 4.8% 

 CON 8 32 ± 9 56.6 ± 7.3 CON maintained their previous endurance training routine    0.3 0.5% 

R - Wiewelhove et al. (185)  [act R] AIT 13 24.0 ± 2.7 55.2 ± 3.5 4 - 9 90-100 % vV̇O2max F, 120 - 240 s ‘passive' F, 120 - 180 s 00:17:30 12 03:30:00 0.4 0.7% 

                                              [pas R] AIT 13 23.0 ± 2.2 55.5 ± 4.2 4 - 9 90-100 % vV̇O2max F, 120 - 240 s ‘passive' F, 120 - 180 s 00:17:30 12 03:30:00 -0.5 -0.9% 

Performance Level 4               

C - Aughey et al. (186) AIT 12 31 ± 3 4.96 ± 0.56 8 80% PPO F, 300 s ~.1.3 W/kg F, 60 s 00:40:00 7 04:40:00 0.12 2.4% 

 CON 12  4.98 ± 0.63 CON maintained their normal physical activity of > 350 km cycling per week at a low to moderate intensity  -0.02 -0.4% 
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Table 3.1: Continued               

     Training Protocol     

Study                 [group identifier] Group 
n 

(female) 
Age 

Baseline 

V̇O2max 
Reps Work Intensity Work Duration 

Recovery 

Intensity 

Recovery 

Duration 

Work 

Duration 
(hr:min:sec) 

Sessions 
Total 

Training 
(hr:min:sec) 

∆ 

V̇O2max 
% Change 

C - Gross et al. (187)  [consecutive] AIT 9 (2) 21.9 ± 3.4 4.25 ± 1.15 8 PPO F, 150 s 25% PPO F, 240 s 00:20:00 9 03:00:00 0.23 5.4% 

[non-consecutive] AIT 6 (2) 20.5 ± 1.9 4.34 ± 1.34 8 PPO F, 150 s 25% PPO F, 240 s 00:20:00 9 03:00:00 0.20 4.6% 

C - Inoue et al. (188) AIT 7 34.0 ± 6.7 63.1 ± 4.2 2 - 10 Max session effort F, 240 - 360 s RPE 10 - 15 F, 240 - 360 s 00:26:00 17 07:22:00 2.5 4.0% 

 SIT 9 30.6 ± 6.3 60.6 ± 4.3 2 - 12 All Out sprint F, 30 s RPE 10 - 15 240 s 00:03:55 17 01:06:30 3.4 5.6% 

C - Lamberts et al. (189) AIT 14 30 ± 6 60.3 ± 7.2 8 80% PPO F, 240 s ‘self-paced’ F, 90 s 00:32:00 8 04:16:00 1.4 2.3% 

C - Laursen et al. (21)             [G1] AIT 8 26 ± 6 5.00  ±  0.52 8 Pmax I, Tlim, 145 s  F, 290 s 00:19:20 8 02:34:40 0.26 5.2% 

              [G2] AIT 9 24 ± 7 4.89  ±  0.38 8 Pmax I, Tlim, 149 s  I, 65HR, 178 s 00:19:52 8 02:38:54 0.39 8.0% 

 SIT 10 25 ± 6 4.91  ±  0.37 12 175% PPO F, 30 s  F, 270 s 00:06:00 8 00:48:00 0.15 3.1% 

 CON 11 25 ± 5 4.92  ±  0.45 CON maintained their regular low to moderate intensity based training program   0.04 0.8% 

C - Roels et al. (190) AIT 8 33 ± 2.8 4.47 ± 0.36 4 - 8 90 - 100% PPO F, 120 -  480 s  F, 120 – 240 s 00:19:05 13 04:28:00 0.22 4.9% 

C - Rønnestad et al. (191) * AIT 7 33 ± 10 4.99  ±  0.58 4 Max session effort F, 300 s 50% PO Work F, 150 s 00:20:00 20 03:40:00 0.12 2.6% 

 SIT 9  4.98  ±  0.44 3*13 Max session effort F, 30 s 50% PO Work F, 15 s 00:19:20 20 03:30:00 0.44 8.8% 

C - Swart et al. (192)               [HR] AIT 6 30 ± 5 60.3 ± 4 8 HR 80% PPO F, 240 s ‘self-paced’ F, 90 s 00:32:00 8 04:16:00 2.2 3.6% 

           [PO] AIT 6 30 ± 8 60.0 ± 7 8 80% PPO F, 240 s ‘self-paced’ F, 90 s 00:32:00 8 04:16:00 0.2 0.3% 

 CON 5 34 ± 4 54.4 ± 7 CON performed a 40 km self-paced training ride twice a week at an intensity below 70% PPO  0.1 0.1% 

R - Kohn et al. (193) AIT 18  67 ± 5.0 6 94% Vmax I, Tlim, 162 s  F, 81 s 00:16:12 12 03:14:24 1.0 1.5% 

 CON 10  67 ± 4.0 CON continued their regular endurance training with a mean volume of 54±18 km per week   0 0.0% 

R - Laffite et al. (61) AIT 7 25.3 ± 4.5 60.6 ± 4.4 ? (5) v∆50 I, Tlim, 255 s 50% vV̇O2max F, 127.5 s (00:21:15) 16 (05:40:00) 2.4 4.0% 

R - Menz et al. (74) AIT 19 (5) 27 ± 3 63.6 ± 7.5 4 90 - 95% HRmax F, 240 s ‘active' F, 240 s 00:16:00 11 02:56:00 2.2 3.5% 

 CON 16 (3) 24 ± 2 63.7 ± 8.2 CON maintained their usual training    1.0 1.6% 

R - Salazar-Martinez et al. (194) AIT 8 25.6 ± 3.2 68.4 ± 2.7 4 90 - 95% HRmax F, 240 s ‘active' F, 240 s 00:16:00 11 02:56:00 1.4 2.0% 

 CON 8 25 ± 3.4 67.1 ± 6.5 CON maintained their usual endurance training  16:35:00 -0.3 -0.4% 

R - Smith et al. (35)* AIT 5 22.8 ± 4.5 61.5 ± 6.6 5 - 6 vV̇O2max I, Tlim, 150 s  F, 75 s 00:13:26 8 01:47:30 3.0 4.9% 

R - Smith et al. (60)*          [G60%] AIT 9 25.2 ± 6.8 60.5 ± 5.7 6 vV̇O2max I, Tlim, 133 s  F, 266 s 00:13:20 8 01:46:43 3.6 6.0% 

 [G70%] AIT 9 25.2 ± 6.8 60.1 ± 1.8 5 vV̇O2max I, Tlim, 154 s  F, 308 s 00:12:50 8 01:42:40 2.5 4.2% 

 CON 9  63.6 ± 6.0 CON continued their normal training that comprised low-intensity/long duration maintenance training  0.4 0.6% 

Values are displayed as mean ± SD, * indicates SD are calculated from individual data or SEM, or are obtained from figures. Baseline V̇O2max is displayed in L·min−1 or mL·kg·min−1  

Abbreviations; 65HR: heart rate recovery to 65% HRmax, AIT: aerobic interval training, CON: control, F: fixed recovery duration, HIIT: high intensity interval training, HR: heart rate, %HRmax: intensity corresponding to percentage of 

maximal heart rate determined in pre-intervention incremental test, I: individualised recovery duration, LT, lactate threshold, %LTdmax: intensity corresponding to percentage of lactate threshold determined using d-max method, %MAOD: 

intensity corresponding to percentage of power output determined in maximal anaerobic oxygen deficit test, MICT: moderate intensity continuous training, Pmax: minimal power output that elicited V̇O2peak, PO: power output, PO∆50: 
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power output corresponding to the halfway point between POlt and PPO, %POlt: intensity corresponding to percentage of lactate threshold determined in pre-intervention incremental test, %PPO: intensity corresponding to percentage of 

peak power output determined in pre-intervention incremental test, RPE: ratings of perceived exertion, SIT: sprint interval training, Tlim: time to exhaustion on Pmax, Vmax or vV̇O2max, v∆50: velocity corresponding to the halfway point 

between running velocity on LT and Vmax, %Vmax: intensity corresponding to percentage of maximal running velocity determined in pre-intervention incremental test, %V̇O2peak / V̇O2max: intensity corresponding to percentage of 

maximal oxygen uptake intensity determined in pre-intervention incremental exercise test, %vV̇O2max: intensity corresponding to the minimum running velocity that elicits V̇O2max determined in pre-intervention incremental test 
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Table 3.2: Participant and training protocol characteristics of included studies evaluating changes in cycling (C) or running (R) performance after AIT interventions   

     Training Protocol     

Study                   [group identifier] Group 
n 

(female) 
Age Distance  Reps Work Intensity Work Duration 

Recovery 

Intensity 

Recovery 

Duration 

Work 

Duration 
(hr:min:sec) 

Sessions 
Total 

Training 
(hr:min:sec) 

∆ Time 
(sec) 

% Change 

Performance Level 1               

R - Cicioni-Kolsky et al.(148)  

[female] 
AIT 9 (9) 18.4 ± 1.3 3000 m 4 - 6 100% AV3000 F, 240 s ‘passive’ F, 240 s 00:20:00 12 04:00:00 -86.0 7.7% 

 MICT 9 (9) 18.6 ± 1  1 75% AV3000     12 ? -91.0 -7.9% 

 SIT 14 (14) 18.6 ± 1  7 - 12 130% AV3000 F, 30 s  F, 270 s 00:04:30 12 00:54:00 0.8 2.4% 

Performance Level 2               

C - Robinson et al. (171)           [HR] AIT 10 36.9 ± 16 20 km 11 HR POlt F, 300 s 65% HRmax F, 240 s 00:55:00 8 07:20:00 - 115 4.9% 

[PO] AIT 10 50.3 ± 9.7  11 POlt F, 300 s 65% HRmax F, 240 s 00:55:00 8 07:20:00 - 119 4.8% 

R - Chtara et al. (64) AIT 10 21.4 ± 1.3 4000 m 5 Vmax I, Tlim, 156 s 50% Vmax F, 156 s 00:13:00 24 05:12:00 -53.2 -5.7% 

 CON 9   CON maintained their normal physical activity habits     3.0 0.3% 

R - Cicioni-Kolsky et al. (148) 

[male] 
AIT 10 20.8 ± 3.8 3000 m 4 - 6 100% AV3000 F, 240 s ‘passive’ F, 240 s 00:20:00 12 04:00:00 -59.0 -7.3% 

 MICT 7 19.7 ± 1.4  1 75% AV3000     12 ? -2.0 -0.3% 

 SIT 6 20.2 ± 3.1  7 - 12 130% AV300 F, 30 s  F, 270 s 00:04:30 12 00:54:00 -47.0 -5.9% 

R - Musa et al. (147) AIT 20 29.8 ± 4.5 2400 m 4 90% HRmax F, 288 s ‘passive’ F, 288 s 00:19:12 24 07:40:48 -66.0 -9.2% 

 CON 16 29.4 ± 4.9  CON was instructed not to undertake any vigorous exercise during the training period    18.0 2.4% 

Performance Level 3               

R - Denadai et al. (62)          [G95%] AIT 9 27.4  ± 4.4 5000 m 4 95% vV̇O2max I, Tlim, 333 s 50% vV̇O2max F, 166 s 00:22:10 8 02:56:49 -15.0 -1.5% 

[G100%] AIT 8   5 vV̇O2max I, Tlim, 285 s 50% vV̇O2max F, 285 s 00:23:47 8 03:10:12 -13.7 -1.4% 

R - Esfarjani & Laursen (66)* AIT 6 19 ± 2 3000 m 5 - 8 vV̇O2max I, Tlim, 210 s 50% vV̇O2max F, 210 s 00:21:00 20 07:00:00 -50.5 -7.4% 

 MICT 5   1 75% vV̇O2max F, 60 min   01:00:00 20 20:00:00 -0.7 -0.1% 

 SIT 6   12 130% vV̇O2max F, 30 s  F, 270 s 00:06:00 20 02:00:00 -22.3 -3.3% 

R - Gojanovic et al. (67) AIT 5 38.4 ± 9.7 3200 m 4 - 5 vV̇O2max I, Tlim, 184 s 50% vV̇O2max F, 184 s 00:13:49 8 01:50:24 18.0 2.4% 

R - Riiser et al. (71)* AIT 8 (1) 19 ± 0.4 3000 m 4 85-95% HRmax F, 240 s 70-75% HRmax F, 120 s 00:16:00 5 01:20:00 -82 -10.1% 

 MICT 11   1 70-75% HRmax F, 45 min   00:45:00 5 03:45:00 -56 -6.5% 

 RACE 6   1 3000m 'race' I, RACE   00:14:00 5 01:10:00 -44 -5.0% 

 CON 8   CON performed no cardiorespiratory training beside daily basic (military) training    6 0.8% 

R - Silva et al. (184) AIT 8 35 ± 6 5000 m 5 vV̇O2max I, Tlim, 133 s 60% vV̇O2max F, 133 s 00:11:03 8 01:28:25 -28.0 -2.3% 

 CON 8 32 ± 9  CON maintained their previous endurance training routine    16.0 1.4% 

Performance Level 4               

C - Gross et al. (187)    [consecutive] AIT 9 (2) 21.9 ± 3.4 5 km 8 PPO F, 150 s 25% PPO F, 240 s 00:20:00 9 03:00:00 - 10 -2.1% 
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Table 3.2: continued               

     Training Protocol     

Study                [group identifier] Group 
n 

(female) 
Age Distance Reps Work Intensity Work Duration 

Recovery 

Intensity 

Recovery 

Duration 

Work 

Duration 
(hr:min:sec) 

Sessions 
Total 

Training 
(hr:min:sec) 

∆ Time 
(sec) 

% Change 

[non-consecutive] AIT 6 (2) 20.5 ± 1.9  8 PPO F, 150 s 25% PPO F, 240 s 00:20:00 9 03:00:00 - 14 -2.9% 

C - Inoue et al. (188) AIT 7 34.0 ± 6.7 40 km 2 - 10 Max session effort F, 240 - 360 s RPE 10 - 15 F, 240 - 360 s 00:26:00 17 07:22:00 - 306 -5.0% 

 SIT 9 30.6 ± 6.3  2 - 12 All Out sprint F, 30 s RPE 10 - 15 240 s 00:03:55 17 01:06:30 - 182 -2.9% 

C - Lamberts et al. (189) AIT 14 30 ± 6 40 km 8 80% PPO F, 240 s ‘self-paced’ F, 90 s 00:32:00 8 04:16:00 - 90 -2.3% 

C - Laursen et al. (21)                 [G1] AIT 8 26 ± 6 40 km 8 Pmax I, Tlim, 145 s  F, 290 s 00:19:20 8 02:34:40 - 169 -4.9% 

              [G2] AIT 9 24 ± 7  8 Pmax I, Tlim, 149 s  I, 65HR, 178 s 00:19:52 8 02:38:54 - 183 -5.3% 

 SIT 10 25 ± 6  12 175% PPO F, 30 s  F, 270 s 00:06:00 8 00:48:00 - 142 -4.1% 

 CON 11 25 ± 5  CON maintained their regular low to moderate intensity based training program    33 0.9% 

C - Lindsay et al. (195)* AIT 8 25.5 ± 3.4 40 km 6 - 8 80% PPO F, 300 s ~100 W F, 60 s 00:35:00 6 03:30:00 - 114 -3.3% 

C - Swart et al. (192)                 [HR] AIT 6 30 ± 5 40 km 8 HR 80% PPO F, 240 s ‘self-paced’ F, 90 s 00:32:00 8 04:16:00 - 87 -2.2% 

     [PO] AIT 6 30 ± 8  8 80% PPO F, 240 s ‘self-paced’ F, 90 s 00:32:00 8 04:16:00 - 74 -1.9% 

 CON 5 34 ± 4  CON performed a 40 km self-paced training ride twice a week at an intensity below 70% PPO   - 4 -0.1% 

C - Westgarth-Taylor et al. (146)* AIT 12 25 ± 4 40 km 6 - 9 80% PPO F, 300 s ≤ 100 W F, 60 s 00:37:20 12 07:30:00 - 80 -2.3% 

C - Weston et al. (26)* AIT 6 22.5 ± 3 40 km 6 - 8 80% PPO F, 300 s 100 W F, 60 s 00:35:00 6 03:30:00 - 72 -2.1% 

R - Salazar-Martinez et al. (194) AIT 8 25.6 ± 3.2 400 m 4 90 - 95% HRmax F, 240 s ‘active’ F, 240 s 00:16:00 11 02:56:00 -1.3 -2.2% 

 CON 8 25 ± 3.4  CON maintained their usual endurance training    -0.6 -1.0% 

R - Smith et al. (35)* AIT 5 22.8 ± 4.5 3000 m 5 - 6 vV̇O2max I, Tlim, 150 s  F, 75 s 00:13:26 8 01:47:30 -17.0 -2.8% 

R - Smith et al. (60)*            [G60%] AIT 9 25.2 ± 6.8 5000 m 6 vV̇O2max I, Tlim, 133 s  F, 266 s 00:13:20 8 01:46:43 -25.7 -2.3% 

[G70%] AIT 9   5 vV̇O2max I, Tlim, 154 s  F, 308 se 00:12:50 8 01:42:40 -3.6 -0.3% 

 CON 9   CON continued their normal training that comprised low-intensity/long duration maintenance training   -9.3 -0.9% 

Values are displayed as mean ± SD, * indicates data are calculated from individual data, SEM, interquartile range, or are obtained from figures 

Abbreviations: 65HR: heart rate recovery to 65% HRmax, AIT: aerobic interval training, %AV3000: intensity corresponding to percentage of 3000m average running velocity, CON: control, F: fixed recovery duration, HR: heart rate, 

%HRmax: intensity corresponding to percentage of maximal heart rate determined in pre-intervention incremental test, I: individualised recovery duration, MICT: moderate intensity continuous training, PO: power output, %POlt: intensity 

corresponding to percentage of lactate threshold determined in pre-intervention incremental test, %PPO: intensity corresponding to percentage of peak power output determined in pre-intervention incremental test, Pmax: minimal power 

output that elicited V̇O2peak, RACE: intensity corresponding to fastest possible 3000m, RPE: ratings of perceived exertion, SIT: sprint interval training, Tlim: time to exhaustion on Pmax,Vmax or vV̇O2max, %Vmax: intensity 

corresponding to percentage of maximal running velocity determined in pre-intervention incremental test, %vV̇O2max: intensity corresponding to the minimum running velocity that elicits V̇O2max determined in pre-intervention 

incremental test 
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3.3.1 Main effects of AIT interventions  

3.3.1.1 Improvements in V̇O2max 

The pooled mean estimate across all studies showed a significant increase of a small to moderate 

magnitude in V̇O2max (see Figure 3.3; p < 0.01, ES = 0.54 [0.38, 0.69]). The absolute and relative 

improvements in V̇O2max (∆V̇O2max and % Change) differed considerably across the included studies 

(see Table 3.1), however, the reported overall improvement in V̇O2max was highly homogenous across 

all studies (I2 = 0%, p = 1.00) and averaged 7.6% (see Table 3.3). In line with the variation between the 

included studies in the magnitude of improvements in V̇O2max shown in Table 3.1, Hedges’ g estimates 

and weighing factors of the individual AIT interventions were variable (see Figure 3.3). 

The standardized mean difference (Hedges’ g) of 0.54 [0.38, 0.69] corresponds to a WMD of 3.07 [2.39, 

3.75] mL·kg·min−1. No significant differences were evident between performance levels in the compete 

sample (χ2 = 1.63, p = 0.65), however, mean improvements in PL1 and PL2 were of moderate magnitude 

whereas improvements in PL3 and PL4 were small. The improvements in V̇O2max were similar between 

cycling and running interventions (see Table 3.3). Neither in the included cycling or running studies, 

improvements significantly differed between performance levels (χ2 = 1.50, p = 0.68, χ2 = 2.47, p = 0.48 

for AIT in cycling and running respectively). The increase in V̇O2max in PL2 and PL3 are notably larger 

after cycling AIT compared to running AIT interventions. 

Table 3.3: Percentage change in V̇O2max of the included studies, organised by performance level  

PL All AIT Interventions Cycling AIT Interventions Running AIT Interventions 

1 12.5%, ES = 0.65 [0.32, 0.98] a 12.2%, ES = 0.62 [0.26, 0.98] a 14.0%, ES = 0.80 [-0.02, 1.61] 

2 9.1%, ES = 0.63 [0.30, 0.96] a 9.7%, ES = 0.53 [0.16, 0.91] a 6.9%, ES = 0.96 [0.26, 1.66] a 

3 6.6%, ES = 0.50 [0.22, 0.78] a 10.5%, ES = 0.70 [0.19, 1.21] a 4.6%, ES = 0.42 [0.09, 0.76] b 

4 4.3%, ES = 0.40 [0.09, 0.70] 4.0%, ES = 0.34 [-0.07, 0.75] 3.7%, ES = 0.43 [-0.02, 0.87] 

All 7.6%, ES = 0.54 [0.38, 0.69] a 8.9%, ES = 0.54 [0.34, 0.74] a 5.3%, ES = 0.52 [0.28, 0.76] a 

Values are presented as percentage improvement, ES [95% Confidence Intervals] 

a p < 0.01, b p < 0.05 

Note; ES = Effect Size 

  

3.3 Results 
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Figure 3.3: Forest plot of pre – post AIT intervention comparison for change in V̇O2max (C: cycling, R: running) 
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3.3.1.2 Improvements in performance 

Small to moderate improvements in performance were found across the included studies (see Figure 3.4; 

p < 0.01, ES = -0.52 [-0.78 to -0.26]), with an average decrease in performance time of -4.0% (see Table 

3.4). This improvement was highly homogenous (I2 = 0%, p = 1.00), and similar between performance 

levels (χ2 = 1.61, p = 0.66). The magnitude of performance improvements varied across the included 

studies (see ∆Time and % Change in Table 3.2), which was further reflected in the different weighing 

factors and effect size estimates (Hedges’ g) for the individual studies reported in Figure 3.4. 

Limited or no studies were performed in PL1 and PL3, especially in cycling, which did not allow for 

statistical analysis of these groups. Between exercise modalities, improvements in PL2 were larger in 

running performance assessments compared to cycling. 

Table 3.4: Percentage change in performance of the included studies, organised by performance level 

PL All AIT Interventions Cycling AIT Interventions Running AIT Interventions 

1 -7.7%, ES = -1.01 [-2.37 to 0.36] na -7.7%, ES = -1.01 [-2.37 to 0.36] 

2 -6.4%, ES = -0.75 [-1.29 to -0.22] a -4.8%, ES = -0.28 [-1.16 to 0.60] -7.4%, ES = -1.03 [-1.71 to -0.36] a 

3 -4.3%, ES = -0.45 [-1.05 to 0.16] Na -3.5%, ES = -0.45 [-1.05 to 0.16] 

4 -2.8%, ES = -0.42 [-0.77 to -0.06] b -3.1%, ES = -0.46 [-0.88 to -0.05] b -1.9%, ES = -0.29 [-0.97 to 0.39] 

All -4.0%, ES = -0.52[-0.78 to -0.26] a -3.3%, ES = -0.43 [-0.81 to -0.05] b -4.2%, ES = -0.61 [-0.97 to -0.25] a 

Values are presented as percentage improvement, ES [95% Confidence Intervals] 

a p < 0.01, b p < 0.05 

Note; AIT: aerobic interval training, ES: effect size 
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Figure 3.4: Forest plot of pre – post AIT intervention comparison for change in performance (C: cycling, R: running) 

3.3.2 AIT vs MICT, SIT and CON interventions 

Next to the AIT interventions, numerous studies included training (MICT and / or SIT) or non-training 

(CON) control groups (see Table 3.1 and Table 3.2). Within group analysis of these groups revealed 

trivial improvements in V̇O2max (p = 0.36, ES: 0.12 [-0.14 to 0.39]) and performance (p = 0.74, ES: 0.08 

[-0.38 to 0.53]) after CON. MICT yielded a small significant improvement in V̇O2max (p = 0.02, ES: 0.47 

[0.09 to 0.85]) and moderate improvements in performance (p = 0.03, ES: -0.79 [-1.50 to -0.07]. 

Comparative SIT groups showed to significantly improve V̇O2max (p < 0.01, ES: 0.60 [0.20 to 1.00]) and 

performance (p = 0.04, ES: -0.64 [1.24 to -0.03]), with both these improvements of moderate magnitude. 
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3.3.2.1 Improvements in V̇O2max 

AIT improved V̇O2max significantly more than MICT and CON, and to a similar extent compared to SIT. 

Compared to CON (see Figure 3.5), a significant small to moderate additional increase in V̇O2max was 

found after AIT (8.9% vs 0.7%, p < 0.01, ES = 0.57 [0.36, 0.77]), equalling an additional improvement of 

3.58 [2.22, 4.93] mL·kg·min−1. A mean improvement in V̇O2max of 8.3% was evident after MICT (see 

Figure 3.6), which was significantly lower than after AIT in the included studies (12.8%, p < 0.01, ES = 

0.41 [0.14, 0.67]), which corresponds to an additional improvement of 2.55 [1.43, 3.67] mL·kg·min−1. No 

differences in improvements of V̇O2max were found between AIT and SIT interventions (see Figure 3.7; 

6.3% vs 6.1%, p = 0.91, ES = 0.03 [-0.39, 0.44]). 

 

Figure 3.5: Effects of AIT vs CON interventions on post intervention V̇O2max (C: cycling, R: running) 
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Figure 3.6: Effects of AIT vs MICT interventions on post intervention V̇O2max (C: cycling, R: running) 

 

Figure 3.7: Effects of AIT vs SIT interventions on post intervention V̇O2max (C: cycling, R: running) 

3.3.2.2 Improvements in Performance 

Improvements in performance were significantly greater after AIT compared to CON (see Figure 3.8;-

4.2% vs +0.5%, p < 0.01, ES = -0.64 [-1.04 to -0.23]) and MICT (see Figure 3.9;-8.2% vs -3.7%, p = 

0.03, ES = -0.55 [-1.06 to -0.04], however, of a similar magnitude after AIT and SIT interventions (see 

Figure 3.10;-6.3% vs -6.1%, p = 0.50, ES = -0.14 [-0.56 to 0.27]). 

 

Figure 3.8: Effects of AIT vs CON interventions on post intervention performance measures (C: cycling, R: running) 
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Figure 3.9: Effects of AIT vs MICT interventions on post intervention performance measures (C: cycling, R: 

running) 

 

Figure 3.10: Effects of AIT vs SIT interventions on post intervention performance measures (C: cycling, R: running) 

3.3.3 Effect of moderator variables on changes in V̇O2max 

Improvements in V̇O2max were highly homogenous across included studies (I2 = 0%, see Figure 3.11), 

which is likely explained by the high number of included studies and the large range in exercise time per 

single AIT session 21 min 58 s ± 14 min 31 s (see Table 3.1) and the variety in the total duration of the 

AIT interventions included (6 hrs 55 min 56 s ± 8 hrs 10 min 24 s, see Table 3.1). This widespread 

variation in AIT protocols across the different performance levels, seemingly resulted in a blended, 

homogenous improvement in V̇O2max. High levels of homogeneity do not warrant further analyses of 

moderating variables, however, in an attempt to better understand potential moderating factors of AIT 

protocols, separate analyses were performed and are presented in Table 3.5. In the initial meta-analytical 

model, baseline PL did not show to significant moderate improvements in V̇O2max, however, changes 

were progressively smaller with an increase in PL. Improvements were larger in female participants, 

however, this may be caused by lower baseline V̇O2max. The results indicate no further moderating effects 

of the duration of a single work interval, the duration of a single AIT session, the duration of the total AIT 

intervention, or the recovery interval duration and calculated work:rest ratio. 



