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ABSTRACT Motor imagery (MI) is a typical BCI paradigm and has been widely applied into many
aspects (e.g. brain-driven wheelchair and motor function rehabilitation training). Although significant
achievements have been achieved, multiple motor imagery decoding is still unsatisfactory. To deal with this
challenging issue, firstly, a segment of electroencephalogram was extracted and preprocessed. Secondly,
we applied a filter bank common spatial pattern (FBCSP) with one-vs-rest (OVR) strategy to extract the
spatio-temporal-frequency features of multiple MI. Thirdly, the F-score was employed to optimise and
select these features. Finally, the optimized features were fed to the spiking neural networks (SNN) for
classification. Evaluation was conducted on two public multiple MI datasets (Dataset IIIa of the BCI
competition III and Dataset IIa of the BCI competition IV). Experimental results showed that the average
accuracy of the proposed framework reached up to 90.09% (kappa: 0.868) and 81.33% (kappa: 0.751) on
the two public datasets, respectively. The achieved performance (accuracy and kappa) was comparable to
the best one of the compared methods. This study demonstrated that the proposed method can be used as
an alternative approach for multiple MI decoding and it provided a potential solution for online multiple
MI detection.

INDEX TERMS Electroencephalogram, motor imagery (MI), filter bank common spatial pattern (FBCSP),
spiking neural networks (SNN).

I. INTRODUCTION
Electroencephalography (EEG) signal is usually used in
brain-computer interface (BCI) systems due to its high tem-
poral resolution [1]. Motor imagery (MI)-based BCI is one
of classical paradigms and has been employed to restore the
communication pathway or movement function for disabled,
paralyzed, and stroke patients [2], [3]. Patients are able to
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output their thoughts by only imagining without any real
movements and speaking, as well as realising practical oper-
ations [4].

In the establishment of a BCI system, feature extraction is
a crucial step. Common spatial pattern (CSP) is a widely used
method to extract spacial features as it effectively constructs
the best spatial filter for differentiating two classes of motor
imagery. As CSP searches the best spatial filter by consider-
ing temporal dynamics, it depends on the information in the
temporal domain and is sensitive to temporal noise. Common
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TABLE 1. Description of multiple motor imagery datasets.

spatial spectrum pattern (CSSP) was proposed to reduce the
interference of such noise [5]. However, CSSP cannot offset
the increased complexity of optimization problems because it
increases the flexibility of the frequency filter with the delay
taps. Afterwards, an improved algorithm was proposed, nam-
ing Common Sparse Spectral Spatial Pattern (CSSSP) [6].

Before applying CSP, a bandpass filter is usually used
to concentrate on a specific frequency band. The speci-
fied frequency band largely affects the performance of CSP.
In order to have good performance, frequency band is man-
ually specified for each individual subject. Alternatively,
a few frequency bands could be specified to extract features
in different bands at the same time. Filter bank common
spatial pattern (FBCSP) is one of such methods, extracting
discriminative spatio-temporal information [7], [8]. Its vari-
ants were subsequently proposed, which are discriminative
FBCSP (DFBCSP), sparse FBCSP (SFBCSP) and penalized
time-frequency band CSP (PTFBCSP) [8]–[10]. These meth-
ods have different advantages. For example, DFBCSP allows
to set subject-specific frequency band for filtering based
on Fisher’s ratio and has a better performance compared
to FBCSP. SFBCSP automatically selects features in a few
frequency bands based on the regression of the least abso-
lute shrinkage and selection operator (LASSO). PTFBCSP
overcomes the limitation of the fixed time period and fixed
frequency band.

