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Abstract—Research in developmental cognitive neuroscience
face challenges associated not only with their population (infants
and children who might not be too willing to cooperate) but
also in relation to the limited choice of neuroimaging techniques
that can non-invasively record brain activity. For example,
magnetic resonance imaging (MRI) studies are unsuitable for
developmental cognitive studies because they require participants
to stay still for a long time in a noisy environment. In this regard,
functional Near-infrared spectroscopy (fNIRS) is a fast-emerging
de-facto neuroimaging standard for recording brain activity of
young infants. However, the absence of associated anatomical
image, and a standard technical framework for fNIRS data
analysis remains a significant impediment to advancement in
gaining insights into the workings of developing brains. To this
end, this work presents an Explainable Artificial Intelligence
(XAI) system for infant’s fNIRS data using a multivariate pattern
analysis (MVPA) driven by a genetic algorithm (GA) type-2 Fuzzy
Logic System (FLS) for classification of infant’s brain activity
evoked by different stimuli. This work contributes towards laying
the foundation for a transparent fNIRS data analysis that holds
the potential to enable researchers to map the classification
result to the corresponding brain activity pattern which is of
paramount significance in understanding how developing human
brain functions.

Index Terms—Explainable Artificial Intelligence, Type-2 Fuzzy
Systems, Genetic Algorithm, Mutivariate Pattern Analysis,
Developmental Cognitive Neuroscience

I. INTRODUCTION

Developmental cognitive neuroscience studies are essential
in paving the way for our understanding of how human brain
develops over time. In the realm of cognitive neuroscience,
functional Magnetic Resonance Imaging (fMRI) studies have
played a significant role in providing profound insights into
the workings of the human brain. The superior spatial location
associated with anatomical image meant that fMRI studies can
conclude with high confidence that the recorded brain activity
is indeed specific to a certain brain region. With the adoption
of multivariate techniques for fMRI data analysis such as
multivariate patterns analysis (MVPA [1]) the aim of the fMRI
studies have shown a significant shift from ‘where’in the brain
i.e. from establishing localization of brain activity (univariate
analysis) to ‘how’in the brain is the information represented
that can decode the brain activity (multivariate analysis).
Despite the great prowess of fMRI as an imaging modality,
and the associated strength of computational framework

for its analysis, fMRI is still constrained by its scanner
environment and huge magnets. This essentially means that
young infants, or people with special needs e.g. those with
movement disorders, magnetic implants and/or psychological
challenges such as claustrophobia (anxiety disorder for
confined space) cannot be studied using fMRI. In comparison,
another non-invasive brain imagining modality, functional
Near-InfraRed Spectroscopy (fNIRS) offers both portability,
and some degree of flexibility for movement whilst brain
activity is recorded, rendering it as a far more favorable
imaging modality for many key challenging populations
deemed inaccessible by fMRI for cognitive neuroscience
studies [2] [3] [4].

Although, fNIRS can be employed successfully to study
brain activity across a whole spectrum of populations and
tasks, it is marred by the lack of sophisticated algorithms that
can fully decode and explain the underlying brain activity.
The limitations of fNIRS data analysis arise from a lack of
anatomical image, and transparent classification models. The
state-of-the-art supervised learning methods such as Support
Vector Machine (SVM) or Random Forest (RF) are not
interpretable models for classification of fNIRS data [5].

The significance of an interpretable model is that the
relationship between a data input and its corresponding
consequent (or condition/stimuli for fNIRS) is retained. In the
context of fNIRS data, a classification result characterized as
corresponding to stimulus A would mean that activity in a
channel located in a certain anatomical brain location is FLV
(where FLV is a Fuzzy Linguistic Variable that can be either
low, medium or high), hence the data instance is classified as
evoked/caused by stimulus A.