55 

Table 3.5: Effects of moderator variables on effect size for change in V̇O2max  

 Moderator n studies; participants baseline V̇O2max ES [95% CI] Subgroup differences 

Gender Male 44; 434 54.8 ± 8.1 0.53 [0.34 to 0.73] M vs F: χ2 = 0.38, p = 0.54 

 Female 10; 120 39.3 ± 5.1 a 0.67 [0.29 to 1.04] M vs F vs Mixed: χ2 = 1.09, p = 0.58 

 (Mixed) 15; 160 50.2 ± 8.9 0.41 [0.09 to 0.73]  

      

Duration single AIT interval x ≤ 3 min 35; 356 49.2 ± 10.4 0.61 [0.39 to 0.83] χ2 = 0.61, p = 0.43 

 > 3 min 30; 314 53.2 ± 8.1 0.49 [0.26 to 0.72]  

      

Duration single AIT session x < 16 min 22; 244 47.8 ± 9.3 0.69 [0.42 to 0.96] χ2 = 4.44, p = 0.11 

 16 – 20 min 19; 218 52.3 ± 9.9 0.65 [0.37 to 0.93]  

 ≥ 20 min 24; 208 53.1 ± 9.1 0.31 [0.03 to 0.59]  

      

Duration total AIT intervention ≤ 3 hrs 22; 232 54.5 ± 9.8 0.51 [0.24 to 0.78] χ2 = 1.40, p = 0.50 

 3 - 6 hrs 24; 236 54.4 ± 8.4 0.44 [0.17 to 0.70]  

 ≥ 6 hrs 23; 246 45.7 ± 7.8 a 0.66 [0.39 to 0.93]  

      

Duration single recovery interval x ≤ 2 min 26; 266 48.8 ± 9.9 0.48 [0.23, 0.73] χ2 = 0.23, p = 0.23 

 2 – 3 min 23; 262 51.3 ± 8.6 0.73 [0.47, 0.98]  

 > 3 min 16; 142 54.4 ± 9.8 0.39 [0.04, 0.73]  

      

Work : rest ratio ≤ 1 4; 36 54.1 ± 5.9 0.82 [0.12 to 1.52] χ2 = 0.77, p = 0.68 

 1 20; 190 52.1 ± 9.4 0.57 [0.26 to 0.87]  

 ≥ 1 45; 488 49.7 ± 10.3 0.50 [0.32, 0.69]  

a baseline V̇O2max significantly lower than other subgroups, p < 0.05 

x data excluded from (185,188,196) for analysis due changing work interval durations  
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This study presents a quantitative evaluation of running and cycling based AIT for V̇O2max and 

performance improvements in healthy adults. Our results show that AIT is an effective training modality, 

evidenced by the significant improvements in V̇O2max and performance across the included studies. In 

studies where AIT and MICT interventions were directly compared, there was a small to moderate 

beneficial effect for AIT in the improvements of both V̇O2max and performance. When compared to SIT 

interventions, the current results show trivial differences in improvements of both these parameters. 

The results of our systematic review and meta-analysis are in line with the conclusions of previous studies, 

conforming that AIT, SIT and also MICT are effective methods to improve V̇O2max (30,152,197). We 

are the first to evaluate the effectiveness of solely AIT interventions, and irrespective of AIT protocol, we 

found small to moderate improvements in V̇O2max (ES = 0.54 [0.38 to 0.69]). This SMD corresponds to 

a mean increase of 3.07 mL·kg·min−1, in line with previous meta-analysis evaluating HIIT (30,140,197) 

and SIT (152,198–200) interventions. Previously, Bacon et al. (140) reported larger improvements in 

V̇O2max after HIIT (SMD = 0.86 [0.72 to 0.99]) than the current findings. This difference is likely 

explained by the exclusion of trained participants (defined as baseline V̇O2max ≥ 55.0 mL·kg·min−1 for 

men and ≥ 49.5 mL·kg·min−1 for women) by Bacon et al. (140), while no exclusion criteria were set for 

baseline fitness in the current study. We grouped participants into four performance levels, and while 

across all studies the change in V̇O2max was not significantly different between PLs, lesser trained 

participants (PL1 and PL2) benefited more from AIT than athletic populations (PL3 and PL4), especially 

in running based AIT interventions (see Table 3.3). Already in 1976 Henriksson & Reitman (201) showed 

that the increase of V̇O2max is inversely related to baseline V̇O2max, a finding that is consistent with 

previous meta-analysis stating that aerobic training in general has an apparent adaptive effect on V̇O2max 

favouring the subjects with a lower baseline V̇O2max (30,140,152,197). Significant small to moderate 

improvements in V̇O2max were evident in all PLs (see Figure 3.3 and Table 3.3), and contrary to our 

hypothesis, AIT did elicit further improvements in PL4 (including participants with a baseline V̇O2max ≥ 

60.0 mL·kg·min−1). This highlights that, while lesser-trained participants may benefit more from AIT, the 

3.4 Discussion 
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inclusion of AIT in the training programs of highly trained runners (e.g. (193,194)) and cyclists (e.g. 

(188,202) is highly relevant. 

Compared with MICT, AIT had a small beneficial effect on V̇O2max (WMD = 2.55 mL·kg·min−1). This 

improvement was similar to previous estimates, comparing HIIT vs MICT (30,197). Our results further 

indicate that AIT improved V̇O2max to a similar extent as SIT, in line with the findings of Wen et al. 

(197). Helgerud et al. (70) concluded that increases in V̇O2max in short training interventions (2 – 6 weeks) 

seem to be a function of an increased cardiac output, driven by an increase in stroke volume. In their study, 

both SIT and AIT protocols elicit improvements in V̇O2max, but despite a greater training volume, no 

improvements in V̇O2max were evident after MICT (70). The underlying physiological mechanisms and 

cell signalling pathways subtending the improvements in V̇O2max following either HIIT or MICT are 

thought to differ (120,121,136), and while beyond the scope of this study and this thesis, our results 

highlight that both SIT and AIT are more time efficient training modalities to improve V̇O2max than 

MICT. The results further go to show, that in the light of improvements in V̇O2max, the intensity of 

training cannot be compensated for by longer duration (70,203). 

The acute physiological responses to AIT are greater than commonly reported for SIT (75,133), and we 

expected that the greater exercise time close to V̇O2max. / HRmax in AIT sessions would allow for greater 

improvements in V̇O2max. In line with the SMD of the current study, previous meta-analyses 

demonstrated beneficial effects of SIT (SMD = 0.63 – 0.69) on V̇O2max compared to CON (198,200). 

Therefore maybe unsurprisingly, we found no differences in improvements across the included studies 

that compared AIT and SIT interventions (see Figure 3.12). AIT protocols typically involve less, but 

longer work intervals compared to the training configuration of SIT (see Table 3.1), however, the longer 

recovery intervals separating repeated all-out (or ‘supramaximal’(50)) sprint intervals result in a similar 

overall training time of SIT sessions. The improvements in V̇O2max per minute of exercise seemingly are 

greater in SIT than AIT, however, in contrast to the additional beneficial improvements after AIT 

compared to MICT, only a trivial effect (SMD = 0.04 – 0.08) was observed when SIT was compared to 

MICT (29,197,198). Traditional AIT is therefore recommended to ensure or enhance training effects, and 

was shown a safe and feasible training modality for the general and patient populations (126,127). 
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The change in V̇O2max was highly homogenous, in contrast to previous meta-analytical comparisons 

(140,197). The homogenous improvement is surprising, given the diversity of AIT protocols in the 

included studies, and traditionally would not warrant further analysis of moderating variables. The results 

however speculatively indicate that long AIT interventions, incorporating a total AIT exercise time per 

session of ≤ 20 min with work intervals of ≤ 3 min separated by recovery intervals of not more than 3 min 

may yield larger improvements in V̇O2max. Further, female participants improved V̇O2max more than 

male participants, however, this finding may be confounded by their lower initial V̇O2max (see Table 

3.5). Only ten studies examined AIT in a group of solely female participants, and all these studies were 

situated in PL1 and PL2. Apart from grouped data in PL3 ((42,63,65,73) and PL4 (74,187), data on the 

effects of AIT in trained females is scarce. Previously, women demonstrated a greater cardiovascular 

strain in AIT sessions than men (93), and future studies are needed to determine if changes in V̇O2max 

and / or performance are of similar magnitude as male participants. 

We are the first to compare changes in performance after AIT, next to the classical evaluation of changes 

in V̇O2max after training interventions. Running performance was evaluated over a range of distances, 

varying from 400 – 5000 m, and cycling based AIT interventions assessed performance in lab based time 

trials, or in a simulated race setting. Performance improved significant in all PLs (ES = -0.52 [-0.78 to -

0.26]), with (non-significant) larger improvements for the lower PLs (see Table 3.4). The addition of 

strength training to the training programs of runners and cyclists (204,205), previously proved to improve 

performance to similar extent (SMD = - 0.50 - 0.52), whereas the effect of carbohydrate mouth rinsing on 

cycling performance was of a smaller magnitude (SMD = - 0.12, (206)). Although the number of 

comparative studies was small (see Figure 3.8 – Figure 3.10), the results indicate that AIT allows for 

greater improvements than CON and MICT. Alike the changes in V̇O2max after AIT and SIT, the 

improvements in performance were of similar magnitude for these training modalities (6.3% vs -6.1%). 

A total of fourteen studies evaluated both changes in V̇O2max and performance 

(21,35,60,62,64,66,67,171,184,187–189,192,194). PL of the participants in these studies varied between 

PL2 to PL4, and surprisingly, both the improvements in V̇O2max (ES = 0.41 [0.10 to 0.73]) and 
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performance (ES: -0.44 [-0.75 to -0.12]) were of a small to moderate magnitude (see Table 3.1 and Table 

3.2) with no differences between PL (forest plot not shown).  

In this study, we provide a comprehensive review of more than 80 unique AIT protocols. The 

programming puzzle to the optimal AIT protocol is complex and far from complete, but next to the 

manipulation in the key components of AIT sessions (14,16,17), secondary programming considerations 

have started to gain scientific interest. In most of the included studies, participants performed two AIT 

sessions per week, with sessions separated by at least 48 hr to allow for adequate recovery (207). Whether 

48 hr recovery between AIT sessions is needed, or yields greater improvements than less recovery days 

was recently questioned (73,187), and while the adaptations following a high frequency AIT programme 

(24 sessions in three weeks) were delayed compared to a moderate frequency (24 sessions in eight weeks), 

no differences in changes in V̇O2max were found (73,187). Another new line of research focussed on how 

dietary intake might moderate the acute physiological responses to AIT sessions (208,209). No studies in 

the included analysis of the current study reported dietary habits of participants, were new findings suggest 

that changes in substrate utilization are likely in high intensity exercise when participants adhere to a low 

carb high fat diet (208). In future studies, it is advised to track habitual food intake during AIT 

interventions. 

In addition to the well-known limitations associated with retrospective analysis of data reported 

previously, there are specific limitations to our analysis. We extracted absolute or relative V̇O2max values 

from the included studies, however, studies reporting relative values often failed to report measures of 

both pre and post intervention body weight, of which changes may in turn magnify the training effect on 

V̇O2max. Second, based on the institutional affiliation of first authors, it is expected that 80% of the 

included participant were (likely Caucasian) young men and this could explain at least some of the 

increased responsiveness that we saw. Lastly, the majority of the included studies use the term ‘V̇O2max’ 

to describe the maximum rate of oxygen uptake of participants obtained in incremental exercise tests. Data 

averaging methods in the assessment V̇O2max widely differed between studies, impacting the value of 

V̇O2max (210,211). Only few studies incorporated verification test protocols of the attainment of a V̇O2 

plateau during these incremental exercise tests, which is the unambiguous validation of V̇O2max (212). 
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V̇O2max values of exercise test naïve or less motivated participants who may stop exercising before their 

V̇O2max is reached might therefore more likely represent a measure of V̇O2peak (simply the highest V̇O2 

reached on a given test). This methodological concern might underestimate the true ‘V̇O2max’ of 

participants in some of the included studies, especially for participants in PL1 and PL2. 

Aerobic interval training is an effective training modality to improve both V̇O2max and performance in 

healthy adult participants. Improvements in these variables were evident independent of baseline fitness, 

highlighting the wide applicability of AIT across a range of fitness levels. AIT is not only a time-efficient 

alternative of MICT, it further yields small beneficial additional improvements in both V̇O2max and 

performance compared to MICT. The improvements are greater in individuals with lower pre-training 

fitness. Based on the results, individual athletes and coaches are advised to incorporate AIT in their 

training programs if the goal is to maximize the training effects on V̇O2max or surpass the MICT. 

   

3.5 Practical applications 
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The aim of this study was to compare the physiological and perceptual response of running on a curved 

non-motorized treadmill (cNMT) with running on a motorized treadmill (MT). A secondary aim was to 

determine the running velocity at which a physiological response ≥ 90% V̇O2max was elicited on both 

treadmills. Thirteen trained male runners (mean ± SD; 36 ± 11 years, 1.80 ± 0.06 m, 70 ± 4 kg, V̇O2max: 

57.3 ± 3.5 mL·kg−1·min−1) performed an incremental running test on a MT to determine V̇O2max and the 

accompanying maximum aerobic velocity (MAV). In their second visit, participants completed a 

familiarization session on the cNMT. Next, participants ran for 4 min at five / six progressively higher 

velocities (40 - 90% MAV) on the cNMT and MT in two separate visits in a randomized and 

counterbalanced order. No participant was able to complete the 4 min run at 80% MAV on the cNMT. 

Running on the cNMT elicit a higher V̇O2 across all velocities compared to the MT (32.5 ± 5%, p < 0.01, 

ES: 3.3 ± 0.9). This higher V̇O2 was accompanied by significantly higher heart rates (16.8 ± 3%, p < 0.01, 

ES: 3.4 ± 1.5), an altered cadence (2.6 ± 0.7%, p < 0.01, ES: 0.8 ± 0.3) and higher ratings of perceived 

exertion (27.2 ± 5%, p < 0.01, ES: 2.3 ± 0.6). A less efficient running economy was evident when running 

on the cNMT (+38.4 ± 16%, p < 0.01, ES: 2.73). Individual (n=9) linear interpolation predicted an exercise 

intensity of 90% V̇O2max was achieved in the non-motorized condition when running at 62.1 ± 3.5% 

MAV (R2 = 0.986 ± 0.01), which was notably slower than the predicted running velocity of the MT run 

(MAV: 81.4 ± 5.6%, R2 = 0.985 ± 0.02; p < 0.01, ES: 3.87). Our results show that running on the cNMT 

has higher physiological and perceptual demands than running on a MT, and running cadence is 

influenced. When using the cNMT, it is advised to lower the running velocity by 20% compared to MT 

runs, to generate a comparable physiological stimulus. 

  

Summary 
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Treadmills are an indispensable piece of laboratory equipment, and have become a key piece of exercise 

testing and training equipment. They are considered a valid measure of outdoor running performance, as 

evidenced by Jones & Doust (213), who showed that the oxygen uptake (V̇O2) during overground running 

and running on a motorized treadmill (MT) was strongly correlated with the use of a 1% treadmill grade. 

However, when performing a running task on a MT, moment-to-moment changes in velocity are not 

possible due to the fixed belt speed, and changes in velocity are controlled by an external motor which 

further requires a manual action to be changed (214,215). With the change of velocity controlled 

‘externally of the runner’, deciding to change the running velocity requires a conscious decision by the 

runner. It is however suggested that the regulation of intensity during endurance exercise occurs 

unconsciously, based on live interactions with the environment and by both central and peripheral control 

mechanisms (44,216), and therefore the ecological validity of MT running may be questionable. 

Recently, it has been argued that athletes measure and pace their work in training sessions in general, and 

in high intensity interval training (HIIT) specifically, on ratings of perceived exertion (RPE) and 

accumulated fatigue (42). This ‘isoeffort’ approach is in sharp contrast with protocols often used in lab 

based experiments, in which responses to predefined exercise intensities are studied. In self-paced HIIT, 

the maximum sustainable intensity is employed for a set number of work intervals of fixed durations. 

Athletes can then self-regulate their exercise intensity, based on their knowledge of the total volume of 

the session, the memory of similar events, as well as feedback from external and internal receptors (42,44). 

It is suggested that athletes should spend at least several minutes per HIIT in their ‘red zone’, which refers 

to the intensity domain close to their maximal oxygen uptake and heart rate (≥ 90% V̇O2max and HRmax 

respectively) (14,217). While self-paced HIIT has been addressed recently in cycling (42,218), there is a 

paucity of research exploring the use of self-paced HIIT in running exercise.  

Previously, the acute physiological responses to self-paced running HIIT protocols of varying work 

durations and / or recovery durations have been studied (22,77,93). However, in these studies participants 

ran on a MT and the velocity could only be increased or decreased via a hand signal to the test 

administrator controlling the treadmill, highlighting the conscious external decision making process 

4.1 Introduction 
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required (22,77,93). Standard MTs do not allow to study the quick and frequent adjustments in running 

velocities that occur during self-paced exercise (45). Non-motorized treadmills (NMT) on the other hand, 

are participant driven and allow runners to self-select their pace and dictate the speed of the treadmill belt 

with every step, which makes the overall locomotion more consistent with outdoor running (214,215). 

Previously, a commercially available curved non-motorized treadmill (cNMT, see Figure 4.1) 

demonstrated good reliability and validity for the assessment of V̇O2max (219), endurance performance 

(215,220), sprint (221) and repeated sprint intervals (222). To evaluate the potential use of the cNMT for 

self-paced HIIT sessions, it is important to understand the physiological responses associated with running 

on the cNMT. The aim of this study therefore was to determine the physiological and perceptual demands 

of running on a cNMT over a range of velocities commonly used in training and races of trained runners, 

and compare these to the demands of running on a MT set to a 1% gradient. The second aim was to 

determine at which running velocity a physiological response ≥ 90% V̇O2max was elicited on both the 

cNMT and MT. Trained club level runners were used in this study as they would likely be more attuned 

to internal pacing cues, and be able to maintain high workloads for sufficient time for reliable measures 

to be taken. It was hypothesized that the physiological demands when running on the cNMT would be 

higher than on a MT at any given velocity, since the curved design introduces a slight incline to the front 

aspect of the treadmill, which in theory demands higher energy expenditure. 

  

Figure 4.1: Woodway Curve XL, and close-up of the concave treadmill belt 

4.2 Methods 
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4.2.1 Experimental approach to the problem 

Participants visited the laboratory on four different occasions over a two-week period, with visits separated 

by at least 48 hours. On their first visit, participants performed an incremental running test on a MT (Pulsar 

3p, H/P Cosmos, Nussdorf-Traunstein, Germany) to determine V̇O2max, HRmax and the associated 

running intensity (maximum aerobic velocity (MAV)). During the second visit, participants performed 

the experimental running protocol (detailed below in Section 4.2.4) on the cNMT (Woodway Curve XL, 

Woodway Inc, Waukesha, USA) as a familiarisation session (cNMTfam). Two comparative experimental 

runs on the cNMT (cNMTrun) and MT (MTrun) in the third and fourth visit were performed in a 

counterbalanced randomised order. All visits were completed on the same time of the day (± 1 h). The 

accuracy of both the MT and cNMT velocity measures was verified prior to the study, using a video 

camera and found to be within < 1.1 %. 

4.2.2 Considerations and implications of sample size selection in sports science studies 

Selecting an appropriate sample size is a crucial step in designing a successful study (223,224). A study 

with an insufficient sample may not have sufficient statistical power to detect meaningful differences and 

may produce unreliable answers to research questions and hypotheses (Type II error, or false negative). 

On the other hand, a study with an excessive sample size wastes resources and may unnecessarily expose 

study participants to potential harm. A large sample size further increases the chance to conclude there is 

a significant difference when in fact there is not (Type I error, or false positive), as calculated p-values 

depend on the size of the sample, but the alpha level of significance is fixed a priori. Generally the larger 

the sample size, the more likely a study will find a significant relationship between variables if one exists. 

As the sample size increases the impact of random error is reduced. Additionally, the overall variability is 

decreased, and measures become more precise for a population as a whole. This increased precision allows 

for detection of smaller differences between groups (225,226), however, these might be of limited 

practical relevance (151). 
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4.2.3 Participants 

Thirteen recreationally trained male runners (mean ± standard deviations (SD), age: 36 ± 11 years; stature: 

1.80 ± 0.06 m; body mass: 70 ± 4 kg; V̇O2max: 57.3 ± 3.5 mL·kg−1·min−1; MAV: 5.0 ± 0.2 m·s-1) 

participated in this study. A priori power analysis (G*Power 3.1) indicated a minimum sample size of 12 

participants was required to detect small differences (Cohen’s d = 0.2) in the physiological and perceptual 

responses between cNMT and MT running at the various experimental velocities. None of the participants 

had prior experience with (curved) NMT running. Prior to their active participation, all subjects provided 

voluntary written informed consent. The study received approval from the local ethics committee 

(University of Essex, Colchester, UK) and was conducted in accordance with the Declaration of Helsinki. 

Participants were asked to report for testing well-rested and well-hydrated, wearing the same footwear on 

each visit. Participants were further asked to refrain from any strenuous exercise or alcohol consumption 

in the preceding 24 h, and refrain from caffeine and food consumption, 4 and 2 h before the start of the 

test, respectively. 

4.2.4 Incremental running test protocol 

During their first visit, participants performed an incremental running test on the MT, with the gradient 

set at 1% (213). This test started at 2.22 m·s-1, which was increased by 0.28 m·s-1 each minute until 

participants reached volitional exhaustion or when one of the following criteria was met: 1) HRmax at 

least equal to 90% of the age-predicted maximum; 2) respiratory exchange ratio (RER) > 1.1; 3) stable 

oxygen consumption (V̇O2) despite increased intensity (212). V̇O2max was defined as the highest 30 s 

averaged V̇O2 collected during the incremental test. HRmax was defined as the highest value obtained at 

the end of the test. MAV was defined as the highest velocity that could be maintained for a complete 

minute, or as the velocity of the last complete stage added to the completed fraction of an incomplete 

stage. MAV was calculated according to the equation MAV = Vcomp + (0.28 m·s-1 × t/60), in which 

Vcomp is the velocity of the last completed stage and t the time in seconds sustained during the final 

incomplete stage.  
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4.2.5 Experimental running protocol 

In the familiarisation and comparative experimental runs, participants were required to run for 4 min at 

five different individualized velocities (40%, 50%, 60%, 70%, 80% MAV; velocity range [2.0 ± 0.1 – 4.0 

± 0.2 m·s-1]), with 3 min passive recovery between the 4 min runs. A subset of eight participants 

volunteered to complete a further (6th) running bout at 90% MAV on the MT (velocity: 4.5 ± 0.2 m·s-1). 

In cNMTfam and cNMTrun, participants were instructed to monitor their speed on the treadmill’s LCD 

screen and maintain it as close to the prescribed speed as possible (215). Verbal cues to do so were 

provided if necessary. Average V̇O2, heart rate (HR), RER and running cadence were determined during 

the last minute of each stage, together with overall RPE on the standard Borg scale (80). 

4.2.6 Data collection and analysis 

Running economy was calculated using the averaged V̇O2 and RER from the final min of the runs 

conducted at 50% MAV (2.5 ± 0.09 m·s−1). This velocity was selected as 11 subjects completed cNMTrun 

and MTrun at this run with an RER < 1.0. Running economy was expressed as gross oxygen unit cost 

(mL·kg−1·km−1), as well as a gross caloric unit cost (the energy required to cover a given distance; 

kcal·kg−1·km−1). The gross caloric unit cost was calculated as described by Fletcher et al. (227) in which 

the averaged RER was used to determine the caloric equivalent of V̇O2. 

During the incremental running test, cNMTfam, and the two comparative experimental runs, HR and 

running cadence were measured continuously at 1 Hz using a Garmin heart rate monitor and a telemetric 

foot pod (910XT, Garmin Ltd., Schaffhausen, Switzerland). Respiratory parameters were measured breath 

by breath, using open circuit spirometry (Oxycon Pro, Jaeger, Höchberg, Germany). The gas analyser was 

calibrated prior to each test using room air and a calibration gas of known concentration (16.0% O2, 5.0% 

CO2). The physiological measures of both V̇O2 and HR were indexed for individual V̇O2max and HRmax 

(%V̇O2max and %HRmax respectively), to use these relative values as an insightful indicator of the 

relative exercise intensity, especially in the intense exercise domain in which V̇O2 is not expected to reach 

steady state. Running velocity in the cNMT trials was sampled at 4 Hz, and was assessed in the 

accompanying product software. 



68 

4.2.7 Statistical analysis 

Data were analysed using SPSS 23.0 (SPSS Inc., Chicago, USA) and are presented as mean ± SD 

Differences in running velocities were compared between cNMTfam, cNMTrun and MTrun using 

repeated measures analysis of variances (ANOVA). A comparison between cNMTfam and cNMTrun was 

carried out to evaluate any learning effects due to the novelty of running on this piece of equipment. The 

test-retest reliability of the main outcome variables (%V̇O2max, %HRmax, cadence and RPE) was 

determined as the coefficient of variation (CV) between cNMTfam and cNMTrun. The CV methodology 

was considered the most suitable description of test-retest reliability in this study as it enables both valid 

and practical comparisons between test parameters from a single variable (223). The CV is expressed as 

a percentage and calculated as: CV = 100 ∙ SDdiff / X. The SDdiff indicated the SD of the difference between 

the duplicate measurements, and X the mean of these measurements (223). 

Repeated measures ANOVAs were carried out to compare differences between the experimental 

conditions (cNMTrun vs MTrun) for each velocity (40 - 80% MAV) in %V̇O2, %HR, RER, measures of 

running economy, running cadence and RPE. In the event of significant main or interaction effects, 

Tukey’s post hoc tests were used to determine differences between the two treadmills and / or across the 

different running velocities. 

In an attempt to determine the running velocity which elicited comparable exercise intensities between 

the cNMT and MT, data collected during 90% MAV on the MT were compared with data collected during 

the 70% MAV cNMT run (n = 8) using paired t-tests. The running velocity at which the physiological 

response corresponded to 90% V̇O2max was determined individually, through linear interpolation for both 

treadmills. The significance level of all tests was set at < 0.05. Standardized effect sizes (ES) are reported 

as Cohen’s d. Qualitative interpretation of d was based on the guidelines provided by Hopkins et al. (151): 

< 0.2 trivial; 0.20 - 0.59 small; 0.6 - 1.19 moderate; 1.20 - 1.99 large; ≥ 2.00 very large. 

