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ABSTRACT
In this paper, online collaborative content caching in wireless networks is stud-
ied from network economics point of view. The cache optimization problem is first
modelled as a finite horizon Markov Decision Process that incorporates an auto-
regressive model to forecast the evolution of the content demands. The complexity
of the problem grows exponentially with the system parameters, and even though a
good approximation to the cost-to-go can be found, the single-stage decision prob-
lem is still NP-hard. To deal with cache optimization in industrial-size networks, a
novel methodology called rolling horizon is proposed that solves the dimensional-
ity of the problem by freezing the cache decisions for a short number of periods to
construct a value function approximation. Then, to address the NP-hardness of the
single-stage decision problem, two simplifications/reformulations are examined: (a)
to limit the number of content replicas in the network and (b) to limit the allowed
content replacements. The results show that the proposed approach can reduce the
communication cost by over 84% compared to that of running Least Recently Used
(LRU) updates on offline schemes in collaborative caching. The results also shed light
on the trade-off between the efficiency of the caching policy and the time needed to
run the online cache optimization algorithm.

KEYWORDS
Collaborative caching, online/offline caching, popularity dynamics, finite horizon
MDP, approximate dynamic programming

1. Introduction

During the last few years, there was an explosion of data traffic in cellular networks.
This increase puts pressure on network operators’ infrastructure and renders inefficient
the current model according to which the base stations (BS) receive the requested con-
tent through the core network using expensive bandwidth-limited backhaul links. The
backhaul links may become congested because of the increased data traffic, and this
may result in users experiencing excess delays and low Quality of Experience (QoE).
High QoE can be preserved by densifying the network of BSs, i.e., installing a bigger
number of BS; however, this solution does not scale well with the number of wireless
devices. A more efficient solution would be to exploit the spatial diversity of users’
requests. This can be done by caching popular content at BSs’ caches so that it is
closer to the end-users. This helps to decrease the load of the backhaul links and



combat download delays. However, such caching solutions do not take full advantage
of the correlation of content requests in different BSs. Enabling BSs collaboration re-
duces the number of content replicas cached at the BSs. Nevertheless, deciding on
the optimal cache placement/eviction policies for a collaborative network is a com-
plex problem. This calls for new collaborative caching algorithms that consider cache
update schedules and solve large instances of the cache optimization problem.

In the wireless caching systems, the cache optimization problem is hard to solve
due to the plethora of the requested contents, the dynamic nature of the requests and
base stations have limited cache space. This problem becomes even more challenging
as the vast majority of the generated data are video files, which have considerable size
and strict delivery deadlines. Thus, even when base stations determine the optimal
caching policy independently, the cache optimization problem is still NP-hard as it can
be mapped to a knapsack problem (Martello and Toth 1990b). In practice, network
operators can adopt simple cache update policies such as the Least Recently Used
(LRU), Least Frequently Used (LFU), or other more advanced methods (Yang et al.
2019; Abad et al. 2019; Bharath et al. 2018; Muller et al. 2017), that are applied
separately to each BS. These methods are intuitive and show good performance in case
of independent BS cache optimization, but do not work well in collaborative caching
because the optimal replacement decisions also depend on the network topology.

Collaborative wireless caching was first presented by Golrezaei et al. (2013) as an
efficient way to exploit the spatial correlation of the requests when users can cache part
of the content. Then, it was generalized in BSs networks by Poularakis et al. (2014,
2016); Khreishah et al. (2016); Maniotis et al. (2020). These offline caching schemes
assume that the content popularity profile is known. They make content replacement
decisions assuming that future content requests will follow the considered model. Ob-
viously, the efficiency of these caching schemes depends heavily on the sufficiency of
content request statistics that are used for parameter fitting and are sensitive to sud-
den changes in popularity. Online caching algorithms were proposed as a remedy to
non-stationary demands (Li et al. 2016; Zhang et al. 2018; Yang et al. 2019; Abad
et al. 2019; Chattopadhyay et al. 2018b; Neglia et al. 2018; Bharath et al. 2018; Chat-
topadhyay et al. 2018a; Gharaibeh et al. 2016; Muller et al. 2017; Saltarin et al. 2018).
These schemes learn the optimal caching policies using recent content requests. Online
caching schemes are classified in non-collaborative caching schemes (Zhang et al. 2018;
Yang et al. 2019; Abad et al. 2019; Chattopadhyay et al. 2018b; Neglia et al. 2018;
Bharath et al. 2018; Muller et al. 2017; Li et al. 2016), where caches decide indepen-
dently content placement/eviction policies, and collaborative online caching schemes
(Chattopadhyay et al. 2018a; Gharaibeh et al. 2016; Muller et al. 2017; Saltarin et al.
2018), where these policies are jointly decided. Besides the efficiency of online caching
schemes, their main drawbacks are that: (a) they do not consider how mobile network
operators (MNOs) update the cached content, i.e., in off-peak hours cache updates all
the content can be potentially updated, and (b) they have high complexity, and hence
can only solve small instances of the cache optimization problem.

Edge caching in wireless networks is revisited in this paper to address the above
drawbacks. The considered network consists of small-scale base stations (SCBSs) with
limited storage space that collaborate to accommodate users’ requests for content.
SCBSs are connected with neighbouring SCBSs through the core network via high-
speed links. When a user issues a request for a content, if it is not cached in the SCBSs
where the user lies, the request is forwarded to the neighbouring SCBS that belongs to
the shortest path connecting the former SCBS with the SCBS which has the content.
This path can be built using, for example, content advertisement messages (Marandi

2



et al. 2017) that inform SCBSs about which contents are available to other SCBSs
incurring low overhead. In case none of the SCBS has the requested content or the cost
to acquire it from the macro-cell base station (MCBS) is lower, the content is retrieved
from the MCBS. In order to decide from where to retrieve the content, the cost of
updating the content (this includes the communication cost) is considered. Once the
content is located in an SCBS, the content is sent back to the user following the reverse
path of the path followed when content was requested. The above content request
model resembles the way information is requested in information-centric networks
by Saltarin et al. (2018), however, the proposed solution is generic and applicable
to any network following such a content request model. More details regarding the
communication model are provided in Section 3.

