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Abstract—Resource mapping on a heterogeneous multi-
processor system-on-chip (MPSoC) imposes enormous chal-
lenges such as identifying important design points for appropri-
ate resource mapping for improved efficiency or performance,
time consumption of exploring all the important design points
for each profiled applications, etc. Moreover, incorporating a
profiler into integrated development environments (IDEs) in
order to achieve more detailed and accurate profiling infor-
mation on the application being targeted during runtime such
that improved efficiency or performance while executing the
application is achieved, the runtime resource management
decision to achieve such improved “reward" has to be utilized
in a certain way. In this paper, we propose a hybrid approach
of resource mapping technique on DVFS enabled MPSoC, which
is suitable for IDE integration due to the reduced design
points in our methodology resulting in significant reduction
in profiling time. We coined our approach as “RewardProfiler"
(a Reward based design space Profiler), which is well capable of
reducing the design space exploration without losing most of the
important design points based on our heuristic approach. In our
strategy, an application has to be mapped onto the available
resources in such a way so that the “reward” obtained can
be maximized. Our approach can also be utilized to maximize
multiple “rewards" (Multivariate Reward Maximization) while
executing an application. Implementation of our RewardProfiler
on the Exynos 5422 MPSoC reveals the efficacy of our proposed
approach under various experimental test cases and has a
potential of saving 170x more time in profiling for our chosen
MPSoC compared to the state-of-the-art methodologies.

Index Terms—Reward, profiler, IDE, design space exploration,
multiprocessor systems-on-chip (MPSoCs)

I. INTRODUCTION AND MOTIVATION

Fig. 1: Increase in design points using conventional profiler
with increase in frequency scaling steps and number of CPU
cores in MPSoC with 2 clusters

Fig. 2: Increase in design points using RewardProfiler with
increase in frequency scaling steps and number of CPU
cores in MPSoC with 2 clusters

Back in the decade of 2000 when Pentium processors
were still dominating the commercial market share, pro-
filing a software performance on such homogeneous pro-
cessors based systems was easier than it is today. In a
patent by Gove et al. [1], the proposed work was one of
the earliest recorded methodology on automated profiling
information in an integrated development environment
(IDE). The workflow for this automated profiler was simple
and efficient. However, over the decades, thanks to Moore’s
Law [2], now we can not just fit many cores on a single IC
but we can also fit cores of different processing capabilities
onto the same chip to better fit our needs. We could
see an extensive use of heterogeneous multiprocessors
systems-on-chips, where several types of processing cores
are available within a single chip, to deliver performance as
well as energy efficient computing, on embedded devices
nowadays. Moreover the performance and energy efficiency
demands of embedded applications has increased substan-
tially [3] which could only be satisfied by executing them
on such heterogeneous MPSoCs.

Now we could consider that mapping applications i.e.
allocating resources such as CPU cores, memory, etc. to
applications, could be classified under three categories [3]–
[8]: Design Time mapping, On-the-fly (runtime) mapping
and Hybrid mapping (combining both design time and
on-the-fly mapping techniques). Each of these mapping
techniques has their own benefits and disadvantages, such
as design time mapping requires mapping the tasks in all



possible combinations of the available processing elements
and given a large number of processing elements on a
modern MPSoC the possible combination space is huge
and hence mapping could not be performed at run-time.
Whereas mapping tasks at run-time in most cases can not
provide the most optimized resource allocation since it
could be missing some combination of resources, which
could lead to better suitability of the requirements such
as performance, energy consumption, etc. In the hybrid
mapping techniques we could see that researchers are lever-
aging benefits of both design time and run-time mapping
to allocate resources to applications.

Since, energy efficiency are some of the biggest con-
cerns of embedded computing devices, majority of the
state-of-the-art methodologies utilize a combination of the
aforementioned mapping policies to increase the energy
efficiency of the system, but according to [9] there are five
popular methods leading to energy reduction in the system,
which includes:

1) Dynamic Power Management (DPM) allows idle pro-
cessing elements or other idle components of the
system to be suspended if required in order to reduce
energy consumption [10].

2) Dynamic Voltage Frequency Scaling (DVFS) allows pro-
cessors to operate at variable voltage-frequency (v-f)
levels [11].

3) Customization of processors to match the processing
needed of a task on an MPSoC [12].

4) Customizing cache based memory access [13].
5) Mapping tasks of an application to the processors so

that workload could be balanced across all proces-
sors in an MPSoC. This improves utilisation of PEs
effectively and reduces energy consumption [14].