  



69 

No participant was able to complete the 4 min running bout at 80% MAV in cNMTfam or cNMTrun. No 

differences in running velocities were found between cNMTfam and cNMTrun (40.2 ± 0.8 vs 40.3 ± 0.8; 

50.2 ± 0.6 vs 50.1 ± 0.6; 60.2 ± 0.7 vs 60.2 ± 0.7; 70.0 ± 0.6 vs 70.2 ± 0.7 for 40, 50, 60, 70% MAV 

respectively, p > 0.05 for all conditions), or between cNMTrun and cMTrun (p > 0.05 for all conditions). 

Participants monitored their speed on the treadmill’s LCD screen and maintained it as close to the 

prescribed speed as possible. Figure 4.2 shows the typical variation in running velocity around the target 

velocities of 40 – 70% MAV. Across the participants, variation was highest in 40% MAV (5.6%), which 

decreased with an increase in running velocity (50% MAV: 4.8%, 60% MAV: 3.4%, 70% MAV: 3.4%). 

4.3 Results 
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Figure 4.2: Mean running velocity (1-s sample) of a representative participant. Target velocities were 7.4 km∙h, 9.2 km∙h, 11.0 km∙h and 12.8 km∙h respectively
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Participants rated their perceived exertion in 40% MAV cNMTrun significantly lower after the 

familiarisation sessions, which was accompanied by a reduced oxygen consumption (see Table 4.1). No 

further learning effects were evident after the familiarisation session, as only trivial or small differences 

were apparent between cNMTfam and cNMTrun in all experimental variables (p > 0.05 for all conditions, 

see Table 4.1). The mean oxygen consumption (CV ≈ 3%), mean exercise heart rate (CV ≈ 1%) and 

running cadence (CV ≈ 1.5%) were highly similar between cNMTfam and cNMTrun. Despite the 

similarity in mean RPE between cNMTfam and cNMTrun across the different velocities, this measure 

was more prone to variation and was found less reliable, especially in the lower running velocities (see 

Table 4.1). 

A summary of the main experimental variables is presented in Table 4.2. The average oxygen uptake in 

cNMTrun was significantly higher at all velocities compared to MTrun (p < 0.01). On average, across the 

four different velocities, the oxygen consumption was 32.3 ± 4% higher in cNMTrun (see Table 4.2). The 

higher oxygen uptake was accompanied by significantly higher exercise heart rates (+16.8 ± 3%, p < 0.01) 

and ratings of perceived exertion (+27 ± 5%, p < 0.01). Running cadence was higher at all velocities in 

cNMTrun (+2.4 ± 0.8%), which reached statistical significance at 60% and 70% MAV (p < 0.05). 
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Table 4.1: Test-retest reliability measurements for relative oxygen uptake (%V̇O2max), heart rate (%HRmax), ratings of perceived exertion (RPE) and running cadence (steps per 

min) between cNMTfam and cNMTrun according to mean differences (MD), effect sizes (ES) and coefficients of variation (CV)  

Running 

Velocity 
% V̇O2max %HRmax RPE Running Cadence 

(%MAV) MD ES CV MD ES CV MD ES CV MD ES CV 

40 -2.1 ± 3.2a 0.38 3.4% -0.9 ± 3.4 0.22 1.9% -1.0 ± 1.6a 0.57 11.7% -2.7 ± 5.9 0.22 1.8% 

50 -0.1 ± 4.0 0.02 3.1% -0.8 ± 1.4 0.23 1.0% -0.1 ± 1.7 0.05 8.1% -1.2 ± 4.7 0.09 1.4% 

60 0.6 ± 4.0 0.10 2.9% -0.6 ± 1.6 0.21 0.8% 0.2 ± 1.5 0.10 5.4% -0.8 ± 4.4 0.06 1.4% 

70 -1.3 ± 6.2 0.21 3.1% -0.2 ± 1.2 0.15 0.6% -0.3 ± 0.9 0.19 2.6% -1.5 ± 4.8 0.13 1.5% 

a p < 0.05 between cNMTfam and cNMTrun 

Note; CV: coefficient of variation, ES: effect size, HRmax: maximum heart rate, MAV: maximum aerobic velocity, MD: mean difference cNMTfam – cNMTrun (nb: negative 

MD indicates lower mean cNMTrun), RPE: ratings of perceived exertion, V̇O2max: maximum oxygen uptake 
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Table 4.2: Relative oxygen uptake (%V̇O2max), heart rate (%HRmax), respiratory exchange ratio (RER), ratings of perceived exertion (RPE) and running cadence (steps per min) 

in each experimental condition (n = 13 for 40 - 80% MAV, n = 8 for 90% MAV) 

Running 

Velocity 
%V̇O2max  %HRmax  RER  RPE  Running Cadence  

(%MAV) cNMTrun MTrun ES cNMTrun MTrun ES cNMTrun MTrun ES cNMTrun MTrun ES cNMTrun MTrun ES 

40 64.7 ± 5.6 49.1 ± 6.6 a 2.37 74.7 ± 3.6 63.8 ± 5.2 a 1.84 0.93 ± 0.04 0.87 ± 0.05 a 1.32 9.3 ± 1.7 7.5 ± 1.1 a 1.52 162 ± 13 159 ± 8 0.43 

50 76.5 ± 6.5 56.5 ± 5.5 a 3.26 84.3 ± 3.3 70.9 ± 3.4 a 2.78 0.97 ± 0.04 0.89 ± 0.05 a 1.77 11.6 ± 1.9 9.4 ± 1.4 a 2.04 167 ± 11 164 ± 9 0.47 

60 88.5 ± 5.0 66.8 ± 6.1 a 4.55 91.5 ± 2.7 78.0 ± 2.9 a 3.74 1.02 ± 0.04 0.93 ± 0.04 a 2.25 14.2 ± 1.4 11.2 ± 0.8 a 2.45 172 ± 12 168 ± 9 b 1.02 

70 96.9 ± 4.1 77.2 ± 6.0 a 2.89 96.9 ± 1.6 85.2 ± 2.4 a 5.36 1.10 ± 0.04 0.97 ± 0.06 a 2.55 17.3 ± 1.8 12.9 ± 0.9 a 3.03 178 ± 11 

172 ± 11 
b 1.06 

80  87.7 ± 6.5  - 92.2 ± 2.3   1.02 ± 0.03  - 15.0 ± 1.2  - 178 ± 12  

90  97.1 ± 3.1   98.4 ± 1.3   1.09 ± 0.05   17.8 ± 1.1   190 ± 7  

a p < 0.01, b p < 0.05 between cNMTrun and MTrun 

Note; cNMTrun: curved non-motorized treadmill run, ES: effect size, HRmax: maximum heart rate, MAV: maximum aerobic velocity, MTrun: motorized treadmill run, RER: 

respiratory exchange ratio, RPE: ratings of perceived exertion V̇O2max: maximum oxygen uptake 
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Differences in running economy were evident between both treadmills (see Table 4.3), with the economy 

in gross oxygen cost and in caloric cost being significantly lower in MTrun compared to cNMTrun (-38.4 

± 16%, p < 0.01, ES 2.73), indicating more economical running in MTrun. 

Table 4.3: Running economy for each experimental treadmill, running on 50% MAV (n = 11) 

Running Economy: cNMTrun MTrun ES 

Oxygen unit cost (ml O2·kg−1·km−1) 279 ± 37 206 ± 29 a 2.73 

Caloric Unit Cost (kcal·kg−1·km−1) 1.39 ± 0.19 1.01 ± 0.14 a  

a p < 0.01 between cNMTrun and MTrun 

Note; cNMTrun: curved non-motorized treadmill run, ES: effect size, MTrun: motorized treadmill run 

Table 4.4 shows data comparing 70% MAV cNMT and 90% MAV MT (n = 8). Apart from a significantly 

higher cadence in MTrun (p = 0.001), there were no differences in physiological or psychological 

responses. All thirteen participants reached an exercise intensity of ≥ 90% V̇O2max in cNMTrun. Linear 

interpolation of the available data in cNMTrun predicted an exercise intensity of 90% V̇O2max was 

achieved when running above 62.7 ± 3.3% MAV (R2 = 0.986 ± 0.01). Nine out of the thirteen participants 

reached 90% V̇O2max in MTrun, at a running velocity of 81.4 ± 5.6% MAV (R2 = 0.985 ± 0.02), which 

was significantly higher (p < 0.01, ES: 3.87). This approximate 20% difference was dispersed in a linear 

fashion across the work rates of the experimental runs (see Figure 4.3).  

Table 4.4: Comparison of relative oxygen uptake (%V̇O2 max), heart rate (%HRmax), respiratory exchange ratio 

(RER), ratings of perceived exertion (RPE) and running cadence (steps per min) between 70% MAV cNMTrun and 

90% MAV MTrun (n = 8) 

 Running Velocity  

 70% MAV cNMTrun 90% MAV MTrun ES 

% V̇O2max 97.9 ± 3.8 97.1 ± 3.1 0.18 

%HRmax 97.0 ± 1.5 98.2 ± 1.5 0.35 

RER 1.10 ± 0.04 1.09 ± 0.05 0.45 

RPE (au) 17.5 ± 1.7 17.8 ± 1.2 0.95 

Cadence 182 ± 6 190 ± 8 a 1.82 

a p < 0.01 between cNMTrun and MTrun 

Note; au: arbitrary unit, cNMTrun: curved non-motorized treadmill run, ES: effect size, HRmax: maximum heart 

rate, MAV: maximum aerobic velocity, MTrun: motorized treadmill run, RER: respiratory exchange ratio, RPE: 

ratings of perceived exertion V̇O2max: maximum oxygen uptake    
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Figure 4.3: Individual (△ and ⭘) and mean (▲ and  ●) relative oxygen uptake (%V̇O2max) for each experimental condition (△’s =  MTrun, ⭘’s = cNMTrun). P values 

represent the difference between the respective ▲ and ●, in which ▲ is compared with 20% MAV lower ● trials (60% MTrun vs 40% cNMTrun etc.)
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Non-motorized treadmills allow runners to adjust their running velocity subconsciously, consistent with 

outdoor running, and thus may be more appropriate apparatus to study self-paced training in standardized 

laboratory conditions. This study aimed to 1) determine the physiological and perceptual demands of 

running on a curved NMT over a range of velocities, and 2) verify at which running velocity a 

physiological response ≥ 90% V̇O2max was elicited. 

When running on a NMT, participants must generate power to move themselves vertically of the 

treadmill’s surface and to propel the treadmill belt (228), which, together with the curved design of the 

cNMT, results in a 30% higher caloric expenditure compared to running on a standard MT according to 

the manufacturer. Part of this higher energy expenditure may be due to a range of cNMT characteristics 

(e.g. a high mechanical resistance and rubber material of the treadmill belt (229)), and may be inherent to 

the treadmill design. Findings of the current study support the manufacturers claim, as V̇O2 was, on 

average 32.2 ± 4% higher in NMTrun across the different velocities. Furthermore, an increase in caloric 

cost of 38.4 ± 16% was evident when participants ran at 50% MAV (1.39 ± 0.19 vs 1.01 ± 0.14 

kcal·kg−1·km−1 for cNMT and MTrun respectively). These results are in line with Smoliga et al. (230), 

who showed that walking (1.34 m∙s-1) and running (2.24 m∙s-1) on the cNMT elicits a greater physiological 

stimulus than that on MT. The running velocity of 2.24 m∙s-1 used by Smoliga et al.(230) corresponds to 

45% MAV of the participants in the current study. This study aimed to evaluate the physiological 

responses to a broader range of (higher) running velocities, and, additionally, attempted to identify the 

running velocity that elicits an exercise intensity ≥ 90% V̇O2max on both treadmills. Linear interpolation 

showed this intensity was achieved when running at 62.7 ± 3.3% MAV on the cNMT. Similar exercise 

intensity was reached in nine out of thirteen participants on the MT at 81.4 ± 5.6% MAV. The difference 

in running velocity for the nine participants that reached ≥ 90% V̇O2max in both NMTrun and MTrun was 

19.1 ± 5.1%. This is similar to the findings of Stevens et al. (215) and Waldman et al. (220) who both 

reported that 5 km running performance on the curved NMT was significantly slower compared to 

overground running (22%) and MT running (24%), even though no differences in V̇O2 and HR were 

found. In another recent study, Morgan et al. (219) observed that participants achieved a 15% lower MAV 

4.4 Discussion  
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when they performed an incremental running test on the cNMT, compared to the same test protocol on a 

MT, where again, the participants were exerting the same exercise intensity in both tests. The large 

differences in running velocities while exercising at comparable exercise intensities highlights the 

disparity between the two treadmills.  

The nature of the cNMT is such that users are required to run on an uphill gradient. To increase running 

velocity, participants position their feet closer to the front of the curved belt, which allows a greater 

contribution of vertical force to treadmill belt propulsion. Curved treadmill belts may facilitate a more 

natural gait pattern, allowing increased stride length and longer swing phase, which is observed with over-

ground locomotion. Indeed, the results of the current study show a similar increase in cadence between 

cNMTrun and MTrun when running velocities were increased across the experimental trials. Derived from 

the running velocity and cadence (see Table 4.2), on the cNMT, average step length increased from 0.74 

m/step in 40% MAV to 1.35 m/step in 70% MAV, whereas this increase in MT was 0.76 m/step to 1.39 

m/step. We are the first to show the cNMT does allow for an increased step length when runners want to 

accelerate, and this increase is comparable to the increase profound whilst running on a MT. 

Observational analysis by Smoliga et al. (230) revealed that subjects contact the curved treadmill belt 

approximately at a five to ten degree incline above the horizontal and this angle decreases throughout the 

stance phase of the stride cycle. It has been suggested that runners always optimise their technique to 

minimise metabolic costs, and when an inclination is present, runners will modify mechanical variables 

to achieve optimal metabolic efficiency (231). Stevens et al. (215) reported a change in running technique 

between overground and cNMT running. In overground running their subjects (n = 10) were classified as 

predominantly rearfoot strikers (n = 9, and 1 midfoot striker), which in cNMT running changed to midfoot 

strikers (n = 8, and 2 rearfoot strikers). The change in running technique was further evident in changes 

in muscle recruitment patterns between cNMT and overground running, as they showed a decline in iEMG 

activity for tibialis anterior, vastus lateralis and rectus femoris in the former (215). The decrease in iEMG 

is most likely compensated with an increased iEMG activity of the gluteus maximus and bicep femoris 

while running uphill (232).  
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Whilst no kinetic measures were taken during the current study, the change in foot strike pattern reported 

by Stevens et al. (215) is an adaptation in running technique that from a biomechanical perspective is 

sound as it promotes more economical running. There are 3 types of foot strike patterns: 1) rearfoot, 2) 

midfoot, and 3) forefoot strikes (233). These foot strike patterns are categorised depending on the portion 

of the foot that initially contacts the running surface (233,234). The landing pattern of rearfoot strike 

runners is for instance characterised by the centre of pressure of the ground reaction force (GRF) being 

located in the posterior third of the foot at initial contact and a dorsiflexed ankle. During initial contact in 

midfoot strike runners, the GRF centre of pressure is located in the middle third of the foot, and is 

characterised by a neutral ankle angle. Lastly, the forefoot strike landing has its GRF centre of pressure 

located in the anterior third of the foot at initial contact, and is characterised by a plantarflexed ankle  

(233,234). The position of the foot at initial impact relative to the centre of mass of the runner widely 

differs between the strike patterns (see Figure 4.4), which has implication on the magnitude of braking 

force experienced by the runner (233,235). 

 

Figure 4.4: Approximate position of centre of mass (Θ) in rearfoot, midfoot and forefoot strike runners upon initial 

contact relative to the foot position ●, presented alongside the estimated vertical (dashed arrow) and horizontal 

components (solid arrow) of ground reaction force 

When rearfoot strike runners run at a pace of 3 m/s, previous studies indicated the vertical component of 

the GRF quickly forms an impact peak of ~1.6 body weight (BW), which continues to slowly rise to ~2.5 

BW at mid stance (233,235). As the centre of mass of the runner is positioned behind the point of impact, 

the horizontal component of the GRF in rearfoot strike runners is initially negative and acts as a braking 
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force of ~0.3 BW (see Figure 4.4). Contrary to these findings, forefoot strike runners were shown to not 

have a visible (vertical) impact peak in the first 10% of stance phase but have a larger active peak at mid 

stance than rearfoot strikers (236,237). The centre of mass in forefoot strikers is positioned closely above 

the centre of pressure on initial contact, which results in a trivial parallel (horizontal) braking force (see 

Figure 4.4). Parallel braking forces correspond to aspects of the metabolic cost for running, where braking 

forces represent eccentric muscles contractions and propulsive forces represent concentric muscle 

contractions (238,239). In line with previous research, an increase in energy expenditure, and running 

cadence was found in cNMTrun compared to MTrun during all experimental velocities (231,240), 

highlighting the uphill running character of the cNMT. Uphill running has a large metabolic cost since 

concentric muscle contractions are more metabolically taxing than eccentric muscle contractions 

(238,239). Previous research further evidenced significantly higher propulsive forces during uphill 

treadmill or ramp running at an incline of  9° compared to level ground running (235,241), increasing the 

demands on concentric posterior chain muscle groups. The concave treadmill belt design (see Figure 4.1), 

and the necessity for force production per foot strike to maintain the treadmill velocity might even 

exacerbate the energy demands of running on the cNMT compared to uphill treadmill or ramp running 

(235,241), however, this is to be established in future studies. 

 Recently, several studies have examined the effects of a variety of uphill HIIT protocols, using repeated 

short (6 – 30 s) and / or long (3 – 5-min) work intervals on a variety of treadmill gradients (242,243). 

These studies showed improvements in various physiological, biomechanical, and neuromuscular 

parameters relevant to running performance, and provide support to incorporate uphill HIIT in the training 

programs of distance runners. Further research to determine which MT gradient is most comparable to the 

curved design of the NMT is presented in Chapter 5, in an attempt to provide athletes and coaches 

information on the most appropriate training protocols when using the cNMT. The cNMT might be a 

valuable asset when uphill training is geographically challenging, or sub-optimal weather conditions 

discourage outdoor training, and from a scientific perspective, the cNMT allows evaluation of 

physiological responses in a well-controlled lab setting. 
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In the current study V̇O2max and MAV were determined using a traditional incremental running test, 

performed on a MT. The obtained V̇O2max was then used to compute and compare the relative oxygen 

uptake between cNMTrun and MTrun on different individualized running velocities. It is well known that 

V̇O2max is dependent on the physiological conditions present during an exercise protocol (212), and it 

has been shown that a self-paced V̇O2max test performed on a NMT could possibly result in an elevated 

V̇O2max (244). In fact, V̇O2 in three of the thirteen participants was higher in cNMTrun while running at 

70% MAV than reached during their incremental running test. Conversely, no differences in V̇O2max or 

HRmax attained in an incremental running test were found between MT and the cNMT (219). Thus, the 

increased V̇O2 in those few individuals in the current study may be attributed to the difference in bout 

duration between the experimental runs (4 min) and stage length in the incremental exercise test (1 min), 

rather than the different treadmills. V̇O2 continued to increase at 70% MAV in cNMTrun, showing 

‘oxygen drift’. Oxygen drift is potentially caused by increased muscle fibre recruitment, changes in 

efficiency, body temperature and the increase of muscle fatigue over time, which all contribute to a larger 

amplitude in the slow component of V̇O2 (245). The increased contribution of this slow component of 

V̇O2 likely elevated the oxygen uptake in the 4 min run. 

A limitation of this study is the inability to state the anaerobic contrition to metabolic work during the 

higher intensity intervals. When RER exceeds 1.0 the energetic cost of the exercise is more difficult to 

estimate, and it is not possible to compare energetic cost across individuals or across trials.  

The results of the present study further information in the field of NMT running, by providing comparison 

velocities at which physiological work rate is matched. Participants in the current study ran on higher and 

individualized velocities compared to previous studies, which yield new insights in the physiological and 

perceptual response in the intense exercise domain. Only a subgroup (n = 8) opted to complete the 90% 

MAV MTrun, and this would have had implications related to statistical power.  

The cNMT can be a useful tool to study self-paced high intensity interval training. When prescribing 

exercise intensities, specialists often assign a specific (treadmill) velocity and duration as the primary 

4.5 Practical Applications 
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training variables. Our data show that exercise prescriptions that are appropriate for overground or MT 

running may not be achievable on the cNMT because of the differences in energetic requirements. Based 

on our results, it is therefore advised to lower the running velocity by 20% when running on the cNMT, 

to generate the comparable physiological stimulus. Running on the cNMT mimics uphill running, and 

therefore training adaptations may differ compared to overground or regular treadmill training. 
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Chapter 5: 

 

 

 

 

 

 

 

 

 

 

  

The physiological and perceptual responses while running on a curved 

non-motorized treadmill compare to a 6 - 8% motorized treadmill 

grade 



83 

The current study compared the physiological and perceptual demands of running on a commercially 

available curved non-motorized treadmill (cNMT) to different incline grades on a motorized treadmill 

(MT). Ten male team-sport athletes completed, after a familiarization session, a 6 min run at a target 

velocity of 2.78 m·s-1 (10 km·h-1) on the cNMT (cNMTrun). Mean individual running velocity of 

cNMTrun was then used as warm-up and experimental running velocity in three subsequent visits, in 

which participants ran for 6 min on the MT set at different grades (4%, 6% or 8%). In all experimental 

trials (cNMTrun, 4MTrun, 6MTrun and 8MTrun) and in the warm-up of the participants’ third visit 

(1MTrun), oxygen consumption (V̇O2) and heart rate (HR) were monitored, and ratings of perceived 

exertion (RPE) were obtained. HR in cNMTrun was significantly higher compared to all MT trials. V̇O2 

and RPE were significantly higher in cNMTrun compared to 1MTrun and 4MTrun, but not different to 

6MTrun and 8MTrun. The relationship between V̇O2 and MT grade was highly linear, and using linear 

interpolation, the concave curved design of the cNMT was estimated to mimic a 6.8 ± 2.6% MT grade. 

These results show, that on matched running velocities, V̇O2 and RPE responses while running on the 

cNMT are similar to a 6 - 8% MT grade. These findings can be used as reference value by athletes and 

coaches in the planning of cNMT training sessions, and amend running velocities accordingly. Future 

studies are needed to determine whether this estimate is similar for lighter and / or female runners. 

  

Summary 
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A variety of non-motorized treadmill (NMT) designs have become widely available to sports scientists 

and the general public. NMTs are participant driven and allow runners to self-select and change their pace 

in a subconscious fashion with every treadmill contact (246). This makes the overall locomotion more 

consistent with outdoor running, and allows for a more ecologically valid lab assessment of running 

performance. A recently developed NMT with a concave curved surface (cNMT) has received 

considerable scientific interest. When compared to running on matched submaximal velocities on a 

motorized treadmill (MT; MT grade 1%), the physiological responses and ratings of perceived exertion 

(RPE) were considerably greater on the cNMT (229,230,246,247). This was accompanied by a less 

efficient running economy and a larger caloric cost of movement. (229,246,247) When matched for 

exercise intensities, it was established that on the cNMT a comparable oxygen consumption (V̇O2) and 

heart rate (HR) are achieved on running velocities up to 25% lower than on a MT (215,219,220,246). 

Despite these differences, the cNMT is thought to be a reliable and valid piece of lab equipment to evaluate 

self-paced high intensity interval training (HIIT) sessions, endurance and (repeated) sprint performance 

(215,220,221,246,248). 

The altered energy demands of the cNMT are likely closely linked to its mechanical characteristics and 

design (belt friction and curvature). Recently, Bruseghini et al. (229) determined the friction of the 29kg 

heavy treadmill belt, which was found to equal 8.81 N. In an attempt to determine the curvature of the 

cNMT, previous observational analysis revealed that participants contact the cNMT belt at an 

approximated five to ten degree incline above the horizontal, which then decreased throughout the stance 

phase. (230) Running on the cNMT may therefore better mimic uphill running, and training adaptations 

potentially differ from overground or MT training. Uphill running represents a frequently prescribed form 

of HIIT in training regimes of distance runners (63,231,243) , and the cNMT might be a valuable asset 

when uphill training is geographically challenging, or sub-optimal weather conditions discourage outdoor 

training. In aid to design appropriate exercise protocols for the cNMT, the current study compared the 

physiological and perceptual demands of running on the cMNT with running on different incline grades 

on a MT. 

5.1 Introduction 
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5.2.1 Experimental approach to the problem 

Participants were required to visit the sports and exercise science lab on five occasions over a three-week 

period. Based on similar comparative studies and the previously reported high correlation between V̇O2 

and MT grades (213,246,247), an a priori power analysis indicated a minimum sample size of 8 

participants (G*Power 3.1). After an initial familiarization session, participants performed the 

comparative 6 min run on the cNMT in their second visit (detailed below in Section 5.2.3). In three 

subsequent visits, participants ran for 6 min on the MT set at different grades (4%, 6% or 8%, 4MTrun, 

6MTrun and 8MTrun respectively), with experimental conditions distributed in a randomized and 

counterbalanced order. Accuracy of velocity measures of both treadmills used in this study (cNMT: 

Woodway Curve XL, Woodway Inc, USA and MT: Pulsar 3p, H/P Cosmos, Nussdorf-Traunstein, 

Germany), were verified previously in our lab, and found to be within 1.1% of the described velocity 

(246). 

5.2.2 Participants 

Ten physically active male team-sport players (mean ± standard deviations (SD), age 22 ± 2, stature 180 

± 6 cm, mass 77 ± 11 kg) volunteered to take part in this study. By study design, this study did not 

incorporate an incremental running test. All participants provided voluntary written informed consent. 

The study received approval from the local ethics committee and was conducted in accordance with the 

Declaration of Helsinki. Participants were asked to report for testing well-rested and well-hydrated, 

wearing the same footwear on each visit. Participants were further asked to refrain from any strenuous 

exercise or alcohol consumption in the preceding 24 h, and refrain from caffeine and food consumption, 

4 and 2 h before the start of the test, respectively. 

5.2.3 Experimental running protocol 

In their initial visit, participants familiarized with running on the cNMT and were instructed to run as 

close as possible to a target velocity of 2.78 m·s-1 (10 km·h-1). This velocity was selected in line with 

previous studies (246,247). During the second visit, participants repeated this exercise, and performed a 6 

5.2 Methods 
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min run on the cNMT (cNMTrun). Individual running velocities of cNMTrun were sampled at 4 Hz and 

assessed in the accompanying product software. The calculated mean running velocity of cNMTrun was 

then used in three subsequent visits as warm-up and experimental running velocity. Participants performed 

the same warm-up routine prior to all MT trials, which involved a 6 min run on the MT with the grade set 

at 1%. The warm-up was followed by the experimental trial, in which the participants ran for 6 min on the 

MT, with the treadmill gradient set at 4%, 6% or 8%. 

5.2.4 Data collection and analysis 

In all experimental runs (cNMTrun, 4MTrun, 6MTrun and 8MTrun) and in the warm-up of the 

participants’ third visit (1MTrun), V̇O2 and HR were monitored continuously, and RPE on the traditional 

Borg 6 - 20 scale were obtained upon completion of the trial (80). Comparative mean V̇O2 and HR were 

determined during the last minute of each condition. During the experimental runs, HR was measured 

using a Garmin HR monitor (910XT, Garmin Ltd., Schaffhausen, Switzerland), and respiratory parameters 

were sampled breath-by-breath, using open circuit spirometry (Oxycon Pro, Jaeger, Höchberg, Germany). 

