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Abstract

Doubly censored data are very common in epidemiology studies. Ignoring censorship in the analysis may

lead to biased parameter estimation. In this paper, we highlight that the publicly available COVID19

data may involve high percentage of double-censoring and point out the importance of dealing with such

missing information in order to achieve better forecasting results. Existing statistical methods for doubly

censored data may suffer from the convergence problems of the EM algorithms or may not be good

enough for small sample sizes. This paper develops a new empirical likelihood method to analyse the

recovery rate of COVID19 based on a doubly censored dataset. The efficient influence function of the

parameter of interest is used to define the empirical likelihood (EL) ratio. We prove that −2 log(EL-ratio)

asymptotically follows a standard χ2 distribution. This new method does not require any scale parameter

adjustment for the log-likelihood ratio and thus does not suffer from the convergence problems involved

in traditional EM-type algorithms. Finite sample simulation results show that this method provides

much less biased estimate than existing methods, when censoring percentage is large. The application to

COVID19 data will help researchers in other field to achieve better estimates and forecasting results.
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1. Introduction

Doubly censored data, with both right and left censoring, occur when time-to-event data are censored

either from above or below. Doubly-censored data are very common in studies of infectious disease

with incubation period. The left censoring happens when the originating date of the incubation period

is not fully observed due to practical sampling factors beyond experimental control. The date of the5

failure event is often right-censored. A particular doubly censored data on AIDS study can be found

in [1]. Another example is time from symptom onset to recovery for people who get COVID19. For

COVID19 studies [2], the incubation rate and recovery rate are the key factors for us to understand the

epidemiology. In particular, in the current COVID19 outbreak, better understanding of the recovery rate

will help governments to take the right intervention strategy at the right time. However, many existing10

research for COVID19 are based on published information from government or ministry of health websites

and media reports [2]. Such data have high percentage of missing information, such as high percentage
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Figure 1: δ = 2, right censoring and observing R only.

Figure 2: δ = 3, left censoring and observing L only; exposure date observed and symptom date missing.

of left or right censoring. This may distort the estimation of recovery rate, which could further distort

the epidemiology model forecasting, as we can see from [3] that different model parameters will give very

different forecasting results.15

The dataset used in [2] is from

https://github.com/mrc-ide/COVID19 CFR submission

which has a large number of missing information on the symptom onset and on the date of recovery. Our

main research interests here are to employ survival analysis techniques [4, 5] to study the recovery time,

e.g. the time from symptom onset to recovery X, and to study the sensitivity of recovery rate on the20

epidemiology forecasting. The recovery times are clearly observed under right censoring because when

the data were reported, recovery may not have happened to many patients. Therefore the right censoring

time R is the time from the symptom onset date to the reporting date. See Figure 1 for scenarios when

right censoring happens. Under right censoring, we will have no information about the left-censoring time

L, the recorded exposure ending time to recovery. On the other hand, as we know that the symptom25

usually occur after exposure to the virus, when symptom onset date is missing and also reporting date is

missing but the date of exposure to virus is available, we can impose the reasonable condition of X < L

on X, which gives the left censoring time L. So when left-censoring occurs the time L is from the date of

exposure to the date of recovery. See Figure 2 for details of left-censoring. Under left censoring, we will

have no information about R. When X ∈ [L,R], we will observe X but cannot observe L and R. This30

is shown in Figure 3. In such cases we usually have that, X = L (symptoms immediately occur after

exposure; events recorded on the same day) or L < X (the recorded exposure date means the ending

time of an exposure period). We also have X ≤ R which means that recovery occurs before reporting.

Figure 3: δ = 1, X observed; exposure date means the ending date of exposure period.

2



In summary, under doubly censoring, the event time X is observed if L ≤ X ≤ R. We observe

L in the case of left censoring with X < L, or observe R in the case of right censoring with X > R.

Let (Xi, Li, Ri), i = 1, · · · , n, be n independent copies of (X, L, R), then observations under doubly

censorship can be summarized as n independent pairs (Wi, δi), i = 1, · · · , n, where

Wi = max(min(Xi, Ri), Li), and δi =


1, if Li ≤ Xi ≤ Ri,

2, if Xi > Ri,

3, if Xi < Li.

Usually, we assumed that the event time X is independent of the censoring vector (L, R).

Denote F as the cumulative distribution function of X. Suppose that we are interested in a parameter35

θ, defined by a functional θ = θ(F ). Many important parameters can be represented as this form,

or sometimes we obtain θ via the corresponding estimating equation g(X, θ). For example, if we are

interested in the expectation of a known function m(X), then θ =
∫
m(x) dF (x), and the corresponding

estimating equation is g(X, θ) = m(X)− θ. Other examples include:

[1.] θ is the cumulative hazard function at given time t0, i.e. θ = − ln(1−F (t0)), then the estimating40

equation is g(X, θ) = I{X>t0} − e−θ;

[2.] θ is the mean residual life time at given time t0, i.e.

θ = E(X − t0|X > t0) = F̄−1(t0)

∫ ∞
t0

(s− t0) dF (s),

where F̄ = 1− F , then the estimating equation is g(X, θ) = (X − t0 − θ)I{X≥t0}.

To draw inference on the unknown parameter θ, a straightforward approach is to implement a distri-

bution function estimation for F [6, 7, 8, 9]. Using the distribution function estimation, the asymptotic-

normality based confidence interval for the parameter of interest θ can be constructed via the asymptotic

variance estimator of the parameter estimate. But there are two main drawbacks associated with this

method. First, the asymptotic variance usually takes a complicated form. Secondly, these confidence

intervals based on asymptotic normal distribution do not always perform well for small samples. Other

existing research about doubly-censored data may depend on specific model assumptions, such as (quan-

tile) regression analysis [10, 11, 12] and two-sample tests [13]. In this paper, we will solve these estimation

problems via empirical likelihood method [14], which is a very useful tool for constructing confidence in-

terval for θ in nonparametric settings. Based on estimating equation g(X, θ), the original Empirical

Likelihood (OEL) in [14] is defined as

RO(θ) = sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pi g(Xi, θ) = 0,

n∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, · · · , n

}
.

It can be proved that

LO(θ0) = −2 logRO(θ0)→ χ2(1), in dist.

A very important work by [15] generalized the EL method to make inference for parameter defined by a

general estimating equation. In general, the empirical likelihood approach has a number of advantages,

such as the shape of the confidence region is determined automatically by the data. In many cases, the45
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log empirical likelihood ratio statistics has asymptotic χ2 distribution, therefore the confidence interval

for θ can be constructed without estimating asymptotic variance.