At the operating system level, we could only use DPM
and DVFS based methodologies for energy consumption
regulation, which could further add to resource mapping
and allocation techniques. Therefore, software based pro-
filing systems mostly utilize these two methodologies to
profile energy consumption for a set of applications on
heterogeneous MPSoCs. Moreover, if we consider frequency
scaling level steps1 of DVFS then as the number of CPU
cores increases in the MPSoC, the number of design points
also increases polynomially. For example, if we consider
similar CPU cores are clustered together into heterogeneous
architecture where cluster wise frequency scaling is avail-
able then Fig. 1 shows the increase in the number of design
points as the number of CPU cores in the clusters and
the frequency scaling steps increases for a heterogeneous
MPSoC with 2 CPU clusters.

Meanwhile, the emergence of more and more intelligent
integrated development environments (IDEs) [15], [16] en-
ables profiling for both performance and energy efficiency
of the application. However, the issue is none of the hybrid
resource mapping techniques are suitable enough to be
utilized in such IDEs due to the fact that most of the

1Using DVFS the frequency and voltage could be regulated to control
energy consumption, where each changing frequency level is called fre-
quency scaling level and the number of operating frequencies that could
be changed is called frequency scaling level steps.

state-of-the-art hybrid resource mapping techniques still
incorporate a huge number of design space combinations
[17], [18], which could drastically increase the profiling
time. On the other hand given more and more applica-
tion development teams are adopting scrum based agile
software development [19], [20], it would be very useful to
develop efficient and close to accurate resource mapping
and profiling techniques for applications incorporated into
IDEs. Although it could be argued that any state-of-the-art
hybrid resource mapping could be adopted in IDEs to get
profiling results and then design applications accordingly
but given the fast development environment of Agile2, it is
crucial to develop hybrid mapping techniques, which are
fast both in design and run-time. For example, we could
consider the case from Fig. 1, if 7 applications (consisting
of a set of tasks) requires to be profiled for several devices
consisting of different number of CPU cores and frequency
scaling levels then there are 139,440 total design point
mappings, which would take 38.74 hours (approx.) to profile
exhaustively considering it takes 1000 ms (1 sec) to evaluate
one mapping. This means that each application or set of
tasks requires 5.6 hours (approx.) of profiling time and
even the slightest modification to the tasks would also
require similar amount of time in profiling every time a
modification is made. Given the constrained time period for
Agile application development, profiling time of 5.6 hours
for a set of tasks is unacceptable. Whereas, in comparison
when we use our approach we achieve 5,194 design points
for the same 7 applications (see Fig. 2), which would
take 1.44 hours (approx.) instead. It also means that each
application would roughly take 12.37 minutes for profiling
and hence, we could save 28x more time in profiling for
this test case compared to traditional approach. The way we
achieve this speedup in profiling time is by clustering the
frequency scaling levels based on approximate computing
[22], [23] using our heuristic approach. Later, we also show
in Sec. IV that using this approach of profiling we could
further reduce the profiling time to 170x in comparison for
Exynos 5422 MPSoC [24] and thus each application would
take 2.04 minutes (approx.).

According to our current knowledge there is no available
scientific document, which focuses on developing hybrid
resource mapping and profiling techniques on heteroge-
neous MPSoCs that is more catered towards being incor-
porated into IDEs. So the challenges that we face in this
research are as follows:

1) Reduce the time to profile combination of resources
during the design space exploration (DSE) without
loosing important design points.

2) Design a hybrid resource mapping technique on
heterogeneous MPSoCs, which could incorporate re-
duced design space exploration and then utilize the
knowledge for efficient run-time resource manage-
ment decision.

In order to address these challenges, we propose a hybrid
resource mapping technique on DVFS enabled MPSoC,
“RewardProfiler", where we reduce the design space explo-

2In Scrum Sprint Agile development the maximum development time
for a feature (iteration) in the application could vary from 2-6 weeks [21]



ration and making it suitable for IDE integration. We coined
the proposed methodology as RewardProfiler for it being a
“reward" based design space exploration profiler. Here, the
term “reward" is a beneficial objective that needs to be
achieved during the profiling period of the applications or
set of tasks such as execution time, energy consumption,
thermal gradient, etc. (see Sec. II-C). To this end, this paper
makes the following novel contributions:

1) Design a hybrid mapping and profiler methodology
addressing the aforementioned challenges such that
it could be incorporated into IDEs.

2) Validate the methodology on Exynos 5422 SoC [24],
which is a popular heterogeneous MPSoC.