Spiking neural networks (SNN) has obtained a good clas-
sification effect as a classifier in the digital recognition,
EEG-based motor imagery, and other classification prob-
lems [11]–[13]. Virgilio et al. used the original EEG signal,
power spectrum density (PSD) and discrete wavelet trans-
form (DWT) combined with SNN classifier to analyze and
study the multiple-classes of motor imagery, and achieve
a good classification effect [14]. Carino et al. conducted
a taxonomic study by evaluating two different neuronal
model coding strategies for two classes of motor imagery
time-frequency characteristics in patients with brain death
and healthy subjects [15]. Niranjani et al. used the spiking
neural classifier based on the Online Meta-neuron based
Learning Algorithm (OMLA) to classify MI. Due to the
simultaneous use of global and local information of the net-
work, the performance of the spiking neural classifier is better
than other classifiers [16]. Salazar et al. demonstrated that the

classification performance of spiking neural models (SNM)
is a potential choice for EEG when training with fewer data
samples [17]. Though the SNN has been applied in motor
imagery analysis in the above literatures, the main contri-
bution of this paper is to combine FBCSP with the SNN
classifier for multiple MI decoding. The performance was
evaluated using the dataset IIIa in the BCI Competition III
and the dataset IIa in the BCI Competition IV [18], [19].

II. METHODOLOGY AND MATERIALS
A. DATA COLLECTION
We have evaluated our method on the dataset IIIa of the BCI
Competition III and dataset IIa of the BCI Competition IV
[18], [19]. More details of these multiple-class MI datasets
are listed in Table 1. The channel selection for two datasets
is based on the selection of channel location in [20]–[22].
These channels are selected mainly because they account
for a higher proportion of MI information than other chan-
nels that have not been selected, and the channel selection
range includes the brain activity areas of the four-classes of
motor imagery. Choosing a small number of channels but a
large proportion of the weight is beneficial to the subsequent
processing speed of the entire experiment and improves the
accuracy of multiple-classes of MI.

More specifically, the location of electrodes montage
for two datasets are shown in Fig. 1 (red dots stand for
the selected channels) and the numbers of channels for
EEG collection are 60 and 22, respectively. For the dataset
IIIa in BCI Competition III, there are three subjects and
the paradigm consists of four MI tasks, namely left hand
(class 1), right hand (class 2), both feet (class 3), and
tongue (class 4). Each category has 90 trials for the sub-
ject K3b while 60 trials for the subjects K6b and L1b.
For the Dataset IIa in the BCI Competition IV, there are
nine subjects and four categories (left hand, right hand,
foot and tongue). Each subject underwent two sessions,
which comprised 6 runs separating by a short break.
Each run had 48 trials with equivalent numbers for each
class.

To analyze datasets, the experimental algorithm is run by
using an Intel(R) Core(TM) i5 CPU@2.7GHz host computer
(Lenovo).
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FIGURE 1. (a) and (b) are the placement of electrodes according to the international standard 10-20 system for dataset IIIa and
dataset IIa, respectively. Thirty-two electrodes and eighteen electrodes marked red were selected for multiple-class motor imagery
detection, respectively.

B. SIGNAL PREPROCESSING
Previous studies have reported that the dominant frequency
bands related to motor imagery were µ rhythms (7-12 Hz)
and β rhythms (14-30 Hz) [23]–[26]. In this paper, the EEG
signal in the range of 4 to 40 Hz selects the sub-band for the
corresponding band-pass filtering [9], [10], [27], [28].

In the preprocessing, the spatial filtering of MI data adopts
common average reference (CAR) [29]. In band pass filter-
ing, we divided the frequency band into 2, 6, 10, 12 frequency
bands with different ranges for band pass filtering. The value
ranges of two frequency bands are 7-14Hz and 14-30Hz, and
6 frequency bands are 7-12 Hz, 12-17 Hz, 17-22 Hz, 22-27
Hz, 27-32 Hz, and 7-30 Hz. The value ranges of 10 frequency
bands are 4-8 Hz, 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz,
24-28 Hz, 28-32 Hz, 32-36 Hz, 36-40 Hz, and 7-30 Hz. The
value ranges of the 12 frequency bands are 7-12 Hz, 9-14 Hz,
11-16 Hz, 13-18 Hz, 15-20 Hz, 17-22 Hz, 19-24 Hz, 21-26
Hz, 23-28 Hz, 25-30 Hz, 27-32 Hz, and 7-30 Hz.