However, applying OEL methods to incomplete data will lead to a scaled χ2 result. When the data is

right censored, [16] utilized the Buckley-James estimator to define the estimating equation, and proved

that the asymptotic distribution of the corresponding log-likelihood is a scaled χ2 distribution. This50

limiting distribution can be used to construct the confidence interval for θ, if the scaled parameter is

estimated. To avoid estimating the scaled parameter, [17] used the efficient influence function of the

parameter under right censorship to define the log-likelihood ratio statistics and proved its asymptotic

distribution is a χ2 distribution. The confidence interval for θ based on this method is much more

accurate. Under doubly censoring, [18] proposed Leveraged Bootstrap Empirical Likelihood (LBEL) by55

combining the EL method with the bootstrap. Since the asymptotic distribution of the log-likelihood

based on LBEL method is a scaled χ2 distribution, the scaled parameter as an adjustment coefficient

needs to be estimated in practice. Besides, the LBEL method demands that the parameter of interest

should be the linear functional of F .

Notice that the EL likelihood function
n∏
i=1

pi is not the real likelihood function for doubly censored

data, [19] defined the likelihood function based on observations {(Wi, δi)}ni=1

LDC(F ) =

n∏
i=1

∆F (Wi)
I{δi=1}(F̄ (Wi))

I{δi=2}F (Wi)
I{δi=3} , (1)

where DC is the abbreviation for Double Censoring, ∆F (t) = F (t) − F (t−) and F̄ = 1 − F is the60

survival function. Using (1), [19] showed that this log-likelihood ratio subject to nonparametric moment

constraints obeys the Wilks’ phenomenon under some assumptions. This method avoids the scaled

parameter, but is computationally difficult to find the nonparametric maximum likelihood. To solve this

problem, [13] proposed an EM algorithm to calculate this log-likelihood ratio statistics. However, EM

algorithm may suffer from the problem of convergence to a local maximum point. Different from [13], we65

investigate another approach in this paper. Inspired by [17], we develop the likelihood statistics defined

by efficient score function for the parameter of interest θ. This method is called Efficient-EL method in

our paper. Under this new approach, we demonstrate that the log empirical likelihood ratio converges to

the standard χ2 distribution without using any scale parameter adjustment, which means the confidence

interval for different kinds of parameters θ can be obtained by a unified algorithm. In the mean time, it70

is computationally much more efficient than existing EL methods under doubly censoring.

The rest of the paper is organized as follows. The Efficient-EL inference for the differential functional

parameter θ under doubly-censored data is given in Section 2, including the large sample properties and

the computing algorithm. Simulation studies of the Efficient-EL and the EM-EL method proposed by [13]

are provided in Section 3. We find that our approach performs much better for longer tail distributions,75

which usually lead to higher censoring proportions. In the mean time, the new method still performs

as good as existing methods for lighter tail distributions which lead to lower censoring proportions. An

application on COVID-19 study based on our proposed methodology is presented in Section 4. The paper

concludes with a discussion in Section 5.
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2. Efficient Empirical Likelihood Inference80

Denote GL(t) = P{L ≤ t} and GR(t) = P{R ≤ t} as the distribution of L and R respectively. Suppose

we are interested in the estimation problem for a parameter θ = θ(F ), and the corresponding estimating

equation for θ is g(X, θ), that means E g(X, θ) = 0. Since X cannot be observed unless it falls in [L, R],

we define

gDC(W, δ; θ) = I{δ=1}
g(W, θ)

GR(W )−GL(W )
+ I{δ=2}

g(W, θ)

1−GR(W )
+ I{δ=3}

g(W, θ)

GL(W )
.

It is easy to see that, given the distribution F, GL, GR, we have E gDC(W, δ; θ) = 0 which gives an

estimating equation for θ. Then, the EL ratio can be defined by

RDC(θ) = sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pi g
DC(Wi, δi; θ) = 0,

n∑
i=1

pi = 1, pi ≥ 0, i = 1, · · · , n

}
.

Substituting the unknown GL, GR with its consistent estimators will lead to a scaled asymptotic χ2

distribution. [19] used the likelihood function (1) to solve the problem. Different from their idea, we will

try to reconsider the estimating equation to overcome the scaled χ2 asymptotic distribution problem.

2.1. The main theorems

Assume [α, β] ⊂ [0, ∞) be the support of F , and the following assumptions hold.

GL(x)−GR(x−) > 0 on x ∈ [α, β], (A1)

F,GL and GR are continuous with GL(β) = 1, GR(α) = 0. (A2)

Define BV[α, β] = {h : [α, β]→ R, h is bounded and of bounded variation} and HF = {h ∈ BV[α, β] :85 ∫
hdF = 0}. The following Lemma provides the efficient influence function for θ.

Lemma 2.1. Let dFt(x) = (1 + t h(x)) dF (x) be a submodel of F (x), which approaches F at direction

h ∈ HF . Assume (A1) and (A2) hold and the Hadamard derivative of θ(Ft) exists, denoted by θ̇0. Then

the efficient influence function for θ is

ψ(w, δ; θ) = `F (`∗`F )−1θ̇0,

where `F is the score operator

(`Fh)(w, δ) = I{δ=1}h(w) + I{δ=2}

∫
(w,∞)

h dF

1− F (w)
+ I{δ=3}

∫
[0, w]

h dF

F (w)
,

and `∗ is its corresponding adjoint operator

(`∗g)(s) = g(s, 1)
(
GL(s)−GR(s−)

)
+

∫
[0,s)

g(u, 2) dGR(u) +

∫
[s,∞)

g(u, 3) dGL(u).

Proof. See Appendix .

The assumptions (A1) and (A2) guarantee the operator `∗`F : BV[α, β] → BV[α, β] is invertible.

The following are some examples of derivatives θ̇0 (in all of the examples we let t0 be fixed).

[1.] For mean θ = EX, we have θ̇0 = x− θ.90
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[2.] For the kth moments θ = EXk, we have θ̇0 = xk − θ.

[3.] For cumulative distribution function θ = F (t0), we have θ̇0 = I{x≤t0} − θ.

[4.] For cumulative hazard function θ = − ln(1− F (t0)), we have

θ̇0 = 1− eθ I{x>t0}.

Since the operators `∗ and `F dependent on (F, GL, GR), we should write ψ = ψ(w, δ; θ, F, GL, GR)

more precisely. Let ξ = (F, GL, GR), the efficient influence function can be denote as ψ(W, δ; θ, ξ),

hence

Eψ(W, δ; θ, ξ) = 0.