The considered scenario has similarities with the one examined by Khreishah and
Chakareski (2015); Gharaibeh et al. (2016), where offline caching solutions are pre-
sented. Different from these works, the focus here is online caching solutions. Cache
content is placed free-of-charge at the SCBSs in off-peak hours and updated during
the day according to the encountered content popularity dynamics considering the
cost of update. The caching optimization problem is first modelled as a finite-horizon
Markov Decision Process (MDP) that incorporates an auto-regressive model to fore-
cast the evolution of the content demands. The problem grows exponentially with the
system parameters, and even though a good approximation to the cost-to-go can be
found, the problem is NP-hard. To allow the deployment of the proposed solution to
industrial-size networks, a methodology that simplifies the solution process from two
perspectives is presented. The dimensionality problem is addressed by the proposed
rolling horizon method, which freezes the cache decisions for a short number of pe-
riods in order to construct a value function approximation. The performance of the
proposed scheme is compared against several schemes with and without prediction.
The results show that rolling horizon approach outperforms all other schemes. As the
computational complexity of the problem can still be high, two simplifications of the
single-stage decision-making problem are studied: (a) to limit the number of content
replicas in the network and (b) to limit the content updates. The results show that
besides these simplifications, large gains over the comparison schemes are noticed, and
the performance is still close to a theoretical lower bound. The contributions of this
work are summarized as follows:

• a dynamic programming structure with finite horizon is proposed to solve the
online cache optimization problem;
• the dimensionality of the problem is addressed with a rolling horizon approach.

Further, two heuristics are proposed to resolve the NP-hardness of the cache
updating problem that appears in every single stage;
• the proposed online caching algorithm is extensively evaluated and compared

against state-of-the-art schemes.

The rest of the paper is organized as follows. In Section 2, related literature is briefly
reviewed and in Section 3, the considered scenario is discussed. Then, the online cache
optimization model is introduced in Section 4. In Section 5, the proposed solution based
on rolling-horizon and simplification to cope with the dimensionality and NP-hardness
in decision making are presented. The performance of proposed schemes is compared
against several schemes in Section 6. Finally, conclusions are drawn in Section 7.

3



2. Related work

Collaborative offline wireless caching (Golrezaei et al. 2013) is an efficient mechanism
that exploits the spatial correlation of the requests. BSs collaborate with wireless de-
vices that offer their caching space to store popular content. Coded caching can further
advance the performance of these systems, as content reuse and cache hit ratio increase,
while content delivery delay decreases (Maddah-Ali and Niesen 2014). Poularakis et al.
(2014, 2016); Khreishah et al. (2016) propose to use a large number of SCBSs to lower
the data retrieval delays in mobile networks. The cached content in the SCBSs is de-
cided centrally by the MNO. The SCBSs work in concert with an MCBS to deliver
content that is not available to the SCBSs, which is requested from MCBS. Poularakis
et al. (2014) firstly cast the problem as an unsplittable hard capacitated metric fa-
cility location problem and solve it by an approximation algorithm. Cache assisted
delivery of scalable video data (Thomos et al. 2015) is studied by Poularakis et al.
(2016) where multiple MNOs collaborate by offering part of their SCBSs cache space
to other MNOs. It is shown that the cache optimization is an instance of the multiple-
choice knapsack problem and admits a pseudo-polynomial time-optimal solution. The
relation between partial caching and users’ retention rate for video is investigated by
Maggi et al. (2018).

To deal with non-stationary content requests, online caching was proposed. The op-
timal online cache policy can be determined using reinforcement learning algorithms
(Zhang et al. 2018; Abad et al. 2019; Chattopadhyay et al. 2018b; Muller et al. 2017).
When the freshness of the data is an important decision factor, caching algorithms
should consider the age of information (Zhang et al. 2018; Abad et al. 2019). More
efficient caching policies can be found by taking into account both the global and local
content popularity (Chattopadhyay et al. 2018b). Chattopadhyay et al. (2018b) uses
linear function approximation to lower the computational cost, which is inspired by
the additive form of the overall cost. This approximation allows to solve larger in-
stances of the problem, e.g., more files. Context-aware caching is proposed by Muller
et al. (2017) for proactively deciding the cache allocation strategy. The content popu-
larity is learned using a contextual multi-armed bandit algorithm that has guaranteed
convergence. However, this algorithm still requires a significant number of iterations
to learn data popularity. A linear regression model is used to estimate the content
popularities by Yang et al. (2019). The problem is first formulated as a time-averaged
hit rate maximization problem and then reformulated as a time-averaged regret min-
imization problem. Two algorithms based on simulated annealing are introduced by
Neglia et al. (2018) to deal with non-stationary content requests. According to the
work of Bharath et al. (2018), caches are updated when the offloading cost, i.e., the
cost introduced when files are delivered through the backhaul, exceeds a threshold.
An online popularity-aware caching scheme that refreshes the cached content accord-
ing to the revealed content requests is presented by Li et al. (2016). This scheme
considers a single cache network, and thus the algorithm is not appropriate for collab-
orative caches case. Exploiting BSs collaboration opportunities can reduce offloading
cost (Chattopadhyay et al. 2018a; Saltarin et al. 2018) and/or reduce the network use
(Gharaibeh et al. 2016). Collaboration opportunities may emerge due to the fact the
coverage areas of BSs overlap (Chattopadhyay et al. 2018a), where a Gibbsian based
sampling method is used to determine the optimal caching strategy. This enables se-
quential cache updates and policies are updated only when contents are delivered to
users through the backhaul link. Collaboration between caches can also be achieved in
content-centric networks (CCN) (Gharaibeh et al. 2016) by giving Incentives to Inter-
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net Service Providers (ISPs) to cache data for other ISPs. This solution, although it
is of low complexity, cannot be trivially used in other wireless networks due to CCN’s
content demand model. Although the above mentioned online caching methods are
efficient, they disregard that the cached contents in MNO handled networks are up-
dated free-of-charge in the off-peak hours, and the majority of them have limitations
in the size of the networks and the number of content they can handle.

3. System model

The network setting depicted in Fig. 1 is considered in this paper. This represents an
MNO handled network comprising an MCBS that communicates through the backhaul
link with a set M = {1, 2, . . . ,M} of SCBSs. Let M′

= {M∪ 0} be the augment set
that includes the MCBS and the SCBSs, where the index 0 stands for the MCBS.
Each SCBS is connected with its neighbouring SCBSs through the core network via
high-speed links1. In the network, there is a set U = {1, 2, . . . , U} of users who request
to receive files contained in the content catalogue N = {1, 2, . . . , N}. Each file n ∈ N
has size vn bytes and is associated with a parameter λtn that represents the number
of requests for the nth file in time period t. The files are unsplittable, and hence they
should be fully retrieved only from one base station (either MCBS or SCBS), however a
file n ∈ N can be stored in multiple SCBSs. The SCBSs have limited storage capacity,
and thus they can cache only a part of the content catalogue, while the MCBS can
store the entire content catalogue. The storage capacity of the mth SCBS is denoted
as bm. The proposed online cache optimization problem described in the next sections
can be solved centrally at the MCBS. This is a natural choice as this base station is
aware of the network topology and is connected with all the SCBSs.