C. FEATURE EXTRACTION
First, we define the four classes of MI tasks as x1, x2, x3, and
x4, respectively. Then the covariance model of multiple-class
MI space is shown as following [29]:

Ri =
xixiT

trace(xixiT )
, i = 1, 2, 3, 4 (1)

where xi represents the trial of each class in the entire dataset.
The dimension of xi is the number of channels × (time
window × sampling frequency). By accumulating each class
of experiments in the training set by (1), Ri obtained is the
sum of the covariances of each class of trial in the training
set.

The compound covariance matrix formula for CSP is as
follows:

Rx = R1 + R2 + R3 + R4 (2)

The singular value decomposition of covariance matrix Rx
can be carried out as:

Rx = U03CU0
T (3)

where U0 is the unitary matrix of principal components, and
3C is the diagonal matrix of eigenvalues. After calculating
singular value decomposition of eigenvector and eigenvalue
matrix, the transformation matrix of covariance matrix can be
obtained:

P = 3C
−1/2U0

T (4)

For multiple-class MI, multiple-class of OVR-CSP modes
(such as left hand) can be calculated as:

R̃1 = R2 + R3 + R4 (5)

Then we transform R1 and R1 into:

G1 = PR1PT , G̃1 = PR̃1PT (6)

Furthermore, we do eigenvalue decomposition for G1 and
G̃1:

G1 = U1∧1U1
T , G̃1 = U1∧̃1U1

T (7)

By combining the equation (1)-(7), we can get:

(PTU1)TR1(PTU1)+ (PTU1)T R̃1(PTU1) = I (8)

We get the common eigenvector matrix U for R1 and R̃1.
Further, CSP projection matrix V1 = UT

1 P can be obtained.
One trial of the EEG data matrix Xi projection is obtained.
The selected features of left-hand MI can be obtained by the
following formula:

M1 = V1xi, i = 1, 2, 3, 4 (9)

M2, M3, and M4 can be obtained in the same way. In this
paper, the first four pairs and the last four pairs of eigenvalues
in the projection matrix were selected, and CSP filters are
used for spatial filtering to form eight eigenvalues in each trial
of the training dataset [30].
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We carried out the aforementioned feature extraction for
each frequency band after preprocessing. Finally, N fre-
quency bands for each trial need N ×8 CSP filters for feature
extraction. Eight eigenvalues extracted from each frequency
band are merged to formN×8 eigenvalues. After the features
obtained by the CSP, we uniformly normalize them to better
perform feature selection and classification.

D. FEATURE SELECTION
The F-score algorithm has a simple but effective advantage
for evaluating the discriminative power of each feature in
the feature set [31], [32]. F-score is used to sort and select
the features. With this method, the features with the best
classification effect are selected from the classification order.
The optimal feature set that can achieve the best accuracy of
classification is the optimal feature set selected by F-score.

Given train feature dataset samples Xk , k = 1, 2, . . . , n.
The number of positive and negative samples is N+ and N−,
respectively. Then, the F-score of the f th feature of the dataset
is defined as [33]:

Ff =
(x(+)f − x f )

2
+ (x(−)f − x f )

2

1
N+−1

n+∑
k=1

(x(+)k,f − x
(+)
f

)
2
+

1
N−−1

n+∑
k=1

(x(−)k,f − x
(+)
f

)
2

(10)

where, x f , x
(+)
f , and x(−)f , f = 1, 2, . . . ,m are the mean value

of the ith feature on the whole train dataset, the mean value
on the positive dataset and the mean value on the negative
dataset, respectively.
x(+)k,f is the eigenvalue of the f th feature of the sample point

of the kth positive class, and x(−)k,f is the eigenvalue of the
f th feature of the sample point of the kth negative class.
The greater the value of F , the stronger the discrimination
between the features in different classes.

E. CLASSIFICATION
SNN is proposed based on biological principles, which could
simulate the connection and communication between neurons
to the great extent. The spike neuron model is the mathemat-
ical abstraction of the real neuron, which shows good per-
formance and strong robustness in some pattern recognition
problems [13], [17], [34], [35]. Due to such advantage, SNN
is used in this study to classify the optimal feature set of MI.