Notice that the nuisance parameter ξ is unknown, we need to estimate it firstly.

For j = 1, 2, 3, define

Ĥk(t) =
1

n

n∑
i=1

I{Wi≤t, δi=k} and Ĥ(t) =

3∑
k=1

Ĥk(t).

[8] gave the self-consistent estimators F̂ , ĜL, ĜR of F , GL, GR by solving the following equations:

Ĥ(t) = (1− F̂ (t))ĜR(t) + F̂ (t)ĜL(t), (2)

ĜR(t) =

∫ t

0

dĤ2(u)

1− F̂ (u)
, (3)

ĜL(t) = 1−
∫ ∞
t

dĤ3(u)

F̂ (u)
. (4)

Based on equation (2), a naive and simple iterative algorithm can be used to get F̂ , and then ĜL, ĜR can

be calculated by equations(3) and (4). In order to guarantee the asymptotic consistency and normality95

of F̂ , ĜL and ĜR, we assume F , GL and GR satisfy conditions (A1)–(A6) in [9] throughout this paper.

Define ξ̂ = (F̂ , ĜL, ĜR), then the efficient influence function ψ(Wi, δi; θ, ξ) for θ can be estimated by

ψ(Wi, δi; θ, ξ̂). For simplicity of notations, denote ψi(θ) = ψ(Wi, δi; θ, ξ) and ψ̂i(θ) = ψ(Wi, δi; θ, ξ̂),

then the corresponding Efficient EL ratio is defined as R̂eDC(θ)
.
= R̂eDC(θ, ξ̂) =

sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pi ψ̂i(θ) = 0,

n∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, · · · , n

}
. (5)

Using Lagrangian multipliers, pi = n−1(1 + λ ψ̂i(θ))
−1, we further have

R̂eDC(θ) =

n∏
i=1

1

1 + λ ψ̂i(θ)
,

where λ is the solution of the following equation

1

n

n∑
i=1

ψ̂i(θ)

1 + λ ψ̂i(θ)
= 0

and the following asymptotic results.
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Theorem 2.1. Suppose the assumptions in Lemma 2.1 hold, θ0 is the true value of the parameter of

interest, and Eψ2(W, δ; θ0) exists, then we have

L̂eDC(θ0) ≡ −2 log R̂eDC(θ0)→ χ2(1), in dist.

Proof. Under the Lemma Appendix B.1 and Lemma Appendix B.2 in Appendix, this proof is similar

to the proof of Original EL and therefore it is omitted.

Theorem 2.1 shows that the estimated log empirical likelihood ratio converges to the standard χ2

distribution without adjustment, which means the confidence interval for different kinds of parameters θ

can be obtained by an unified algorithm. Hence, a confidence region for the parameter θ with asymptotic

coverage probability 1− α can be define as

CI =

{
θ : 2

n∑
i=1

log
(

1 + λ ψ̂i(θ)
)
≤ χ2

α(1)

}
. (6)

By recalling the definition of the efficient influence function for θ

ψ(w, δ; θ) = `F (`∗`F )−1θ̇0,

in the following subsection we present an algorithm for the calculation of the numerical solution of ψ̂i100

and the confidence region CI.

2.2. Algorithm for Efficient-EL Method

Before presenting the algorithm, we need to introduce the following notations,

K̂1(t) =

 n−1
∑n
i=1

(
1− F̂ (Wi)

)−2

I{δi=2,Wi<t}, if t < Bn,

K̂1(Bn−), if t ≥ Bn,

K̂2(t) =

 n−1
∑n
i=1 F̂

−2(Wi)I{δi=3,Wi≥t}, if t ≥ An,

K̂2(An), if t < An,

where An = min
{
Wi : F̂ (Wi) > 0

}
, Bn = max

{
Wi : F̂ (Wi−) < 1

}
, and

Kij =
1

n

K̂1(Wi ∧Wj) + K̂2(Wi ∨Wj)

ĜL(Wj)− ĜR(Wj−)
I{δj=1}.

For a given θ, define the least favorable direction hθ(x) = (`∗`F )−1θ̇0(x; θ), then the efficient influence

function is ψ(w, δ; θ, ξ) = `Fhθ(x). Notice that only the values of ψ(w, δ; θ, ξ) at the sample points

(Wi, δi) are needed, therefore we can just calculate hθ(W1), hθ(W2), · · · , hθ(Wn). The following Corol-105

lary 2.1 shows a key equation for ĥθ(Wi) which will be used in the Efficient-EL algorithm.

Corollary 2.1. The estimator ĥθ(Wi) satisfies the equation
θ̇0(W1; θ)

...

θ̇0(Wn; θ)

 =


∆G1 +K11 K12 · · · K1n

K21 ∆G2 +K22 · · · K2n

· · ·

Kn1 Kn2 · · · ∆Gn +Knn




ĥθ(W1)
...

ĥθ(Wn)

 , (7)

where ∆Gi := ĜL(Wi)− ĜR(Wi−).

The Efficient-EL ratio R̂eDC(θ) can then be calculated by the following algorithm. Hence, the confi-

dence interval for θ, CI in (6), can be constructed using the output ψ̂i(θ) by this algorithm.
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Algorithm 1 Efficient-EL Algorithm

1: Solving (2)-(4) to get the self-consistent estimators F̂ , ĜL and ĜR of F , GL and GR.

2: for i = 1 to n, do

3: Calculate θ̇0(Wi; θ) and ∆Gi = ĜL(Wi)− ĜR(Wi−),

4: for j = 1 to n, do

5: Calculate Kij .

6: end for

7: end for

8: Solve the equation (7) and get ĥθ(W1), ĥθ(W2), · · · , ĥθ(Wn).

9: for i = 1 to n, do

10: Calculate ψ̂i(θ) = ψ(Wi, δi; θ, ξ̂),

11: if An ≤Wi < Bn then

12:

ψ̂i(θ) = I{δi=1}ĥθ(Wi) +
I{δi=2}

n(1− F̂ (Wi))

n∑
k=1

I{δk=1,Wk>Wi}ĥθ(Wk)

∆Gk

+
I{δi=3}

nF̂ (Wi)

n∑
k=1

I{δk=1,Wk≤Wi}ĥθ(Wk)

∆Gk
,

13: else if Wi < An then

14: ψ̂i(θ) = ψ(An, δi; θ, ξ̂),

15: else

16: ψ̂i(θ) = ψ(Bn−, δi; θ, ξ̂).