When a user u ∈ U issues a request for a content, e.g., n ∈ N , it first directs this
request to the closest SCBS, e.g., mth SCBS. If the content is cached in this SCBS, the
delivery of the content incurs no extra cost. However, in case the content is not found
at the mth SCBS, the content request is forwarded to neighboring SCBS specified
by its forwarding table (step 1 in Fig. 1). If these do not possess the requested file
also, they forward the content request to one of the neighboring SCBSs indicated by
MCBS (step 2 in Fig. 1). This process is repeated until an SCBS is found that has
the requested content. If no SCBS possesses the requested file, the content is retrieved
from the MCBS (steps 1’ and 2’ in Fig. 1). When the requested content is found, the
content is delivered back to the user who requested the content following the backward
path of the one followed to reach the content (steps 3 and 4, or 3’ and 4’ in Fig. 1).
This protocol can be realized using the content advertisement messages (Marandi
et al. 2017), where SCBSs forwarding tables are updated periodically after receiving
such messages. These messages are compressed by means of Bloom filters to limit
the communication overhead. Pull-based content advertisement mechanisms (Marandi
et al. 2019) can further reduce the overhead. Specifying the exact communication
protocol is beyond the scope of this paper.

When the content requested by user u, who is in SCBS m’s communication range,
is retrieved from the cache of the SCBS (or MCBS) m

′ ∈ M′
, the delivery cost is

equal to cu
m,m′ ; this accounts for the communication cost which includes the cost of

using the network infrastructure. Without loss of generality, it is assumed that the cost
depends on the shortest distance between the m and m

′ ∈M′
, with cum,m = 0. When

1The high-speed links can be backhaul links connecting the edge nodes of the core network, i.e., the SCBSs.
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Figure 1. Considered network setting.

none of the SCBSs has the demanded content, it is retrieved from the MCBS through
the backhaul link with a cost cum,0, where cum,0 > cu

m,m′ . Although the content request

model resembles the way information is requested in information-centric networks, the
proposed caching algorithm is generic and is not tied to any specific communication
protocol.

3.1. Cache update mechanism

The cache update flowchart is depicted in Fig. 2. When a content is requested in
an SCBS, the following steps take place. The request is first processed by the Con-
tent Request Processor, which is responsible for forwarding the request to the Cache
Management module and also for accumulating statistics regarding the requested con-
tent that are periodically send to the MCBS. The latter module checks whether the
demanded content is stored in the SCBS’s cache. If this is the case, the content is re-
trieved from SCBS’s Local Cache. Differently, depending on SCBSs forwarding tables,
the request is forwarded to a neighboring SCBSs or the MCBS where it is processed
by their Content Request Processor. Upon retrieval of the content from other SCBSs
or the MCBS, this is returned to the user. In our system, decisions regarding updating
content to an SCBS cache are made in present decision time slots. In these slots, the
statistics regarding encountered content requests at all SCBSs are forwarded to MCBSs
Content Popularity Forecasting module. The overall statistics are then processed by
the Cache Decision module, which runs the proposed rolling horizon algorithm to
decide the cache update. These decisions are sent to all SCBSs’ nodes Cache Update
module that is responsible for removing content from SCBSs caches and adding new
content to them. It also populates the forwarding tables of the SCBS.

4. Online Dynamic Programming model

In this section, the studied online collaborative cache optimization problem is formu-
lated as a finite-horizon MDP to reflect the dynamics of the system. Cache decisions
are made online and every T decision stages the cached content can be updated free-
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Figure 2. Modules of the considered cache update system.

of-charge, i.e., the cost for updating the cached content at the SCBSs is zero.
The states of the finite-horizon MDP are defined as St = (~xt1, ~x

t
2, ..., ~x

t
M ), where

~xtm = (xt1m, x
t
2m, ..., x

t
Nm)T is a N dimensional 0 − 1 vector that indicates whether a

content is cached in an SCBS. xtnm is equal to 1 if content n is cached in SCBS m in
stage t, otherwise is 0. Recall that M and N represent the number of SCBSs and the
number of contents, respectively.

The actions of the finite-horizon MDP are composed of two sub-actions corre-
sponding to the addition and/or the eviction of a content to/from the cache. The
sub-action of adding a content to the cache is defined as ~at = (~at1,~a

t
2, ...,~a

t
M ),

where ~atm = (at1m, a
t
2m, ..., a

t
Nm)T is a N dimensional vector with atnm be equal to

1 when content n is added in SCBS m in stage t, otherwise is 0. Similarly the sub-
action of evicting a content from the cache is defined as ~dt = (~dt1,

~dt2, ...,
~dtM ), with

~dtj = (dt1m, d
t
2m, ..., d

t
Nm)T being a N dimensional vector and dtnm is 1 if content n is

evicted from SCBS m in stage t, differently is 0. Therefore, the state St+1 and the
xt+1
nm evolve with the time as follows

St = St−1 + ~at − ~dt, and xtnm = xt−1
nm + atnm − dtnm, n ∈ N ,m ∈M.

For each state St, the feasible action set (eligible actions) for stage t is given by

χt = {~at, ~dt| atnm ≤ 1− xt−1
nm , d

t
nm ≤ xt−1

nm , n ∈ N ,m ∈M
N∑
n=1

vn(xt−1
nm + atnm − dtnm) ≤ bm,m ∈M}

,

where the first inequality does not allow to add a content to an SCBS cache if it is
already cached in it, while the second means that a content cannot be evicted from
a cache if it is not there. The third inequality does not permit the total size of the
cached content in an SCBS to exceed the cache capacity.