Since the Izhikevich (IZ) model has good performance
between biological accuracy and calculation cost, it is
selected for the realization of the neuron model. The descrip-
tion of the IZ model is illustrated by the following equations
[15], [36]:

v′ =
k(v− vr )(v− vt )− u+ I

C
(11)

u′ = a{b(v− vr )− u}

if v > vpeak , then v← c, u← u+ d (12)

where k represents the rheobase resistance, vr represents
resting membrane potential, vt represents the instantaneous

TABLE 2. Parameters of SNN.

threshold potential, C and v respectively represent the mem-
brane capacitance and the membrane potential, while vpeak
represents the spike cutoff value, u represents the recovery
current, I represents a vector of the input current to the
neuron, a represents a recovery time constant, b represents
the input resistance, the voltage reset value is expressed by
c, and d represents the outwards minus inwards currents
that affect the after-spike behavior of the model during the
spike period [14], [15]. The parameters used in the SNN are
shown in Table 2. The detailed structure of the model can be
described in [37].

To produce the desired behavior in the output of the spiking
neuron, we must adjust the synaptic weights of the model.
In this regard, we use the cuckoo search algorithm as a
learning strategy to train the spiking neural model, which
corresponds to the training stage of the spiking neuron [36].
In this algorithm, each egg in the nest represents a solution,
while the cuckoo egg represents a new solution. Its goal is to
use new and potentially better solutions, not bad ones in the
nest. The detailed description of the algorithm can be found
in [38].

When a new solution X (t+1) is generated for a cuckoo i,
a Levy flight is performed, The equation as follows:

X (t+1)
i = X (t)

i + α ⊕ Levy(λ) (13)

where α > 0 is the step size. Usually, we can use α = 1. The
product ⊕ represents entrywise multiplications.
The Levy flight essentially provides a random walk, and

the random step size is obtained from Levy distribution:

Levy ∼ u = t (−λ) (14)

which has an infinite variance with an infinite mean. In the
long run, the random walk via Levy flight is more effective in
exploring the search space because of its longer step length.
Because this kind of walking is more effective in exploring
search space, it can regulate the synaptic weights of spike
neurons [36].

For the problem of MI recognition, let the optimal CSP
feature set S = {Xi, n}

p
i=1 selected by feature selection be

the p input patterns, where n = 1, . . . ,N is the class to of
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Xi ∈ IRk . First, we need convert each input mode to the
current input I . It should be noted that the spike neuron model
is stimulated by the injection current I calculated from the
input pattern, rather than by the input pattern Xi ∈ IRk . Since
synaptic weights of the model are directly connected to the
input pattern Xi ∈ IRk , the injection current generated by this
input mode can be calculated as [36]:

I = γ · X ·W (15)

where Wi ∈ IRk is the synaptic weights set of the neuron
model, and γ is a gaining factor that helps the neuron fire.
This kind of conversion can convert multiple input modes
from the same class into the same or similar current, and
help neurons generate similar firing rates. Then during T
ms, the spiking neuron is stimulated with the input current I ,
and the firing rate is calculated. These steps are used in each
input pattern. Calculate the average firing rate of each class
AFR ∈ IRN by obtained the firing rate of each input.

If the spiking neuron is trained, the class used to determine
the unknown input pattern X̃ belongs will be determined by
the firing rates generated by each input pattern. As described
in the following equation:

cl = arg
N
min
n=1

(|AFRn − fr|) (16)

where the firing rate of the neuron model stimulated by input
pattern X̃ is fr .

It is very important to find a set of optimal the neuron
model ←−w synaptic weights to improve the accuracy of the
spiking neuron. This needs to be adjusted by using the cuckoo
search algorithm. Therefore, the current behavior needed to
generate the model can be realized by finding a set of synaptic
weights through the following fitness function:

f (←−w , S) = 1− performance(←−w , S) (17)

where ←−w represents the synapse of the model, s is the
optimal CSP feature set as a set of input patterns, and
performance(←−w , S) is a function of identifying the accuracy
of the number of correct classified divided by the total number
of tested.

F. PERFORMANCE MEASURE
The measurement performance used in this paper is classifi-
cation accuracy and kappa value, respectively. The classifi-
cation accuracy can be expressed by the following formula
[24]:

accuracy =
C
N
· 100% (18)

where C is the number of correctly classified samples of the
test set. N represents the total number of test set samples.