Consequently, to incorporate a transparent classification
method for fNIRS dataset, this work presents fNIRS data
classification enabled by a fuzzy system. A fuzzy system
classifier is inherently explainable because of the fuzzy rules
that govern the classification such as: IF causes THEN result
is a general description of a fuzzy rule. An example of a fuzzy
rule for the particular case of fNIRS dataset can be: IF activity
is FLV in channel Y THEN it corresponds to stimulus A. This
can explain why a particular data sample is classified as A.
The fuzzy rules can either be provided by the experts in the
domain, or can also be learnt from the data directly [6].



The major contribution of this work lies in using
Explainable Artificial Intelligence (XAI) system to drive
MVPA on neuroscience data. Here, Interval Type-2 Fuzzy
Logic System (IT2FLS) is employed to power MVPA on an
infant’s fNIRS dataset made available online by Emberson et
al. [7].

The paper is divided as follows: Section II presents an
overview on fNIRS technology, and the basis of MVPA.
Section III outlines a brief introduction to type-2 FLS used
in conjunction with GA to optimize a rulebase from a given
dataset. Section IV presents the experiment, and the results
obtained from the proposed XAI system (i.e. IT2FLS-GA)
for MVPA of infant’s fNIRS data with neurophysiological
discussion in Section V. Section VI delineates the conclusions,
and future work.

II. AN OVERVIEW ON FNIRS AND MVPA

A. functional Near-InfraRed Spectroscopy (fNIRS)

fNIRS is an optical neuroimaging modality that reads
cerebral activity using Near-InfraRed (NIR) light. An fNIRS
emitter shines NIR light at a specific location of interest on
the surface of the head. The emitted NIR light then undergoes
physiological processes like absorption, and scattering as it
propagates through the brain tissue back to the surface of the
head where it is recorded by a fNIRS detector. Fig 1 shows a
participant wearing an fNIRS cap whilst his brain activity is
recorded.

An fNIRS signal measures brain activity by recording
changes in concentration of oxygen in hemoglobin molecules
in the blood. The NIR light of wavelength 770-850 nm remains
unaffected on encounter with skin, tissue, or bone however
the hemoglobin molecules in the blood absorb NIR light
significantly. Hence an increase in oxygen demand in the
brain, which implies an increase in the brain activity, can be
read by an fNIRS signal by measuring relative changes in
hemoglobin concentration based on NIR light absorption by
the hemoglobin molecules in the blood.

Fig. 1: A participant wearing an fNIRS cap during an experiment to
record their brain activity.
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Fig. 2: A typical time-series of a bidimensional fNIRS signal post
stimulus presentation.

The hemoglobin molecules are characterized as oxygenated
hemoglobin (oxyHb) and deoxygenated hemoglobin
(deoxyHb) molecules based on their oxygen content.
The relative concentrations of oxyHb and deoxyHb molecules
in the blood as a function of total photon path length are
calculated using the modified Beer-Lambert law (mBLL)
[8]. Fig. 2 shows a characteristic fNIRS signal composed
of oxyHb and deoxyHb concentration post a stimulus
presentation.

As can be readily appreciated from Fig. 2, the changes in
concentration of oxyHb and deoxyHb vary significantly with
time. Hence accurate data analysis of any fNIRS based study is
hinged on the identification of time window parameters (that
is the start time, and the duration of the time window) that
would allow for the best classification of the fNIRS signals
for that particular study. The fNIRS signal is also dependent
on the age of the participants, and the particular stimuli/task
they are performing [9][10].

A guideline from previous studies of infants fNIRS
data using simple audio and visual stimuli indicates that
time window from 5-9 seconds is optimal for detecting
hemodynamic response in infants under a year old [11].
It is also acceptable, given that the hemodynamic response
in infants doesn’t always follow a canonical shape, in
developmental fNIRS studies to analyze the oxyHb rather than
deoxyHb or a combination of the two such as total hemoglobin
[12]. But it remains an open research question as to which
hemodynamic dimension best represents the underlying neural
activity [13] [14] [15].

