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Abstract— The study of working memory (WM) is a hot topic
in recent years and accumulating literatures underlying the
achievement and neural mechanism of WM. However, the effect
of WM training on cognitive functions were rarely studied. In
this study, nineteen healthy young subjects participated in a
longitudinal design with one week N-back training (N=1,2,3,4).
Experimental results demonstrated that training procedure
could help the subjects master more complex psychological
tasks when comparing the pre-training performance with
those post-training. More specifically, the behavior accuracy
increased from 68.14±9.34%, 45.09±14.90%, 39.12±12.71%,
and 32.11±10.98% for 1-back, 2-back, 3-back and 4-back
respectively to 73.52±4.01%, 69.14±5.28%, 69.09±6.41% and
64.41±5.12% after training. Furthermore, we applied elec-
troencephalogram (EEG) power and functional connectivity
to reveal the neural mechanisms of this beneficial effect and
found that the EEG power of δ, θ and α band located in
the left temporal and occipital lobe increased significantly.
Meanwhile, the functional connectivity strength also increased
obviously in δ and θ band. In sum, we showed positive effect of
WM training on psychological performance and explored the
neural mechanisms. Our findings may have the implications for
enhancing the performance of participants who are prone to
cognitive.

I. INTRODUCTION

Working memory (WM) plays an important role in daily
activities because it provides the basis for advanced cognitive
functions. One of the most popular experimental paradigms
in WM research is the n-back task [1] [2]. Much work has
been made to elucidate the potential mechanism of brain dur-
ing n-back tasks using functional neuroimaging technology,
such as functional magnetic resonance imaging (fMRI) and
electroencephalogram (EEG). Among these techniques, EEG
is widely used in research because of its advantages of easy
accessibility and excellent temporal resolution.

A major topic in the study of WM has been on how
the changes of frequency band power by WM tasks with
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different difficulty levels. A few studies have shown that
frontal mid-line theta band increased in magnitude as WM
load increased [3]. In contrast, posterior alpha band power
decreased as WM load increased [4]. Moreover, Chen et
al. found that posterior alpha power decreased, and tem-
poral region-distributed beta power increased as WM load
increased [5]. Imperatori et al. compared the EEG power
spectra of five frequency bands (δ, θ, α, β and γ) with differ-
ent levels of difficulty (1-back vs. 3-back) [6]. According to
the statements in the above studies, WM seems to be relevant
to all typical frequency bands. Therefore, we included all typ-
ical frequency bands in this study. In addition to band power
features, functional connectivity features were recently used
in the WM analysis. The functional connectivity features can
provide inter-channel information representing interactions
between brain regions, which cannot be captured by power
features that are derived from individual channels. Jlenia et
al. explored the topology of the relevant EEG-derived brain
networks during WM tasks [7].

In recent years, scientists began to focus on WM training.
Green et al. proposed possible characteristics of training
programs that may help enhance learning [8]. Martin et al.
evaluated the effectiveness of cognitive training in adulthood
and old age [9]. Others studied the changes of functional
brain network after cognitive training. For example, Hempel
et al. [10] observed the effect of visual spatial work training
on brain activity. Buschkuehl et al. [11] found that there
were differences in brain activity between 4-back and 1-back.
As a system for short term maintenance and manipulation of
task-relevant information [12], WM is inherently involved
in all higher-level cognitive activities. Accordingly, if WM
training is successful, it may have a broad impact on individ-
uals. However, subsequent training studies showed that there
was no consistent conclusion [13] [14] [15] [16]. To solve
this problem, we explore the changes of sub-band in EEG
power and functional connectivity strength before and after
WM training in a longitudinal study design.

II. MATERIALS AND METHODOLOGY

A. Participants

Nineteen healthy young people (age: 22.4 ± 2.6 years)
participated in this study. All subjects were right-handed and
had normal or corrected-to-normal vision. They were prohib-
ited of taking any psychiatric and/or neurologic drugs in the 1
week before the study. The protocol of the experiment was
approved by the institutional review board of the National



University of Singapore. All participants signed the informed
consent form before starting the experiment.

B. Experimental paradigms

The subject was asked to complete two sessions within
one week and did training every other day, thus each subject
needed to train twice. In each session, different n-back
tasks appeared randomly, the subject needed to make the
choice according to the target by pressing the “space”. This
behavior was recorded and be denoted as an experimental
evaluation index (behavior accuracy). There were 240 trails
total in each session. During the experiment, 62-channel
Ag/AgCl electrodes were employed for EEG recording with
a sampling rate of 256 Hz and band-pass filter (0.5∼70 Hz)
was used for signal filtering.