In each stage t = 1, ..., T − 1, the decisions regarding which contents to add and/or
evict to/from the cache of the mth SCBS are made by solving the Bellman’s equation
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Vt−1(St−1) = min
~at,~dt∈χt

[
I(~at, ~dt) + min

yu
n(m,m′)

{∑
n

∑
u∈U∑

m′∈M′

λtnc
u
m,m′yun(m,m′)|

M∑
m′=0

yun(m,m′) = 1, yun(m,m′) ≤ x
t
nm′

}
+ Vt(St)

] (1)

where Vt(St) represents the future cost of the MDP model when the system is in state
St, and λtn represents the number of requests in time period t. The variable yun(m,m′) is

1 if a request for content n issued by a client u at SCBS m is satisfied with the content
copy at m′, and cum,m′ is the associated content delivery cost. The parameter I(~at, ~dt)

corresponds to the penalty coming as a result of actions ~at and ~dt:

I(~at, ~dt) = γ

N∑
n=1

M∑
m=1

(atnm + dtnm), (2)

where γ stands for the cost (per content) incurred when adding/removing a con-
tent to/from a cache. In this paper, the penalty is linear to the number of contents
to add/evict, but other models can be used. Since at the end of the horizon (e.g.,
at midnight) the contents update does not incur any penalty, two adjacent decision
periods (e.g., days) can be considered independently by setting boundary condition
VT (ST ) = 0. Thus, during the first stage all the cached contents are updated free-

of-charge, and the penalty term I(~at, ~dt) in (1) is 0. Therefore, the decision problem
becomes

V0(S0) = min
~x1

[
min

yu
n(m,m′)

{∑
n

∑
u∈U∑

m′∈M′

λ1
nc
u
m,m′yun(m,m′)|

M∑
m′=0

yun(m,m′) = 1, yun(m,m′) ≤ x
1
nm′

}
+ V1(~x1)

]
,

(3)

In the proposed scheme, differently from the standard offline approaches where it
is assumed that content requests follow a long term distribution, e.g., Zipf, an auto-
regressive model is employed to estimate the expected number of content requests
λtn, n ∈ N . If ε is a noise parameter that captures the randomness in the evolution of
λtn, the number of content requests is estimated as

λ̃tn = µt · (
H∑
τ=1

βτλ
t−τ
n + ε), (4)

where H is the number of previous stages considered during the prediction of content
requests. The coefficients βτ , τ = 1, ...,H − 1 correspond to the weights of each of

the H previous stages to the prediction process. Apparently, it is
H∑
τ=1

βτ = 1. The

parameter µt stands for the average number of per-content requests during stage t.
This parameter varies with the stage index to reflect the time-varying demand pattern
over the day. It is worth noting that in this paper, it is assumed that the auto-regressive
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model parameters, µt, β, and the distribution for ε are known. The determination of
the optimal values of these parameters is an interesting problem, but it is out of the
scope of this paper. Finally, it should be noted that in the employed auto-regressive
model, the number of requests is not affected by the age of information, i.e., how long
the content has been available to the content catalogue. Finally, it is assumed that
content will not disappear before stage T . These are reasonable assumptions for a
horizon of T = 24 hours.

5. Rolling horizon cache optimization algorithm

The online dynamic programming cache optimization model presented in the previ-
ous section suffers from the curse of dimensionality. Specifically, at every stage t an
integer problem with (M2 + 2M)N variables should be solved. Given that the content

cache status is a binary variable, the discrete state space has
( b∑
l=0

C lN

)M
components,

where b is the cache capacity of every SCBS (assume they all have the same size)
and C lN represents the number of combinations of l elements from N objects. Fur-
ther, the decision problem solved in every stage is NP-hard as can be mapped to a
multi-dimensional Knapsack problem (Martello and Toth 1990a). To overcome these
difficulties, approximate solutions are proposed in this paper.

Backward induction algorithm needs the value function (i.e., cost) for stage t, i.e.,
Vt(St), to optimize the cache decisions in stage t − 1. If this cost is calculated for
all possible states St, the decision problem in (1) will only contain information for
the current stage t − 1 and, thus, can be solved independently in each stage. Recall
that Vt(St) represents the future cost of following the optimal decisions starting from
state St, which captures in its value both the information evolvement and the optimal
decision policy. Considering how content popularity evolves, it is unlikely that contents
are added to the cache according to the current optimal decision, and then be removed
right in the next stage. This means that once a decision is made based on the current
status, this decision is not expected to change for a short period of time until the
system dynamics dominate the significance of the current solution. Therefore, a rolling
horizon approximation over a short horizon Γ is constructed, where the optimal policy
obtained at stage t is used for Γ subsequent periods. By doing this, the influence of the
here-and-now decision to the far future is negligible, but the evolution of the content
popularity in Γ stages is explicitly considered in the decision problem.

If the rolling horizon algorithm is implemented for Γ periods into the future, the
decision problem at stage t becomes:

Ṽt−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yu
n(m,m′)

{∑
n

∑
u∈U∑

m′∈M′

(λtn +

Γ∑
τ=1

λ̃t+τn )cum,m′yun(m,m′)|
M∑

m′=0

yun(m,m′) = 1, yun(m,m′) ≤ x
t
nm′

}] (5)

where λ̃t+τn is the forecasted number of requests in stage t+ τ and is computed by (4).
The above approximation removes the computational burden of estimating Vt(St),

but the difficulty of finding the optimal decisions ~at, ~dt in (5) remains unsolved. The
two simplifications of the online cache optimization problem presented in the next
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subsection enable finding well-performing solutions with reduced complexity. Let P
represents the inner decision problem of (5), i.e., finding the minimum communication
cost (cost of satisfying all content demands during a period) under the current cache

status. Without loss of generality, (λtn +
Γ∑
τ=1

λ̃t+τn ) is replaced in the rolling horizon

update formula (5) by a variable λ̄tn because this simplification can be used with other
forecasting mechanisms.

P (~xt) := min
∑
n

∑
u∈U

∑
m′∈M′

λ̄tnc
u
m,m′yun(m,m′) (6a)

s.t.
∑

m′∈M′

yun(m,m′) = 1, n ∈ N , u ∈ U (6b)

yun(m,m′) ≤ x
t
nm′ , n ∈ N , u ∈ U ,m′ ∈M

′
(6c)

yun(m,m′) ∈ {0, 1}, n ∈ N , u ∈ U ,m
′ ∈M′

(6d)

5.1. Allow a single copy of a content to be cached in SCBSs network

Based on the observation that there are far more contents than the total capacity
of all the SCBSs, which in practice holds, the decision problem is simplified further
by restricting contents to be cached at one SCBS in the network. This is an efficient
strategy when content popularity is given by a smooth distribution, i.e., the popularity
of contents does not vary significantly. Under this simplification, when content n ∈ N
is cached in SCBS m ∈M, all requests for it are served by the SCBS, which cached the
content if it is less costly than receiving it from the backhaul. Therefore, the problem
P (~xt) can be decomposed into sub-problems solved by contents. For content n, it is:

Pn(~xt) := min
∑
u∈U

∑
m′∈M′

λ̄tnc
u
m,m′yun(m,m′) (7a)

s.t.
∑

m′∈M′

yun(m,m′) = 1, u ∈ U (7b)

yun(m,m′) ≤ x
t
nm′ , u ∈ U ,m′ ∈M

′
(7c)

yun(m,m′) ∈ {0, 1}, u ∈ U ,m
′ ∈M′

(7d)

If the content n is cached in SCBS m̂, i.e., xtnm̂ = 1 and each content is cached in only
one SCBS, then xtnm′ = 0, ∀m′ 6= m̂. This means that yun(m,m′) = 0,∀m′ 6= m̂. Hence,

it should be yun(m,m̂) = 1 −
∑

m′ 6=m̂
yun(m,m′) = 1 in order to to satisfy (7b). In this case,

the minimum usage cost is
∑
u∈U

λtnc
u
m,m̂ for each content n. However, if the content n

is not cached at any SCBSs, the minimum usage cost is trivially equal to
∑
u∈U

λtnc
u
m,0.

Hence, under a cache placement xtnm′ , the total communication cost is computed as:

∑
n

λtn
∑
u∈U

[
cum,0(1−

M∑
m′=1

xtnm′) +

M∑
m′=1

cum,m′xtnm′

]
(8)

10



This removes the need to solve the problem P , and (1) becomes

Vt−1(St−1) = min
~at,~dt∈χt

{
I(~at, ~dt) +

∑
n

λtn
∑
u∈U

[
cum,0 +

M∑
m′=1

(cum,m′ − cum,0)xtnm′

]
+ Vt(St)

}
.

(9)
Note that the simplified problem in (9) does not contain content delivery decision

variables y, and hence the size of the action space is greatly reduced from (M2+2M)N
to 2MN . Considering the simplification incurred by the rolling-horizon approximation
described by (5), the cache and delivery optimization problem can be written as

min I(~at, ~dt) +
∑
n

(λtn +

Γ∑
τ=1

λ̃t+τn )
∑
u∈U

[
cum,0 +

M∑
m′=1

(cum,m′ − cum,0)(xt−1
nm′ + atnm′ − dtnm′)

]
(10a)

s.t. atnm′ ≤ 1− xt−1
nm′ ,∀n ∈ N , ∀m′ ∈M (10b)

dtnm′ ≤ xt−1
nm′ ,∀n ∈ N , ∀m′ ∈M (10c)

N∑
n=1

vn(xt−1
nm′ + atnm′ − dtnm′) ≤ bm′ ,∀m′ ∈M (10d)∑

m′∈M
(xt−1
nm′ + atnm′ − dtnm′) ≤ 1,∀n ∈ N (10e)

atnm′ , dtnm′ ∈ {0, 1}, ∀n ∈ N ,∀m′ ∈M (10f)

It is worth to note that the simplified problem in (10a) has all the constraints of
the original online minimization problem (1) and in addition has (10e) which prohibits
the caching of a content in more than one SCBSs. This constraint enables the use of
the closed-form formula (8) for computing the optimal usage cost, and thus decreases
the cost of determining the optimal solution. As it will become clear in the evaluation
section in the majority of the cases, the proposed simplification results in the same
cache allocation with that of the original problem (1) unless the total cache capacity
at SCBSs is higher than what is needed to cache all contents.

5.2. Limit the number of allowed content replacements

Despite the simplification considered in the previous subsection, the action space could
still be large. Therefore, an alternative greedy heuristic (Algorithm 1) is proposed to
solve (5), which examines contents with decreasing order of popularity. As shown
in Algorithm 1, the greedy heuristic turns the optimization problem into a sequential
decision-making problem by content. This is possible because demands for contents are
independent of each other. Pn represents the cost of satisfying customer demands given
the existing caching locations. ∆(xt

n′←n,m) corresponds to the difference in the cost

when content n
′

is replaced by content n at the cache of the mth SCBS. Therefore, the
overall optimization problem boils down to a content-by-content replacement problem
where popular contents replace less popular ones in each SCBS. Please note that when
Pn values are calculated (lines 5 and 7 in Algorithm 1), the popularity is forecasted

as λ̄tn = (λtn +
Γ∑
τ=1

λ̃t+τn ).
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Algorithm 1 Greedy heuristic for content replacement

1: Input: maximum number of content replacements per cache, r
2: Sort contents in an decreasing order of the forecasted number of downloads
3: for n

′
= 1, . . . , r do

4: for m = 1, . . . ,M do
5: ∆(at

n′m
) = γ + [Pn′ (xt

n′m
= 1)− Pn′ (xt

n′m
= 0)]

6: for each content n that is cached on SCBS m (xt−1
nm = 1) do

7: ∆(dtnm) = γ + [Pn(xtnm = 0)− Pn(xtnm = 1)]
8: ∆(xt

n′←n,m) = ∆(at
n′m

) + ∆(dtnm)

9: end for
10: end for
11: if (min ∆(xt

n′←n,m) < 0) then

12: Carry out the corresponding replacement.
13: end if
14: end for

Note that in Algorithm 1, a content replacement happens when the replacement of
a content leads to a reduction of the total usage cost, regardless of whether contents
involved in this replacement are cached anywhere else in the network. This means
that multiple SCBSs may have a copy of the same content, which is different from
the assumption used in Section 5.1. The cost reduction is calculated by considering a
fixed-length horizon into the future, as what what have been used in (5). The proposed
greedy heuristic is of low computational complexity, as it only requires to compare the
parts of the value function which are relevant to the added and evicted contents in an
SCBS. Therefore, the computational complexity of the algorithm is linear with respect
to the number of allowed replacements r per decision stage. This type of heuristic is
derived naturally by examining the structure of the optimization problem in (5) and
has great potential of providing very good solutions given a large enough number of
cache updates is allowed.

6. Experimental results

In this section, the proposed rolling horizon algorithm is evaluated for various settings.
Before presenting the experimental results, several comparison schemes are introduced
to benckmark the proposed policy.