17: end if

18: end for

19: Output ψ̂i(θ).

3. Simulation Studies110

In this section, we will implement simulation studies to study recovery time distribution, which is

very important for the analysis of Susceptible-Exposed-Infectious-Resistant (SEIR) epidemiology model.

SEIR model in epidemic disease studies involves four states: susceptible (S), exposed (E), infected (I),

and resistant (R) via

dS

d t
= − β

N
SI,

dE

d t
=

β

N
SI − σE,

d I

d t
= σE − γI, dR

d t
= γI.

In this SEIR model, the infectious rate β controls the rate of spread which represents the probability115

of transmitting disease between a susceptible and an infectious individual. The incubation rate σ is the

rate of latent individuals becoming infectious (average duration of incubation is 1/σ). Recovery rate γ is

determined by the average duration of infection. N = S + E + I +R is the total population. The basic

reproductive number, R0 = β/γ, does not change in this model.
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Here we focus on using the proposed double censoring model to estimate the recovery time, because120

the infection time only involves right censoring in the data and therefore they can be estimated using

standard right censoring techniques [4]. Therefore, our simulation focus will be on the mean recovery

time and model forecasting to illustrate the importance of recovery time estimation on the forecasting

accuracy. We will also study the mean residual recovery time, which is also very important to forecast

the expected additional recovery time given that the patient has not recovered at a certain time.125

3.1. Simulation studies for recovery time

In this subsection, we will illustrate the performance of our method via different simulation scenarios.

We denote Uniform(a, b) as the uniform distribution on [a, b], Exp(λ) as the exponential distribution with

mean λ and LogNormal(µ, σ2) as the Log-Normal distribution with parameters µ and σ2.

There are two parameters of our interests. The first is the mean of X, denoted by θ1, and its130

corresponding estimating equation is g1(X, θ1) = X − θ1. Note that θ1 is the inverse of the mean

recovery rate parameter γ. The second is the Mean Residual Lifetime (MRL) of X given t0, denoted by

θ2(t0) or MRL(t0), and its corresponding estimating equation is g2(X, θ2) = (X − t0− θ2)I{X≥t0}. MRL

stands for the remaining mean time needed for an infected patient to recover.

Based on the simulated data, we use all complete data Xi to construct the benchmark confidence135

interval, named as complete data EL (or complete-EL) result. We will compare the Efficient-EL confidence

interval proposed in the previous section and EM-EL confidence interval given in [13], with the benchmark

complete-EL results.

3.1.1. Simulation Results for Mean and Mean Residual Lifetime

Uniform(0, 3) is considered as the underlying lifetime distribution F in this subsection. The left140

censoring time L and censoring interval length R − L are uniformly distributed on interval [c1, c2] and

[c3, c4]. We set ci and µi to be different values to achieve 10%, 20%, 30% left censoring proportions and

10%, 20%, 30% right censoring proportions respectively. Based on 5000 simulated data sets, we construct

Efficient-EL confidence intervals, EM-EL confidence intervals and Complete-EL confidence intervals. The

coverage probabilities for mean and MRL(t0) are summarized in Table 1.145

From these results, we notice that as the sample size n increases, all coverage probabilities converge

to the nominal levels. When n is fixed, coverage probabilities of Efficient-EL confidence intervals and

EM-EL confidence intervals decrease as the censoring proportion increases. The coverage probabilities of

the confidence intervals for parameter MRL(t0) decrease when t0 increases. In all cases, the performance

of Efficient-EL and EM-EL methods are close to that of Complete-EL method when censoring proportion150

is not large.

In the top half of the Table 1, Efficient-EL and EM-EL methods perform similarly. The difference

among these two methods and Complete-EL method is small, especially for small censoring proportion

or large sample size. However, the performance of these methods for the parameter MRL is different

(see the bottom half of Table 1). The coverage probabilities of Efficient-EL confidence intervals performs155

better than that of EM-EL for almost all scenarios when t0 = 10% quantile of F . Meanwhile, Efficient-EL

method performs as good as EM-EL when t0 = 50% quantile of F , for most cases.
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Table 1: Coverage probabilities for Mean and MRL with 10%, 50% quantile under Uniform(0, 3) distribution. Two per-

centages in each column stand for left censoring proportion and right censoring proportion. Efficient-EL results with better

performances than EM-EL highlighted in bold.

Nominal Level = 0.90 Nominal Level = 0.95

Mean 10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%

Complete-EL 0.898 0.894 0.896 0.944 0.943 0.945

n=50 Efficient-EL 0.897 0.888 0.877 0.944 0.935 0.932

EM-EL 0.896 0.878 0.873 0.944 0.932 0.930

Complete-EL 0.906 0.899 0.897 0.955 0.949 0.948

n=80 Efficient-EL 0.903 0.892 0.887 0.950 0.942 0.940

EM-EL 0.904 0.891 0.882 0.951 0.943 0.940

Complete-EL 0.909 0.896 0.903 0.953 0.948 0.954

n=100 Efficient-EL 0.906 0.898 0.899 0.951 0.946 0.944

EM-EL 0.905 0.888 0.891 0.952 0.944 0.942

MRL(t0 = 10% quantile) 10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%

Complete-EL 0.907 0.898 0.906 0.954 0.943 0.953

n=50 Efficient-EL 0.904 0.874 0.854 0.949 0.929 0.910

EM-EL 0.898 0.851 0.831 0.947 0.914 0.894

Complete-EL 0.895 0.894 0.892 0.949 0.948 0.945

n=80 Efficient-EL 0.892 0.880 0.866 0.941 0.931 0.921

EM-EL 0.886 0.859 0.835 0.936 0.921 0.907

Complete-EL 0.896 0.889 0.897 0.949 0.948 0.947

n=100 Efficient-EL 0.896 0.884 0.868 0.949 0.936 0.923

EM-EL 0.898 0.859 0.838 0.946 0.925 0.907

MRL(t0 = 50% quantile) 10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%

Complete-EL 0.897 0.891 0.896 0.945 0.943 0.950

n=50 Efficient-EL 0.871 0.838 0.819 0.928 0.896 0.877

EM-EL 0.888 0.833 0.831 0.938 0.897 0.895

Complete-EL 0.895 0.901 0.891 0.949 0.950 0.841

n=80 Efficient-EL 0.885 0.856 0.844 0.935 0.912 0.909

EM-EL 0.889 0.848 0.846 0.941 0.909 0.915

Complete-EL 0.893 0.901 0.897 0.949 0.948 0.947

n=100 Efficient-EL 0.892 0.873 0.871 0.942 0.928 0.923

EM-EL 0.894 0.857 0.864 0.945 0.921 0.929
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Figure 4: The coverage probabilities for MRL(t0 = 0.5) under Unifrom(0, 3) distribution when nominal level is 90%. The

figures from left to right show the results for different censoring percentages: left plot 10% left-censoring and 10% right-

censoring; middle plot 20% left-censoring and 20% right-censoring; right plot: 30% left-censoring and 30% right-censoring.