C. Data Processing

The trails of responses (correct or incorrect) during n-
back task were recorded and used for further analysis. A
typical procedure was utilized to mitigate artifacts from
EEG signals, including bandpass filter (0.5∼48 Hz) and
independent component analysis (ICA) [17]. Each epochs
contained a time window of 3000 ms, which was extracted
from -500 ms to 2500 ms according to the target onset. The
time period of -500 ms to 0 ms was used as the baseline.
Each epoch will be used for the EEG power features and
functional connectivity features extraction.

D. Methods

1) Electroencephalogram Power: Fourier transform (FT)
was used to obtain power features in five typical EEG
frequency bands (δ: 1 ∼ 4 Hz, θ: 4∼8 Hz, α: 8∼12
Hz, β: 12∼30 Hz, and γ: 30∼45 Hz). Specifically, for
each EEG data epoch, the power of each EEG channel in
five sub-bands were obtained by using FT. The channels
were then segmented into five areas: frontal location, left
temporal location, right temporal location, parietal location
and occipital location. There were five sub-band power
features in each frequency band by averaging the values of
the power within each region. Finally, EEG power increment
after training is calculated for analysis, which is obtained by
the EEG power of each sub-band in each region after training
subtracts the values of before training.

2) Functional Connectivity: Interactions between brain
regions could be quantified by Phase Lag Index (PLI). PLI
solves problems caused by volume conduction, common
source and active reference in traditional methods (such as
Phase Locking Value and Partial Directed Coherence). The
PLI is computed with the following formula:

PLI = |〈sign[sin(ϕi − ϕk)]〉| (1)

where sign stands for signum function, || indicates ab-
solute value function and 〈〉 stands for arithmetic average
operation. ϕi, ϕk are the phases of EEG channels i and
k, obtained by the Hilbert transformation. In our case, a
connectivity matrix with the size of 62×62 was obtained by

PLI for each band. We got one value of PLI in each band by
averaging the values in the connectivity matrix. Finally, the
value obtained by the connectivity strength in sub-band after
training subtracts the strength of before training is calculated
for further analysis.

III. RESULTS

A. Behavior Results

In Table I, we provided the averaged behavior accu-
racy across nineteen subjects during N-back experiments
(N=1,2,3,4). It can be observed that in both session 1 and
session 2, the behavior accuracy decreased with the increase
of task difficulty (from 1-back to 4-back). The highest
accuracy obtained in 1-back, which was 68.14±9.34% and
73.52±4.01% in session 1 and session 2, respectively. Inter-
estingly, the WM training indeed can help to enhance the
performance of the subject. The more complex of the task,
the more significant effect could be obtained. Furthermore,
the standard deviation of session 2 was much smaller than
that of session 1, which indicates that the performance of
subject is more stable after training procedure.

TABLE I: The averaged behavior accuracy across nineteen
subjects of WM task (N-back) in before and after training
sessions.

Sessions Accuracy (%) (Mean±std)
1-back 2-back 3-back 4-back

Before 68.14±9.34 45.09±14.90 39.12±12.71 32.11±10.98
After 73.52±4.01 69.14±5.28 69.09±6.41 64.41±5.12

B. Electrophysiological Results

As shown in Fig.1, it provides the averaged power changes
across all subjects in each sub-band located in different brain
region.

Delta band: The changes of EEG power in occipital were
significant. The power of all tasks (n-back) increased in left
temporal, parietal and occipital. In frontal, the power had no
changes in 1-back decreased in 4-back, and increased in the
other two tasks. In parietal, the power of all tasks increased,
except for 4-back. In all tasks, the power increased in 2-back
were higher compared with other tasks and only 4-back for
power decreased in frontal and right temporal. In addition,
the power in parietal and occipital in 3-back were higher
than other three brain region in 3-back.

Theta band: The power decreased during 1-back in frontal
and right temporal, and the power increased under all other
conditions. Moreover, the reduced power in right temporal
was more than that in frontal. In all cases of increased
power, power increment is the largest for each task in left
temporal, and the minimum increased in power was in the
right temporal.