Before each experimental trial, the gas analyser and turbine flow meter were calibrated according to the 

manufacturer’s instructions. 

5.2.5 Statistical analysis 

Data were analysed using SPSS 25.0 (SPSS Inc., Chicago, USA) and are presented as mean ± SD. 

Attainment of steady state in the last minute of each experimental condition was verified using Pearson 

correlation comparisons of V̇O2 and HR obtained in the 5th and 6th min, and paired t-tests. Differences in 

V̇O2, HR and RPE between cNMTrun and the experimental MT runs were compared using one-way 

repeated measures analysis of variances (ANOVA), followed by Tukey post hoc tests. The MT grade that 

best replicates the curvature of the cNMT was estimated through linear interpolation of individual mean 

V̇O2 of the four MT grades and cNMTrun. The significance level of all tests was set at p < 0.05. Effect 

sizes (ES) are presented for interpretation as Cohen’s d along 95% confidence intervals in Table 5.1 and 

Table 5.3. 
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Steady state in V̇O2 was confirmed, as no differences were found between the 5th and 6th min in any of the 

experimental trials (see Table 5.1), however, HR was significantly higher in the 6th min in cNMTrun, 

4MTrun, 6MTrun and 8MTrun compared to the 5th min (p < 0.01 for all conditions). V̇O2, HR and RPE 

increased in a linear fashion with the increased MT grade (see Table 5.2). V̇O2 and RPE were significantly 

higher in cNMTrun compared to 1MTrun and 4MTrun (p < 0.01), but not different to 6MTrun and 

8MTrun. HR in cNMTrun was significantly higher compared to all MT trials (p < 0.01 for all conditions).  

The relationship between V̇O2 and MT grade was highly linear (R2 = 0.99, see Figure 5.1), and V̇O2 was 

calculated using the following formula: V̇O2 = 1.7 * MT grade + 34.4. Individual linear interpolation 

estimated that the concave curvature of the cNMT was best replicated by a 6.8 ± 2.6 % MT grade. 

 

 

5.3 Results 
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Table 5.1: Difference (∆) in mean V̇O2 and HR between 5th and 6th min in all experimental runs 

 cNMTrun ES [95% CI] 1MTrun ES [95% CI] 4MTrun ES [95% CI] 6MTrun ES [95% CI] 8MTrun ES [95% CI] 

∆ V̇O2 (L·min–1) 0.1 ± 0.2 
0.36 [-0.54 to 

1.23] 
0.1 ± 0.1 

0.28 [-0.62 to 

1.14] 
0.04 ± 0.3 

0.08 [-0.80 to 

0.96] 
-0.1 ± 0.3 

0.12 [-0.76 to 

0.99] 
-0.1 ± 0.2 

0.17 [-0.71 to 

1.04] 

∆ V̇O2 (mL·kg–1·min–1) 1.9 ± 3.4 
0.53 [-0.38 to 

1.40] 
1.2 ± 3.0 

0.68 [-0.25 to 

1.55] 
0.5 ± 3.6 

0.19 [-0.70 to 

1.06] 
-0.8 ± 4.2 

0.18 [-0.71 to 

1.05] 
-0.8 ± 3.1 

0.15 [-0.73 to 

1.03] 

∆ HR (beats/min) 2.3 ± 1.4* 
0.23 [-0.66 to 

1.10] 
0.8 ± 1.7 

0.23 [-0.66 to 

1.10] 
1.4 ± 1.0* 

0.12 [-0.76 to 

0.99] 
2.5 ± 1.3* 

0.21 [-0.68 to 

1.08] 
1.6 ± 1.1* 

0.20 [-0.69 to 

1.07] 

* Significantly higher than 5th min (p < 0.01) 

Note; cNMTrun: curved non-motorized treadmill run, ES: effect size, HR: heart rate, MTrun: motorized treadmill run, V̇O2: oxygen uptake 
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Table 5.2: Physiological and Perceptual responses for all experimental runs 

 

cNMTrun 1MTrun 4MTrun 6MTrun 8MTrun 

V̇O2 (L·min–1) 3.57 ± 0.4 a,b 2.53 ± 0.3 * 3.19 ± 0.5 * 3.42 ± 0.5 a,b,d 3.73 ± 0.4 a-c 

V̇O2 (mL·kg–1·min–1) 46.4 ± 3.7 a,b 36.2 ± 3.9 * 41.3 ± 2.8 * 44.2 ± 2.8 a,b,d 48.6 ± 4.2 a-c 

HR (beats·min–1) 185 ± 10 * 139 ± 10 * 167 ± 12 * 176 ± 12 * 181 ± 9 * 

RPE (au) 14.7 ± 3.1 a,b 9.5 ± 1.4 * 12.7 ± 2.5 * 14.0 ± 2.9 a,b,d 15.4 ± 2.1 a-c 

* Significantly different from (p < 0.05) all other experimental runs, a 1% grade, b 4% grade, c 6% grade, d 

8% grade 

Note; au: arbitrary unit, cNMTrun: curved non-motorized treadmill run, HR: heart rate, MTrun: motorized treadmill 

run, RPE: ratings of perceived exertion, V̇O2, oxygen consumption  
 

Table 5.3: Effect Size [95% Confidence intervals] comparison between all experimental runs 

  cNMTrun 1MTrun 4MTrun 6MTrun 

V̇O2 1MTrun 2.65 [1.36 to 3.72]    

 4MTrun 1.56 [0.50 to 2.48] 1.49 [0.44 to 2.41]   

 6MTrun 0.65 [-0.27 to 1.53] 2.37 [1.14 to 3.39] 1.08 [0.10 to 1.97]  

 8MTrun 0.55 [-0.37 to 1.41] 3.04 [1.65 to 4.16] 2.05 [0.90 to 3.03] 1.22 [0.22 to 2.11] 

      

HR 1MTrun 4.56 [2.75 to 5.98]    

 4MTrun 1.59 [0.53 to 2.52] 2.44 [1.20 to 3.48]   

 6MTrun 0.81 [-0.14 to 1.68] 3.31 [1.85 to 4.48] 0.74 [-0.20 to 1.61]  

 8MTrun 0.38 [-0.52 to 1.25] 4.44 [2.67 to 5.84] 1.33 [0.31 to 2.23] 0.50 [-0.41 to 1.37] 

      

RPE 1MTrun 2.20 [1.01 to 3.20]    

 4MTrun 0.72 [0.21 to 1.59] 1.62 [0.55 to 2.55]   

 6MTrun 0.23 [-0.66 to 1.10] 1.95 [0.82 to 2.91] 0.48 [-0.43 to 1.34]  

 8MTrun 0.29 [-0.48 to 1.04] 3.38 [1.90 to 4.56] 1.19 [0.20 to 2.09] 0.55 [-0.37 to 1.41] 

Note: cNMTrun: curved non-motorized treadmill run, HR: heart rate; MTrun: motorized treadmill run, RPE: ratings 

of perceived exertion, V̇O2: oxygen consumption; 
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Figure 5.1: Individual and grouped mean V̇O2 when running on different MT grades at 2.78 m·s-1 

* Significantly different from (p < 0.05) all other experimental runs, a 1% grade, b 4% grade, c 6% grade, d 8% grade 

The current study compared the physiological and perceptual demands of running on a curved non-

motorized treadmill to different incline grades on a motorized treadmill. The main finding was that V̇O2 

and RPE (but not HR) were similar in cNMTrun, 6MTrun and 8MTrun. The relationship between V̇O2 

and MT grade was highly linear, and using linear interpolation of the individual data of cNMTrun, the 

incline of the cNMT was estimated to mimic a 6.8% MT grade. 

For an accurate evaluation of the energy demands of the experimental trials, attainment of a steady state 

in every condition was required (213). Running on the cNMT by design is unsteady, as the velocity 

fluctuates with every treadmill contact. Running velocity of cNMTrun averaged 2.78 ± 0.11m·s-1. The 

participants’ individual mean running velocity in cNMTrun was used in subsequent MT trials, however, 

without any random fluctuations in pace. Steady state V̇O2 was confirmed, as no differences were evident 

between the 5th and 6th min in any of the experimental trials. In contrast to V̇O2, HR only reached steady 

state in1MTrun. HR has long been considered an important means to monitor exercise intensities, 

 5.4 Discussion 
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however, our results indicate that HR cannot adequately inform coaches and athletes on the aerobic 

demands of the 6 min uphill MT runs and cNMTrun. 

No differences were found in V̇O2 and RPE between cNMTrun, 6MTrun and 8MTrun, confirming the 

observational analysis of Smoliga et al. (230), who revealed that subjects contact the curved treadmill belt 

approximately at a five to ten degree incline above the horizontal and this angle decreases throughout the 

stance phase of the stride cycle.  

The correlation between V̇O2 and MT grades in the current study was highly linear, and both the slope 

and intercept of the proposed linear fit trendline, is in line with previously reported data of trained runners 

as can be seen in Figure 5.2 (213,231). 

 

Figure 5.2: Comparison between studies of V̇O2 response when running on different MT grades. Running velocity 

in ■ Schoenmakers & Reed: 2.78 m·s-1, ● Padulo et al. (231): 4.17 m·s-1, ◇ Jones & Doust (213): 2.92 m·s-1, ◆ 

Jones & Doust (213): 4.17 m·s-1 

V̇O2 at 1MTrun in the current study was considerably higher compared to the findings of Jones & Doust 

(213), despite that participants in the current study ran at a lower velocity. These differences can be 

attributed to the training status of the participants, whereas trained runners can be expected to have a 

greater running economy than the current participants. The physiological responses in the participants of 

the current study already showed a considerable amount of variability (see Figure 5.1). The mean V̇O2 
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response indicated a 6.8% MT grade would replicate the incline of the cNMT, however, individual 

estimates showed a ranges of inclines between 2.0% to 11.3% MT grade was needed to replicate the 

demands of the cNMT. Non-reported statistical analysis showed that the exclusion of both these outliers 

would result in a more stable estimate of MT grade, i.e. 6.9 ± 1.6 %, ranging between an estimated MT 

grade of 4.2% to 9.5%. Excluding the participants did not alter the goodness of fit of the linear regression 

(R2 = 0.99), but amended the regression equation: V̇O2 = 2.0 * MT grade + 33.7.   Additionally, Edwards 

et al. (247) reported that females perceived running on the cNMT harder than males over a range of 

velocities (indicated by higher RPE scores), which was further accompanied by a higher relative V̇O2 for 

female runners. These differences are most likely a reflection of the lighter body mass of female runners, 

which may put them at a disadvantage in overcoming the treadmill belt resistance (229,247). 

Unfortunately, the individual variability present in the current study cannot be interpreted on the basis of 

training status, or running economy of the participants since no incremental exercise test was included in 

the study design. In line with the previous study of Edwards et al. (247), the lowest estimated MT grade 

was calculated for the heaviest participant and the highest MT grade for the lightest participant. How the 

result of the current study transfer to a homogenous group of lighter and / or female runners is 

questionable, and future research is needed to establish the regression equation for these populations. 

Previously, Edwards et al. (247) reported a very strong negative relationship between participant body 

mass and the decrease in running economy when running on the cNMT trial. This indicates that the 

absolute oxygen cost is higher when participants are lighter. In contrast to the findings of the current study, 

both the physiological and perceptual responses for lighter or female runners may be better represented 

by a larger (= steeper) MT grade. 

The results of this and previous studies (215,246–248) indicate, that the cNMT can be used to assess 

running performance in the lab and to perform ‘uphill’ HIIT sessions, when uphill training is 

geographically challenging or sub-optimal weather conditions discourage outdoor training. The findings 

of the current study can be used as reference value by athletes and coaches in the planning of cNMT 

training sessions, and amend running velocities accordingly. On matched running velocities, V̇O2 and 

5.5 Practical Applications 
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RPE responses while running on the cNMT are similar to a 6 - 8% MT grade. Using the highly linear 

relation between V̇O2 and MT grades, the incline of the cNMT was estimated to mimic a 6.8 ± 2.6% MT 

grade. 
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This study aimed to examine the effects of different recovery durations on self-selected running velocities, 

physiological responses, and ratings of perceived exertion (RPE) in a commonly used high intensity 

interval training (HIIT) protocol. Twelve trained runners performed an incremental treadmill exercise test 

to determine maximal oxygen uptake (V̇O2max) and heart rate (HRmax). In four subsequent visits, 

participants performed a HIIT session comprising six 4 min work intervals, in which the recovery duration 

between work intervals equalled either a fixed (1MIN, 2MIN, 3MIN) or a self-selected duration (ssMIN). 

HIIT sessions were run on a curved non-motorized treadmill, and were performed under ‘isoeffort’ 

conditions. Mean running velocity was significantly higher in 3MIN compared with all other protocols, 

and higher in ssMIN compared with 2MIN. No significant differences in time spent ≥ 90% and 95% 

V̇O2max, or ≥ 90% and 95% HRmax were evident between the four protocols. RPE responses were similar 

across and within the protocols showing a gradual increase with each progressive interval. These results 

indicate that in a self-paced HIIT session, the length of recovery durations had a limited effect on the total 

physiological strain endured in the training. However, running velocities were higher when participants 

received the longest recovery period (3MIN). Longer recovery durations may facilitate a higher external 

training load (faster running), whilst maintaining a similar internal training load (physiological stimulus), 

and may therefore allow for greater training adaptations. 

  

Summary 
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High intensity interval training (HIIT) is often regarded as the most effective training modality to improve 

cardiorespiratory and metabolic functioning, and, in turn endurance performance (14). Previously, 

Demarie et al. (18) showed that athletes can spend up to 10 minutes per HIIT session in their ‘red zone’; 

the intensity domain close to the maximal oxygen uptake and heart rate (≥ 90% V̇O2max and HRmax 

respectively). At these exercise intensities the oxygen delivery and utilization systems are maximally 

stressed, which may provide the most effective stimulus to enhance V̇O2max. (3,9,14) Even though HIIT 

is common practice in training regimes of endurance athletes, little is known how manipulating HIIT 

protocols may maximize time spent around V̇O2max per training session. 

The workload of a HIIT session is determined by the exercise intensities and durations of both the work 

and recovery intervals, and the total of intervals performed (16,17). Of these, a potent, but frequently 

disregarded variable is the manipulation of recovery durations between subsequent work intervals (54). 

Recovery durations within HIIT running protocols are traditionally based on fixed work:recovery ratios 

or on the return of heart rate to a fixed percentage of HRmax (e.g. (66,70)). Theoretically, work intervals 

interspersed with short recovery intervals maximize the physiological stimulus of a HIIT session, as 

subsequent work intervals will start from an elevated oxygen uptake (V̇O2) and heart rate (HR). However, 

insufficient recovery can lead to premature fatigue, resulting in a reduced number of completed intervals 

and / or a reduction in exercise intensity in work intervals. Longer recovery between work intervals 

conversely, will lead to a lower V̇O2 and HR at the start of subsequent intervals which may attenuate the 

peak values achieved during the work intervals, and potentially decreasing the total exercise time 

performed in the ‘red zone’. While longer recovery may lower the physiological strain, a delayed fatigue 

may allow athletes to achieve higher external work intensities (i.e. running velocity) in work intervals. It 

is commonly accepted that  the internal training load, that is the disturbance in homeostasis of the 

physiological (e.g. cardiovascular, respiratory and metabolic) provoked by a training session, is the most 

important feature of a training session and the primary stimulus to adaptations in endurance performance 

(282). Whilst every configuration of HIIT protocol can lead to a significant disturbance of homeostasis, 

6.1 Introduction 
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causing improvements in V̇O2max (see Chapter 3), combining a high internal load with altered exercise 

intensities during HIIT sessions might be beneficial to athletes. 

Understanding the acute response to manipulating recovery durations is important when designing HIIT 

sessions. Smilios et al. (41) noted that an increased recovery duration (2, 3 or 4 min) did not affect the 

percentage of V̇O2max attained and the total time spend ≥ 80%, 90% and 95% of V̇O2max or HRmax 

during four 4 min intervals, ran at 90% maximal aerobic velocity (MAV). Although the data from the 

above study is informative (41), it also is a prime example of most published data, as acute physiological 

responses are evaluated to a HIIT protocol that incorporates predefined fixed work intensities. In contrast 

to standardized exercise protocols, it was recently proposed that athletes measure and pace their work in 

training sessions on ratings of perceived exertion (RPE) and accumulated fatigue (42). In this so called 

‘isoeffort’ or self-paced HIIT, the actual work intensity per interval therewith is not a stable function of 

power or velocity over time, but rather the integrative outcome of feedback from external and internal 

receptors, and knowledge of the session demands (43,44).  

While self-paced HIIT has been addressed in cycling recently (42,218), there is a paucity of research 

exploring its use in running. Recently, we and others showed that a newly designed curved non-motorized 

treadmill (cNMT) can be a useful tool to study self-paced running in a lab setting (246,247). Running on 

the cNMT is participant driven and provides a closer experience to overground locomotion by allowing 

for rapid changes of velocity, step-to-step gait variability and, most importantly, an unconsciousness 

decision making process to change pace (249). 

The aim of this study was to compare the effect of different recovery durations on the acute physiological 

and perceptual responses, and the accompanying running velocities in a HIIT session performed under 

‘isoeffort’ conditions. A theoretical trade-off was expected between the physiological stimulus (time spent 

≥ 90% and 95% V̇O2max and HRmax) and the external stimulus (running velocity). In this, it was 

hypothesised that a short recovery between work intervals would lead to an increased physiological 

stimulus at the cost of a decreased running velocity. Conversely, it was expected that longer recovery 

intervals would lower the physiological strain of the HIIT protocol, whilst maintaining a higher running 

velocity throughout the HIIT session. 
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6.2.1 Experimental approach to the problem  

Participants visited the laboratory on five different occasions over a four-week period, with visits 

separated by a minimum of two days. In the first visit, participants performed an incremental running test 

on a motorized treadmill (Pulsar 3p, H/P Cosmos, Nussdorf-Traunstein, Germany), and one 4 min effort 

on the cNMT (Woodway Curve XL, Woodway Inc, Waukesha, USA) to familiarize with this piece of 

equipment. In the four following visits, participants performed a HIIT session on the cNMT. Participants 

were familiarized with the concept of using the 15-point Borg scale (80) and a perceived readiness scale 

(PR, (101)) as a means of self-determining readiness to recommence exercise between work intervals (see 

Figure 6.1). 

 

Figure 6.1: Perceived readiness scale. Figure adapted from Edwards et al. (101) 

6.2.2 Participants 

Twelve recreationally trained male runners (mean ± standard deviations (SD); 34 ± 11 years; stature: 1.80 

± 0.06 m; mass: 74 ± 6 kg; V̇O2max: 53 ± 7 mL·kg−1·min−1) participated, providing voluntary written 

informed consent. A priori power analysis (G*Power 3.1) indicated a minimum sample size of 10 

participants was required to detect small differences (Cohen’s d = 0.2) in the physiological and perceptual 

responses between the different simulated HIIT sessions. It was decided to recruit twelve participants to 

complete three full rounds of counterbalanced randomization of the experimental visits. The study 

received approval from the local ethics committee (University of Essex, UK) and was conducted in 

accordance with the Declaration of Helsinki. Participants were asked to report for testing well-rested and 

6.2 Methods 
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well-hydrated, wearing the same footwear on each visit and were instructed to avoid any form of strenuous 

exercise 48 h before each visit. 

6.2.3 Incremental running test protocol 

The incremental running was performed on a motorised treadmill, with the gradient set at 1% (213). The 

test started at 8 kmh-1, increasing 1 kmh-1 every minute until volitional exhaustion or when at least two of 

the following criteria were met: 1) HR ≥ 90% of the age-predicted maximum; 2) respiratory exchange 

ratio (RER) > 1.10; 3) stable V̇O2 despite increased intensity (212). V̇O2max was defined as the highest 

average V̇O2 over a 30 s period. HRmax was defined as the highest value obtained at the end of the test. 

MAV was defined as the highest velocity (kmh-1) that could be maintained for a complete minute, or, as 

the velocity of the last complete stage added to the completed fraction of an incomplete stage. Gas 

exchange threshold (GET) was determined from a cluster of measures, previously outlined by Bailey et 

al. (250): 1) the first disproportionate increase in CO2 ventilation (V̇CO2) from visual inspection of 

individual plots of V̇CO2 versus V̇O2, 2) an increase in expired ventilation VE/V̇O2 with no increase in 

VE/V̇CO2. 

The running velocity corresponding to 70% of the difference (Δ) between the velocity at GET and MAV 

was then calculated, and converted to the corresponding running velocity on the cNMT (246). Participants 

were then instructed to run one 4 min effort on 65% MAV on the cNMT, which would result in a 

(calculated) exercise intensity of 92.5% V̇O2max (246). 

6.2.4 Experimental simulated HIIT sessions 

Over the next four visits, participants performed a simulated HIIT session comprising six 4 min work 

intervals, separated by either 1, 2, 3-min or a self-selected recovery duration (1MIN, 2MIN, 3MIN, ssMIN 

respectively), which were distributed in a randomized and counterbalanced order. Prior to each HIIT 

session participants performed a 6 min priming warm-up at 70% ΔGET on the cNMT, followed by a 9 

min break (250). Exercise intensity of the warm-up was verified in the first experimental visit.  

Participants were instructed to maintain the highest average running velocity across the work intervals of 

each session, and to finish the HIIT session on a RPE ≥ 17. As previously discussed by Mattern et al. (85), 
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athletes may fail to select an adequate start strategy in self-paced efforts and often start too fast, which 

hampers optimal performance. To avoid poor pacing, participants were instructed (but not restricted) to 

target a velocity of 65% MAV in the first interval. Continuous feedback was available on elapsed time 

and running velocity during the work intervals. In the recovery intervals, participants were free to select 

either walking or standing. RPE were obtained immediately after every work interval, and PR was scored 

every 45 s during recovery in 1MIN, 2MIN and 3MIN, but only in ssMIN did this indicate the start of a 

work interval (when participants scored ‘4’ on the PR scale, indicating ‘adequate recovery’ (101)). In 

ssMIN, participants were blinded to elapsed recovery time. Participants were blinded to the experimental 

condition (that is, the duration of the recovery intervals) until after the completion of the first work 

interval. 

6.2.5 Data collection and analysis 

During the incremental running test and the four HIIT sessions, HR and running cadence were measured 

continuously at 1 Hz using a Garmin HR monitor and a telemetric foot pod (Garmin 910XT, Garmin Ltd., 

Schaffhausen, Switzerland). Respiratory parameters were obtained breath by breath, using open circuit 

spirometry (Oxycon Pro, Jaeger, Höchberg, Germany), and indexed. Before each experimental trial, the 

gas analyser and turbine flow meter were calibrated according to the manufacturer’s for V̇O2max and 

HRmax instructions. Self-selected running velocity was sampled at 4 Hz in the accompanying cNMT 

product software (Woodway Curve 1.5 Software v2.1). 

6.2.6 V̇O2 and HR kinetic modelling 

Breath-by-breath V̇O2 data were linearly interpolated to one second values, and were then fitted from the 

onset to the end of each work interval using a mono-exponential growth curve. The mean response time 

(MRT) was calculated using the formula below. 

V̇O2(t) = V̇O2baseline + AV̇O2 · (1 – e-t/τ) 

In this, V̇O2(t) represents the V̇O2 at a given time (t); V̇O2baseline the mean V̇O2 of the last 30 s before 

the start of each repetition; AV̇O2 the amplitude of the V̇O2 response (V̇O2 plateau – V̇O2baseline); and τ 

the time constant for the model. Similar calculations were performed for the analyses of HR kinetics 
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6.2.7 Statistical analysis 

All data in text, tables, and figures are presented as mean ± SD, and were analysed using SPSS software 

(Version 25.0, SPSS Inc., Chicago, USA). Only the physiological measurements obtained during the work 

intervals were analysed. Differences between protocols in physiological responses (exercise time ≥ 90% 

and 95% V̇O2max and HRmax, average V̇O2 and HR in work intervals, during the last minute of the work 

intervals, and 30 s before the start of work intervals) were assessed using one-way repeated measures 

analysis of variance (ANOVA). A two-way repeated measures (protocol × interval) ANOVA was 

conducted to examine differences in RER, running velocity and RPE across intervals between and within 

protocols. In the event of a significant main or interaction effects, Tukey’s post hoc tests were used to 

determine differences between protocols and/or across intervals within each protocol. Pearson correlations 

were used to establish the relationship between exercise time ≥ 90% and 95% V̇O2max and HRmax for 

all protocols. Additionally standardized effect sizes (ES) are reported as Cohen’s d. Qualitative 

interpretation of d was based on the guidelines provided by Hopkins et al. (151): < 0.2 trivial; 0.20 - 0.59 

small; 0.6 - 1.19 moderate; 1.20 - 1.99 large; ≥ 2.00 very large. The level of significance for all statistical 

analysis was set at p < 0.05. 

A difference in mean running velocity was found between HIIT protocols. Post-hoc analysis showed that 

participants ran faster in 3MIN compared to 1MIN, 2MIN and ssMIN (p < 0.01). Further, the mean 

running velocity in ssMIN was higher compared to 2MIN (p = 0.001). Subtle fluctuations in running 

velocities were apparent in all protocols across work intervals (see Table 6.1). RPE responses were similar 

across and within the protocols (see Table 6.1), and independent of recovery duration, participants rated 

the last interval an average RPE score of ≥ 19, verifying isoeffort conditions. Table 6.1 further depicts the 

mean RER per interval for each experimental protocol. A significant interaction effect was evident (p = 

0.004), with a higher RER in intervals 4 - 6 in 1MIN compared with 2MIN and 3MIN. 