Figure 5: The coverage probabilities for MRL(t0 = 0.3) under Exp(1) distribution when nominal level is 90%. The left

figure shows the results for 20% left and 40% right censoring proportion, while the right figure shows the result for 40% left

and 20% right censoring proportion.

We also plot the results of Table 1 and draw the coverage probability curves of different methods in

Figure 4. Comparing to EM-EL method, Efficient-EL method shows a much better convergence pattern,

converging faster to the Complete-EL results.160

3.1.2. The impact of different censoring proportions and different distributions

In this section, we investigate the impact of different censoring proportions. Here we use Exponential

distribution and Log-Normal distribution as the underlying distributions and consider the complicated

parameter MRL(t0), where t0 is the 30% quantile of the underlying distributions. For exponential distri-

bution, we set the left censoring time L as Exp(c1) and censoring interval length R− L as Exp(c2). For165

LogNorm(0, 0.64), the left censoring time L follows Exp(c1), and censoring interval length R−L follows

LogNorm(c2, 0.25). Let ci to be different values to achieve 20% left censoring and 40% right censoring,

and 40% left censoring and 20% right censoring, respectively. Based on 5000 simulated data sets, the

coverage probabilities are summarized in Figure 5 and Figure 6.

We can see that higher right censoring proportion leads to lower coverage probabilities. The coverage170
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Figure 6: The coverage probabilities for MRL(t0 = 0.3) under LogNorm(0, 0.64) distribution when nominal level is 90%.

The left figure is the coverage probability curve under 20% left and 40% right censoring proportion setting, while the right

figure shows the result under 40% left and 20% right censoring proportion setting.

probabilities of confidence intervals constructed by the proposed Efficient-EL approach is much better

than EM-EL methods under Exponential distribution. In Figure 5, the left plot with 20% left censoring

and 40% right censoring shows that Efficient-EL has coverage probability 0.80 which is much closer to

the bench mark (about 0.90), while EM-EL only has coverage probability less than 0.60. The right plot

with 40% left censoring and 20% right censoring also shows Efficient-EL is better. In particular, EM-EL175

seems to have the problem not converging to the bench mark 0.90 as sample size increases.

Under the Log-Normal distribution, EM-EL appears to perform similarly as Efficient-EL, but EM-EL

does not show a clear pattern of convergence (see Figure 6). In other words, as sample size increases

the coverage probabilities of Efficient-EL based confidence intervals steadily increase, while the coverage

probabilities of EM-EL seem not to have a clear increasing pattern (coverage probabilities of EM-EL may180

not converge to the nominal level as sample size becomes larger). Taking censoring proportion 40%+20%

as a specific example, as the sample size increase from 50 to 150, the coverage probabilities of Efficient-EL

increase from 0.784 to 0.815, while EM-EL decrease from 0.845 to 0.820. See Figure 6 for details.

In summary, under both exponential distribution and log-normal distribution, the new Efficient-EL

approach is more reliable for highly-censored data.185

3.2. SEIR model forecasting

In this subsection, we will present how the SEIR forecasting results are affected by choosing different

recovery rate parameter γ, i.e. the sensitivity of γ. In our simulation we set population N = 106 and

discrete time steps of size 0.1 of a simulated day. We consider the reproduction number R0 = 2 and

3, then let the average duration of infection be 10, 20 and 30 days (the corresponding recovery rate190

γ is 1/10, 1/20, 1/30), respectively. These values are chosen according to the data analysis result in

Section 4. The incubation period(= 1/σ) is chosen between 2 and 10 days, which mimic the real COVID

data analysis results [20]. From the summarized results presented in Figure 7, we can see that under

different R0 and σ values, the total number of infections will be highly affected by the recovery rate γ.

The maximum number of infection can be different in the scale of 20,000 to 100,000 in a population of195
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Figure 7: Maximum number of infections curves under different quarantine protocols. Three different sets of curves represent

different recovery period.

1,000,000. Therefore, even if the confidence interval of recovery rate was estimated wrongly at a very

small scale, the final forecasting results will be very different.

4. Analysis of COVID19 Data

4.1. Recovery time analysis

There has already been a vast literature on COVID19 research about Susceptible-Exposed-Infectious-200

Resistant (SEIR) epidemiology model, based on which the UK government’s lock-down strategy were

made [3]. Recovery time is a very important factor in such SEIR model. However publicly available data

could have a large proportion of missing information, to stop us achieving a proper analysis for it. For

example, the dataset from

https://github.com/mrc-ide/COVID19 CFR submission205

has a large number of missing information on the symptom onset and on the date of recovery. It actually

gave a double censoring dataset for the recovery time. The event time X of interest is time length from

symptom onset to recovery. The right censoring variable R is from symptom onset to the reporting date.

The left censoring variable L is from the date of exposure (or the ending date of exposure period) to

recovery. The total number of observations used in our analysis is n = 547 and the data are collected210

from 20th January 2020 to 28th February 2020.

Firstly, we list the censoring proportions of this dataset under different groups in Table 2. Using the

Efficient-EL and EM-EL methods, the confidence intervals of recovery time for different groups can be

calculated, respectively. These results are listed in Table 2. From Table 2, we can see that the elder

groups have longer average recovery period, but there is no significant different between male and female.215