6.1. Comparison schemes

6.1.1. Offline cache optimization with online updates based on LRU

The first comparison scheme decides which contents to cache at the SCBSs in two
phases: offline and online. For both phases, the content updates at the SCBSs’ caches
are decided centrally considering the SCBSs’ communication model described in Sec-
tion 3. During the offline phase, cache update decisions are made assuming that content
popularity follows a Zipf distribution with a known skewness parameter. Let pn rep-
resent the popularity of content n, the optimization problem is formally expressed

12



as

min
∑
n∈N

pn

(∑
u∈U

∑
m′∈M′

cum,m′yun(m,m′)

)
(11a)

s.t.
∑
n∈N

vnxnm′ ≤ bm′ ,m′ ∈M (11b)∑
m′∈M′

yun(m,m′) = 1, u ∈ U , n ∈ N (11c)

yun(m,m′) ≤ xnm′ , u ∈ U ,m′ ∈M′
, n ∈ N (11d)

where the constraint (11b) corresponds to the capacity constraint, which prevents the
total volume of contents cached in a SCBS from exceeding its capacity. The constraint
(11c) ensures that all user requests are satisfied. Finally, the constraint (11d) imposes
that a content can be obtained from an SCBS only if it is cached in it.

In the online phase, the cached content at the SCBSs is updated using the LRU
policy. The online phase captures sudden content popularity changes and demands for
contents that were not previously available in the content catalogue. In each decision
stage, the least popular cached contents are replaced by the most popular ones, as
observed in this stage. Multiple content replacements are allowed, provided that the
subject to a cache decision content is more popular than the one to be replaced.
Depending on whether caching multiple copies of the same content is allowed within
the network, two variants of the LRU policy are considered: LRU(S)r and LRU(M)r,
where r stands for the maximum number of allowed replacements, while S and M
indicate whether a single copy or multiple copies per content are allowed, respectively.

6.1.2. Myopic policy

In addition to the offline-online scheme, the proposed policy is also compared with
alternative approximate solutions in the dynamic settings. The Myopic policy is a
short-sighted approach which only considers the immediate cost when solving the
Bellman’s equation (1). This means that the future expected cost, Vt(St), by carrying
out the optimal policy in all future stages, is set to zero. Therefore, the cache updates
are decided by solving:

V̂t−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yu
n(m,m′)

{∑
n

∑
u∈U

(12a)

∑
m′∈M′

λtnc
u
m,m′yun(m,m′)|

M∑
m′=0

yun(m,m′) = 1, yun(m,m′) ≤ x
t
nm′

}]
. (12b)

6.1.3. One-step improvement policy

Another policy used for evaluation purpose is the One-step improvement policy. This
policy considers the long-run usage cost in addition to the immediate cost as an ap-
proximation to Vt(St). For the computation of the long-run usage cost, it is assumed
that both the content popularity and the caching plan will not be updated in the
future. Under this assumption, the long-run usage cost is captured by a Zipfian distri-
bution, which estimates the average popularity of every content over the entire decision
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horizon based on the encountered content requests. To capture the evolution of the
number of requests per stage, the Zipfian distribution is rescaled. Hence, if the total
number of content requests is constant over the future periods and a percentage pn
of them is for content n, the expected number of requests for content n in the future
periods evolves as follows:

λ̃t+τn = pn(

N∑
n̂=1

λtn̂), τ = 1, ..., T − t,

Then, the cache updates are decided by solving

V̄t−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yu
n(m,m′)

{∑
n

∑
u∈U∑

m′∈M′

(λtn +

T−t∑
τ=1

λ̃t+τn )cum,m′yun(m,m′)|
M∑

m′=0

yun(m,m′) = 1, yun(m,m′) ≤ x
t
nm′

}] (13)

Note that for both Myopic and One-step improvement policies, the cache update
decisions are made by solving (1) with an approximated Vt(St), therefore, the simpli-
fications discussed in Sections 5.1 and 5.2 are also applicable to them.

6.2. Experimental results settings

The performance of all schemes under comparison is evaluated for various settings
summarized in Table 1. “Ratio” column corresponds to the ratio between the cumu-
lative size of the contents in the content catalogue and the total cache capacity of
the SCBSs. The third column in Table 1 depicts the SCBS network topology. For all
cases, SCBSs form a grid network where a crossover point indicates the existence of
an SCBS. In addition, all SCBSs are connected with a direct link to the MCBS. The
communication cost to deliver a demanded content to a client is linearly dependent to
the length of the shortest path between the request node and the supply node, while
the downloading cost of a content from the MCBS cum,0 is set to 20.

The parameter γ in Table 1 indicates the penalty cost of each content update as used
in equation 2. This parameter is associated with the potential delay of meeting users’
requests for adding and evicting contents. This cost should be larger than the cost of
downloading a content directly from the MCBS, which is the minimum delay (cost) one
has to wait for updating a content in an SCBS. Also, this cost should be smaller than
the cost incurred when all content requests are served by the MCBS in one stage, as
otherwise there would not be any reason to alter the current cache allocation. Thus, for
all network settings and content update ratios, the parameter γ are set to 100, which
is five times the cost of requesting a content from the MCBS. For all experiments, the
βτ parameters used in our forecasting model in (4) are (0.6, 0.3, 0.1). Finally, hourly
cache updates and T = 24 are considered.

6.3. Numerical Results

In this section, the performance of the proposed online cache optimization schemes
(rolling horizon policies RH1-RH3, where the number corresponds to the size of the
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Table 1. Evaluation scenarios settings
Index #SCBS Network topology #Contents Penalty(�) Capacity Ratio #New contents per hour
Ins 1.1 1 30%
Ins 1.2 3

⇥ • • • ⇤
10 100 2 60% 1

Ins 1.3 3 90%
Ins 1.4 4 120%
Ins 2.1 10 30%
Ins 2.2 3

⇥ • • • ⇤
100 100 20 60% 2

Ins 2.3 30 90%
Ins 2.4 40 120%
Ins 3.1 4 24%
Ins 3.2 8 48%

Ins 3.3 6


• • •
• • •

�
100 100 12 72% 2

Ins 3.4 17 102%
Ins 4.1 20 24%
Ins 4.2 40 48%

Ins 4.3 6


• • •
• • •

�
500 100 60 72% 5

Ins 4.4 80 96%
Ins 5.1 10 24%
Ins 5.2 20 48%

Ins 5.3 12

2
4

• • • •
• • • •
• • • •

3
5 500 100 30 72% 5

Ins 5.4 40 96%
Ins 6.1 20 24%
Ins 6.2 40 48%

Ins 6.3 12

2
4

• • • •
• • • •
• • • •

3
5 1000 100 60 72% 10

Ins 6.4 80 96%
Ins 7.1 17 25.5%
Ins 7.2 33 49.5%

Ins 7.3 15

2
4

• • • • •
• • • • •
• • • • •

3
5 1000 100 50 75% 10

Ins 7.4 66 99%

horizon) are examined and compared with those presented in Section 6.1. All the
reported results are averages of 100 simulations, i.e., realizations of different content
requests.