The rest of the paper is organized as follows. Section
II discusses about the hardware infrastructure used and
problem formulation. In Section III we discuss about our
proposed method RewardProfiler and in Section IV we val-
idate our approach with different experiments. Finally, we
discuss some noteworthy findings of this study in Section
V and conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Hardware Infrastructure

Now a days heterogeneous MPSoCs consist of differ-
ent types of cores, either having the same or different
instruction set architecture (ISA). Moreover, the number
of cores of each type of ISA can vary based on MPSoCs
and are usually clustered if the ISA of the core is similar.
For this research we have chosen an Asymmetric Multicore
Processors (AMPs) system-on-chip (AMPSoC), which is a
special case of heterogeneous MPSoC and has clustered
cores on the system [25]–[28]. Specifically, for our study
we chose the Odroid XU4 board [29], which employs the
Samsung Exynos 5422 [24] MPSoC. This MPSoC is based
on ARM’s big.LITTLE technology [30] and contains cluster
of 4 ARM Cortex-A15 (big) CPU cores and another of 4 ARM
Cortex-A7 (LITTLE) CPU cores, where each core implements
the ARM v7A ISA. This MPSoC provides DVFS feature per
cluster, where the big core cluster has 19 frequency scaling
levels, ranging from 200 MHz to 2000 MHz with each step
of 100 MHz and the LITTLE cluster has 13 frequency scaling
levels, ranging from 200 MHz to 1400 MHz, with each step
of 100 MHz. Additionally each core on the cluster has a
private L1 instruction and data cache, and a L2 cache,
which is shared across all the cores within a cluster. This
MPSoC also contains 6 ARM Mali-T628 GPU shader cores
based on the “Midgard" architecture and a DRAM of 2GB
LPDDR3.

B. Exploration of Combined Design Points

To gain maximum benefit of task, thread and data paral-
lelism of applications to be executed on a CPU-GPU hetero-
geneous multi-processor systems-on-chip several threads
could be partitioned between the CPU and GPU, using
different combinations of the big/LITTLE CPU cores and/or
the GPU cores. If we consider ARM’s big.LITTLE architec-
ture and assume that there are nb big and nL LITTLE cores
then the total number of mappings (MC PU ) [17], [31]:

MC PU = (nb +nL)+ (nb ×nL) (1)

Since, at the moment we are not able to segregate
the workload on the GPU and map them onto individual
cores separately due to limited driver support by ARM, we
would consider the total number of mapping on the GPU
(MGPU ) as 1. Now, since Exynos 5422 supports cluster wide
DVFS, the cores within each cluster can run on a cho-
sen voltage-frequency3 from a pre-defined set of voltage-
frequency value pairs. If we assume that there are fb , fL
and fGPU number of frequency scaling levels for the big,
LITTLE and GPU cluster, respectively, then considering the
voltage-frequency scaling levels for the CPU and GPU cores,
the mapping design space for CPU (MC PUV F ) and GPU
(MGPUV F ) will consist of the following:

MC PUV F = ((nb × fb)+ (nL × fL))+ (nb × fb ×nL × fL) (2)

MGPUV F = 1× fGPU (3)

Thus from the equations Eq. 1, 2 and 3 we could derive
the total number of Combined Design Points (CDP) con-
sidering both the CPU and GPU cores are as follows:

C DP = MC PUV F ×MGPUV F

= {((nb × fb)+ (nL × fL))+ (nb × fb ×nL × fL)}× ( fGPU )
(4)

From the equation Eq. 4 we could generalize com-
bined design points for all asymmetric multicore proces-
sors systems-on-chip having clustered cores with DVFS
capabilities4 and the GPU on such system acts as single
unit for operation5 due to GPU driver limitations. If we
consider N as the number of clusters in such AMPSoC,
fC be the number of frequency scaling levels for the whole
cluster6 and nC be the number of cores in each cluster then
the generalized equation governing such combined design
point (C DP ) consideration is as follows:

C DP = (
N∑

C=1
nC × fC +

N∏
C=1

nC × fC )× fGPU ,

wher e 1 ≤ N ≤ nC

(5)

In Eq. 5, the governing equation for C DP only works
for DVFS enabled multi-core architecture, which means nC
and fC is always more than 1. It could be inferred from
the Eq. 5 that the number of clusters (N ) present in the
system is either less than or equal to the number of cores
(nC ) present in each cluster. The reason to provide this
constraint is because from design point of view it is more
practical to have more number of cores on the die than the
number of clusters due to die size constraint.

For ease of understanding of our heuristic based Reward-
Profiler, we would be using a simplified version of Eq. 5,

3We only choose the frequency and the firmware automatically adjusts
the voltage based on pre-set value pairs of the voltage-frequency.