Kappa is often used to measure multi-class problems,
which can be expressed as [14]:

kappa =
p0 − pe
1− pe

(19)

where p0 is the overall agreement of the test set, which is
equal to the value of accuracy. pe is the chance agreement
probability value of the test set, which can be obtained by the
following formula:

pe =

∑
i aibi

N × N
, i = 1, 2, 3, 4 (20)

where ai and bi represent the sum of ith class real samples and
ith class predicted samples of the confusion matrix, respec-
tively. N is the total number of test set samples.

III. EXPERIMENTAL RESULTS
To assess the impact of the frequency bands on MI-BCI
performance, we evaluated the CSP and FBCSP methods for
the following cases:

1) CSP: For the time window optimization problem of two
datasets, it has been studied in [20], [39], [40]. On this basis,
we manually select the optimal time window of each subject.
For the dataset IIIa of the BCI Competition III, the optimal
time windows of K3b, K6b, and L1b are 0.5-4.0 s, 0.5-3.6
s, and 0.5-3.6 s, respectively. For the dataset IIa of the BCI
Competition IV, the optimal time windows of A01-A09 are
0.5-3.7 s, 0.5-3.7 s, 0.5-3.9 s, 0.5-3.5 s, 0.5-3.9 s, 0.5-3.8 s,
0.5-3.8 s, 0.5-3.4 s, and 0.5-3.5 s, respectively. After choosing
the optimal time window, each subject carries out 7-30 Hz
broad frequency band band-pass filtering, and finally extracts
8 eigenvalues through CSP.

2) 2FBCSP: The same time windows were used. 16 eigen-
values were extracted from the frequency bands 7-14 Hz and
14-30 Hz.

3) 6FBCSP: The same time windows were used. 48 eigen-
values were extracted from six frequency bands 7-12 Hz, 12-
17 Hz, 17-22 Hz, 22-27 Hz, 27-32 Hz, and 7-30 Hz.

4) 10FBCSP: The same timewindowswere used. 80 eigen-
values were extracted from ten frequency bands 4-8 Hz, 8-12
Hz, 12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz, 28-32Hz, 32-36
Hz, 36-40 Hz, and 7-30 Hz.
5) 12FBCSP: The same timewindowswere used. 96 eigen-

values were extracted from twelve frequency bands 7-12 Hz,
9-14 Hz, 11-16 Hz, 13-18 Hz, 15-20 Hz, 17-22 Hz, 19-24 Hz,
21-26 Hz, 23-28 Hz, 25-30 Hz, 27-32 Hz, and 7-30 Hz.
The topographical maps of FBCSP weights for K3b and

A01 are shown in Fig. 2. The color bars indicate changes
in weights. Red represents a high weight in the topo-
graphic map, and blue represents a low weight in the topo-
graphic map. When the subject performed the left-hand
motor imagery, the weights on the right brain hemisphere
were high (in red color). When the subject performed the
right-hand motor imagery, the high weights were on the
left brain hemisphere. When the subject performed the foot
motor imagery, the high weights appeared on the central
brain region. When the subject performed the tongue motor
imagery, the high weights were shown around the outer brain
region. It can be seen that the activation intensity and topo-
graphic map distribution are different between different tasks.
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FIGURE 2. (a). Topographies of FBCSP weights for subject K3b from dataset IIIa of BCI competition III. The first row to the fourth row are the
topographies of OVR-FBCSP transformation matrix for the left hand motor imagery vs all other motor imageries (the rest), the right hand vs the rest,
the foot vs the rest and tongue vs the rest, respectively. (b). Topographies of FBCSP weights for subject A01 from dataset IIa of the BCI Competition
IV. The first row to the fourth row are the topographies of OVR-FBCSP transformation matrix for the left hand vs the rest, the right hand vs the rest,
the foot vs the rest, and tongue vs the rest, respectively.

These topographic map distributions verify the rationality of
the subject’s CSP projection matrix neurophysiology.

Since motor imagery of each limb part will cause the
weight of the non-motor imagery cortex to decrease, CSP has
a greater weight in the large area of the sensory motor cortex.
Some areas that are not close to the sensory motor cortex also
have larger weights, which may be caused by some artificial
factor.