The confidence intervals based on EM-EL method seem to be shorter than that of Efficient-EL. This

corresponds to the simulation results where EM-EL has worse coverage probability in most cases.
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Table 2: The analysis of COVID19 data for different groups

proportion sample Efficient-EL EM-EL

Group left observed right size CI Lower CI Upper CI Lower CI Upper Mean

Male 0.052 0.185 0.763 323 17.370 22.153 18.482 20.827 19.842

Female 0.063 0.184 0.753 218 18.171 21.567 18.541 22.186 20.243

Age under 30 0.140 0.215 0.645 85 9.527 22.411 15.596 20.014 17.759

Age 30-50 0.082 0.212 0.707 186 17.651 21.172 17.853 21.528 19.605

Age 50-60 0.066 0.168 0.766 115 18.947 23.813 19.856 23.955 21.731

Age 60-70 0.076 0.124 0.800 83 17.902 24.627 19.680 24.786 22.041

Age over 70 0.089 0.089 0.822 68 18.951 25.614 19.935 23.970 22.173

Overall 0.059 0.170 0.771 547 18.784 20.928 18.804 20.837 20.013

4.2. SEIR model forecasting

We also carry out a simulation study similar to [3] to compare the forecasting results based on

different model parameter values, in order to address the importance of parameter estimation for such220

forecasting analysis. We set σ = 1/5.1, according to [3]. Since SEIR model dose not include mortality,

we classify death and recovered as one group, re-estimate the recovery time and get the 95% confidence

interval [18.784, 20.928] and mean 20.013. Hence, three different recovery periods: short duration 15 days

(γ = 1/15, corresponding to results without using double censoring analysis, no right censoring, over

estimation of recovery rate), medium duration 20 days (γ = 1/20, corresponding to our result based on225

double censoring) and long duration 25 days (γ = 1/25, corresponding to results without using double

censoring analysis, no left censoring, under estimation of recovery rate) are considered in our simulation.

We also consider two different quarantine protocols: no government interventions R0 = 2.4 following

[3] and with mild government interventions R0 = 1.5, which lead to the parameter value β = R0γ in our

simulation. All of our simulation are carried out via the R package deSolve of SEIR model. The daily230

new cases are plotted in Figure 8, where for the curves from left to right, the dashed line means 15-day

recovery period, the solid line means 20-day recovery period and the dotted line means 25-day recovery

period. For both R0 = 2.4 and R0 = 1.5 we can see that with a shorter recovery time, the COVID19

outbreak will end much quicker. Also the mode of daily infected cases will be much smaller under the

scenario of shorter recovery time.235

To achieve the herd immunity proposed by the UK government requires a proportion of the UK

population being immune to the virus to stop it from spreading. It is well-known that such herd immunity

can be stimulated by vaccination or recovery following infection. Based our result using a sophisticated

double censoring statistical model, we can see clearly that the recovery period should be much shorter

than the estimated figures proposed by other existing works. With R0 = 1.5, the peak of the curve with240

recovery rate 1/20 is will occur on day 592 (95% confidence interval [527, 761]), the peak with recovery

rate 1/15 will occur on day 479 (95% confidence interval [422, 609]) and the peak with recover rate

1/25 will occur on day 705 (95% confidence interval [621, 883]). Therefore, with a slight over or under

estimation for the recovery rate, the forecasting peak date will be different at a scale of about 110 days.

This would imply that the outbreak could end about four months earlier than people expected.245
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Figure 8: Increased infections curves before and after quarantine. Three different sets of curves represent different recovery

period from left to right.

5. Conclusions

Through our COVID19 forecasting analysis and [3], we can see that correct estimation of SEIR model

parameters may change the final forecasting results significantly, for example the peak date estimation

may be different at the scale of months. For such a rapid spread disease, it will be extremely challenging

to carry out a real-time monitoring task for the pandemic [21]. The data collected in real-time will250

certainly involve different kind of censoring. This paper highlighted the importance of dealing with the

censored data and presented a efficient new statistical estimation approach. By utilizing the efficient

influence function of the parameter of interest as an estimating equation, a new method of constructing

EL confidence interval for doubly censored data is proposed in this paper. This new Efficient-EL method

is easy to calculate since it does not need to estimate scale parameter. Simulation studies show that the255

new method performances better than the EM-EL method in terms of coverage probabilities.

Comparing model predictions with our estimated recovery rate parameter and existing parameter

values used in other research works, we found that the peak of the epidemic predicted could be months

different from each other. This could lead to wrong health policy decisions, for example taking or removing

lock-down decisions at the wrong time points, which may lead to a second peak of outbreak or making260

the lock-down period too long to cause severe economic damage and mental health problems for more

people. Our analysis highlights the importance of doing such sophisticated survival analysis will provide

better estimation for the parameters in the SEIR models.

To our knowledge, this is the first work which considered using censoring techniques in survival analysis

to carry out parameter estimation for COVID19 data. Most existing COVID19 research such as [22] and265

[3] did not address the issues of highly contaminated data due to censoring or simply use prespecified

model parameters. Although only a relatively small data set is used, the methodology can be used by

other researcher who have the access to larger COVID19 dataset with individual information. It will

help interdisciplinary collaboration between statisticians and epidemiologists and help policy makers on

public health policy making.270
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Appendix A. Proof of Lemma 2.1

Proof. For any h ∈ HF , define dFt = (1+ th) dF , then the likelihood of doubly censored random variable

is

Lt(w, δ) = ∆Ft(w)I{δ=1}(F̄t(w))I{δ=2}Ft(w)I{δ=3} .

Let PF be the distribution of doubly censored random variable (W, δ), then the score operator `F : HF →275

L2(PF ) is

(`Fh)(w, δ) =
∂

∂t

∣∣∣
t=0

lnLt(w, δ)

= I{δ=1}h(w) + I{δ=2}

∫
(w,∞)

hdF

1− F (w)
+ I{δ=3}

∫
[0, w]

hdF

F (w)
.

By the definition of the adjoint operator `∗ : L2(PF )→ HF , for any h1, h2 ∈ HF ,

< `Fh1, `Fh2 >PF =< h1, `
∗`Fh2 >F .

Using Fubini’s theorem,

< `Fh1, `Fh2 >PF =

∫
(`Fh1 `Fh2) dPF

=

∫
h1(x)h2(x)

(
GL(x)−GR(x−)

)
dF +

∫ ∫
(r,∞)

h1dF
∫

(r,∞)
h2dF

1− F (r)
dGR(r)

+

∫ ∫
[0, l]

h1dF
∫

[0, l]
h2dF

F (l)
dGL(r)

=

∫
h1(x)

(
h2(x)

(
GL(x)−GR(x−)

)
+

∫
[0,x)

∫
(r,∞)

h2dF

1− F (r)
dGR(r) +

∫
[x,∞)

∫
[0, l]

h2dF

F (l)
dGL(l)

)

we get

(`∗`Fh)(x) =
(
GL(x)−GR(x−)

)
h(x) +

∫ (∫
[x∨s,∞)

dGL
F

+

∫
[0, x∧s)

dGR
1− F

)
h(s) dF (s).