B. Multivariate Pattern Analysis (MVPA)

In general, a MVPA is more accurate, and sensitive
to cognitive states than a corresponding univariate pattern
analysis since a greater number of features (or dimensions)
are considered simultaneously in a MVPA [16]. A higher
dimensional MVPA extends sophisticated insights into key
challenges on reading the human brain such as how is
the information represented and processed in different brain
structures which were previously out of realm for a univariate
analysis.
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A single or a combination of fNIRS signal features such as mean, amplitude,
and/or area under the curve etc. can be used to built a MVP matrix.

Trial No Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Stimulus
1 −4.10 ∗ 10−6 −1.74 ∗ 10−5 −15.05 ∗ 10−5 1.19 ∗ 10−5 −4.90 ∗ 10−6 −8.70 ∗ 10−6 −1.09 ∗ 10−5 8.60 ∗ 10−6 ,

2 −1.01 ∗ 10−5 6.56 ∗ 10−5 3.48 ∗ 10−5 −3.50 ∗ 10−6 8.00 ∗ 10−7 −3.10 ∗ 10−6 −1.10 ∗ 10−5 −5.90 ∗ 10−6 n

3 2.13 ∗ 10−5 2.79 ∗ 10−5 −1.50 ∗ 10−5 −3.00 ∗ 10−7 −1.72 ∗ 10−5 −1.28 ∗ 10−5 −7.10 ∗ 10−6 −8.20 ∗ 10−6 n

4 2.49 ∗ 10−5 −3.05 ∗ 10−5 −16.97 ∗ 10−5 −4.90 ∗ 10−6 1.30 ∗ 10−6 −5.10 ∗ 10−6 6.70 ∗ 10−6 5.70 ∗ 10−6 ,

5 4.77 ∗ 10−5 1.27 ∗ 10−5 −3.32 ∗ 10−5 −1.52 ∗ 10−5 −5.84 ∗ 10−5 −2.31 ∗ 10−5 −3.42 ∗ 10−5 4.90 ∗ 10−6 ,

6 −6.68 ∗ 10−5 −3.14 ∗ 10−5 −2.92 ∗ 10−5 −8.90 ∗ 10−6 −4.00 ∗ 10−7 −5.80 ∗ 10−6 −2.28 ∗ 10−5 −2.70 ∗ 10−5 n

7 −6.22 ∗ 10−5 5.89 ∗ 10−5 −15.35 ∗ 10−5 2.04 ∗ 10−5 −6.60 ∗ 10−6 1.18 ∗ 10−5 −3.00 ∗ 10−6 3.17 ∗ 10−5 ,

8 3.04 ∗ 10−5 2.07 ∗ 10−5 −4.33 ∗ 10−5 1.77 ∗ 10−5 5.00 ∗ 10−6 5.00 ∗ 10−6 9.70 ∗ 10−6 2.88 ∗ 10−5 n

9 3.46 ∗ 10−5 −5.83 ∗ 10−5 −9.39 ∗ 10−5 1.05 ∗ 10−5 −8.80 ∗ 10−6 −2.50 ∗ 10−6 −4.30 ∗ 10−6 7.90 ∗ 10−6 ,

10 4.40 ∗ 10−6 5.27 ∗ 10−5 6.90 ∗ 10−6 1.00 ∗ 10−7 −6.00 ∗ 10−7 −8.70 ∗ 10−6 −2.01 ∗ 10−5 6.20 ∗ 10−6 n

fNIRS signals

Fig. 3: A MVP matrix with hypothetical data for 8 fNIRS channels associated with two stimulus conditions for ten trials.

A MVP from neuroimaging data is formed by cascading
data from different brain locations to be considered
simultaneously in the subsequent analysis. A schematic for
the MVP matrix formation from an fNIRS study is shown in
Fig. 3. In Fig. 3, an infant’s brain activity is recorded using 8
fNIRS channels. The activity in the channels is then encoded
in a MVP matrix appended with the associated stimuli. The
exact value in the MVP matrix can be any associated feature,
or a combination of features for different channels, for the
signal in a certain time period e.g. mean of the signal post
stimulus for a certain time length on a per subject or a per
trial basis.