To date, most of researches on the MI classifica-
tion addressed feature extraction and made relatively less

attention on the development of classifier. Also, fixed fre-
quency bands, fixed time windows, and all channels were
used, which is time-consuming and is not optimal for the
MI classification. In this paper, the OVR-FBCSP was used
to extract the features of different time frames of different
frequency bands of two datasets, and three classifiers (support
vector machine (SVM), relevance vector machine (RVM),
and SNN) were used for feature classification.

Table 3 showed that the accuracy of OVR-FBCSP-SNN
was superior to the other methods in the assessment of the
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TABLE 3. Accuracy comparison between the proposed SNN approach and the other methods on the dataset IIIa of the BCI Competition III and the
dataset IIa of the BCI Competition IV.

TABLE 4. Kappa value comparison between the proposed SNN approach and the other methods on the dataset IIIa of the BCI Competition III and the
dataset IIa of the BCI Competition IV.

dataset IIIa of BCI competition III for all subjects except
the subject K3b. On average, the highest mean accuracy
(90.09%) was achieved by OVR-12FBCSP-SNN. In the
assessment of the dataset IIa of BCI competition IV, SNN
was better than SVM and RVM in the overall classification

of nine subjects. The highest accuracy of OVR-SNN
was higher than that of OVR-SVM and OVR-RVM
except for A01, A03, A05, and A08 subjects. In particu-
lar, the highest average accuracy of OVR-12FBCSP-SNN
was 81.33%.
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TABLE 5. The average training and testing time cost of the proposed method.

Table 4 showed the kappa values of all subjects. Except for
the subject K3b, the kappa values of OVR-FBCSP-SNN in
other subjects superior to the other methods in the assessment
of the dataset IIIa of BCI competition III. The highest average
kappa value (0.868) was achieved by OVR-12FBCSP-SNN.
In the assessment of the dataset IIa of BCI competition IV,
the overall kappa values of SNN in nine subjects were better
than that of SVM and RVM. The highest average kappa value
of OVR-12FBCSP-SNN was 0.751.

Table 5 showed the training and testing time of two datasets
in different frequency band selection range. We can see with
the increase of frequency bands number, the corresponding
training and testing time also increases.

IV. DISCUSSION
In recent years, great progress has been made in the analysis
of MI based on EEG signals, and the mechanism of different
MI has gradually been revealed. In this paper, we explored
the combinations of FBCSP and SVM, RVM, SNN for
multiple-class MI classification. First, we used different time
windows according to different subjects. And the correspond-
ing band-pass filtering is carried out for each subject accord-
ing to the same sub-band selection. Then, we extracted the
CSP features in each frequency band and selected features.
Finally, different classifiers were used to classify MI. Table 3
and Table 4 showed that the OVR-FBCSP-SNNwas effective
and feasible. These results were discussed in details below.

A. TIME WINDOWS FOR SPATIAL PATTERNS
A fixed time window (0.5-2.5 s with respect to the onset
of cues) was usually used in the CSP for feature extraction
[44], [45]. This is not very reasonable because the temporal
course of brain activity responding to motor imagery is not
exact the same and varies from one subject to another. In this
study, the optimal time windowwasmanually set for different
subjects so that the classification accuracy was improved.
For the dataset IIIa of the BCI Competition III, the optimal

TABLE 6. Comparison of the proposed SNN approach with other
approaches on the dataset IIIa of the BCI Competition III.

time windows of K3b, K6b, and L1b are 0.5-4.0 s, 0.5-3.6
s, and 0.5-3.6 s, respectively. For the dataset IIa of the BCI
Competition IV, the optimal time windows of A01-A09 are
0.5-3.7 s, 0.5-3.7 s, 0.5-3.9 s, 0.5-3.5 s, 0.5-3.9 s, 0.5-3.8 s,
0.5-3.8 s, 0.5-3.4 s, and 0.5-3.5 s, respectively.