6.3.1. Performance evaluation for exact solution of Bellman equation

To compare the approximation schemes without affected by the solution approach,
the best action of (1) with an underlying policy is found by solving the optimization
problem exactly without any simplification as proposed in Section 5.1 and 5.2. As
optimal actions can be computed only for very small size problems due to the compu-
tational complexity, results are only shown for settings Ins 1.k, Ins 2.k, and Ins 3.k,
k ∈ {1, 2, 3, 4}(see Table 1).

Table 2 shows the proportional performance (usage cost) of an evaluated policy
compared to the lower bound LB and the offline policy, as described in Section 6.1.1.
The proportional performance is calculated as (∗−LB)/(x0−LB), where x0 indicates
the cost of using the optimal offline cache decisions for the entire horizon without
allowing any online updates. LB is equivalent to the cost of a scheme where accurate
demands are known before updating online the cache and cache updates are done in all
the stages before the end of the horizon T without any additional cost, i.e., the penalty
cost γ in (2) is set to 0. Hence, LB can be seen as an unreachable lower bound (set
to 0 by default) of any practical policy. For the LRU(S)r and LRU(M)r policies r is
equal to the size of the content catalogue which means all contents can be potentially
updated, while replacements only take place when there is an uncached content with
higher popularity than the cached ones.

From the usage cost results presented in Table 2, it is obvious that apart from
LRU(M)r, all other online schemes achieve a usage cost lower than x0 for all testing
scenarios. This justifies the benefits of online updating. In most testing scenarios, the
proposed rolling horizon method (RH1, RH2, RH3) outperforms other policies. The
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Table 2. Usage cost for the online models assuming exact solution of (1)

.

Offline(Zipf) + LRU Dynamic programming Offline
Index LB LRU(S)r LRU(M)r Myopic One-step RH1 RH2 RH3 x0
Ins 1.1 0.00 0.6983 2.2488 0.2824 0.6817 0.2559 0.2727 0.3013 1.00
Ins 1.2 0.00 0.4989 2.2919 0.1787 0.4132 0.1812 0.2093 0.2224 1.00
Ins 1.3 0.00 0.2346 1.9823 0.1241 0.1745 0.1084 0.1179 0.1285 1.00
Ins 1.4 0.00 0.1027 2.4033 0.1338 0.1446 0.1052 0.1055 0.1067 1.00
Ins 2.1 0.00 0.9045 3.5173 0.4392 0.7614 0.3450 0.3667 0.4054 1.00
Ins 2.2 0.00 0.8026 4.0877 0.3454 0.4677 0.2804 0.2977 0.3292 1.00
Ins 2.3 0.00 0.4957 4.4549 0.1594 0.2945 0.1564 0.1774 0.1995 1.00
Ins 2.4 0.00 0.1041 5.3883 0.1350 0.2170 0.0997 0.0982 0.0976 1.00
Ins 3.1 0.00 0.9017 3.6483 0.4489 0.8109 0.3403 0.3590 0.3954 1.00
Ins 3.2 0.00 0.9117 4.4121 0.3848 0.6879 0.2942 0.3090 0.3437 1.00
Ins 3.3 0.00 0.7353 4.6935 0.2733 0.4700 0.2326 0.2496 0.2786 1.00
Ins 3.4 0.00 0.1547 5.2946 0.1367 0.2141 0.0974 0.0912 0.0904 1.00

Table 3. Cache Hit Ratio for online models assuming exact solution of (1)

Offline(Zipf) + LRU Dynamic programming Offline
Index LB LRU(S)r LRU(M)r Myopic One-step RH1 RH2 RH3 x0
Ins 1.1 0.0853 0.0883 0.0970 0.0794 0.0850 0.0829 0.0819 0.0861 0.0652
Ins 1.2 0.1506 0.1546 0.1769 0.1431 0.1460 0.1462 0.1497 0.1500 0.0944
Ins 1.3 0.1748 0.2112 0.2540 0.1872 0.1925 0.1959 0.1989 0.1970 0.0775
Ins 1.4 0.2792 0.2451 0.2828 0.2303 0.2831 0.2498 0.2626 0.2696 0.1346
Ins 2.1 0.0895 0.0980 0.1147 0.0870 0.0926 0.0922 0.0937 0.0947 0.0703
Ins 2.2 0.1519 0.1667 0.2078 0.1466 0.1533 0.1536 0.1567 0.1568 0.1284
Ins 2.3 0.1877 0.2039 0.2893 0.1938 0.1928 0.1971 0.1971 0.1991 0.1481
Ins 2.4 0.2819 0.2639 0.3596 0.2692 0.2963 0.2725 0.2791 0.2782 0.2230
Ins 3.1 0.0617 0.0617 0.0750 0.0561 0.0617 0.0595 0.0593 0.0610 0.0430
Ins 3.2 0.1071 0.1073 0.1391 0.0981 0.1074 0.1022 0.1027 0.1045 0.0837
Ins 3.3 0.1491 0.1438 0.1980 0.1306 0.1431 0.1315 0.1370 0.1374 0.1155
Ins 3.4 0.1679 0.1652 0.2616 0.1710 0.1758 0.1322 0.1737 0.1384 0.1275

best performance is achieved by RH1, which assumes a horizon of one. This means
forecasting into the future does help in reducing costs (compared to the performance
of Myopic policy, which only considers the immediate usage cost), while freezing the
system status for too many stages will lose its significance in capturing system dy-
namics.

Further from Table 2, it can be observed that the performance gap between RH
policies and Myopic and LRU(S)r policy becomes smaller as SCBSs’ cache capacity
increases. Indeed, when SBCSs’ capacity is large, content popularity evolution becomes
less important as there is sufficient space to cache most of or even all the contents.
In such a case, close to optimal content update decisions can be made using only the
immediate information. Differently, when capacity is very limited, the consideration
of looking at several stages ahead leads to large usage cost reduction. Besides, in most
cases the LRU(S)r policy without considering the explicit optimization model (1)
performs worse than the Myopic policy, which solves the optimization model ignoring
the future usage cost. This shows the importance of incorporating proper optimization
in collaborative caching. It is also worth to note that although one would expect
One-step improvement policy to perform better than the Myopic as it considers the
immediate usage cost together with an estimation of the future cost, this does not
happen because One-step improvement policy assumes a Zipfian model to capture the
future usage cost and no future updates of the cached contents, which leads to an
inaccurate approximation of the future cost Vt(St).