4We also assume that each clustered cores run at the same frequency
as the other cores in the cluster

5nGPU is equal to 1
6For this instance, we are only considering cluster wise DVFS capability.



where we only consider the MPSoC consisting of heteroge-
neous multiple CPU cores, and the modified equation could
be represented as follows:

C DP =
N∑

C=1
nC × fC +

N∏
C=1

nC × fC ,

wher e 1 ≤ N ≤ nC

(6)

Nevertheless, our RewardProfiler approach could be ex-
tended to MPSoC having CPU/GPU cores on-chip, hence-
forth utilizing Eq. 5.

C. Reward Based Mapping

Now, let us assume that an application (A) under the
system consideration consists of m tasks A = {T1,T2, ....,Tm},
which is required to be scheduled on C PUTot al (C PUTot al =∑N

C=1 nC ) heterogeneous CPU cores on the MPSoC such
that we receive a reward RApp . Here, a reward RApp corre-
sponding to an application is the user defined parameter of
the system, which may represent any such following terms:
performance of an application or energy consumption or
operating temperature of the CPU cores. We could achieve
the maximum value of the reward (RAppM ax ) if and only if
we schedule the tasks of the application appropriately to
the CPU cores. Here, mapping a set of tasks of the appli-
cation to appropriate CPU cores also solves the problem of
symmetry-elimination7 in DSE [32]. We also need to keep
in mind that for some chosen reward type the objective
would change to minimizing the reward instead in order
to gain most benefit for the overall system. For example, if
we choose low operating temperature as the reward, which
we want to gain from appropriate task-to-core mapping,
then the beneficial objective would be to achieve the least
possible operating temperature of the cores.

Given the Eq. 5 the number of possible combinations of
mapping over design space is huge and if we consider that
an instance of combined design point mapping could be
represented as C DPi then each such instance could lead
to a possible reward Ri (see Eq. 7). NOTE: While defining
the concept of reward we have restricted resource mapping
to CPU cores at the moment for the ease of understanding.
However, the same approach could be extended for the GPU
cores in the MPSoC as well.

C DPi 7−→ Ri , ∀Ri ∈ RApp (7)

D. Problem Formulation

Given a set ( App s ) comprising of s applications such
that App s = {App1, App2, ....App s }, where App i ∈ App s

and App i is an instance of an application. We can now
mathematically formulate the problem with two objectives
as follows:
Objective Function:

1) Maximize RApp s , i.e. achieve RM ax
Where RM ax = max( RApp1

M ax
,RApp2

M ax
, ....,RApp s

M ax
)

7Symmetry-elimination means eliminating the design point mappings
which are redundant in DSE.

2) Reduce C DP , i.e. achieve C DPReduced , which are the
reduced design space points (mapping)

Subject to following Constraint:

• Resource allocation does not exceed available MPSoC
resources.

Note: Depending on chosen reward, the objective might be
to reduce the reward instead of maximizing so that overall
benefit could be achieved.

III. PROPOSED METHODOLOGY: REWARDPROFILER

A. Overview of RewardProfiler

In our RewardProfiler we reduce the number of design
space points (mapping) (see Eq. 5) by segregating the design
space into small clusters, which could lead to almost similar
reward generation. We could think of this with an example
of taking a slab of glass and then hammering it to break
it into pieces. Then we group the broken pieces of glasses
based on almost similar sizes.

Since RewardProfiler is considering DVFS for this ap-
proach, our profiler only modifies the number of CPU core
allocation from the design space and the frequency level
at which the cores run. Based on approximate computing
we have clustered the different frequency scaling levels
into four major groups. From our experimental data and
analysis we have observed that the human eye is able
to differentiating a video of 30 frames per second (fps)
with 15 fps very easily, whereas it becomes very difficult
to differentiate between videos of 13 fps and 15 fps. The
same observation could be extended about execution time
as well. Until and unless a workload execution is time-
critical, difference between execution time of 39 secs and
40 secs is minimal, whereas, the difference of execution
time for the same workload of 39 secs and 50 secs is quite
noticeable. From our experiments we have noticed that
some frequency scaling level steps produce almost similar
Reward generation and we have clustered such frequency
scaling levels together to represent the outcome i.e. Reward
generation, of a group of frequency levels. Therefore, we are
utilizing the core essence of Approximate Computing [23] in
our approach and the four different frequency scaling levels
which are utilized in our approach are as follows: highest
frequency (Fh), medium high frequency (Fmh), medium low
frequency (Fml ) and lowest frequency (Fl ). Here, highest
frequency is the maximum frequency at which the cores
could run whereas the lowest frequency is self explanatory
as well. In order to decide on medium high frequency and
medium low frequency we have defined two equations (Eq.
8 and Eq. 9).