B. DIFFERENT FREQUENCY RANGE SELECTION
Most of studies focused on the band selection of CSP fil-
ters [54]–[56]. Through the average division of different fre-
quency bands, the CSP feature extraction is carried out for
each sub-band, and then the optimal CSP feature combination
in each sub-band is selected through feature selection. The
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TABLE 7. Comparison of the proposed SNN approach with other approaches on the dataset IIa of the BCI Competition IV.

optimal CSP feature combination is classified to get a good
classification effect.

The experimental results showed that the FBCSP com-
bined with SNN was an effective method to improve the
accuracy of MI classification [27]. Ang et al. used the
FBCSP combined with various feature selection and classi-
fiers to identify the two-class MI. The results showed that
the FBCSP is superior to other feature extraction methods
[7]. Mahmood et al. used the FBCSP combined with SVM
to classify multiple-class MI. Compared with other methods,
this method obtained the best recognition accuracy [20].
Zhang et al. used OVR-FBCSP combined with CNN+LSTM
method forMI recognition [53]. Islam et al. used TSM to find
the precise frequency band associated with theMImission for
MI recognition [41]. In their work, the optimalMI recognition
accuracy based on the sub-band selection method of mutual
information is 82.6%±13.06, which is lower than our exper-
imental result 90.09% and proves that the effect of FBCSP is
feasible for MI recognition.

C. DIFFERENT CLASSIFIERS IN MOTOR IMAGERY
For the classification of MI features, the classifier has a great
influence on the classification effect. In this study, we use
SVM, RVM, and SNN as classifiers and apply the feature
selection method of F-score to screen the most distinctive
CSP features in each subject, to help improve the accuracy
of recognition. For the dataset IIIa of the BCI competition III
and dataset IIa of BCI competition IV, the average accuracy

of the OVR-FBCSP-SNN classifier is 90.09% and 81.33%,
respectively. This result proves that SNN is a good classifier
based on EEG, and our classification method is feasible and
effective.

Referring to other MI literature, Liu et al. used features
to define a score use the step-wise linear discriminant anal-
ysis (SWLDA) method performing MI classification [57].
Nguyen et al. used CSP for feature extraction and fuzzy
logic system (FLS) for classification. CSP is used to extract
significant features, and then these features are input into
FLS as classification input [58]. G. S. et al. used Bayesian
networks and artificial neural networks to classifyMI features
[59]. Yang et al. designed a classification method called
adaptive kernel fisher support vector machine (KF-SVM)
is designed and applied to EEG MI classification in BCI
[60]. Komijani et al. presents MI classification for BCI sys-
tems using a recurrent adaptive neuro-fuzzy interface system
(ANFIS), and the classification system is based on time-series
prediction [61]. Lahiri et al. proposed to use the whole clas-
sifier composed of the k-nearest neighbor (KNN) layer for
classification [62].

D. COMPARISON OF DIFFERENT MOTOR IMAGERY
RELATED STUDIES
Obviously, compared with other recent methods (Table 6 and
Table 7), our proposed OVR-FBCSP-SNN method has some
advantages. The accuracy and kappa value of the two datasets
are close to the highest value of the latest literature. The
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results show that the framework can be used as an alternative
method.

E. EXPERIMENTAL LIMITATIONS AND FUTURE
CONSIDERATIONS
First of all, the dataset of MI is limited to the left hand, right
hand, foot, and tongue, which cannot reflect other situations
of MI. For example, grabbing, lifting, and other forms of MI
are not included in the dataset. In the future, we will realize
the recognition of MI with more classes of MI. Secondly,
we select the optimal time window and frequency band of
each subject manually, which is not an effective method
in practical application. It is urgent to improve the use of
automatic selection of each subject’s optimal time window
and frequency band, which is efficient and accurate. Thirdly,
we only use SNN as classifier without considering whether it
can be used as a feature extraction method.

V. CONCLUSION
To enhance the performance of multiple-class MI classifi-
cation, a new method of combining one-vs-rest filter bank
common spatial pattern with spiking neural networks was
proposed. Two datasets of four classes of MI (dataset IIIa
of BCI competition III and dataset IIa of BCI competition
IV) were used to evaluate the proposedmethod. Experimental
results demonstrated that our method was comparable to the
best existing method in terms of classification accuracy. It
demonstrated that the proposed method could serve as an
alternative for multi-class MI classification.
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