Earlier MVPA based fMRI studies focused on establishing
functional relationships between brain regions, but with an
increase in the understanding of the human brain, the focus
of the neuroscience studies have shifted towards pattern
classification [17]. There are numerous machine learning
methods which can conduct MVPA for a given fMRI dataset.
For example, an auditory fMRI study used SVM based MVPA
to gain insight into the role of superior temporal gyrus
[18], correlation based classifier were used to investigate how
visual objects are represented in temporal cortex [19], whereas
memory search in humans has been investigated using neural
networks [20], and linear discriminant analysis to predict the
orientation of invisible stimuli from activity in visual cortex
[21].

For fNIRS studies, MVPA is mostly used in conjunction
with SVM, for example SVM has been used for classifying
personal preference single-trial fNIRS, task engagement using
attentional state [22]. Inherently, a SVM is a supervised
machine learning model that aims to find a hyper plane that can
distinguish between a set of classes using labeled input training
data instances [17]. A more recent study by Emberson et al.
has used Pearson correlation coefficients on infants fNIRS data
[7] to explore the similarities in neural responses to similar
stimuli.

III. THE PROPOSED TYPE-2 FUZZY LOGIC BASED
EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) SYSTEM

FOR DEVELOPMENTAL NEUROSCIENCE

The choice of which type of FLS to model and analyse
crisp input data largely depends on the amount of uncertainty
in the input data. Also, in the event an input dataset is also used
to train a supervised learning model, for example a rule-based
FLS, it is imperative to account for the uncertainty in the input
data which can be achieved by using type-2 FLS. Type-2 FLSs
have previously been used in numerous applications such as
data preprocessing [23], controllers for mobile robots [24], and
time series forecasting [25]. A special case of a type-2 FLS
is an IT2FLS in which the third dimension (of uncertainty)
values are always equal to 1 [26]. In this work, IT2 based
XAI system have been used to perform MVPA on infant’s
fNIRS data.

In mathematical notation, interval type-2 fuzzy set (Ã) can
be written as follows in (1) [27].

Ã = (x,u,1)∣∀x ∈X,
∀u ∈ [µ

Ã
(x), µÃ(x)]⊆[0,1]

(1)

where µÃ represent the membership function of interval type-2
fuzzy set Ã.

In the illustrative interval type-2 fuzzy sets shown in Fig.
4, the membership value for temperature of 12 °C falls in
the interval type-2 fuzzy sets of L̃ow with lower and upper
membership function values as: µ

L̃ow
(12) = 0 and µL̃ow(12) =

1, whereas the membership value for temperature of 12 °C
falls in the interval type-2 fuzzy sets of M̃edium with lower
and upper membership function values as: µ

M̃edium
(12) = 0

and µM̃edium(12) = 0.4.

The following subsections delineate the major components
of the proposed type-2 fuzzy logic based XAI system for
developmental neuroscience.



A. Type-2 Fuzzy Rule Inference

The rules for a FLS, that map fuzzy input sets to fuzzy
output sets using fuzzy inference engine, are defined as
follows:

Rule Rq ∶IF x1 is Aq1 AND ... AND xn is Aqn

THEN Class Cjq with RWq

(2)

where q is the rule number, xi is the crisp input for variable
i, Ai is the input fuzzy set (also called antecedent (ANT))
for the ith variable, n is the total number of variables or
dimensions of the input dataset, Cjq is the consequent class
from a predefined set {C1, ...,CK} of classes, and RWq is the
rule weight associated with the qth rule.

In a type-2 FLS, each rule will have a a lower rule weight,
RW q , and an upper rule weight, RW q , as defined in (3) [28].