  

6.3 Results 
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Table 6.1: Mean ± SD of RER, RPE and running velocity measured during work intervals 1 through 6 in the 1MIN, 

2MIN, 3MIN and ssMIN protocol (n = 12) 

  HIIT Protocol 

  Work Interval 1MIN 2MIN 3MIN ssMIN 

RER 1 0.95 ± 0.05 0.97 ± 0.08 0.96 ± 0.03 0.96 ± 0.07 
 2 0.99 ± 0.05 a 0.98 ± 0.08 0.96 ± 0.02 0.99 ± 0.07 a 
 3 0.96 ± 0.05 a 0.94 ± 0.07 a 0.93 ± 0.02 a 0.96 ± 0.07 a 
 4 0.96 ± 0.05 * 0.93 ± 0.07 a 0.93 ± 0.02 0.94 ± 0.07 a 
 5 0.95 ± 0.05 * 0.92 ± 0.06 0.92 ± 0.02 0.93 ± 0.06 a 
 6 0.95 ± 0.05 * 0.92 ± 0.04 0.92 ± 0.02 0.93 ± 0.06 
      

RPE (au) 1 14.6 ± 1.9 15.0 ± 1.7 14.1 ± 2.0 15.1 ± 1.4 
 2 16.3 ± 1.5 a 16.7 ± 1.6 a 16.6 ± 1.6 a 16.4 ± 1.4 a 
 3 17.2 ± 1.3 a 17.3 ± 1.1 a 17.3 ± 1.4 a 17.3 ± 1.2 a 
 4 18.6 ± 0.8 a 17.8 ± 1.0 18.2 ± 1.0 a 18.0 ± 1.2 a 

 5 18.8 ± 0.7 18.3 ± 0.9 a 18.4 ± 0.8 18.5 ± 1.0 a 

 6 19.3 ± 0.5 19.2 ± 0.6 a 19.0 ± 0.7 a 19.2 ± 0.8 a 

      

Velocity (km·h−1) 1 11.7 ± 0.9 12.0 ± 1.1 11.9 ± 1.1 11.8 ± 0.9 
 2 11.8 ± 1.1 11.9 ± 1.0 12.2 ± 1.1 12.0 ± 1.0 

 3 11.6 ± 1.2 11.5 ± 1.0 a 12.1 ± 1.1 11.8 ± 1.1 a 

 4 11.5 ± 1.2 11.2 ± 1.1 a 12.0 ± 1.1 11.7 ± 1.1 
 5 11.4 ± 1.3 11.1 ± 1.1 11.8 ± 1.0 11.6 ± 1.1 

  6 11.5 ± 1.3 11.3 ± 0.9 a 12.0 ± 1.0 a 11.7 ± 1.0 

* p < 0.05 compared to 2MIN and 3MIN, a p < 0.05 compared to previous work interval 

Note; au: arbitrary unit, HIIT: high intensity interval training, RER: respiratory exchange ratio (V̇CO2/ V̇O2); RPE: 

ratings of perceived exertion 

During the recovery intervals 6 participants walked on all occasions, and 6 participants decided to stand 

still each time. There was no difference in the V̇O2 / HR kinetics according to activity in the recovery 

period (data not shown).  

Experimental outcomes for V̇O2 measures are shown in Table 6.2. Repeated measure ANOVA showed 

no differences in the total exercise time ≥ 90% (p = 0.24) or ≥ 95% (p = 0.12) V̇O2max between protocols. 

The most notable difference in these variables was the moderately larger exercise time ≥ 90% and ≥ 95% 

V̇O2max in 3MIN compared with 2MIN (see Table 6.4). Considerate variability between participants was 

evident in exercise time ≥ 90% V̇O2max across the simulated HIIT sessions (see Figure 6.3).  Mean V̇O2 

before subsequent work intervals was higher in 1MIN compared to all other protocols (p < 0.01), and 

moderately higher in ssMIN compared to 3MIN (p = 0.014). Mono-exponential modelling provided an 
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adequate fit for the V̇O2 data (R2 range 0.73 ± 0.15 – 0.79 ± 0.10). The mean response time (MRT) was 

significantly slower in 1MIN compared to all other protocols, which was accompanied by a lower V̇O2 

amplitude. No differences were found between protocols in V̇O2 plateau (p = 0.22), average V̇O2 during 

(p = 0.36), or V̇O2 in the final minute of the work intervals (p = 0.21). 

No significant differences were evident between protocols for time spent ≥ 90% (p = 0.24) and ≥ 95% 

HRmax (p = 0.12; see Table 6.3), supported by trivial or small differences between protocols (see Table 

6.5). Baseline HR was significantly higher in 1MIN compared to all other protocols, and lower in 3MIN 

compared to 2MIN and ssMIN. Mono-exponential modelling showed a very good fit for the data (R2 range 

0.96 ± 0.06 – 0.99 ± 0.01). MRT was significant slower in 1MIN than all other recovery durations and 

slower in 2MIN and ssMIN than in 3MIN (see Table 6.3). Average HR in the work intervals was higher 

in 1MIN compared to 3MIN and ssMIN (small effect), but not different in the last 60 s between protocols. 

Across the recovery intervals in ssMIN, self-selected recovery duration averaged 100 ± 34 seconds (see 

Figure 6.2). Recovery time was significant shorter between the first and second work interval (80 ± 25 s) 

compared to the subsequent recovery phases, in which the duration remained constant (ranging between 

97 ± 31 – 111 ± 33 s). 

 

Figure 6.2: Mean ± SD self-selected recovery duration in subsequent recovery intervals (n = 12) 
* Significantly different from (p < 0.05) all other recovery durations 
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Table 6.2: Oxygen uptake measures during simulated HIIT sessions, with 1MIN, 2MIN, 3MIN or ssMIN recovery between subsequent work intervals 

 HIIT Protocol 

 1MIN 2MIN 3MIN ssMIN 

exercise time ≥ 90% V̇O2max (s) 849 ± 341 727 ± 388 918 ± 232 776 ± 335 

exercise time ≥ 95% V̇O2max (s) 574 ± 373 422 ± 347 629 ± 330 476 ± 408 
     

V̇O2 last 30sec of recovery (mL·kg–1·min–1) 26.6 ± 4.1* 18.6 ± 4.0 17.8 ± 5.7 20.3 ± 5.6 a 

V̇O2 Plateau (mL·kg–1·min–1) 50.3 ± 6.8 49.0 ± 6.3 51.6 ± 7.8 50.1 ± 6.6 

Mean response time (s) 33.1 ± 2.6* 30.2 ± 4.2 28.8 ± 3.0 29.2 ± 5.4 

     

average V̇O2 interval (%V̇O2max) 90.1 ± 8.5 87.1 ± 5.2 91.0 ± 6.2 89.4 ± 7.5 

average V̇O2 last 60sec of interval (%V̇O2max) 96.1 ± 8.7 92.9 ± 6.4 98.0 ± 6.5 95.8 ± 8.2 

* p < 0.01 vs 2MIN, 3MIN and ssMIN, a p < 0.05 vs 3MIN 

Note; HIIT: high intensity interval training, V̇O2 oxygen uptake, V̇O2max: maximum oxygen uptake 

Table 6.3: Heart rate measures during simulated HIIT sessions, with 1MIN, 2MIN, 3MIN or ssMIN recovery between subsequent work intervals 

 HIIT Protocol 

 1MIN 2MIN 3MIN ssMIN 

exercise time ≥ 90% HRmax (s) 979 ± 257 1017 ± 231 989 ± 149 953 ± 198 

exercise time ≥ 95% HRmax (s) 468 ± 317 493 ± 347 441 ± 296 372 ± 287 
     

HR last 30sec of recovery (bpm) 140 ± 14 * 126 ± 15 115 ± 14 a 126 ± 16 

HR Plateau (bpm) 177 ± 12 177 ± 10 176 ± 11 175 ± 11 

Mean response time (s) 45.2 ± 7.5 b 40.7 ± 4.5 c 37.3 ± 4.2 40.3 ± 7.0 

     

average HR interval (%HRmax) 90.2 ± 3.2 b 89.2 ± 4.6 88.6 ± 3.1 88.4 ± 3.1 

average HR last 60sec of interval (%HRmax) 94.9 ± 2.2 95.3 ± 3.1 95.4 ± 1.6 94.5 ± 1.8 

* p < 0.01 vs 2MIN, 3MIN and ssMIN, a p < 0.05 vs 2MIN and ssMIN, b p < 0.05 vs 3MIN and ssMIN, c p < 0.05 

Note; bpm: beats per minute, HIIT: high intensity interval training, HR: heart rate, HRmax: maximum heart rate 
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Table 6.4: Effect size (Cohen’s d) comparison between oxygen uptake measures during the simulated HIIT sessions, with 1MIN, 2MIN, 3MIN or ssMIN recovery between 

subsequent work intervals 

  
HIIT Protocol 

    1MIN 2MIN 3MIN 

exercise time ≥ 90% V̇O2max 2MIN 0.33 
  

 
3MIN 0.24 0.60 

 

 
ssMIN 0.22 0.14 0.49      

exercise time ≥ 95% V̇O2max  2MIN 0.42 
  

 
3MIN 0.16 0.61 

 

 
ssMIN 0.25 0.14 0.41      

V̇O2 last 30sec of recovery 2MIN 1.98 
  

 
3MIN 1.77 0.16 

 

 
ssMIN 1.28 0.44 0.55      

V̇O2 Plateau  2MIN 0.20 
  

 
3MIN 0.18 0.37 

 

 
ssMIN 0.03 0.21 0.21      

Mean response time  2MIN 0.83 
  

 
3MIN 1.53 0.38 

 

 
ssMIN 0.92 0.21 0.09      

average V̇O2 interval  2MIN 0.43 
  

 
3MIN 0.12 0.68 

 

 
ssMIN 0.09 0.36 0.23      

average V̇O2 last 60sec of interval  2MIN 0.42 
  

 
3MIN 0.25 0.79 

 

 
ssMIN 0.04 0.39 0.30 

 Note; HIIT: high intensity interval training, V̇O2 oxygen uptake, V̇O2max: maximum oxygen uptake 
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Table 6.5: Effect size (Cohen’s d) comparison between heart rate measures during the simulated HIIT sessions, with 1MIN, 2MIN, 3MIN or ssMIN recovery between subsequent 

work intervals   

HIIT Protocol 

    1MIN 2MIN 3MIN 

exercise time ≥ 90% HRmax  2MIN 0.16   

 3MIN 0.05 0.14  

 ssMIN 0.11 0.29 0.21 
     

exercise time ≥ 95% HRmax  2MIN 0.08   

 3MIN 0.09 0.16  

 ssMIN 0.32 0.38 0.24 
     

HR last 30sec of recovery 2MIN 0.96   

 3MIN 1.79 0.76  

 ssMIN 0.93 < 0.01 0.73 
     

HR Plateau  2MIN < 0.01   

 3MIN 0.09 0.10  

 ssMIN 0.17 0.19 0.09 
     

Mean response time  2MIN 0.73   

 3MIN 1.30 0.78  

 ssMIN 0.68 0.07 0.52 
     

average HR interval  2MIN 0.25   

 3MIN 0.51 0.15  

 ssMIN 0.57 0.20 0.06 
     

average HR last 60sec of interval  2MIN 0.15   

 3MIN 0.26 0.04  

 ssMIN 0.19 0.32 0.53 

Note; HIIT: high intensity interval training, HR: heart rate, HRmax: maximum heart rate 
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         1MIN  2MIN          3MIN  ssMIN 

Figure 6.3: Individual (○) and grouped (●) exercise time ≥ 90% V̇O2max (s) in the simulated HIIT sessions 

In dept analysis of exercise time ≥ 90% V̇O2max showed three participants accumulated most time ≥ 90% 

V̇O2max in 1MIN, two participants in 2MIN, five participants in 3MIN, and two participants in ssMIN (see 

Figure 6.3). ssMIN recovery times of these two participants were 99.8 ± 19 s and 67.6 ± 5 s respectively, 

and time ≥ 90% V̇O2max of the nearest fixed recovery duration (2MIN and 1MIN respectively) was their 

second highest obtained time ≥ 90% V̇O2max. 
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This study aimed to examine the effects of different recovery durations on self-selected running velocities 

and the accompanying physiological and perceptual responses. Mean running velocity was highest when 

participants received a longer recovery period (3MIN) between intervals, however, total time spent at or 

above 90% and 95 %V̇O2max did not differ between protocols. Similarly, time spent ≥ 90% and 95% 

HRmax did not differ between protocols. 

HIIT aims to enhance the metabolic overload of a training session by maximizing the total accumulated 

time spent at high exercise intensities (≥ 90% V̇O2max and HRmax). In line with previous studies, the 

current data showed that repeated high intensity work intervals of 4 min are performed around 95% 

V̇O2max by recreationally trained runners, and that V̇O2 in the last minute reaches values close to V̇O2max 

(41,93,135). Repeated 4 min work intervals are often described as ‘long aerobic intervals’, and in line with 

this description, the RER values in the current study were under the unit value across all intervals (see 

Table 6.1), highlighting the dependency on the aerobic metabolism for ATP re-synthesis. Hetlelid et al. 

(135) found training status of participants likely plays an important role in the ability to achieve a steady 

state even in high-intensity interval exercise. The results of the present study add to those findings, 

showing a decline in RER with successive high intensity work intervals, despite a maintained - or elevated 

oxygen consumption and running velocity. These results confirm the strong aerobic training stimulus of 

long work intervals in HIIT. 

Total time spent at or above 90% and 95 %V̇O2max, the average V̇O2 in the work intervals and the average 

V̇O2 in the last minute of the work intervals did not differ between protocols. Participants spend around 

57% of the exercise time ≥ 90%, and 37% of time ≥ 95% V̇O2max (see Table 6.2). These findings are in 

agreement those of Smilios et al. (41), though subtle differences are noticeable between study outcomes. 

Smilios et al. (41) found a (non-significant) linear decrease in time ≥ 80%, 90% and 95% V̇O2max with 

the increase of recovery duration. In contrast, a more U-shaped response was prevalent in the current study 

(see Table 6.2). Despite not reaching statistical significance, time ≥ 90% V̇O2max was considerably higher 

when participants received 3 min recovery compared with other recovery periods, and for 1MIN compared 

with 2MIN and ssMIN. A similar trend was found for time ≥ 95% V̇O2max. Basic oxygen kinetic analysis 

6.4 Discussion 
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revealed no differences in V̇O2 plateau between protocols, despite subsequent work intervals starting from 

a lower metabolic rate in 3MIN and 2MIN compared with 1MIN and ssMIN. Starting intervals from an 

increased metabolic rate lengthened time needed to reach V̇O2 plateau in 1MIN, which was accompanied 

by the lowest V̇O2 amplitude. In line with the findings of Smilios et al. (41), our results show a decrease 

in MRT with the longer recovery duration, with the amplitude following a contrariwise response. This 

relationship suggests that V̇O2 kinetics adjust to regulate the oxygen supply that corresponds to the 

metabolic requirements of the exercise stimulus, and differences in V̇O2 kinetics therewith reflect changes 

in oxidative metabolism within the muscle (245,251). Wilson (252) evidenced that the magnitude of this 

response is dependent on the energy state of the cells, in particular to the concentration of adenosine 

diphosphate (ADP). Higher work rates in the preceding work intervals in 3MIN potentially elevated ADP 

concentrations and activated the oxidative phosphorylation to a greater extent compared to 1MIN, 2MIN 

and ssMIN (252,253), ultimately producing faster V̇O2 kinetics (245,251). This mechanism leads to the 

possibility to commence subsequent work intervals at a higher work rate, which would maximize time ≥ 

90% V̇O2max. 

Previously, an increased work rate in the initial 30 s of respectively 3- or 5 min work intervals failed to 

increase time ≥ 90% V̇O2max in trained cyclists (39,254). It is therefore unlikely that the absolute time ≥ 

90% V̇O2max per AIT session is the only training variable accountable for improvements in V̇O2max. The 

relatively poor reliability of the measure of time ≥ 90% V̇O2max must also be taken into account (95, see 

Figure 6.3 and Figure 7.1 for additionally emperical data). These results are in line with our assumption 

prompted in Chapter (Section 2.4), in which we stated that the ‘optimum’ recovery duration, is most 

likely highly individual and depending on training status. The individual response presented in Figure 6.3 

are of interest to athletes, as it can help them verifying their ‘optimum’ recovery duration between 

subsequent 4 min work intervals to maximize time ≥ 90% V̇O2max. Whether the physiological responses 

to a single simulated HIIT session are reliably enough is to define this recovery duration is to be evaluated 

in future studies, as again, the day-to-day measure of time ≥ 90% V̇O2max showed to be of low reliability 

(95). 
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Heart rate monitoring has long been considered an important means to monitor exercise intensities, yet 

much research shows that it is neither related to systemic O2 demand nor muscular energy turnover (14). 

We found only weak correlations between the measures of the times spent 90% and 95 %V̇O2max and 

HRmax across the different protocols (data not shown). The most notable differences in the time spent ≥ 

90% and 95% HRmax were found between 2MIN and ssMIN (64 and 121 s, respectively), though the 

magnitude of these differences was considerably lower than the V̇O2 measures. A heart rate plateau was 

found around 95% HRmax independently of recovery duration, and MRT was, as in the V̇O2 measures, 

moderated by the elevation of baseline levels in 1MIN, 2MIN and ssMIN. Overall, subsequent work 

intervals in 3MIN started from the lowest metabolic rate, but similar times in the exercise zones were 

achieved because a faster MRT and higher HR amplitude (see Table 6.3). The low correlations between 

the measures of V̇O2 and HR indicate that heart rate may not accurately represent the aerobic metabolic 

requirements of an interval session. The results suggest that HR cannot inform coaches and athletes on the 

intensity of physical work performed, as we showed similarities in HR plateau and average interval HR 

across intervals, while differences in running velocities were present between and within protocols (see 

Table 6.1). 

In contrast to motorized treadmills, the cNMT used in the current study required the participants to actively 

pull their legs through for propulsion at the beginning of every work interval for the treadmill belt speed 

to increase before reaching a steady running velocity for the remaining of the work interval. The concave 

curved design of the cNMT would allow the treadmill belt to accelerate if participants would mount onto 

the treadmill at the highest point of its curve (see Figure 4.1), however, without any further movement 

participants would come to a standstill at the bottom of the curve (see Figure 4.1). As previously explained 

in Chapter 4 (Section 4.4), step by step muscle force production therefor is instrumental whilst running 

on the cNMT. Other studies that examined the physiological responses during interval running relied on 

researchers adjusting treadmill velocities between work and recovery intervals (e.g. (41,77)), or required 

participants to straddle on a spinning treadmill during recovery intervals and then re-join at the start of the 

next work interval (255). Both these approaches undermine the physiological strain imposed on a runner 

at the start of work intervals as that would be evident in ‘real life conditions’, as a time-delayed 
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acceleration (41,77) or a no acceleration (255) phase will obviate the high metabolic cost of overcoming 

inertia (256). As shown in Table 6.2 and Table 6.3, results of the current study show a notable faster 

MRT in both the heart rate and oxygen uptake kinetics compared to Smilios et al. (41). As Billat et al. 

(257) previously did not find differences in the oxygen kinetics in free vs constant pace runs, the faster 

MRT in the current study is most likely explained by the increased metabolic cost of overcoming inertia 

(256), and may further be attenuated by the ‘uphill’ characteristic of the cNMT (202, and see Chapter 5), 

and the effective use of a priming warm up (250). 

In the present study, participants were instructed to run at their highest sustainable running velocity 

throughout the work intervals, and to finish the sessions on a RPE ≥ 17. Previously, Seiler & Hetlelid (77) 

reported that well-trained male runners ran faster when the recovery duration increased from 1 to 2 min, 

but a further increase to 4 min had no additional effect on self-selected running velocities. Laurent et al. 

(93) reported an increase in running velocity when the recovery duration was increased from 1 to 2 min 

and from 2 to 4 min. In line with these findings, our results show participants ran faster in 3MIN compared 

to all other conditions and the running velocity was higher in ssMIN compared to 2MIN. However, in 

contrast to the earlier findings of both Seiler & Hetlelid (77) and Laurent (93), we did not find an increase 

in running velocity when recovery time was increased from 1 to 2 min.  

In ssMIN, participants were instructed to start subsequent work intervals when they felt ‘adequately 

recovered’. Self-selected recovery averaged 100 ± 34 seconds, similar to earlier findings of Seiler & 

Hetlelid (77), but almost a minute shorter than was reported by Edwards et al. (101) in a comparable 

interval session. The ssMIN protocol produced the most stable pacing profile, with the difference between 

the fastest and slowest work interval being only 0.53 ± 0.3 km·h-1, however, average running velocities 

were slower compared to 3MIN. With this in mind, athletes in the present study may have been more 

accustomed to a ‘short’ recovery between work intervals, and therefore may not have fully utilized the 

opportunity to increase their recovery duration. 

Independent of the recovery duration, an increase in running velocity was evident in the final work interval 

in all simulated HIIT sessions, which reached statistical significance in 2MIN and 3MIN. While a faster 

finish is counterintuitive with the increase of fatigue over time, an end spurt is a common phenomenon in 
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competitive races (84) and also in experimental settings (e.g. Edwards et al (101)). The end spurt across 

all protocols highlights that pacing is an important feature in interval training sessions (39), and it further 

shows that in each interval a decision on the ‘maximum sustainable exercise intensity’ is made within the 

context of available recovery time so as to avoid catastrophic fatigue and premature cessation of exercise 

(44,258). The end spurt further suggest the existence of a physiological reserve which is only utilized 

when the endpoint of, in this case, the end of a training sessions is within the limits of the available 

metabolic reserve (259).  

The use of the ‘isoeffort’ approach in a scientific setting shifts the decision making on interval exercise 

intensities towards the participant, thus increasing the external validity of the protocol. Participants in the 

current study rated their final intervals ~19.0, which indicates ‘extremely hard’ exercise. In previous 

studies, exercise intensities have been both over- and / or underestimated leading to a reduced number of 

completed intervals (21) or a ‘too easy’ HIIT session (indicated by a final RPE of 15, (41)). While the 

results of the current study suggest that recovery duration has a limited effect on the total physiological 

strain of the training, running velocities were fastest when participants received the longest recovery 

period. Longer recovery durations may facilitate a higher external training load (running speed) whilst 

maintaining a similar internal load (physiological stimulus) in HIIT sessions, and therefore, may allow for 

greater training adaptations.  

Coaches should take into account that a longer recovery interval (3 min) between repeated 4 min efforts 

facilitates a faster running velocity, which is particularly important when the focus of the session is speed 

work. The results of this study further show that the recovery duration did not influence total metabolic 

load of a single training session, thus athletes can recovery for a greater period than may be traditionally 

thought. A self-selected recovery period results in the most consistent running velocity, which may be of 

importance when athletes are working on pacing.  

  

6.5 Practical applications 
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The moderating role of recovery interval duration in simulated high 

intensity interval training sessions of trained cyclists 
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The total time spent at high percentages of V̇O2max (≥ 90% (t90V̇O2max), or ≥ 95% V̇O2max 

(t95V̇O2max)) per high intensity interval training (HIIT) could serve as a good criterion to judge the 

effectiveness of HIIT protocols. This study compared the acute physiological and perceptual responses 

and accompanying exercise intensities to changes in the recovery interval duration in four simulated HIIT 

sessions. After completing an incremental cycling test to determine V̇O2max, HRmax and peak power 

output in an initial visit, 11 recreationally trained male cyclists performed four HIIT session comprising 

six 4 min work intervals. Work intervals were separated by either 1, 2, 3 min or a self-selected recovery 

duration (1MIN, 2MIN, 3MIN, ssMIN respectively), and participants were instructed to perform every 

session on their maximal sustainable exercise intensity. The results showed similar perceptual responses 

within and across the different protocols. No statistical differences were found in t90V̇O2max and 

t95V̇O2max between protocols, however, participants spend a notable ~200 s extra time in t90V̇O2max, 

and ~170 s in t95V̇O2max in 1MIN compared to 2MIN, 3MIN and ssMIN. Power output across work 

intervals was higher in 3MIN and ssMIN than in 1MIN, and the decrease in power output between the 

initial and final interval in 1MIN was greater compared to all other protocols. This study demonstrates a 

trade-off between the physiological stimulus and the external workload of a simulated HIIT session. The 

results can help coaches and athletes to select adequate lengths of recovery intervals according to their 

training goals. 

  

Summary 
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High intensity interval training (HIIT) is by no means a new phenomenon, but instead a training concept 

long appreciated by endurance athletes to improve cardiorespiratory and metabolic functioning, and, in 

turn endurance performance (13,14). HIIT aims to enhance the metabolic overload of a training session to 

a greater extent than is possible with traditional continuous training, by maximizing the total accumulated 

time at exercise intensities at or near the maximum oxygen uptake (V̇O2max) and heart rate (HRmax). At 

these intensities the oxygen delivery and utilization systems are maximally stressed, and it is assumed that 

the percentage of V̇O2max attained and the time for which it is sustained per HIIT session can serve as a 

relevant criterion to characterise and analyse the effectiveness of a HIIT protocol (5,14,55). 

The total workload of HIIT sessions is determined by a complex interplay between the exercise intensities 

and the duration of both the work and recovery intervals, and the total number of intervals performed 

(16,17). Over recent years, multiple studies have manipulated work intensities (260), work durations 

(23,59,75), pacing strategies (39), and / or additional aids like muscle vibration (40) to increase the time 

spent at high percentages of V̇O2max (typically ≥ 90% (t90V̇O2max), or ≥ 95% V̇O2max (t95V̇O2max)). 

In contrast to these manipulations in work intervals, surprisingly little research has explored the overall 

impact of recovery intervals on the overall effectiveness of HIIT protocols, however, the duration of 

recovery intervals may be an important moderator to increase t90V̇O2max and / or t95V̇O2max (54). As 

hypothesised by Schoenmakers & Reed (104), short recovery intervals may maximize the physiological 

stimulus of a HIIT session, by starting subsequent work intervals from an elevated oxygen uptake (V̇O2) 

and heart rate (HR). Insufficiently short recovery intervals however can lead to premature fatigue, which 

may reduce the number of completed intervals or lower the work intensities in subsequent intervals as was 

evident in previous research (21,187). Conversely, work intervals interspersed with long recovery 

intervals will start from a lower metabolic rate, which may attenuate peak values achieved during work 

intervals, and potentially decreases the t90V̇O2max and / or t95V̇O2max. While longer recovery intervals 

may lower the physiological strain, delayed fatigue can allow athletes to achieve higher exercise intensities 

in work intervals which may allow for greater training adaptations. 

7.1 Introduction 



116 

Previously, research on trained runners showed that intervals indeed started from a lower metabolic rate 

when long recovery intervals were available across repeated 4 min work intervals compared to shorter 

recovery intervals (41,104). In line with findings from single bout transitions in cycling (261), it was 

evident that V̇O2 and HR kinetics were faster when work intervals started from this lower metabolic rate, 

and consequently, t90V̇O2max and t95V̇O2max were similar between different recovery durations 

(41,104). In contrast to the standardized protocol used by Smilios et al. (41), Schoenmakers & Reed (104) 

reported a significant higher running velocity was achieved by the participants, when longer recovery 

intervals were available in self-paced HIIT sessions. Self-paced HIIT interventions have recently been 

addressed in cycling (42,218), however the potential moderating role of recovery durations in HIIT 

protocol remains unclear. Whilst the findings on the acute effects of manipulations in recovery durations 

in runners are insightful, different exercise modalities (e.g. running vs cycling) might result in different 

physiological responses and, therefore, may divergent outcomes (144). The aim of this study therefore 

was to compare the physiological and perceptual responses and accompanying work intensities in self-

paced HIIT sessions in recreationally trained cyclists. As a secondary aim, we examined the moderating 

role of the recovery interval duration on the potential trade-off between the physiological stimulus and the 

external workload. In line with the previous findings of Schoenmakers & Reed (104) in trained runners, 

no differences in the physiological or perceptual responses were expected between HIIT protocols which 

only differed in the recovery duration between subsequent work intervals. It was however expected that 

longer recovery intervals would maximize the exercise intensities attained in the work intervals. 

7.2.1 Experimental approach to the problem 

Participants visited the laboratory on five different occasions over a four-week period, with visits 

separated by a minimum of two days. During their initial visit, participants completed an incremental 

cycling test to determine V̇O2max, HRmax, gas exchange threshold (GET) and peak power output (PPO), 

and one self-paced 4 min ‘work interval’ effort as familiarisation. In the remaining four visits, participants 

performed a simulated HIIT session comprising six 4 min work intervals. Between visits, recovery 

duration between work intervals was manipulated. 