Alpha band: Power reduction only occurs in right tem-
poral. In right temporal, power decreased in 1-back and 4-
back and increased in other tasks. In all cases of increased
power, the lowest increment of power was obtained during
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Fig. 1: The power changes averaged across all subjects in each sub-band and each brain region. The Y-axis stands for
deference of power after training. The power increased significantly of left temporal and occipital among δ, θ and α band,
and the power increased significantly of frontal and left temporal between β and γ.

3-back in occipital, and the highest increment of power was
obtained during 2-back in occipital. From every brain region,
the lowest increment of power was obtained in right temporal
and the highest was obtained in left temporal.

Beta band: It is be seen that there is a significant increase
of power in the frontal location compare with other brain
regions. The power decreased in right temporal during 2-
back and 3-back and increased in all other conditions. From
a numerical points of view, the increment of power in beta
band was highest compared to other bands.

Gamma band: The main increments of power were in
frontal and left temporal. In right temporal, the power
decreased in all tasks besides 4-back task. In parietal, the
power increased in all tasks besides 3-back task. In addition,
the increment of power in parietal and occipital were lower
compared with other bands.

The change of functional connectivity strength of each
sub-band after training are shown in Fig.2. The results
showed that the functional connectivity increased in δ and θ
band during all tasks and the former was larger than the latter,
while in β band there is a decreased pattern. In addition, we
found that connectivity strength began to decrease in α band.

IV. DISCUSSION

In this study, we explored the changes of power in each
band before and after training. The results show that the
power increased during most tasks in each band after train-
ing. Specifically, in δ and θ band, the power enhancement is
mainly in left temporal and occipital. Such a result indicates
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Fig. 2: The change of connectivity strength of sub-band after
training. The Y-axis stands for difference of connectivity
strength after training. The connectivity strength increased
in δ and θ band of all tasks, and decreased in β band.

that the power changes in δ and θ bands may be related to
WM. It has been reported that significant changes occurred in
the delta band during WM task [6], and continuous cognitive
processing may be manifested as long-lasting increase of θ
power [18] [19]. In α band, the power increased in most
case especially in left temporal and occipital. It has been
found that the power changes in α band seem to be related
to memory performance [20] [21]. There is notable α band



power increase when a subject does not pay attention to or
focus on something [22]. This mannifests that the subjects
do not need to mobilize a lot of attention in WM tasks
after training. In β and γ band, the increment of power is
mainly shown in frontal and left temporal. In addition, the
increment of power in β band is highest compared with other
bands. It suggests the changes of β power are associated with
cognitive processes [23] [24].

Summing up these rules, we find that the main area of
EEG power increased were left temporal and occipital among
δ, θ and α band, while in β and γ band, the main area of
EEG power increased were frontal and left temporal. The left
temporal seems to play an important role in WM training.
Imperatori et.al found that the modification caused by the
increased complexity of tasks are most significant in the left
temporal lobe structures [6]. The researchers also found the
node showing the greatest connectivity values was located in
the left middle temporal region [24]. In addition, the changes
of power in left temporal were different from that in right
temporal. Such a result shows the hemispheric asymmetry of
the left and right brain.

We also explored the changes of connectivity strength
before and after training. The result shows that significant
changes were obtained in δ and β band. The connectivity
strength of delta band increased, while connectivity strength
of β band decreased. With the increase of frequency, the
strength of connection changes from increase to decrease.

This study explored the WM training in terms of EEG
power and functional connectivity strength. However, there
are still some limitations, which should be paid attention in
future studies. Firstly, in this study, we did not discuss the
connection patterns of different regions of the brain. Sec-
ondly, this study only considers the change of connectivity
strength, and does not involve the topological analysis of the
network. Existing studies have proven that network topology
has obvious changes in WM training. Langer et al. [25] found
that an increase in the small-worldness with in a distributed
fronto-parietal network.

V. CONCLUSION

In the present study, we designed an experiment of WM
based on n-back tasks (1-back, 2-back, 3-back and 4-back),
as a comparison experiments each subject completed two
sessions. Experimental results proved that the training pro-
cedure could help to enhance the performance and lead to a
higher accuracy. Moreover, to compare the changes between
before and after training, two methods of EEG power and
functional connectivity strength were employed. We found
that the EEG power increased in all sub-band and the left
temporal seemed to play an important role in WM training,
which presented the hemispheric asymmetry. In addition, the
changes of functional connectivity strength increased in δ and
θ band and decreased in β band. This phenomenon manifests
that the training procedure have a significant impact on WM.
In the future, we will recruitment the elderly group and
increase training times to four sessions for comprehensive
analysis.
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