RW q = csq ⋅ ssq
RW q = csq ⋅ ssq

(3)

where q is the rule number, csq is the scaled confidence (4),
and ssq is the scaled support (7) of the rule Rq on a training
dataset.

The upper and lower confidence of a rule, Rq , is computed
on a training dataset as outline in (4) [28]. It can be viewed as a
conditional probability that given a particular data instance has
matching antecedents as the rule Rq then what is the likelihood
for that data instance to have the same consequent class as the
consequent Cjq of the rule Rq .

csq(Aq ⇒ Cjq) =
∑xt∈(Aq⇒Cjq )

wsq(xt)

∑Qq=1,xt∈Aq
wsq(xt)

csq(Aq ⇒ Cjq) =
∑xt∈(Aq⇒Cjq )

wsq(xt)

∑Qq=1,xt∈Aq
wsq(xt)

(4)

where wsq(xt) and wsq(xt) are the scaled upper and lower
strengths of activation for rule Rq on a data instance xt in a
training dataset.
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Fig. 4: An illustrative plot of membership function values for
Temperature, µ(T ), using interval type-2 fuzzy sets named: Low,
Medium, and High.

The strength of activation of rule Rq for a data instance xt,
wq(xt), is a measure of the degree of match between the rule
and the data instance. It is computed as outlined in (5).

wq(xt) =
N

∏
i=1

µÃi
(xt,i)

wq(xt) =
N

∏
i=1

µ
Ãi

(xt,i)
(5)

The strength of activations are scaled to ensure any
bias incorporated due to non-equal size of the consequent
classes Cj can be accounted by computing scaled strength
of activations as outlined in (6). The strength of activation of
a given rule Rq for a data instance xt is scaled by the sum of
activations of all the rules Rl, which have the same consequent
class as the rule Rq , for the data instance xt.

wsq(xt) =
wq(xt)

∑l,R∈Cjq
wl(xt)

wsq(xt) =
wq(xt)

∑l,R∈Cjq
wl(xt)

(6)

The support of a rule is an indication of the coverage of
training dataset by the rule. It is computed using (7).

ssq(Aq ⇒ Cjq) =
∑xt∈(Aq⇒Cjq )

wsq(xt)
Q

ssq(Aq ⇒ Cjq) =
∑xt∈(Aq⇒Cjq )

wsq(xt)
Q

(7)

After establishing a lower and an upper rule weight, RW q ,
RW q , of each rule on a training dataset, the classification
accuracy of a given rulebase is determined on the testing
dataset. The consequent class, Cj , for each data instance in the
testing dataset, xs, is determined using the metric association
degree. The association degree, hq , of each rule with each data
instance in the testing dataset, xs, is computed as outlined in
(8).

hq(xs) = wsq(xs) ⋅RW q

hq(xs) = wsq(xs) ⋅RW q

hq(xs) =
hq(xs) + hq(xs)

2

(8)

A given testing data instance, xs, is classified into the
consequent class, Cj , corresponding to the rule with the
maximum association degree with xs.

B. Evolutionary Type-2 Fuzzy Rule Learning

The rules for a FLS can be furnished by experts in the
field, or can also be learnt from the input dataset using an
optimization algorithm such as Genetic Algorithm (GA) [6]
[29]. The advantage of using an optimizer to learn fuzzy rules
from input data in comparison to the rules been provided by
experts in the field is that in the case of former the rulebase
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Fig. 5: A flowchart of supervised learning of a rule-based IT2 based XAI system using input data and GA.

is bias-free. Consequently, GA has been used in this work to
learn rules directly from infant’s fNIRS data to circumvent
probable expert’s prejudices.

Fig. 5 outlines the steps undertaken to arrive at an optimized
rulebase using a given dataset. The input dataset is split into
k-fold cross validation training and testing datasets to offset
any bias incorporated from a particular selection of training
and testing dataset [30]. All rulebases are learnt from k-fold
training datasets with k-fold testing datasets used to establish
the efficacy of a given rulebase.