7.2 Methods 
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7.2.2 Participants 

Eleven male cyclists (mean ± standard deviation (SD); age: 35 ± 10 years; height 1.77 ± 0.1 m; weight 76 

± 10 kg; V̇O2max: 51 ± 7; HRmax: 180 ± 13 bpm; PPO: 370 ± 53 W) with previous HIIT experience 

volunteered to participated. According to V̇O2max based classification norms (150), participants were 

categorized in performance levels 1 (n = 2), 2 (n = 4), 3 (n = 4), and 4 (n = 1). In line with our study 

presented in Chapter 6 (104), a priori power analysis (G*Power 3.1) indicated a minimum sample size 

of 10 participants was required to detect small differences (Cohen’s d = 0.2) in the physiological and 

perceptual responses between the different simulated HIIT sessions. We strived to recruit twelve 

participants to complete three full rounds of counterbalanced randomization of the experimental visits. 

The study received approval from the local ethics and was conducted in accordance with the Declaration 

of Helsinki and the ethical standards of the International Journal of Sports Medicine (262). 

7.2.3 Incremental cycling test protocol 

After a 5 min warm-up, performed at an intensity of 1.5 W·kg-1, participants completed an incremental 

cycling test on an electronically-braked cycle ergometer (Velotron Dynafit Pro, Racermate Inc., Seattle, 

USA). This cycle ergometer has been shown a reliable and valid tool to assess cycling performance 

(263,264). The test started at 100 W and power output (PO) increased by 25 W·min-1 until volitional 

exhaustion (defined as drop in > 10 revolutions per minute of self-selected cadence), or when at least two 

of the following criteria were met: 1) HR ≥ 90% of age-predicted maximum; 2) respiratory exchange ratio 

≥ 1.10; 3) stable V̇O2 despite increased intensity (212).  

On completion of the test, V̇O2max was defined as the highest average V̇O2 over a 30 s period, and HRmax 

as the highest obtained value in the test. PPO was calculated as the PO that was maintained for the final 

completed stage, or, as the completed fraction of an incomplete final stage added to the PO of the last 

completed stage (265). GET was determined from a cluster of measures, previously outlined by Bailey et 

al.(250) and detailed in Chapter 6 (Section 6.2.3). The PO corresponding to 70% of the difference (Δ) 

between the PO at GET and PPO was calculated, and used as warm-up intensity in the remaining visits. 
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After completion of the incremental cycling test, and a brief recovery period (~10 min), participants 

performed one self-paced 4 min effort in the training set-up of the ergometer (Velotron Coaching 

Software) to familiarize with this set-up and the simulated gear shifting available on the ergometer. 

Participants were further familiarized with the concept of using the ratings of perceived exertion (RPE, 

(80)) and perceived readiness scale (PR, (101)) to monitor their efforts in HIIT sessions. Individual bike 

set-up (saddle height, saddle set back and reach to bars) were reported after completion of the first visit, 

and copied in all further visits. 

7.2.4 Experimental simulated HIIT session 

In the four remaining visits, participants performed a HIIT session comprising six 4 min work intervals, 

separated by either 1, 2, 3-min or a self-selected recovery duration (1MIN, 2MIN, 3MIN and ssMIN 

respectively). Prior to each HIIT session participants performed a 6 min warm-up at 70% Δ GET, followed 

by a 9 min break (250). Participants were instructed to perform every HIIT session on their maximal 

sustainable intensity across the work intervals (‘isoeffort’), and to finish the HIIT session on a RPE ≥ 17. 

To avoid poor pacing participants were instructed (but not restricted) to target a work intensity of 75% 

PPO in the first interval, based on previous research (40,42,266). Continuous feedback was available on 

elapsed time and PO during the work intervals.  

In the recovery intervals, participants were instructed to cycle at 1 W·kg-1. RPE were obtained immediately 

after every work interval. PR was scored every 45 sec during the recovery interval, but only in ssMIN, 

with participants blinded for elapsed time, PR indicated the start of subsequent work intervals when 

participants indicated to feel ‘adequate recovered to exercise at the required intensity’ (101). In all trials, 

participants were blinded to the experimental condition until the completion of the first work interval. 

Session RPE (sRPE, (267)) was obtained 30 min after completion of the training session based on the 

question ‘How hard was your workout?’. 

7.2.5 Data collection and analysis 

During the incremental cycling test and the four HIIT sessions, HR was recorded at 1 Hz using a Garmin 

HR monitor (910XT, Garmin Ltd., Schaffhausen, Switzerland), and respiratory parameters were sampled 
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breath-by-breath using open circuit spirometry (Oxycon Pro, Jaeger, Höchberg, Germany). As per 

manufacturer’s recommendations, the O2 and CO2 analysers were calibrated using ambient air and 

calibration gases of known concentrations before every experimental trial. PO in the simulated HIIT 

sessions was sampled at 4 Hz in the accompanying product software. Prior to every experimental trial, the 

cycling ergometer was calibrated. 

7.2.6 Statistical analysis 

Data were analysed using SPSS 25.0 (SPSS Inc., Chicago, USA), and are presented as mean ± SD. Mean 

differences in t90V̇O2max and t95V̇O2max, time ≥ 90% and 95% HRmax (t90HRmax and t95HRmax 

respectively), PO, as well as the perceptual responses were analysed using one-way repeated measures 

analysis of variance (ANOVA). Only data obtained during work intervals were analysed. A two-way 

repeated measure ANOVA (protocol×interval) was used to analyse differences in the 30 sec baseline, 

mean, and final min V̇O2 and HR across the different protocols, followed by Turkey’s post hoc tests were 

appropriate. Additionally standardized effect sizes (ES) are reported as Cohen’s d. Qualitative 

interpretation of d was based on the guidelines provided by Hopkins et al. (151): < 0.2 trivial; 0.20 - 0.59 

small; 0.6 - 1.19 moderate; 1.20 - 1.99 large; ≥ 2.00 very large. Significance for all tests was set at p < 

0.05. 

The physiological and perceptual responses to the four HIIT protocols, and the accompanying exercise 

intensities are shown in Table 7.2. t90HRmax was higher in 1MIN, 2MIN and ssMIN compared to 3MIN, 

but not significantly different between protocols for t95HRmax, t90V̇O2max and t95V̇O2max. All 

physiological measures evaluated in the current study showed large amounts of individual variability, 

highlighted in Figure 7.1, which depicts the individual and grouped responses of t90V̇O2max across the 

simulated HIIT sessions. The difference in t90HRmax between 3MIN and the other experimental 

conditions was of a small magnitude (see Table 7.2). Mean power output across the work intervals was 

higher in 3MIN and ssMIN than in 1MIN, whilst this difference was only of small (vs 3MIN) or trivial 

(vs ssMIN) magnitude. Fluctuations in power output were evident in all protocols, and averaged 74.4 ± 

7.3 Results 
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2.2, 75.5 ± 2.4, 77.2 ± 1.6 and 76.6 ± 1.8 %PPO across the work intervals in 1MIN, 2MIN, 3MIN and 

ssMIN respectively. Both meanRPE and peakRPE were similar between the HIIT protocols, as well as 

sRPE. 

Baseline, mean, and last min V̇O2 and HR for all work interval are shown in Table 7.4. Significant main 

effects for protocol and interval and a significant interaction effect (interval*protocol) were found for both 

V̇O2 and HR baseline measures. Post hoc analysis revealed that intervals started from an elevated V̇O2 

and HR after the 1st interval in all protocols. The elevated baseline V̇O2 in 1MIN was higher from the 2nd 

to 5th work interval compared to 2MIN, 3MIN and ssMIN, and also higher in the 6th interval compared to 

ssMIN. Similarly, baseline HR was higher in 1MIN compared to all other protocols for the remaining 

intervals. No differences in mean V̇O2 and HR, and V̇O2 and HR of the final min were evident between 

any of the intervals. 

Participants rated their final work interval in all protocols an RPE score of ≥ 17, verifying ‘isoeffort’ 

conditions. In ssMIN, self-selected recovery time steadily increased throughout the recovery intervals, 

and averaged 118 ± 17 s (see Table 7.1). None of the self-selected recovery durations was significantly 

longer than the preceding recovery duration (p > 0.05 for all). 

Table 7.1: Mean ± SD Self-selected recovery duration between subsequent work intervals 

 Recovery interval 

 1 2 3 4 5 

Time (sec) 97 ± 24 112 ± 26 127 ± 24 138 ± 32 139 ± 32 

range 55 - 130 68 - 141 67 - 165 80 - 160 90 – 207 
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Table 7.2: Mean ± SD physiological, performance and perceptual responses to the four simulated HIIT sessions (n = 11) 

 
HIIT Protocol 

 
 

1MIN Range 2MIN range 3MIN Range ssMIN range 

p value 

 interaction 

effect 

t90V̇O2max (s) 717 ± 403 (97 - 1294) 532 ± 320 (74 - 1041) 
527 ± 

372 

(110 - 

1300) 
501 ± 408 (0 - 1185) 0.217 

t95V̇O2max (s) 468 ± 420 (22 - 1189) 282 ± 271 (20 - 792) 
310 ± 

391 
(20 - 1245) 296 ± 389 (0 - 1085) 0.239 

          

t90HRmax (s) 
828 ± 408 

a 

(191 - 

1269) 

885 ± 381 

a 

(287 - 

1315) 

649 ± 

415 
(10 - 1252) 

838 ± 393 

a 

(110 - 

1255) 
0.030 

t95HRmax (s) 323 ± 371 (0 - 968) 368 ± 351 (0 - 1019) 
248 ± 

332 
(0 - 941) 317 ± 394 (0 - 975) 0.234 

          

mean Power Output (W) 275 ± 47 (196 - 365) 280 ± 46 (203 - 376) 
286 ± 45 

b 
(215 - 369) 283 ± 46 b (210 - 370) 0.025 

          

meanRPE (au) 16.9 ± 1.2 
(14.3 - 

19.0) 
16.6 ± 0.8 

(15.5 - 

18.3) 

16.9 ± 

1.1 

(15.8 - 

17.8) 
16.9 ± 1.1 

(14.5 - 

18.5) 
0.280 

peakRPE (au) 18.8 ± 0.9 (17 - 20) 18.4 ± 0.8 (17 - 19) 
18.7 ± 

0.8 
(17 - 20) 18.7 ± 0.9 (17 - 20) 0.372 

sRPE (au) 8.0 ± 1.1 (6 - 10) 7.3 ± 1.0 (6 - 9) 8.1 ± 0.7 (7 - 9) 7.6 ± 1.2 (5 - 9) 0.086 

a greater than 3MIN; p < 0.05, b greater than 1MIN; p < 0.05 

Note; au: arbitrary unit, HIIT: high intensity interval training, HRmax: maximal heart rate; RPE, ratings of perceived exertion; sRPE, session rating of perceived exertion. t90: 

time ≥ 90% V̇O2max / HRmax, t95: time ≥ 95% V̇O2max / HRmax, V̇O2max: maximum oxygen uptake 
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         1MIN  2MIN          3MIN  ssMIN 

Figure 7.1: Individual (○) and grouped (●) t90V̇O2max (s) in the simulated HIIT sessions 

In dept analysis of the data presented in Figure 7.1 revealed five participants accumulated most time ≥ 

90% V̇O2max in 1MIN, three participants in 2MIN and three participants in 3MIN. For no participants 

the ssMIN resulted in the highest t90V̇O2max. 
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Table 7.3: Effect size (Cohen’s d) comparison between all experimental protocols 

               HIIT Protocol   

1MIN 2MIN 3MIN 

t90V̇O2max 2MIN 0.51   

 3MIN 0.49 0.01  

 ssMIN 0.53 0.08 0.07 
     

t95V̇O2max 2MIN 0.53   

 3MIN 0.39 0.08  

 ssMIN 0.42 0.04 0.04 
     

t90HRmax 2MIN 0.14   

 3MIN 0.43 0.59  

 ssMIN 0.02 0.12 0.47 
     

t95HRmax 2MIN 0.12   

 3MIN 0.21 0.35  

 ssMIN 0.02 0.14 0.19 
     

mean Power Output 2MIN 0.11   

 3MIN 0.24 0.13  

 ssMIN 0.17 0.07 0.07 
     

meanRPE 2MIN 0.29   

 3MIN < 0.01 0.31  

 ssMIN < 0.01 0.31 < 0.01 
     

peakRPE 2MIN 0.47   

 3MIN 0.12 0.38  

 ssMIN 0.11 0.35 < 0.01 
     

sRPE 2MIN 0.67   

 3MIN 0.11 0.93  

 ssMIN 0.35 0.27 0.51 

Note; HIIT: high intensity interval training, HRmax: maximal heart rate; RPE, ratings of perceived exertion; sRPE, 

session rating of perceived exertion. t90: time ≥ 90% V̇O2max / HRmax, t95: time ≥ 95% V̇O2max / HRmax, 

V̇O2max: maximum oxygen uptake 
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Table 7.4: Baseline, mean and last minute V̇O2 (in mL·kg–1·min–1) and HR (in beats per minute) per work interval 

for the simulated HIIT sessions 
 

Work Interval 

 

 

1 2 3 4 5 6 

p value 

interaction 

effect 

Baseline V̇O2        

1Min 24.8 ± 6.8 32.4 ± 6.4 a,c 32.5 ± 5.9 a 31.8 ± 5.6 a 30.3 ± 6.7 a 28.9 ± 7.2 b p < 0.01 

2Min 21.7 ± 5.8 25.0 ± 4.4 c 25.1 ± 4.4 25.9 ± 4.3 26.3 ± 4.5 26.7 ± 4.3  

3Min 23.4 ± 5.3 26.9 ± 5.1 c 25.6 ± 6.7 25.1 ± 6.4 25.0 ± 6.7 24.6 ± 6.3  

ssMin 23.2 ± 6.6 26.7 ± 6.2 c 27.2 ± 4.9 25.2 ± 6.0. 24.1 ± 3.9 24.0 ± 4.1  

Mean V̇O2  
       

1Min 44.6 ± 7.7 46.6 ± 8.2 46.3 ± 8.6 45.8 ± 8.6 44.7 ± 8.7 44.3 ± 9.5 p = 0.74 

2Min 42.9 ± 9.4 44.7 ± 8.3 44.0 ± 8.4 44.1 ± 8.8 44.0 ± 8.4 44.4 ± 8.7  

3Min 43.1 ± 7.3 44.9 ± 7.4 44.8 ± 7.8 44.4 ± 7.9 44.1 ± 7.5 44.5 ± 7.6  

ssMin 42.8 ± 8.3 45.1 ± 8.3 44.0 ± 8.5 43.5 ± 9.9 42.7 ± 8.6 43.5 ± 8.1  

Last min V̇O2  
       

1Min 47.4 ± 8.0 48.2 ± 8.9 48.4 ± 9.6 47.0 ± 8.9 46.0 ± 9.5 46.0 ± 9.7 p = 0.65 

2Min 45.8 ± 9.7 47.1 ± 9.2 46.8 ± 9.1 46.6 ± 9.1 46.5 ± 8.8 46.7 ± 9.1  

3Min 47.2 ± 8.4 47.5 ± 8.4 47.5 ± 8.8 46.6 ± 9.2 46.4 ± 8.4 46.5 ± 8.4  

ssMin 46.5 ± 8.6 47.6 ± 8.8 46.5 ± 9.2 46.9 ± 9.7 45.4 ± 9.4 46.1 ± 8.6  
        
Baseline HR        

1Min 117 ± 11 140 ± 13 a,c 142 ± 13 a 147 ± 15 a,c 149 ± 15 a,c 150 ± 15 a p < 0.01 

2Min 115 ± 17 124 ± 13 c 127 ± 15 c 129 ± 16 131 ± 15 132 ± 16  

3Min 115 ± 10 120 ± 11 c 120 ± 15 122 ± 15 123 ± 15 125 ± 15  

ssMin 118 ± 14 127 ± 13 c 129 ± 13 129 ± 14 127 ± 15 c 130 ± 13 c  

Mean HR         

1Min 155 ± 13 160 ± 12 162 ± 12 163 ± 13 164 ± 13 166 ± 13 p = 0.72 

2Min 155 ± 16 160 ± 14 161 ± 14 163 ± 14 163 ± 13 165 ± 15  

3Min 154 ± 13 158 ± 12 159 ± 13 159 ± 12 160 ± 12 161 ± 12  

ssMin 155 ± 14 160 ± 13 162 ± 14 162 ± 14 162 ± 13 163 ± 13  

Last min HR         

1Min 164 ± 12 167 ± 12 169 ± 12 169 ± 12 170 ± 12 171 ± 13 p = 0.95 

2Min 165 ± 14 169 ± 13 170 ± 13 171 ± 13 171 ± 12 173 ± 13  

3Min 163 ± 12 166 ± 11 167 ± 12 168 ± 11 168 ± 11 170 ± 11  

ssMin 164 ± 14 169 ± 13 170 ± 13 170 ± 12 170 ± 13 172 ± 12  

Data are presented as mean ± SD 

a sign. higher than comparable work interval in 2MIN, 3MIN and ssMIN; b sign. higher than comparable 

work interval in ssMIN; c sign. different from previous work interval 

Note; V̇O2: oxygen consumption; HR: heart rate 
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This study examined the moderating role of the recovery interval duration on the physiological and 

perceptual responses and accompanying exercise intensities in four simulated HIIT sessions, all performed 

under ‘isoeffor’t conditions. Furthermore, the trade-off between the physiological stimulus and external 

workload of these sessions were examined. The perceptual responses were similar across (sRPE) and 

within (RPE) the HIIT protocols. The length of recovery intervals had a limited effect on the total 

physiological load of the training session, with a similar t90V̇O2max, t95V̇O2max and t95HRmax between 

protocols. While the perceptual and physiological responses were similar, results show that the mean PO 

was higher when work intervals were separated by 3 min or a self-selected recovery duration compared 

to 1 min recovery intervals. 

It has been suggested that the time athletes spend in their ‘red zone’ per HIIT session could serve as a 

good criterion to judge the effectiveness of HIIT protocols (14,55). Previously, the addition of muscle 

vibrations (40) and an all-out pacing strategy (39) to work intervals increased t90V̇O2max in trained 

cyclists. To the best of our knowledge, this is the first study in cyclists to evaluate the acute physiological 

responses to changes in the duration of recovery intervals in four simulated HIIT sessions. In line with 

findings in trained runners (41,104), no differences were found in t90V̇O2max and t95V̇O2max between 

the protocols. While no statistical differences were evident, participants spent a notable ~200 s extra in 

t90V̇O2max, and ~170 sin t95V̇O2max in 1MIN compared to 2MIN, 3MIN and ssMIN (see Table 7.1). 

t90HRmax was significantly lower in 3MIN compared to the shorter recovery intervals (~200 s, see Table 

7.1), but not different in t95HRmax. Work intervals in 1MIN started from an elevated V̇O2 and HR 

compared to all other protocols (see Table 7.4), however, this different metabolic rate did not attenuate 

the mean V̇O2 or HR attained during the complete, or final minute of the work intervals across the different 

protocols. In line with previous studies in cyclists of different performance levels (e.g. (42,75,266)), V̇O2 

and HR in the 4 min intervals averaged 85 - 90% V̇O2max and HRmax, which increased to 90 - 95% 

V̇O2max and HRmax in the final minute. Both mean and last minute V̇O2 and HR in the current study are 

~5% lower than typically reported in similar HIIT sessions of runners (77,104), highlighting the 

discrepancy between the physiological responses to cycling and running. These results are in line with the 

7.4 Discussion 
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findings previously summarized by Millet (144), which suggests that physiological responses are 

dependent on the exercise modality, and the amount of muscle mass involved. Since more muscle mass is 

involved whilst running than whilst cycling, the ‘red zone’ in runners coincides with a higher fractional 

utilization of V̇O2max than in cyclist (144). New data from our lab, collected in trained triathletes, showed 

that also the relative exercise intensity that marked the lower limit of Zone 3 (see Figure 1.1) was 

significantly higher whilst running compared to cycling (84.5 ± 4.3% vs 76.6 ± 4.9% of respective 

maximum work intensity, p < 0.01 (data collection not part of doctoral work and hence not shown)). Both 

the higher fractional utilization of V̇O2max and the higher relative exercise on the lower limit of Zone 3, 

allow runners to exercise at higher work rates compared to cyclists, as we evidence in Chapter 6 and 

Chapter 7. 

Recently, it was proposed that peak HR at the end of an interval can serve as a sensitive intensity indicator, 

however, it was also stated that care should be taken when using HR to guide exercise intensities (268). 

Exemplary, Tucker et al. (75) indeed used HR to guide the exercise intensity in four 4 min intervals, which 

led to a significant 20% reduction of PO from the first to last interval to maintain HR within the desired 

90 - 95% HRmax range. In the current study, participants performed every work interval on their maximal 

sustainable intensity across the HIIT sessions. PO in the first interval was not different between protocols, 

and decreased throughout all protocols after the initial interval, however, to a far lesser extent than the 

reduction reported by Tucker et al. (75). The decrease in PO between the initial and final interval was 

greater in 1MIN (7%) compared to all other protocols (4%, 4%, and 5% for 2MIN, 3MIN and ssMIN, 

respectively), while HR was similar within and between these protocols (see Table 7.4). In line with 

previous research (104,268), our results confirm that HR cannot inform coaches and athletes on the aerobic 

demands and physical work performed in a HIIT session, and caution should be taken when HR intensities 

are used to determine workloads. 

The use of ‘isoeffort’ intervals in a scientific setting shifts the decision making on work intensities per 

HIIT to the participant, as it rests on the notion that athletes know how to train hard when they are required 

to train hard (42). This approach further allows scientists to study the potential trade-off between the 

physiological stimulus and the external workload of a HIIT session, which is impossible when work 
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intensities are predefined. Participants achieved similar relative workloads as previously reported in 

studies that examined ‘isoeffort’ intervals of a similar duration (39,40,42,266). Power output across the 

work intervals was higher in 3MIN and ssMIN than in 1MIN, which is indicative for a higher accumulation 

of fatigue in 1MIN. 

Large variability in the performance levels of the included participants was evident, based on absolute 

values for V̇O2max, HRmax and PPO, or according to the proposed guidelines of De Pauw (150). To 

account for this, all physiological measures (V̇O2 and HR) were indexed to their respective individual 

maximum, and the variability later found in the results was not dissimilar to the variation present in 

V̇O2max and HRmax (see Table 7.4). The same was true for the metric of power output across the 

experimental visits, in which the variation in work rates during the simulated HIIT sessions was similar 

to the variability present in the participants’ PPO (see Table 7.2). Participants in this study were included 

on the basis of prior experience with HIIT, rather than the recruitment of a highly homogenous group of 

cyclists. A more homogenous participant pool potentially would have resulted in more homogenous work 

rates across participants, however, large variability in the measure of t90V̇O2max have been reported 

previously in highly homogenous groups of runners (28) and cyclists (40,254). Training status or 

performance level however may effect the response in V̇O2 and HR kinetics (90,245), and future studies 

are therefore advised to include participants nested within the same performance level (150). 

In conclusion, this study compared the acute responses to a simple manipulation in the design of a HIIT 

session, by manipulating the recovery duration between work intervals. The results demonstrated, in 

contrast to earlier findings in runners (104), a trade-off between the physiological stimulus and the external 

workload of the simulated self-paced HIIT session. The short recovery interval in 1MIN provided the 

largest t90V̇O2max and t95V̇O2max, at the cost of a decreased PO. Conversely, longer recovery intervals 

resulted in a decreased physiological load, but participants performed the HIIT session on a higher external 

workload. 
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We believe these results have general relevance to other HIIT protocols incorporating intervals of a similar 

duration (1 – 8 min), in which exercise intensities are high, but ultimately submaximal. Future studies 

incorporating self-paced ‘isoeffort’ HIIT sessions, using trained triathletes who are accustomed to both 

running and cycling, are welcomed to evaluate if these differences are exercise or participant dependent. 

The results of this study can be used by coaches and athletes in the design of HIIT sessions, and adequate 

recovery intervals can be selected according to their training goals. 

 

  

7.5 Practical applications 
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Chapter 8: 

 

 

 

 

  

The moderating role of the recovery interval duration in predefined 

HIIT protocols is limited in team sport athletes – an intervention study 
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High intensity interval training (HIIT) is an indispensable constitute of successful training programs of 

many athletes, historically, particularly for those involved in endurance sports. In team sports, HIIT is 

typically administered as small sided games. In the pre-season conditioning of contact team sports like 

rugby, a further increase in game-based conditioning might be undesirable considering potential injuries, 

and generic running HIIT interventions might be beneficial to improve aerobic fitness. Prior to and 

immediately after a three week pre-season conditioning period, 25 collegiate rugby players performed 1) 

an incremental run test to determine V̇O2max, HRmax and maximal aerobic velocity (MAV), and 2) a 

time to exhaustion test. Participants were matched on absolute V̇O2max and then randomly assigned to 

one of three training groups: 1MIN (n = 9), 3MIN (n = 9) or CON (n = 7). All participants completed a 

training program prescribed by the club, with no additional HIIT (CON), or an extra five HIIT sessions. 

These sessions comprised six 4 min work intervals ran at 90% MAV, separated by either 1 min (1MIN) 

or 3 min (3MIN) passive recovery to evaluate the moderating role of recovery interval durations. The 

physiological load in the HIIT sessions of 1MIN and 3MIN was similar when expressed as time ≥ 90% 

HRmax (p > 0.05, ES = 0.08). Repeated measures analysis of variance indicated that the addition of 2-hr 

generic HIIT resulted in improvements in V̇O2max in 1MIN (3.72%, ES = 1.54) and 3MIN (2.98%, ES = 

0.52), and increased time to exhaustion in these groups to a moderate extent, but improvements were not 

significantly different between the training groups (p = 0.254 for V̇O2max and p = 0.442 for TTE 

respectively). These results indicate that the duration of the recovery intervals in HIIT sessions, run on 

predefined exercise intensities, did not attenuate the magnitude of changes in these outcome variables.   

Summary 
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In endurance sports, a high maximum oxygen uptake (V̇O2max) is one of the most important determinants 

and predictors of performance (217,269). In contrast to endurance sports, performance in team sports not 

solely relies on the physiological capacity of players but also on their technical and tactical proficiencies 

which are often made the core of team sports training programs (69,270). Games in team sports like field 

hockey, soccer and rugby are predominantly aerobic in nature as players interchange high-intensity 

movements of relatively short durations with rest periods throughout the game (271–273). In soccer 

players, it was estimated that aerobic energy contributes approximately 90% of the total energy cost during 

competitive play (52), and the relevance of aerobic fitness was further confirmed by studies showing a 

relationship between V̇O2max, distance covered and running velocities during a match (69,72,274). This 

suggests that a well-developed aerobic energy system is an important physiological determinant of team 

sport performance too, and training to improve the players’ aerobic capacity is highly relevant. 