According to Lemma A.2 (i) in [19], under the assumptions, the operator `∗`F is one to one, onto and

continuously invertible. By the definition of θ̇0, for any h ∈ HF ,

∂

∂t

∣∣∣
t=0

θ(Ft) =

∫
θ̇0 hdF =< θ̇0, h >F=< `∗`F (`∗`F )−1θ̇0, h >F=< `F (`∗`F )−1θ̇0, `Fh >PF .

According to the definition in [23], ψ(w, δ; θ) = `F (`∗`F )−1θ̇0 is the efficient influence function.
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Appendix B. Lemma for Theorem 2.1280

To prove the theorem 2.1, we need the following two Lemmas. Define

h0 = (`∗`F )−1θ̇0(x; θ0), ĥ0 = (`∗`F̂ )−1θ̇0(x; θ0).

Lemma Appendix B.1. Under the assumptions of Theorem 2.1, we have∣∣∣∣∣∣ĥ0 − h0

∣∣∣∣∣∣
∞
→ 0.

Proof. From ∣∣∣∣∣∣ĥ0 − h0

∣∣∣∣∣∣
∞
≤
∣∣∣∣(`∗`F̂ )−1((`∗`F )h0 − (`∗`F̂ )h0)

∣∣∣∣
∞

we just need to prove ∣∣∣∣`∗`F − `∗`F̂ ∣∣∣∣∞ = sup
h∈BV[α, β]

∣∣∣∣`∗`Fh(x)− `∗`F̂h(x)
∣∣∣∣
∞ → 0, (B.1)

and to prove the result
∣∣∣∣(`∗`F̂ )−1

∣∣∣∣
∞ is bounded.

[1.] Since

`Fh(w, δ) = I{δ=1}h(w) + I{δ=2}

∫
(w,∞)

hdF

1− F (w)
+ I{δ=3}

∫
[0, w]

hdF

F (w)
,

so

`Fh(w, 2) =

∫
(w,∞)

hdF

1− F (w)
, `Fh(w, 3) =

∫
[0, w]

hdF

F (w)
.

Hence

`∗`Fh(x) = h(x)
(
GL(x)−GR(x−)

)
+

∫
[0,x)

`Fh(r, 2) dGR(r) +

∫
[x,∞)

`Fh(l, 3) dGL(l),

and ∣∣∣∣`∗`Fh(x)− `∗`F̂h(x)
∣∣∣∣
∞ = ∆1 + ∆2 + ∆3,

∆1 = sup
x∈[α, β]

∣∣∣ ((GL(x)−GR(x−))− (ĜL(x)− ĜR(x−))
)
h(x)

∣∣∣,
∆2 = sup

x∈[α, β]

∣∣∣ ∫
[0,x)

`Fh(r, 2) dGR(r)−
∫

[0,x)

`F̂h(r, 2) dĜR(r)
∣∣∣,

∆3 = sup
x∈[α, β]

∣∣∣ ∫
[x,∞)

`Fh(l, 3) dGL(l)−
∫

[x,∞)

`F̂h(l, 3) dĜL(l)
∣∣∣.

From [8], we have

∆1 ≤ sup
x∈[α, β]

∣∣∣ (ĜL −GL) (x)h(x)
∣∣∣+ sup

x∈[α, β]

∣∣∣ (ĜR −GR) (x−)h(x)
∣∣∣→ 0.

We also have

∆2 = sup
x∈[α,β]

∣∣∣ ∫
[0,x)

(`F̂h)(u, 2) dĜR(u)−
∫

[0,x)

(`Fh)(u, 2) dGR(u)
∣∣∣

≤ sup
x

∣∣∣ ∫
[0,x)

(`F̂h)(u, 2) d
(
ĜR(u)−GR(u)

) ∣∣∣+ sup
x

∫
[0,x)

∣∣(`F̂h)(u, 2)− (`Fh)(u, 2)
∣∣ dGR(u)

≤ sup
x

∣∣∣ ∫
[0,x)

(`F̂h)(u, 2) d
(
ĜR(u)−GR(u)

) ∣∣∣+

∫ ∣∣(`F̂h)(u, 2)− (`Fh)(u, 2)
∣∣ dGR(u),
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Lemma 3.1 in [9] shows that the first part of above equation is o(1), and the proof of Lemma A.2(ii) in

[19] shows that the second part is also o(1). Therefore ∆2 → 0. Similarly, we get ∆3 → 0. Hence, for

any h ∈ BV[α, β], ∣∣∣∣`∗`Fh(x)− `∗`F̂h(x)
∣∣∣∣
∞ → 0.

[2.] Now we will prove that
∣∣∣∣(`∗`F̂ )−1

∣∣∣∣
∞ is bounded. For the convenience of proof, we denote

S = `∗`F and Ŝ = `∗`F̂ . Next, we define

T̂ = S−1(S − Ŝ), Û =

∞∑
k=0

T̂ k.

It is easy to verify that

Ŝ−1 = Û S−1 and Û−1 = I − T̂ .

Since
∣∣∣∣T̂ ∣∣∣∣∞ =

∣∣∣∣S−1(S − Ŝ)
∣∣∣∣
∞ ≤

∣∣∣∣S−1
∣∣∣∣
∞

∣∣∣∣S − Ŝ∣∣∣∣∞ → 0, we have

∣∣∣∣ Û ∣∣∣∣∞ =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

T̂ k
∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑
k=0

∣∣∣∣T̂ ∣∣∣∣k∞ =
1

1−
∣∣∣∣T̂ ∣∣∣∣∞ → 1.

Therefore ∣∣∣∣Ŝ−1
∣∣∣∣
∞ =

∣∣∣∣ Û S−1
∣∣∣∣
∞ ≤

∣∣∣∣ Û ∣∣∣∣∞∣∣∣∣S−1
∣∣∣∣
∞

is bounded.285

Lemma Appendix B.2. Define ψi0 = ψi(θ0), ψ̂i0 = ψ̂i(θ0) and σ2 = Eψ2(W, δ; θ0). Under the

assumptions of Theorem 2.1, we have

max
1≤i≤n

∣∣∣ψ̂i0∣∣∣ = op(n
1/2), (1)

√
n

(
1

n

n∑
i=1

ψ̂i0

)
→ N(0, σ2), (2)

1

n

n∑
i=1

ψ̂2
i0 = σ2 + op(1). (3)