Using an initial random rulebase with a total of Q rules,
the classification accuracy of the rulebase is computed as the
ratio of the correct predicted labels to the total number of
data instances in the test dataset. The cost of the rulebase is
computed as 1 - the mean of the classification accuracy on all
k-fold testing datasets. The GA then compares the cost of the
rulebase with a pre-defined tolerance criterion. If the cost is
greater than the tolerance of GA, the GA then populates a new
rulebase and the cycle is repeated till the tolerance criterion
of the GA is met as outlined in Fig. (5).

In this work, the total number of rules to be learnt by XAI

system is set at 20 rules, with maximum of 3 ANTs in a given
rule. The low number of rules with maximum of 3 ANTs in
any rule is set to ensure XAI system generate fewer rules with
rational rule interpretability. This renders the total number of
variables to be learnt by GA to be: total number of rules (20) *
maximum number of antecedents (3) and FLV for each chosen
antecedent (3: Low, Medium or High) and the corresponding
consequent class, Cj , for each rule (1) = 20*(3+3+1) = 140
variables.

The structure of each phenotype is delineated in (9). The
population size of GA, i.e. the number of feasible solutions is
set at 200, with selection done using tournament and the GA
tolerance is set at 1 ∗ 10−5.

P b = {φ11, φ12, φ13, λ11, λ12, λ13, γ1j , ...,
φQ1 , φ

Q
2 , φ

Q
3 , λ

Q
1 , λ

Q
2 , λ

Q
3 , γ

Q
j }

(9)

where P b is the phenotype of an individual for the GA. Each
φ denotes a particular input (channel), each λ represents the
corresponding FLV for each input. These chromosomes form



the antecedent of a rule. The consequent of this rule is denoted
as γ.

IV. EXPERIMENTS AND RESULTS

A. fNIRS Data

In this work, infant’s fNIRS datasets made available online
by Emberson et al. [7] is analysed for obtaining an insight
into the workings of the developing human brain. The infant’s
fNIRS dataset is unisensory i.e. infants either watched a red
smiley face (visual stimulus) for 1 second or heard a toy sound
(audio stimulus) for 1 second. The reader is referred to the
original study by Emberson et al. [7] for more details on data
collection, and the subsequent preprocessing stages.

The fNIRS data is obtained from a total of 10 fNIRS
channels (Ch) with corresponding anatomical locations as
shown in Fig. 6 [7]. The Ch1- Ch3 are located in the occipital
cortex, which is associated with visual processing; Ch4 - Ch8
are in the temporal cortex which is associated with auditory
processing; and Ch9 - Ch10 are in the prefrontal cortex which
is mainly responsible for planning, and attention [31].

B. XAI System based MVPA

The mean of fNIRS signals from time 4-7 seconds post
stimulus, from the ten fNIRS channels illustrated in Fig. 6, is
used to build the MVP matrix as shown in Fig. 3. The MVP
matrix is split into 6-fold cross-validated training and testing
datasets, and input into IT2 based XAI system, as outlined
in Fig. 5. The fuzzy rules are learnt from each training fold
separately using the proposed XAI system, and the accuracy
established on testing folds. Please note there is no information
flow from one fold to another i.e. the proposed XAI system
has no memory of the choices made and the results obtained
from any given fold.

The mean classification metrics are obtained by gauging
the final optimized rules obtained from XAI system on all
6 testing datasets, and reported in Table I. The classification
metrics obtained from the proposed XAI system are also
compared with Adaptive-Network-Based Fuzzy Inference
System (ANFIS), SVM, and RF, as reported in Table I.

ANFIS uses a hybrid learning procedure by integrating both
neural networks and fuzzy logic principles [32]. In this work,
ANFIS is implemented using Mathworks central file exchange
[33].

The main advantage of the proposed XAI system is that
it provides fuzzy rules in the context of brain data whilst
also offering comparative classification metrics with respect
to other state-of-the-art classifiers as reported in Table I.