As outlined in Chapter 3 and further evidenced by Bacon et al. (140) and Milanovic et al. (30), high 

intensity interval training (HIIT) is regarded a time efficient and highly effective training modality to 

improve cardiorespiratory and metabolic functioning (14). Historically, HIIT has formed an indispensable 

constitute in training regimes of many athletes, particularly those involved in endurance sports (14,47). In 

team sports, small-sided games (SSGs) are typically used to target endurance adaptations and 

simultaneously develop technical and tactical skills, as SSGs mimic the conditions of actual match-play 

where athletes must perform under pressure and fatigue (275,276). It is worthy to note that SSGs seem to 

have numerous advantages over generic running or cycling HIIT for team sport players (275,277); 

nevertheless, unlike generic HIIT, in sports like rugby, SSGs do subject players to scenarios that have an 

increased injury risk (i.e. increased chance of heavy contact collisions). Injury rates for runners reported 

in the literature vary from 2.5 to 12.1 injuries per 1000 hours of running (278), which is at most, less than 

half the injury rate reported in rugby players while participating in SSGs (26.0 per 1000 training hours, 

(279)). In the aerobic conditioning of rugby players, a further increase in the amount of SSGs might 

therefore be undesirable, especially in pre-season conditioning periods, in which the training volume and 

workload are already high and players are most prone for injuries (280). In young and adolescent soccer 

8.1 Introduction 
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players, it was previously demonstrated that generic HIIT improved V̇O2max to a similar extent as SSGs 

(276) and repeated sprint training (15), and significantly more than after extra technique training (69) with 

no negative effect on strength, power or sprint performance (69,72,276). In the pre-season of rugby 

players, additional HIIT therefore potentially is a safer and more suitable training modality than SSGs to 

improve aerobic fitness. 

In HIIT, repeated periods of vigorous exercise are interspersed with recovery periods (14,15), and a 

complex interplay between the number of intervals, the exercise intensities and the duration of both the 

work and recovery intervals determine the workload of a HIIT session (16,17). Based on the configuration 

of predominantly the work intervals (54), HIIT can be divided in repeated sprint training (RST), sprint 

interval training (SIT) and aerobic interval training (AIT). The format of HIIT allows athletes to exercise 

longer at vigorous exercise intensities per training, and furthermore, especially in AIT and SIT sessions, 

increase time spent near V̇O2max and maximum heart rate (HRmax) compared to continuous exercise 

(18,281). 

In Chapter 3 we summarized over 80 unique AIT protocols (see Table 3.1 and Table 3.2), and, in line 

with the results of meta-analysis evaluating SIT protocols (e.g. (152,198,200)), we showed that the 

majority of these AIT protocols yield improvements in V̇O2max. This can make believe that ‘all roads 

lead to Rome’ when it comes to the programming of HIIT sessions, and that further optimization of HIIT 

protocols is needless. It was suggested by Thevenet et al. (55) that the effectiveness of specifically AIT 

protocols can be expressed as the time athletes spend at or close to their V̇O2max per session (≥ 90% 

V̇O2max; t90V̇O2max), in the expectation that a higher t90V̇O2max per session will allow for greater 

training adaptations (55,282). In the quest to increase t90V̇O2max, many studies have tried to optimize 

the work intervals of AIT protocols by manipulating work intensities (33,34) and work durations (20,35–

37), where others examined different recovery intensities (38), pacing strategies (39), and even the use of 

additional aids like muscle vibration in cyclists (40). A demanding work interval is needed to facilitate 

training adaptations, with adaptations determined at a cellular level by heat shock proteins, PCG1a and 

other components (50), but a successful AIT protocol can only be achieved when work bouts are separated 

by adequate recovery intervals (54).  
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Surprisingly little research has explored the overall impact of recovery intervals, and a better 

understanding of optimum exercise intensities and recovery durations in HIIT protocols is therefore 

timely. In highly trained male cyclists (21) and recreationally active female team sport players (46), 

previous studies demonstrated a limited effect of  in the recovey duration between work intervals, when 

AIT protocols were matched for total training volume and work intensities. Whilst insightfull, both these 

studies administered a cycling intervention to their participants (21,46), and how these results generalize 

to running based AIT interventions is questionable, evidenced by the notable different physiological 

responses to HIIT sessions in runners (Chapter 6) and cyclists (Chapter 7). The aim of the current study 

therefore was to evaluate the moderating role of the recovery interval duration in intensity matched AIT 

protocols, in the context of a pre-season conditioning period of collegiate rugby players. Since work 

intensities were fixed in the current study, based on the results of previous studies conducted in cyclists 

(21,46), no differences in adaptations were expected between the employed HIIT interventions.  

8.2.1 Experimental approach to the problem 

Twenty-five collegiate male rugby players, accustomed to traditional on feet conditioning and resistance 

training but unaccustomed to generic HIIT, took part in the study (means ± standard deviation (SD): age: 

21 ± 1 year; height: 1.83 ± 0.06 m; body mass: 91 ± 12 kg). During an initial team meeting, study details 

and participation requirements were explained, and voluntary written informed consent was obtained. The 

study received approval from the local ethics committee (University of Essex) and was conducted in 

accordance with the Declaration of Helsinki. 

Players returned for training at the rugby club following a 6-week off-season. The first week back in 

training was in early August, in which baseline testing of all participants was performed. Baseline testing 

comprised of 1) an incremental running test to determine V̇O2max, HRmax and maximal aerobic velocity 

(MAV), and 2) a time to exhaustion test. Participants were matched on absolute V̇O2max, and then 

randomly assigned to one of three training groups: 1MIN (n = 9), 3MIN (n = 9) or CON (n = 7). Within 

4-7 days of baseline testing, all players began a 3-week pre-season training program prescribed by the 

8.2 Methods 
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club (a summary of the pre-season training plan can be seen in Table 8.1). Next to this training program, 

1MIN and 3MIN completed five additional HIIT sessions. The HIIT protocols of 1MIN and 3MIN only 

differed in the duration of the recovery intervals (1 min vs 3 min). CON received no additional HIIT and 

acted as control group in this study. Participants in 1MIN and 3MIN completed post intervention testing 

4-7 days after their final HIIT session, and CON completed their post intervention tests 3-4 days after the 

regular last training session. 

Table 8.1: Overview of the 3-week pre-season training program   

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

AM Lower-body 

gym             (60 

min) 

Free 

Upper-body  

gym          (60min) Free 

Lower-body 

gym             (60 

min) 

Free Free 

Mid-AM 

 HIIT 
Gym circuit    (30 

min) 
HIIT 

Gym circuit  

(30 min) 

On feet 

conditioning 

(30 min) and 

Rugby         (60 

min) 

 

Free 

 

PM On feet 

conditioning 

(45 min) and 

Rugby         

(45 min) 

Free 

On feet 

conditioning   

(45 min) and 

Rugby            

(60 min) 

Free Free Free Free 

Note; AM: ante meridiem, HIIT: high intensity interval training, PM: post meridiem 

8.2.2 Incremental running test and Time to exhaustion test protocol 

All participants performed the incremental running and time to exhaustion test before and after the 3-week 

training intervention. Both these tests took place in the sports and exercise science laboratory, and were 

performed on a motorised treadmill (Pulsar 3p, H/P Cosmos, Nussdorf-Traunstein, Germany), with the 

gradient set at 1% (213). Participants were asked to refrain from consuming alcohol and caffeine for at 

least 24-h prior to testing, as well as from engaging in strenuous exercise in the 48-h leading up to the 

tests. All lab visits were completed at the same time of the day (± 1 h). 

After a 5 min warm-up at 8 kmh−1 and a short break, the first 2 min stage of the incremental running test 

started at 8 kmh−1. Hereafter, the treadmill velocity was increased by 1 kmh−1 every 2 min until participants 

reached volitional exhaustion or when at least two of the following criteria were met: 1) heart rate (HR) ≥ 

90% of the age-predicted maximum; 2) respiratory exchange ratio ≥ 1.10; 3) stable V̇O2 despite increased 

intensity (212). V̇O2max was defined as the highest average V̇O2 over a 30 s period. HRmax was defined 
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as the highest HR value obtained by the end of the test. MAV was defined as the highest velocity that 

could be maintained for a complete stage, or, as the velocity of the last complete stage added to the 

completed fraction of an incomplete stage. 

After a brief (10 min) passive recovery period, participants commenced the time to exhaustion test on the 

treadmill, with the treadmill velocity set equal to MAV. Participants were instructed to run as long as 

possible on this velocity, without any feedback on elapsed time. The test was terminated when the 

participants jumped on the side-border of the moving treadmill belt. MAV attained in baseline testing was 

also used in the post intervention time to exhaustion test. 

8.2.3 High intensity interval training session of 1MIN and 3MIN 

Participants in 1MIN and 3MIN performed five HIIT sessions, comprising six 4 min work intervals, 

separated by either 1 min or 3 min passive recovery. The exercise intensity for the work intervals was 

fixed at a running velocity of 90% MAV. Sessions were run on an outdoor grass pitch, on which a 4 x 50 

m grid was set out with marking cones every 10 m. Weather conditions were stable during the HIIT 

sessions, with an average temperature of 17-19 ºC.  

Prior to every HIIT, participants were instructed individually on the distance to cover per 1 min segment, 

and complete 4 min work interval (calculated from 90% MAV, varying between 720 m and 970 m). All 

participants were fitted with a HR watch, allowing for HR monitoring, providing feedback on elapsed 

time in work and recovery intervals and further aiding in pacing cues. Throughout the work intervals, the 

principal investigator and the head coach of the collegiate rugby team provided feedback to the 

participants every minute regarding their progress in the work intervals to further ensure exercise 

intensities were maintained at 90% MAV. Both the principle investigator and the head coach were situated 

in the middle of the 4 x 50 m grid and were both equipped with a handout, specifying the distance to cover 

per 1 min segment for all participants. To avoid clustering and potential benefits of drafting (283), 

participants started their session in 30 s staggered intervals. Further, the HIIT was performed by 9 

participants at a time, made up from both 1MIN and 3MIN training groups. In the recovery intervals, 

participants walked / jogged back to the starting point. At the starting point, water was available ad libitum.   
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8.2.4 Data collection and analysis 

During the incremental running test, HR was measured at 1 Hz using a Garmin HR monitor (910XT, 

Garmin Ltd., Schaffhausen, Switzerland), and expired air was analysed continuously for O2 and CO2 

concentrations using open circuit spirometry (Oxycon Pro, Jaeger, Höchberg, Germany). Before each 

experimental trial, the gas analyser and turbine flow meter were calibrated following the manufacturer’s 

instructions. 

HR in the HIIT sessions was monitored continuously, using a Polar HR monitor (RCX5, Polar Electro, 

Kempele, Finland). The physiological responses to the HIIT sessions were indexed for HRmax, and time 

≥ 90% HRmax (t90HRmax) during the work intervals was calculated. Ratings of perceived exertion (RPE) 

were obtained on the 6-20 Borg Scale (80) on completion of every work interval. Session RPE (sRPE, 

(267)) was obtained 30 min after completion of the training session based on the question ‘How hard was 

your workout?’. The physiological and perceptual responses were collected in all intervals of every HIIT 

session. 

8.2.5 Statistical analysis 

All data were analysed using SPSS 25.0 (SPSS Inc., Chicago, USA), and are presented as means ± SD. 

Participant characteristics of the three training groups, and differences in perceptual and HR response to 

the HIIT sessions of 1MIN and 3MIN were compared using one way analysis of variance (ANOVA). The 

effect of the intervention on the physiological capacity (V̇O2max), and performance (MAV and time to 

exhaustion) were evaluated using a 3 x 2 (training group * time) repeated measures ANOVA. Post hoc 

Bonferroni pairwise comparisons were used to show differences between experimental groups where 

appropriate. The significance level of all tests was set at p < 0.05. Standardized effect sizes (ES) are 

reported as Cohen’s d. Qualitative interpretation of d was based on the guidelines provided by Hopkins et 

al. (151): < 0.2 trivial; 0.20 – 0.59 small; 0.6 – 1.19 moderate; 1.20 – 1.99 large.  

8.3 Results 
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8.3.1 Acute responses to HIIT sessions in 1MIN and 3MIN 

Table 8.2 presents the psychophysiological responses to the five HIIT sessions for both 1MIN and 3MIN. 

Work intervals started from a significantly elevated heart rate in 1MIN (82.8 ± 1.7 %HRmax) compared 

with 3MIN (62.5 ± 3.5 HRmax; p < 0.05). The average heart rate during the work intervals was moderately 

higher in 1MN, however, not significantly different compared with 3MIN (1MIN: 91.5 ± 2.0 %HRmax 

vs 3MIN: 89.3 ± 2.7 %HRmax, p = 0.07). The heart rate achieved during the last min in the work intervals 

(1MIN: 95.3 ± 1.8 %HRmax vs 3MIN: 94.2 ± 2.0 %HRmax, p = 0.26) and the time ≥ 90% HRmax in the 

HIIT sessions was similar between 1MIN and 3MIN (p = 0.87). 

RPE scores were significantly higher in 1MIN after completion of the sixth work interval in the HIIT 

sessions (p < 0.05), however, no differences were detected in the overall session RPE between 1MIN and 

3MIN (p = 0.26, see Table 8.2). 

Table 8.2: Heart rate and Perceptual Responses to HIIT protocols in 1MIN and 3MIN 

 Training Group  

 1MIN 3MIN ES 

Heart rate    

30-s Baseline (%HRmax) 82.8 ± 1.7a 62.5 ± 3.5 7.30 

4-min Interval (%HRmax) 91.5 ± 2.0 89.3 ± 2.7 0.93 

Final min (%HRmax) 95.3 ± 1.8 94.2 ± 2.0 0.56 

t90HRmax (sec) 929 ± 229 913 ± 186 0.08 

    

Ratings of perceived exertion    

RPE at the end of protocols (au) 17.2 ± 1.5b 15.5 ± 1.2 1.29 

session RPE (au) 7.6 ± 1.4 6.7 ± 1.4 0.55 

a p < 0.01, b p < 0.05 

Note; ES: effect size, HRmax: maximum heart rate, t90HRmax: time ≥ 90% HRmax, RPE: ratings of perceived exertion, au: 

arbitrary unit 

8.3.2 Changes in physiological capacity and performance 

Participants were matched on absolute V̇O2max, and accordingly did not differ on this variable. Further, 

no differences with regards to age, height, body mass, and performance parameters were evident between 

the training groups before the pre-season training period. All participants completed the training 

intervention, with no changes in body mass. Repeated measures ANOVA showed no significant 
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interaction effects on V̇O2max, MAV and TTE (see Table 8.3). The improvement of V̇O2max was of a 

large magnitude in 1MIN (3.72%, ES = 1.54), in contrast to the small improvement in 3MIN (2.98%, ES 

= 0.52), and trivial improvement in CON (0.41%, ES = 0.14). Whilst not being statistically different, all 

training groups improved their performance on the TTE test, with the changes in 1MIN (24 ± 33 s) and 

3MIN (29 ± 35 s) being both of a moderate magnitude – whereas the increased TTE in CON was only 

small (7 ± 32 s). 
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Table 8.3: Changes in physiological and performance parameters over the pre-season period    

  1MIN 3MIN CON  

  
pre-test post-test pre-test post-test pre-test post-test 

(group*time)  

P value 

V̇O2max (L·min-1) 4.20 ± 0.32 4.35 ± 0.35 4.14 ± 0.31 4.26 ± 0.41 4.11 ± 0.29 4.13 ± 0.31 0.254 

MAV (km·h-1) 13.9 ± 0.8 14.1 ± 1.0 13.9 ± 1.2 14.2 ± 1.2 14.0 ± 1.1 14.1 ± 0.7 0.920 

TTE (s) 180 ± 31 204 ± 44 193 ± 73 222 ± 64 205 ± 68 213 ± 74 0.442 

Note; V̇O2max: maximum oxygen uptake, MAV, maximum aerobic velocity, TTE: time to exhaustion 
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In this study, we evaluated the moderating role of the recovery interval duration in HIIT protocols in the 

context of a pre-season conditioning period of collegiate rugby players. Participants completed a 3-week 

training program prescribed by the club, without HIIT (CON), or with an additional five extra HIIT 

sessions, that comprised six 4 min work intervals, interspersed by either 1 min (1MIN) or 3 min passive 

recovery (3MIN). When interspersed with only 1 min recovery, HIIT sessions were perceived more 

exerting, however, the physiological strain was similar in the protocols of 1MIN and 3MIN, with ~65% 

of the exercise time spent ≥ 90% HRmax. V̇O2max, MAV and time to exhaustion improved to a similar 

extent in both 1MIN and 3MIN, suggesting that the duration of the recovery intervals in HIIT sessions, 

run on fixed exercise intensities, does not affect the magnitude of changes in these variables. 

Pre-season conditioning periods allow for a structured period of physiological, technical and tactical 

overloading, and as the planning of training sessions in this period is not interfered by competitive match-

play, strong foundations are laid for the upcoming season. Classically, conditioning for rugby players only 

has a small to moderate emphasis on improvements in aerobic fitness, highlighted by the trivial 

improvements in V̇O2max of CON. The addition of just 2 hours of generic HIIT resulted in improvements 

in V̇O2max in 1MIN (3.72%) and 3MIN (2.98%), in line with improvements of other HIIT interventions 

of a similar configuration and total duration (see Table 3.1, (63,67,182,284)). Rugby players are a-typical 

participants in running based HIIT interventions, but comparable to the body composition of the 

participants in the current study (height and body mass), Czuba et al. (182) reported similar improvements 

(+0.12 L·min-1, +2.8%) in well trained male basketball players. As 1MIN and 3MIN performed their HIIT 

on days with no planned gym sessions, we consider this study not to perform ‘concurrent training’ in its 

traditional form (142). The improvements in aerobic capacity are of a similar magnitude to studies that 

did evaluate 6 - 8 weeks of concurrent resistance training and SIT or RST in rugby players (285,286). The 

results of the current study might indicate that separating days of aerobic conditioning and resistance 

training elicits faster improvements in V̇O2max, as concurrent training seems to blunt or postpone 

adaptations (285,286). 

8.4 Discussion 
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HIIT is by no means a new phenomenon, but instead a training concept long-appreciated by athletes and 

coaches, from as early as the 1930s (47), and previously, manipulations in the exercise intensity and / or 

duration of work intervals showed to significantly influence t90V̇O2max (20,33,34,36). The internal 

training load, that is the disturbance in homeostasis of the physiological (e.g. cardiovascular, respiratory 

and metabolic) and psychological processes provoked by a training session, is considered the most 

important feature of a training session and the primary stimulus to adaptations in endurance performance 

(282). In an attempt to increase the internal load (expressed as t90HRmax), we added two 4 min work 

intervals to the classic ‘Norwegian HIIT protocol’ introduced by Helgerud et al. (69). This protocol has 

been shown to effectively improve aerobic fitness in numerous studies (e.g. (69,70)), whilst analysis of 

the acute physiological responses to this protocol show athletes only spent 6 to 8 min per session at or 

above 90% HRmax and V̇O2max (41,75). We now show that an extra two 4 min work intervals can be 

added to this protocol safely, and in doing so, firstly the high intensity exercise time is increased to 24 

min, and secondly, t90HRmax in the current study (1MIN: 929 ± 229 s, 3MIN: 913 ± 186 s) was almost 

double the time that was found in the evaluation the classic ‘Norwegian HIIT protocol’ (481 ± 221 s, 

(41)). All participants completed every planned work interval, an indicator of sufficient recovery time 

between subsequent bouts in both training groups. 1MIN rated their perceived exertion after the final work 

interval significantly higher than 3MIN, however, from a time-efficiency point of view, we further show 

that 1 min recovery between work intervals is sufficient in this HIIT configuration. 

Smilios et al. (41) provided a first insight how perceptual and physiological responses differ in matched 

intensity HIIT sessions, when only recovery interval durations are manipulated. In their study, 

recreationally trained male runners executed, on 3 separate sessions, four 4 min runs at 90% MAV 

interspersed by 2, 3 or 4 min recovery intervals. In agreement with these findings, intervals in the current 

study started from a significantly elevated heart rate when the recovery duration was shortest, whereas the 

average heart rate during the complete 4 min interval, and the last min of the work intervals was not 

different between protocols. Smilios et al. (41) reported that participants spent ~140 s less in t90HRmax 

when recovery durations increased from 2 min to 4 min, however, the 2 min longer recovery interval of 

3MIN in the current study did not result in a lower t90HRmax compared to 1MIN. A likely explanation 
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for this difference is the fact that HIIT sessions in the current study were performed on an outdoor grass 

pitch (255,256), compared to the treadmill based HIIT sessions evaluated by Smilios et al. (41). Running 

on treadmills yields lower physiological responses than overground running, in both continuous (213) and 

interval running protocols (255,256), and to create the same physiological response during treadmill and 

outdoor runs, an increase in treadmill gradient or running velocity is advised (213,255). 

Participants in both 1MIN and 3MIN performed ~65% of their exercise time in the 24 min HIIT protocols 

above 90% HRmax, and whilst heart rate measures might not be the most valid measure of the 

physiological load of a HIIT session (41,104), these results indicate the physiological stimuli in 1MIN and 

3MIN were of similar magnitude. Our results thereby confirm the previously reported findings in cyclists 

(21,46), that when HIIT protocols are matched for total training volume and work intensities, no 

differences in improvements are to be expexted because of differences in recovery intreval durations. 

Metabolically, through the use of muscle biopsy sampling, Edge et al. (46) evidenced that changes in 

muscle metabolites (specifically phosphocreatine, lactate and hydrogen ions) were larger when recovery 

intervals were shorter (1 min vs 3 min) in an interval sequence of six 2 min work intervals. These larger 

perturbations did not yield greater improvements in V̇O2max, and were therefore not considered a crucial 

factor in regulating adaptations of the contracting muscle (46). While heart rate kinetics were not assessed 

in this current study per se, the profile of the obtained heart rate variables (30 s baseline, average heart 

rate final min) and the comparable t90HRmax in both 1MIN and 3MIN, indicate a faster mean response 

time and increased absolute amplitude in 3MIN (41,104,261). As these differences in the kinetical on-

phase did not affect the magnitude of change in V̇O2max in 1MIN and 3MIN, data of the current study 

suggest that these variables do not act as a strong enough moderating factor to differentiate improvements 

in work and intensity matched HIIT protocols. 

With this study, we are the first to demonstrate that physiological and performance adaptations were not 

altered differently in collegiate rugby players after a running based HIIT intervention, when protocols 

only differed in the recovery interval duration. To isolate, and solely study the potential moderating role 

of the recovery interval duration, it was important to further match the protocols of 1MIN and 3MIN (54). 

Previously, we and others argued that athletes pace their effort in HIIT sessions on RPE and feelings of 
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accumulated fatigue (104,268), rather than adhering to predefined work intensities. Adopting this self-

paced approach, as we discussed in Chapter 6 and Chapter 7, longer recovery intervals in a six 4 min 

HIIT session facilitated higher exercise intensities in subsequent work intervals (higher running velocities 

in runners, higher power outputs in cyclists), whilst maintaining a similar physiological stimulus 

(t90V̇O2max and t90HRmax). In Chapter 6, recreationally trained runners rated their final interval a RPE 

score of 19 ± 0.7 when they received 3 min recovery, whereas 3MIN in the current study rated their final 

interval with a RPE score of only 15.5 ± 1.2. This might indicate that participants in 3MIN were restricted 

by the fixed exercise intensities and could have run faster in their work intervals when allowed, which in 

turn may have generated greater training adaptations. 

Self-paced SIT and AIT interventions have been shown effective to improve V̇O2max and performance 

parameters in cyclist (42,218), and recently, a self-paced running SIT intervention (involving 10 sessions 

of 6 to 8 all-out 30 s sprints) significantly improved V̇O2max and time to exhaustion in adolescent 

Taekwondo athletes (287). The improvements in V̇O2max of these Taekwondo athletes were greater when 

sprints were separated by 120 s, compared to 60 s or 240 s recovery intervals, which for the first time does 

show a moderating role of the recovery duration (287). Unfortunately, the physiological strain nor the 

running velocities of the different training groups were  reported (287), and therefore it remains 

unanswered if a higher external training load (higher running velocity) can trigger larger adaptations. 

Whether self-paced AIT interventions improve aerobic fitness and performance more than the classic fixed 

HIIT interventions is unknown and leaves room for exploration in future studies. 

Classically, conditioning for rugby players only has a small to moderate emphasis on improvements in 

aerobic fitness. The addition of five generic HIIT sessions (comprising six 4 min intervals, run at 90% 

MAV per session) in pre-season conditioning periods of collegiate rugby players resulted in improvements 

in V̇O2max and increased time to exhaustion. Using short recovery intervals (1MIN) during this HIIT 

protocol does not offer any advantage (and even negatively, results in higher ratings of perceived exertion) 

over the use of longer recovery intervals (3MIN) when training intensity and volume are matched. Generic 

8.5 Practical applications 
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HIIT is not there to replace SSGs, but can offer an additional stimulus to the aerobic capacity of rugby 

players over a very short period. 
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General Discussion 
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High intensity interval training (HIIT) is an indispensable constitute of successful training programs of 

many athletes, historically, particularly for those involved in endurance sports (13,14,47). For team sport 

athletes, small-sided games (SSGs) are typically used to target endurance adaptations and simultaneously 

develop technical and tactical skills, however, HIIT has become an increasingly popular, safe and effective 

alternative to SSGs (69,183,288). Based on the duration and exercise intensities of work intervals, HIIT 

can be divided in to three subcategories: repeated sprint training (RST), sprint interval training (SIT) and 

aerobic interval training (AIT), each targeting different physiological, neuromuscular and mechanical 

adaptations (14). 

In this thesis, we evaluated the potential moderating role of the recovery duration between subsequent 

work intervals in AIT sessions. AIT incorporates repeated long work intervals (up to 16 min), performed 

at undeniably high, but ultimately submaximal work intensities (54). The intermittent format of AIT 

sessions allow athletes to exercise longer at these vigorous exercise intensities than can be achieved during 

a single bout of continuous exercise at this intensity (15,17,18). In the context of a pre-season conditioning 

period of collegiate rugby players, we showed in Chapter 8 that short recovery intervals (1 min) did not 

offer any advantage over the use of longer recovery intervals (3 min) in volume and intensity matched 

AIT protocols. We are the first to evidence these findings after a running based AIT intervention, and 

these results are in line with previous findings after AIT interventions in cyclists, when AIT protocols 

only differed in the recovery interval duration (21,46).  

Deviating from predefining fixed exercise intensities in work intervals, the results of this thesis further 

indicate that in self-paced AIT protocols (incorporating six 4 min work intervals), the duration of recovery 

intervals (1 min, 2 min, 3 min or a self-selected recovery duration) had a limited effect on the physiological 

stimulus of the training session in runners and cyclists (see Chapter 6 and Chapter 7). However, in both 

runners and cyclists, exercise intensities (running velocity and power output, respectively) were markedly 

higher when participants received 3 min recovery between subsequent work intervals, and higher when 

participants self-selected their recovery durations compared to 1 min recovery intervals. Training on 

higher work intensities as a result of longer or self-selected recovery intervals may allow for greater 

9.1 General discussion 
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adaptations in maximum oxygen uptake (V̇O2max), maximum work capacity and / or performance; 

potentially differentiating from improvements shown after volume and intensity matched AIT protocols. 