Proof. [1.] Since

max
1≤i≤n

∣∣∣ψ̂i0∣∣∣ ≤ max
1≤i≤n

∣∣∣ψ̂i0 − ψi0∣∣∣+ max
1≤i≤n

|ψi0| =
(

max
1≤i≤n

∣∣∣ψ̂i0 − ψi0∣∣∣2 )1/2

+ max
1≤i≤n

|ψi0|

≤ n1/2

(
1

n

n∑
i=1

∣∣∣ψ̂i0 − ψi0∣∣∣2)1/2

+ op(n
1/2),

we only need to prove n−1
∑n
i=1

∣∣∣ψ̂i0 − ψi0∣∣∣2 = op(1). Note that

1

n

n∑
i=1

∣∣∣ψ̂i0 − ψi0∣∣∣2 =

3∑
k=1

(
1

n

n∑
i=1

∣∣∣ψ(Wi, k; θ0, ξ̂)− ψ(Wi, k; θ0, ξ)
∣∣∣2I{δi=k}

)

=

3∑
k=1

∫ (
ψ(w, k; θ0, ξ̂)− ψ(w, k; θ0, ξ)

)2

dĤk(w) =

3∑
k=1

Γk,
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where

Γ1 =

∫ (
ψ(w, 1; θ0, ξ̂)− ψ(w, 1; θ0, ξ)

)2

dĤ1(w),

Γ2 =

∫ (
ψ(w, 2; θ0, ξ̂)− ψ(w, 2; θ0, ξ)

)2 (
1− F̂ (w)

)
dĜR(w),

Γ3 =

∫ (
ψ(w, 3; θ0, ξ̂)− ψ(w, 3; θ0, ξ)

)2

F̂ (w) dĜL(w).

Using Lemma Appendix B.1, we have

Γ1 =

∫ (
`F̂ ĥ0(w, 1)− `Fh0(w, 1)

)2

dĤ1(w) =

∫ (
ĥ0(w)− h0(w)

)2

dĤ1(w)

≤
∣∣∣∣∣∣ĥ0 − h0

∣∣∣∣∣∣2
∞
→ 0.

For the second part,

Γ2 =

∫ (
`F̂ ĥ0(w, 2)− `Fh0(w, 2)

)2 (
1− F̂ (w)

)
d
(
ĜR(w)−GR(w)

)
+

∫ (
`F̂ ĥ0(w, 2)− `Fh0(w, 2)

)2 (
1− F̂ (w)

)
dGR(w).

From Lemma 3.1 in [9], we know that the first part of above equation is o(1). Since `F̂ ĥ0(w, δ) −

`Fh0(w, δ) → 0, together with dominated convergence theorem, the second part of above equation is

o(1). Therefore Γ2 → 0, and Γ3 converges to 0 can be proved similarly. Hence part (1) is proved.290

[2.] Using the equations (2) - (4), we have

1

n

n∑
i=1

ψ̂i0 =

3∑
k=1

∫
ψ(w, k; θ0, ξ̂) dĤk(w)

=

∫
ĥ0

(
ĜR − ĜL

)
dF̂ +

∫ (
1− ĜR

)
ĥ0 dF̂ +

∫
ĜLĥ0 dF̂

=

∫
ĥ0(w) dF̂ (w) =

∫
θ̇0 dF̂ =

∫
θ̇0 d

(
F̂ − F

)
.

Due to the definition of efficient influence function and the proof of Lemma A.3 in [19], we have∫
θ̇0 d(F̂ − F ) =

1

n

n∑
i=1

`Fh0(Wi, δi) + op(n
−1/2) =

1

n

n∑
i=1

ψi0 + op(n
−1/2).

Therefore
√
n

(
1

n

n∑
i=1

ψ̂i0

)
→ N(0, σ2).

[3.] Since

1

n

n∑
i=1

ψ̂2
i0 =

1

n

n∑
i=1

(
ψ̂i0 − ψi0

)2

+
2

n

n∑
i=1

(
ψ̂i0 − ψi0

)
ψi0 +

1

n

n∑
i=1

ψ2
i0,

and ∣∣∣∣∣ 1n
n∑
i=1

(
ψ̂i0 − ψi0

)
ψi0

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

(
ψ̂i0 − ψi0

)2
∣∣∣∣∣
1/2 ∣∣∣∣∣ 1n

n∑
i=1

ψ2
i0

∣∣∣∣∣
1/2

= op(1),

we get295

1

n

n∑
i=1

ψ̂2
i0 =

1

n

n∑
i=1

ψ2
i0 + op(1) = σ2 + op(1).
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Appendix C. Proof of Corollary 2.1

Proof. From the definition, the least favorable direction hθ = (`∗`F )−1θ̇0(x; θ) satisfies the equation

(`∗`F )hθ = θ̇0(x; θ), that is

(
GL(x)−GR(x−)

)
hθ(x) +

∫ (∫
[x∨s,∞)

dGL
F

+

∫
[0, x∧s)

dGR
1− F

)
hθ(s) dF (s) = θ̇0(x; θ). (C.1)

Since

dF (s) =
dH1(s)

GL(s)−GR(s−)
, dGR(s) =

dH2(s)

1− F (s)
, dGL(s) =

dH3(s)

F (s)
.

therefore ∫ (∫
[x∨s,∞)

dGL
F

+

∫
[0, x∧s)

dGR
1− F

)
hθ(s) dF (s)

=

∫
1

GL(s)−GR(s−)

(∫
[0, x∧s)

dH2(u)

(1− F (u))2
+

∫
[x∨s,∞)

dH3(u)

F 2(u)

)
hθ(s) dH1(s)

=

∫
1

GL(s)−GR(s−)

(
K1(x ∧ s) +K2(x ∨ s)

)
hθ(s) dH1(s),

where

K1(t) =

∫
[0, t)

dH2(u)

(1− F (u))2
, K2(t) =

∫
[t,∞)

dH3(u)

F 2(u)
.

Hence, equation (C.1) can be rewritten as

(
GL(x)−GR(x−)

)
hθ(x) +

∫ (
K1(x ∧ s) +K2(x ∨ s)

)
GL(s)−GR(s−)

hθ(s) dH1(s) = θ̇0(x; θ). (C.2)

Substitute F̂ , ĜR and ĜL into K1, K2 and (C.2), we get K̂1(t), K̂2(t) and

θ̇0(x; θ) =
(
ĜL(x)− ĜR(x−)

)
hθ(x) (C.3)

+
1

n

n∑
j=1

K̂1(x ∧Wj) + K̂2(x ∨Wj)

ĜL(Wj)− ĜR(Wj−)
hθ(Wj) I{δj=1}.

Set x = Wi (i = 1, 2, · · · , n) in equation (C.3), we get the equation (7).
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