C. Explainable Fuzzy Rules

A total of 20 fuzzy rules with at most 3 ANTs are obtained
form the proposed IT2 based XAI system. An example of a
rule for both stimuli - Video and Audio, are listed in (10). As
can be readily interpreted from the rules in (10), the proposed
IT2 based XAI system offers a unique perspective into the
workings and interconnections of the developing human brain
i.e. if a data instance is classified as Video based on Rule 1

then it implies for that particular data instance the value of
Ch3 is High and Ch6 is Low, and Ch9 is Low.

Rule R1 ∶IF Ch3 is High AND Ch6 is Low AND
Ch9 is Low THEN stimulus is V ideo

Rule R2 ∶IF Ch1 is High AND Ch3 is Low AND
Ch5 is Medium THEN stimulus is Audio

(10)

D. Neuropshycological Discussion

An interpretable model for fNIRS data is of paramount
importance since the relation between the data and the
corresponding stimuli would enable researchers to gain insight
into the elusive workings of the human brain. For example,
from the rules listed in (10), it can be understood how the
proposed XAI system is discriminating between data samples
evoked from Video and Audio stimulus.

The rules obtained from the proposed XAI system are also
in-line with the established literature. The results reported in
the original study by Emberson et al. [7] conclude that Ch3 is
the most important channel for decoding accuracy. However,
the analysis could not provide further insight as to why Ch3 is
the most significant channel. Whereas the rules obtained from
the proposed XAI system clearly state that Ch3 is important
because it appears as an ANT in the rules for both Video and
Audio. The rules from the proposed XAI system also signify
what value (i.e. FLV) of Ch3 is associated with other Chs (i.e.
Ch6 and Ch9 for R1 and Ch1 and Ch5 for R2 in (10)).

The true potential of explainable fNIRS data analysis
lies in empowering scientists to study different trajectories
of brain development. This can essentially unlock key
similarities and differences between typical and atypical brain
development trajectories. Consequently, there is potential for
further investigations that could shed light into early diagnosis
and intervention.

V. CONCLUSIONS AND FUTURE WORK

The motivation for this empirical study lies in harnessing
explainable classification results for infant’s brain data i.e.
mapping the output (stimulus) back to the characteristics of
the input (brain) data, which is of paramount significance in
understanding the developing human brain.

9
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4
1

2
3

Fig. 6: The anatomical locations of the ten channels (Ch) are: Ch1
- Ch3 (blue): occipital cortex, Ch4 - Ch8 (green): temporal cortex,
and Ch9 - Ch10 (orange): prefrontal cortex.



TABLE I: Classification metrics on mean infant fNIRS MVPA for time window 4-7s post stimulus driven by the proposed
IT2 based XAI system, ANFIS, RF, and SVM.

Metric XAI system ANFIS RF SVM
Kappa 0.59 ± 0.04 0.36 ± 0.17 0.31 ± 0.092 0.41± 0.072
Accuracy 61.15 ± 4.09% 61.25± 5.0% 65.19 ± 4.56% 70.57 ± 3.70%
Precision 88.40 ± 4.07% 70.18 ± 6.62% 65.99 ± 4.96% 70.29± 4.90%

In this work, an explainable fNIRS data analysis is
undertaken using an IT2 based XAI system in tandem with
GA. The reason for choosing a type-2 FLS lies in its capability
of modeling the uncertainty in the input data which is of
paramount importance in this work since the input data is
also being used to learn the fuzzy rules. The explainable rules
offered by the proposed XAI system give a unique insight
into how developing brains function in response to different
stimuli.

The future work aims at validating the rules obtained
from the proposed XAI system by conducting a new study.
A special emphasis will be placed in the new study on
the anatomical location of the fNIRS channels, especially
in terms of co-registration between infants, to ensure error
in identification of anatomical locations arising from the
curvature of the infant’s heads can be minimized.
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