The workload of AIT sessions is determined by a complex interplay between the number of intervals, the 

exercise intensities and the duration of both the work and recovery intervals (16,17). Thevenet et al. (55) 

suggested that the effectiveness of AIT protocols can be expressed as the time athletes spent at, or close, 

to their V̇O2max per session (≥ 90% V̇O2max; t90V̇O2max), under the assumption that a higher 

t90V̇O2max per session will allow for greater training adaptations (55,282). In Chapter 3, we were the 

first to solely summarize and meta-analyse changes in V̇O2max and performance in over 80 unique AIT 

protocols, and, irrespective of the widely differing configurations of these protocols (see Table 3.1 and 

Table 3.2), the results indicated that the majority yielded improvements in V̇O2max and / or performance 

(see Figure 3.3 and Figure 3.13). Across the included studies, improvements in V̇O2max were of a small 

to moderate magnitude (Hedges’ g = 0.54, 95% CI [0.38 to 0.69]), which corresponds to an average 

increase of 3.07 mL·kg·min−1. Improvements in performance were of a similar magnitude (Hedges’ g = -

0.52, 95% CI [-0.78 to -0.26]), averaging a decrease in performance time of -4.0%. The average 

improvements in V̇O2max presented in Chapter 3 are of a similar magnitude as previously reported in 

meta-analysis examining HIIT (30,140,197) and SIT interventions (152,198–200). Our results further 

suggest that AIT improved V̇O2max and performance significantly more than moderate intensity 

continuous training, and whilst the underlying mechanisms of adaptations may differ, improved V̇O2max 

to a similar extent as SIT. The highly homogenous improvements in V̇O2max and performance can make 

believe that attempts to optimize AIT protocols to further increase t90V̇O2max are needless, however, 

multiple research groups showed that manipulations in work intensities (33,34,55,289,290), work 

durations (20,22,35–37,291), recovery intensities (38,292), pacing strategies (39), and even the use of 

muscle vibration in cyclists (40) positively influenced t90V̇O2max per AIT sessions. 

Surprisingly little research explored the overall impact of the duration of recovery intervals in HIIT in 

general, and in AIT sessions specifically (see Table 2.1). Smilios et al. (41) were the first to examine how 

t90V̇O2max was influenced by an increase in recovery duration between four 4 min intervals, ran at 90% 

maximal aerobic velocity (MAV). The results indicated that the recovery duration did not affect the 



148 

percentage of V̇O2max attained in the work intervals, nor the total t90V̇O2max per session. While 

informative, these results are a prime example of most published data, as the authors evaluated the acute 

physiological, metabolic and perceptual responses to an AIT protocol that incorporated predefined work 

intensities (41). In this thesis we diverted from the use of fixed exercise intensities in the work intervals 

of AIT sessions, but rather examined the acute physiological and perceptual responses in self-paced AIT 

sessions. Performed under ‘isoeffort’ conditions (participants in Chapter 6 and Chapter 7 were instructed 

to approach every experimental visit as a hard training sessions, and perform each work interval across 

the AIT sessions at their maximal sustainable exercise intensity), the actual exercise intensity per work 

interval is not a stable function of velocity or power output over time, but rather the integrative outcome 

of feedback from external and internal receptors, and knowledge of the session demands (43,44). The use 

of ‘isoeffort’ intervals shifts the decision making on work intensities to the participant, as it rests upon the 

notion that athletes know how to train hard when they are required to ’train hard’ (42).While new to this 

approach, participants in both Chapter 6 and Chapter 7 successfully paced their efforts across the six 

work intervals of the AIT sessions, with only subtle variations in the self-selected exercise intensities over 

the work intervals. After completing the final work interval, participants rated their perceived exertion 

(RPE) ≈ 19 on the classic Borg scale (80), fulfilling the instruction to complete the simulated AIT sessions 

on a RPE  ≥ 17. 

The ‘isoeffort’ approach allowed for the evaluation of the trade-off between the internal (the physiological 

stimulus, i.a. t90V̇O2max) and external training load (i.e. running velocity / power output) of AIT sessions. 

We hypothesized that short recovery intervals would maximize the physiological stimulus of an AIT 

session, as work intervals will start from an elevated V̇O2, theoretically decreasing the time needed to 

reach high levels of V̇O2 in subsequent work intervals. Long recovery intervals on the other hand were 

expected to lower the V̇O2 at the start of subsequent intervals, potentially decreasing the total exercise 

time performed in the ‘red zone’. Longer recovery intervals provide more time for the replenishment of 

energy substrates and the breakdown of accumulated metabolites, which may delay the onset of fatigue 

and we expected this would allow athletes to achieve higher work intensities throughout the work 

intervals. In line with our hypothesis, work intervals did start from an elevated metabolic rate in both 
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runners and cyclists when only 1 min recovery intervals were available between six 4 min work intervals. 

Contrary to our expectations, long recovery intervals (3 min) in these simulated AIT sessions did not 

attenuate the mean V̇O2 attained during the complete intervals, or final minute of the work intervals across 

the different protocols and no significant differences were evident in t90V̇O2max. To the best of our 

knowledge, we are the first to show that in these self-paced AIT sessions, longer recovery intervals 

facilitated athletes to train on higher work intensities. These findings suggest that athletes can recover for 

a greater period in AIT sessions than may be traditionally thought, without compromising the metabolic 

load. 

AIT sessions primarily target improvements in aerobic capacity and / or endurance performance, and we 

believe the results have general relevance to other AIT protocols incorporating intervals of a similar 

duration (1 – 8 min). We only examined the physiological responses in runners and cyclists, however, we 

expect that the extent of the results transfer to other endurance based sports like cross country skiing, 

rowing and swimming. Only one study examined the role of recovery durations in an exercise modality 

other than running or cycling (see Table 2.1), namely swimming (165). In agreement with the main 

findings of the current thesis, the results of Tsekouras et al. (165) revealed a compromised performance 

in 30 s high-intensity tethered swimming bouts when recovery durations were shortened from 2 min to 45 

s. As discussed in Chapter 2, longer recovery intervals (≥ 80 s) in RST and SIT protocols likely facilitate 

higher work intensities in subsequent sprints, whereas shorter recovery durations in these protocols 

increase the overall physiological stimulus of RST and SIT sessions (114,115). Contrary to this trade-off 

found in RST and SIT, we found no (significant) differences in the physiological stimulus in self-paced 

AIT sessions after increasing the recovery intervals. In resistance training, Ibbott et al. (293) recently 

showed that longer inter-set recovery improved the power output of consecutive squats. The training 

objectives and adaptations of resistance training obviously differ from HIIT protocols, however, the main 

concept of longer recovery intervals to train on higher work intervals might be applicable for other 

intermittent training forms. The duration of recovery intervals is an important moderator of acute 

responses in intermittent exercise protocols, and coaches can manipulate its duration to target specific 
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training goals. That is, if coaches want to focus on maximizing running speed, they can decide to 

incorporate longer recovery intervals between bouts.  

Modern day cycling ergometers, like the Velotron Dynafit Pro (Racermate Inc., Seattle, USA) used in 

Chapter 7, reproduce the power-speed relationship (power output = constant · speed 2.4) for flat road 

cycling. It follows that a 1% change in speed requires a 2.4% change in power output (294). This 

characteristic, and the highly reliable measures of power output by the Velotron Dynafit Pro (263,264), 

enable a valid assessment of self-paced cycling performance in lab setting. To assess running performance, 

motorized treadmills are an indispensable piece of laboratory equipment, however, they do not allow to 

study the quick, unconscious and frequent adjustments in running velocities that occur during self-paced 

exercise (45).  

In Chapter 4 – Chapter 6¸ we evaluated and then used a commercially available curved non-motorized 

treadmill (cNMT; Woodway Curve XL, Woodway Inc, Waukesha, USA) to study self-paced running 

performance. On the cNMT, contrary to other non-motorized treadmills, participants are not required to 

wear a harness, thus permitting unrestricted movements. The concave belt design further allows runners 

to accelerate or decelerate with every treadmill contact, using similar techniques to overground running. 

Previously, Smoliga et al. (230) compared the physiological demands of walking and running on the 

cNMT to those of a motorized treadmill (MT). In Chapter 4 we extended these findings to a range of 

(higher) running velocities and identified the approximate running velocity that elicits an exercise intensity 

≥ 90% V̇O2max on both the cNMT and MT. Additionally, in Chapter 5, we evaluated which MT gradient 

best replicated the curved concave surface of the cNMT to substantiate the observational analysis of 

Smoliga et al. (230). Running on the cNMT resulted in higher physiological, calorific and perceptual 

responses compared to running on the MT at any given velocity, accompanied by a decreased running 

economy. In line with previous studies, a markedly lower running velocity on the cNMT generated a 

similar physiological stimulus as the MT (215,219,230,247), evidencing that exercise prescriptions 

appropriate for overground or MT running may not be achievable on the cNMT. These results are best 

explained by both the high mechanical resistance of the rubber treadmill belt (229), and the 6 – 8% gradient 

presented by the curved design of the cNMT (see Chapter 5). Running on the cNMT therefore better 
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mimics uphill running, and if an individual aims to train on both the cNMT and MT or if they are 

prescribed speeds for a workout, it is prudent to adjust target speeds for the cNMT. 

The results of Chapter 4 indicate that the cNMT can be used to truly evaluate self-paced running 

performance and HIIT, in comparison to previous studies in which participants ran on a MT and the 

velocity could only be increased or decreased via a hand signal to the test administrator controlling the 

MT (22,77,93). Apart from an increased confidence in running on the cNMT (all participants were able 

to run without holding the barriers of the cNMT), surprisingly, no differences in any of the physiological 

and perceptual responses were evident after a familiarization session. Given the novelty of running on the 

cNMT, we do however recommend at least one familiarization session, and if participants are required to 

perform any form of intense exercise on the cNMT – a trial run mimicking the actual experimental 

protocol is advised alike the 4 min trial run we included in Chapter 6 prior to the experimental visits. 

Participants in Chapter 6 were instructed (but not restricted) to target a velocity of 65% MAV in their 

first interval, which based on the findings of Chapter 4 would result in an exercise intensity of 92.5% 

V̇O2max (246). We opted for this preventive instruction to avoid poor pacing in the initial stage of the 

simulated AIT sessions, and to avoid premature fatigue due participants ‘chasing running speeds’ they are 

accustomed to from overground or MT running. Together with a familiarization session, we believe this 

preventive instruction is imperative for a successful completion of (interval) running protocols on the 

cNMT. Based on the results of Chapter 4, a reduction in running velocity from overground or MT speeds 

of 20% is advisable when athletes want to generate a comparable physiological stimulus to overground or 

MT running. This dissociation between running speeds achieved on the cNMT and high exercise 

intensities open new avenues for research, for instance in the evaluation of 1) pacing and decision making 

behaviour in time trial settings, and 2) deceptive feedback on performance. Deceptive feedback was found 

to improve cycling time trial performance previously (295,296), however, no studies have evaluated or 

examined this potential moderator of performance in runners. 

With regard to the perceptual responses during the self-paced AIT sessions, the results of Chapter 6 and 

Chapter 7 show a relatively uniform response with the linear increase in RPE throughout the interval 

sessions, independent of the recovery interval duration. In line with other studies, participants were able 
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to maintain relatively constant exercise intensities over repeated work bouts (see Table 6.1 and Chapter 

7 (Section 7.3)) despite the perceived effort of achieving these work intensities increased from bout to 

bout (77,93). In the recovery intervals of all simulated AIT sessions in Chapter 6 and Chapter 7, 

participants scored their perceived readiness (PR) to recommence subsequent work intervals. Participants’ 

progressively increased their recovery duration over the work intervals, highlighting an increased demand 

in recovery time to compensate for the accumulated fatigue. Using the PR scale to self-select recovery 

durations resulted in stable pacing profiles of work intensities, with the difference between the fastest and 

slowest work interval being only 0.53 ± 0.3 km·h-1 in Chapter 6, and a decrease in power output of only 

5% between the initial and final work interval in Chapter 7. Despite removing all possible timing clues, 

participants may have felt pressure to commence the next work interval prior to feeling completely 

recovered due to their habitual training practices, or the lack of familiarization with the actual use of the 

PR scale in AIT sessions. We decided against a familiarization session for the self-selected trials in 

Chapter 6 and Chapter 7, as the initial study using the PR scale reported great variability (coefficient of 

variation = 28%) in the test-retest reproducibility of the self-selected recovery durations (101). The chosen 

recovery durations are likely influenced by the training status and day to day variations in an individual 

athlete’s self-selected recovery durations and may reflect fluctuations in daily well-being. Future studies 

should explore this further. 

In this thesis, only the actual self-selected recovery times are presented without any further analysis of PR 

in other protocols with fixed work durations, nor did we examine if the perceived ‘adequate recovery’ 

coincided with potential physiological demarcation points. Previous data from Edwards et al. (101) 

suggested that PR is as accurate as heart rate recovery or traditional work-to-recovery recommendations, 

however, Laurent et al. (93) showed a limited variation in PR scores when recovery durations increased 

from 1 min to 2 min to 4 min in a self-paced AIT session. These results reveal that individuals seem to 

adjust physiological and metabolic strain in such a manner that perceptual strain during and between 

intervals is stable. Interestingly, McEwan et al. (103) conducted a semi-structured interview to assess 

participants’ training goals as well as the internal / external cues utilised during the decision-making 

process to start subsequent work intervals, after participants completed a SIT protocol in which they self-
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selected recovery durations between repeated 30 s sprints. Participants were found to use a range of 

afferent feedback cues, amongst these, the stabilisation of respiratory rate and the magnitude of the drop 

in heart rate occurring between intervals were commonly mentioned as being pivotal in determining the 

length of recovery (103). These findings strengthen the recently suggested notion that breathing frequency 

is a strong marker of physical effort (297). Next to a further analysis of the cardiorespiratory data collected 

in the current thesis that coincided with the starting point of work intervals, the inclusion of a semi-

structured interview in future studies using the PR scale may provide valuable insights in the decision 

making processes involved. 

Several limitations in this thesis relate to participant recruitment. Firstly, participants in all studies were 

male athletes, adding to the already gender biased results presented in Chapter 3, and how the main 

findings of this thesis translate to female athletes is therefore questionable. Only male participants were 

recruited to control for the possible effects of hormonal status on performance (298,299), nonetheless, the 

results of this thesis are highly relevant and of interest to female athletes. The possibility of sex differences 

in physiological and perceptual response is not well understood with studies yielding equivocal results 

(300,301), however, recent studies show that women may demonstrate higher resistance to fatigue and / 

or improved recovery during bouts of repeated exercise (302–305). Laurent et al. (93) showed that both 

perceived readiness and perception of effort during high-intensity bouts are stable within-sex, but may 

occur at different relative points between men and women. That is, women may incur greater 

cardiovascular and / or metabolic strain at a similar level of perceptive strain than men. To gain a better 

understanding of these potential differences, future research should replicate the studies of Chapter 6 and 

Chapter 7 in women. 

Secondly, participants in Chapter 4, Chapter 6 and Chapter 7 were recruited based on their performance 

level and previous experience with HIIT, as it was expected that trained participants would likely be more 

attuned to internal pacing cues and be able to maintain high workloads throughout interval sessions. These 

inclusion criteria resulted in stable and valid comparative measures in Chapter 4, and all participants were 

able to complete the simulated AIT protocols in Chapter 6 and Chapter 7. This recruitment strategy 

9.2 Thesis limitations 
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however also resulted in large variations in participants’ age, contrary to the highly homogenous 

participant groups in Chapter 5 and Chapter 8.  

Finally, no information on participants’ dietary habits was collected, and we did not control the diet of the 

participants in any of the studies. All participants were instructed to consume their normal diet and 

consume their last meal ≥ 3 h before experimental visits. While fasting status was not confirmed with 

blood testing, had participants consumed a high carbohydrate meal shortly before the experimental visits 

in Chapter 4 - Chapter 7, this would have had the tendency to decrease the contribution of lipid oxidation 

to meet the energy demands in these sessions, – potentially influencing the respiratory exchange ratio 

(135,306). New findings suggest that changes in substrate utilization are likely in high intensity exercise 

when participants alter their habitual diet to a very low-carbohydrate high-fat diet (208,306). To control 

for the potential moderating effect of dietary intake, in future studies, it is advised to track habitual food 

intake during AIT interventions. 

A methodological concern in this thesis is the absence of verification test for V̇O2max measures. In this 

thesis we refer to the maximum oxygen uptake of the participants as V̇O2max, however, none of the 

conducted studies in this thesis incorporated a verification test protocol to unambiguously validate 

V̇O2max, by the assessment of a V̇O2 plateau (212). V̇O2max values of exercise test naïve or less motivated 

participants may more likely represent a measure of V̇O2peak (simply the highest V̇O2 reached on a given 

test), and verification protocols are advised (212). Given the training status and experience level of the 

included participants, we expect that values reported for V̇O2max are very similar to V̇O2peak. Respiratory 

data was analysed to assess the attainment of a V̇O2 plateau, and when no plateau was evident, V̇O2max 

was only confirmed when a multitude of secondary criteria for V̇O2max were achieved. This was the case 

in all incremental exercise tests conducted in this thesis. By study design, V̇O2 and HR measures in 

Chapter 4 and Chapter 6 were indexed for V̇O2max and HRmax values obtained in incremental running 

tests performed on a MT. When V̇O2max is measured, it is well accepted that the value attained varies 

with the type of exercise performed and can be further influenced by the selected test protocols. Running 

on NMTs and MT is markedly different, as running on a NMT requires participants to actively generate 

power to move themselves vertically and to propel the treadmill belt, which may in turn elicit a larger 
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V̇O2. Previously, a self-paced incremental running test performed on a flat NMT (Force 3.0, Woodway 

USA Inc., Waukesha, Wisconsin, USA), produced higher V̇O2max values than a standard incremental 

running test performed on a MT (244). Comparing self-paced test protocols between the cNMT used in 

this thesis and a MT, Morgan et al. (219) however found no differences in maximum V̇O2 and heart rate 

achieved in these tests, indicating that obtained measures of V̇O2max are seemingly similar. 

We are the first to show that in self-paced AIT sessions, longer recovery intervals facilitate higher external 

workloads (faster running / higher power output), whilst the internal training load (physiological stimulus) 

was unchanged after manipulations in the recovery duration between subsequent work intervals. Self-

paced SIT and AIT interventions have been shown effective to improve V̇O2max and performance 

parameters in cyclists (42,218), and recently, a self-paced running SIT intervention (involving 10 sessions 

of 6 to 8 all-out 30 s sprints) significantly improved V̇O2max and time to exhaustion in adolescent 

Taekwondo athletes (287). In this study, the authors also evaluated the role of recovery durations between 

the sprint intervals, and found that improvements in V̇O2max were greater when sprints were separated 

by 120 s, compared to 60 s or 240 s recovery intervals (287). Unfortunately, the physiological strain or 

running velocities of the different training groups were not reported, and therefore it remains unanswered 

if a higher external training load (higher running velocity) triggered these larger adaptations. Notably, 

these results are in disagreement with the suggestion of Kavaliauskas et al. (115), who hypothesized that 

the aerobic demand in sprints separated by 120 s recovery would be too low to induce endurance 

adaptations and 80 s recovery between sprints would be most beneficial to target both power and 

endurance adaptations (see Chapter 2 (Section 2.4)). Whether running based self-paced AIT 

interventions improve aerobic fitness and performance, and if these improvements are larger compared to 

classic (fixed) AIT interventions is unknown and leaves room for exploration in future studies. 

Historically, training studies have been designed around the evaluation of structured training interventions 

(see Table 3.1 and Table 3.2). These specified training interventions have underpinned our understanding 

of training, and allows for the evaluation of dose-response relationships between training load and training 

adaptations. Most training interventions summarized in Chapter 3 are undertaken in lab settings, and 

9.3 Future research directions 
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depending on the exercise modality, performed on cycling ergometers or motorized treadmills. We 

previously described the methodological concerns that accompany the use of MTs in self-paced AIT, and 

recommend any future studies exploring the potential benefi 

cial effect of self-paced sessions to AIT be undertaken on NMTs, ‘smartly used’ MTs, or in field based 

interventions. The results presented in Chapter 4 and Chapter 5 confirm that the cNMT used in this 

thesis allows for self-paced AIT, however, the availability of this treadmill might be limited for athletes 

and scientists. Previously, Hogg et al. (307) introduced a ‘zonal system’, which required participants to 

move between marked zones on a MT (front / middle / back section) when they wanted to increase, 

maintain or decrease the running speed in a self-paced incremental exercise test. It is accepted that this 

approach does not constitute genuine self-pacing, however, it allows for a more natural and fluid running 

technique than previous studies in which changes of speed relied on participants using buttons on the 

treadmill (308), or when participants had to instruct external testers to change speed (77). Lastly, field 

based interventions provide the opportunity to run freely and truly self-paced. These three options all 

allow for the evaluation of the role of recovery durations in AIT sessions, without restricting the exercise 

intensities in work intervals. 

Initially, we approached multiple running clubs and coaches to implement the study carried out in Chapter 

8 in an endurance trained population. Liaising with the coaches, it proved hard to standardize training load 

of individual athletes, and in the weekly club training sessions, coaches preferred not to deviate from their 

mix of typical interval workouts. A promising area for future research is to run quasi-experimental studies, 

in which participants only visit lab facilities for pre and post-intervention (incremental exercise) testing, 

and complete the actual training intervention (that is the prescribed AIT sessions) individually, away from 

the lab facilities. Most endurance athletes nowadays train with wearable activity trackers, such as heart 

rate monitors and power meters, that, combined with GPS data allow for the tracking of performance in 

AIT sessions. Data obtained by these devices can be shared with the scientist for evaluation. It is debatable 

whether within group or between group study designs are most appropriate to examine training 

interventions (309), however, quasi-experimental studies provide an unique platform to implement 

‘isoeffort’ training interventions. Self-paced AIT has been addressed in cycling recently (42,218), 
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however, in these studies, training groups performed AIT protocols of varying configurations. To study 

the moderating role of recovery intervals in self-paced AIT sessions in runners or cyclists using a quasi-

experimental design, participants can be instructed to perform a set number of work intervals of a fixed 

duration on their maximal sustainable exercise intensities. Based on pre-intervention incremental test 

results, experimenters can instruct participants with target work intensities for these intervals, alike we 

successfully implemented in Chapter 6 and Chapter 7. The manipulation of the recovery durations can 

then be used to determine if longer recovery intervals (compared to short recovery intervals) indeed result 

in higher exercise intensities in subsequent work intervals, which in turn may generate greater training 

adaptations. Finally, in the reporting of self-paced AIT interventions, it is of great important to report the 

attained exercise intensities in the work intervals of different training groups. 

Previous research showed that trained runners and cyclists reach a steady state around 90 - 95% V̇O2max 

/ HRmax in repeated 4 min work intervals (42,75,77,93,266), and the studies carried out in the current 

thesis add to these findings (see Chapter 6 and Chapter 7). Multiple studies have examined the 

physiological and perceptual responses to either four 4 min or six 4 min AIT sessions, however, limited 

scientific knowledge is available on these responses in AIT sessions of a comparable work duration, but 

adopting a different configuration (e.g. 6 4 min intervals equals 24 min, however, it is unknown if this 

configuration is superior to 8 3 min intervals, or 4 6 min intervals). Previous studies highlight that self-

selected exercise intensities are altered by, and dependent on work interval durations (22,23,218,268). In 

the quest to find the ‘optimal AIT protocol’ (arguably, the AIT configuration that produces the highest 

t90V̇O2max), manipulations in both work and recovery interval durations, and the interaction between 

these variables is an exciting area for future research. The results of Chapter 6 – Chapter 8 highlighted 

that athletes are able to exercise for 24 min on high work intervals in AIT sessions, which is markedly 

longer than the total exercise duration of most studies included in the meta-analysis presented in Chapter 

3. Self-paced AIT sessions seemingly push athletes closer to exhaustion (or better; athletes push 

themselves closer to exhaustion) than classical AIT protocols using fixed exercise intensities. In Chapter 

6, recreationally trained runners rated their final interval a RPE score of 19 ± 0.7 when they received 3 

min recovery, whereas the collegiate rugby players in Chapter 8 rated their final interval with a RPE 
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score of only 15.5 ± 1.2. These findings have implications for the training prescription and training 

programming of self-paced AIT sessions, and potentially greater attention is needed to ensure recovery 

between interval bouts and subsequent training sessions (4). 

Even though HIIT is common practice in the training regimes of (traditionally) endurance athletes, 

surprisingly little research has explored the overall impact and role of recovery interval durations on the 

effectiveness of AIT, RST and SIT protocols (see Table 2.1). Two recent meta-analysis reported equivocal 

effects on changes in V̇O2max with an increase in work:recovery ratio in SIT (e.g. greater recovery 

between subsequent 30 s sprints). No clear scientific evidence is available on the optimal duration of 

recovery intervals in AIT sessions, and the aim of this thesis therefore was to assess the potential 

moderating role of the recovery interval duration in AIT. 

AIT interventions produced significant small to moderate improvements in both V̇O2max and / or 

performance (see Chapter 3). The results of our meta-analysis further suggest that AIT improves V̇O2max 

and performance significantly more than MICT, and to a similar extent as SIT. The changes in V̇O2max 

and performance were highly homogenous, which, given the wide variation in configurations of the AIT 

protocols in the included studies was surprising. The analysis of moderating variables (see Table 3.5) 

revealed that long AIT interventions, incorporating a total exercise time per session of ≤ 20 min, with 

work intervals of ≤ 3 min and recovery intervals of not more than 3 min, 

 may yield larger improvements in V̇O2max. However, these results are speculative, as the highly 

homogenous improvements across the included studies would traditionally not warrant further analysis. 

In Chapter 8, we show that short recovery intervals (1 min, 1MIN) do not offer any advantage over the 

use of longer recovery intervals (3 min, 3MIN). The addition of 2 hr running based AIT in the pre-season 

conditioning period of collegiate rugby players did result in an improved V̇O2max and time to exhaustion 

in both 1MIN and 3MIN, however, these improvements were not significantly different between training 

groups. These results suggest that in AIT protocols of matched training volume and exercise intensities, 

the duration of the recovery intervals has a limited effect on changes in V̇O2max and time to exhaustion. 

9.4 Thesis summary and conclusion 
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That is, if the duration of recovery intervals is adequately selected to prevent premature fatigue and to 

allow for the full completion of AIT sessions at the desired work intensities. 

Deviating from predefined exercise intensities in the work intervals of AIT sessions, the results presented 

in Chapter 6 and Chapter 7 show that longer recovery intervals between subsequent work intervals 

facilitate higher external training loads (higher running velocities / higher power outputs), without 

decreasing the internal training load in these sessions (t90V̇O2max). These results indicate, that when 

athletes incorporate self-paced AIT sessions in their training programs, long recovery intervals will allow 

athletes to train on higher external loads, which potentially triggers greater training adaptations. Contrary 

to its role in intensity matched AIT protocols, these results further highlight that the duration of the 

recovery interval indeed is an important moderator of the acute responses in self-paced AIT sessions. 

Scientists, coaches and athletes are therefore advised to critically consider the recovery duration between 

work intervals in the planning of AIT sessions. 
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