Next, the achieved Cache Hit Ratio (CHR) by all the schemes under comparison
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Figure 3. Numerical results for online model when approximate solution is obtained by solving (9).

is shown in Table 3. The results make clear that LRU(M)r achieves the highest or
very close to the highest CHR although it performs worse than the other schemes in
terms of cost. This is because, in a collaborative network serving more content requests
from SCBSs close to the users requires multiple copies, which contradicts the aim of
collaborative caching to maximize the “re-use” of the cached content (i.e., serve users
with content cached in other SCBSs).

6.3.2. Performance evaluation of allowing a single copy of every content

In this subsection, the impact on the performance of the simplification in Section
5.1, allowing a single content copy in the SCBSs network, is investigated. Considering
this simplification, the usage cost is minimized by solving (9) instead of (1). This
approximation model removes cache delivery y variables from the decision problem,
and, thus, largely reduces the problem size and the solution time.

The evaluation results are summarized in Fig. 3. Y-axis shows the proportional
performance of the corresponding methodology, calculated by (∗ − LB)/(x0 − LB).
By comparing these results with the ones in Table 2, it is observed that the results
are nearly the same with that of solving the decision problem optimally given that the
benchmark policies, say x0 and LB, do not change with the reformulation. However,
the solution time is largely reduced from 5 hours to 7 minutes, for performing 100
simulations of Ins 3 settings. This method needs in average 0.18 seconds to find the
optimal cache update policy for Ins 3 in every stage.

Interestingly, the performance of the One-step policy improves when contents can be
cached in only one SCBS in the network. This is explained by the fact that the longer
the prediction period it considers, the larger are the differences in the total demands
of contents, which results in the popularity of some contents to be overestimated.
Differences in the usage cost reduction can also be noted when cache capacity is large.
This happens as in this case optimally the content should have been cached in multiple
SCBSs, and because of the restriction of one-copy per content restriction, an error is
introduced in the reformulation. To overcome this problem, the proposed heuristic
replacement approach is examined in the next section, which facilitates a fast solution
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Figure 4. Comparison of usage cost over different parameter settings for online models, when approximate

solution is obtained by solving (9).

for the online decision problem without imposing the one-copy per-content condition.
Two network topologies with three and six SCBSs are considered for investigating

the impact of the content catalogue size on the usage cost. The results are shown in
Figs. 4(a) and (b), where the proportional usage cost is that of the best performing
rolling horizon policy. From this evaluation, it can be concluded that given the same
cached ratio, in most cases smaller catalogue size leads to better usage costs. Different
content catalogue sizes are considered in Figs. 4(c) and (d) for the same network
topologies. The results make clear that the higher the number of SCBSs is, the better
the performance of the RH policy is. This can be explained as follows: the larger
the network topology is, the higher delivery cost it incurs, and the higher penalty
one receives by sub-optimal content cache placements and updates. Therefore, larger
profits are expected by updating the cached content in the SCBSs by considering both
the immediate cost and a future prediction of it.

6.3.3. Performance evaluation of limiting the number of content replacements

In this section, the performance of the proposed heuristic solution in Section 5.2 is
investigated. This scheme solves the cache optimization problem by setting the maxi-
mum number of content replacements equal to the total cache capacity of the network.
Therefore, potentially all the contents that are currently cached in any SCBS (includ-
ing copies in different SCBSs) can be updated at every stage. This updating scheme is
used indifferently on all dynamic programming policies, however the forecasting strat-
egy employed by each policy determines whether a replacement leads to a lower usage
cost. Note that this approach allows multiple copies of contents at different SCBSs.
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Figure 5. Numerical results for online model when replacement heuristic is used on all DP policies.

The results of this evaluation are summarized in Fig. 5. By comparing these results
with those in Table 2, where Bellman’s equation is solved exactly, it can be seen that
the performance of the dynamic programming policies changes slightly. The usage cost
for LRU(M)r and LRU(S)r policies remain the same in both comparisons, as the
replacement heuristic is only applied to dynamic programming policies. It is observed
that in some cases this heuristic gives even slightly smaller overall cost.

Further, by comparing the results of the dynamic programming policies with that
shown in Fig. 3 it is noted that the replacement heuristic improves the performance
significantly for all ∗.4 scenarios, which is attributed to the relaxation of the one-copy
per-content condition. Also, from Fig. 5 is observed that the proposed schemes RH1-
RH2 achieve the smallest usage cost. More importantly, the performance of the RH
policies improves with the size of the studied problem (bigger network and number
of contents). For example, for Ins.7, which corresponds to a topology consisting of
15 SCBSs and 1000 contents, the RH1 cost is only 0.04% higher than the theoretical
lower bound, which cannot be achieved in practice as the replacement penalty is zero
(assume no repay when replacing a cached content by another). This improved perfor-
mance on larger networks justifies the reliability of RH policies in practice. Also, the
exact number of cache updates (replacements) one should allow does not have to be
optimized. The number of maximum replacements always can be set to a large number,
as in practice, a replacement decision is only made when it reduces the immediate cost
together with a short prediction in the future that is captured in (5). Nevertheless,
the computation time is largely reduced with the heuristic. For larger instances, e.g.,
Ins.7, for every stage, the cache update decision can be made in approximately 1 sec.
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7. Discussion and conclusions

In this paper, a rolling horizon collaborative cache optimization scheme is presented for
wireless networks. The gains of the proposed scheme exceed 69-99% the performance
of the offline caching schemes. In order to reduce the complexity of the rolling horizon
scheme, future content updates/replacements costs are approximated by considering
only a limited history horizon. To further reduce the time needed to solve the online
cache optimization problem, two simplifications of the problem are proposed: (a) to
limit the number of content replicas in the network and (b) to limit the allowed content
replacements. The experimental results show that policies achieving the higher cache
hit ratio do not necessarily coincide with the ones achieving the minimal usage cost.
Also, the results make clear the value of considering future information when deciding
the cache update policy. When cache capacity is limited, restricting the number of
content replicas is shown to be very efficient. Limiting the allowed content updates, in
general, leads to easy-to-deploy schemes, especially when the rolling horizon approx-
imation is used. Nevertheless, the size of the horizon depends on the computational
capacity and the affordable inaccuracy of forecasting.
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