Fmh = f r equenc y( d( fC /2)e+1 ) (8)

Fml = f r equenc y( b( fC /2)c−1 ) (9)

We could notice from Eq. 8 and Eq. 9 that we take the fre-
quency at (d( fC /2)e+1) and (b( fC /2)c−1) frequency levels for
Fmh and Fml respectively. From our extensive experiments
we have also observed that merely selecting just the middle
frequency scaling level does not accurately represent the
clustering of Reward being generated in the set of frequency



levels in the middle. Selecting just the middle could lead to
eliminating many important design points and associated
Reward generation. Hence, for RewardProfiler Fmh and Fml
are selected. Section V shades some light on this ideology.

App
RewardProfiler

CDPReduced

Regression 
Equation 

Generation

Calculate ? 

Calculate ?

Suggest 
mapping based 

on ? and ?

Fig. 3: RewardProfiler Workflow

In our methodology we reduce the design points by
only considering the aforementioned 4 frequency levels8.
Therefore, from Eq. 6 we could deduce the combined design
points as:

C DPReduced = {((nb ×4)+ (nL ×4))+ (nb ×4×nL ×4)} (10)

We can notice in Eq. 10 that we have not considered
the GPU cores at all and the reason being that to execute
application on both CPU and GPU cores specialized code
or framework9 is required to identify the part of the code
or set of tasks to execute on the GPU or CPU.

Now, our RewardProfiler have to execute the application
on different number of CPU core configuration with the
aforementioned frequency levels and check for the values
of different reward (Ri ) achieved for every configuration.
However, before evaluating different reward the user inputs
the threshold reward (Rthr eshol d ), which is the minimum
value of the reward that is acceptable by the user for
a desirable quality of service and is user defined during

84 frequency scaling levels are Fh ,Fmh ,Fml ,Fl .
9Frameworks such as CUDA or OpenCL are required to execute tasks

on GPU cores.

Algorithm 1: RewardProfiler Execution
Input:
1. Apps : set of s applications
2. RApp s : set of rewards chosen for each application in
Apps (see Sec. II-D)
Output:
1. Mapping Combination: Combination of frequency level,
operating cores (big / LITTLE) such that Rmax is achieved,
where Rmax = max( RApp1

M ax
,RApp2

M ax
, ....,RApp s

M ax
)

begin
Compute the reduce number of C DPReduced using

Eq. 9 . Each instance of CDP will represent a
combination of chosen cores and frequency level, say
one application chosen 1 big and 1 LITTLE cores
with frequency (Fi ) then this instance will map to a
particular reward value Ri

for Each application Appi ∈ Apps do
Obtain reward (Ri ) corresponding to each C DPi as

per Eq. 6
for Each obtained reward (Ri ) do

if Achieved Ri ≥ Rthr eshol d then
Store in a table with the acheived Ri ;
Calculate the angular degree (θi )using

Eq.11;

else
Store in a table with the acheived Ri

Find the difference (ωi ) between the angles using
Eq. 12;

Find the minimum value (ωleast ) from all
instances of ω mentioned above;

/* ωleast = θleasti
−θleasti−1

*/
Find θleast = min( θleasti

,θleasti−1
) and then fetch

corresponding mapping combination of the
minimum value of θleast ; . This particular step
is carried out in function f ecthM appi ng ()

the profiling period. If the reward (Ri ) achieved is equal
or more than the threshold reward (Rthr eshol d ) then we
consider that configuration for further computation or else
the resultant values (Ri , operating frequency Fi ) are stored
in a table. In case we have several configurations, which
are capable of generating rewards either equal or more
than the threshold reward then the RewardProfiler could
calculate the difference in rewards to get the best possible
configuration and reward combination.
Note: Depending on the goal of reward generation the
motive behind the threshold reward (Rthr eshol d ) could also
change. For example, if a performance constraint is re-
quired to be met then the associated threshold reward
is the maximum value of allowed execution time for the
profiled application. In this case the threshold reward is
the maximum value of the reward that is acceptable by the
user for a desirable quality of service.

Let us consider Ri as the reward for an instance of
a configuration. We could then represent Ri as a linear
function (see Eq. 11) of the operating frequency (Fi ), since
we could only regulate the frequency of the running CPU
cores10.

10The firmware in the system automatically adjusts the voltage based on
pre-set value pairs of the voltage-frequency once the frequency is chosen.



Ri =αi ×Fi +βi ,∀Fi ∈ {Fh ,Fmh ,Fml ,Fl } (11)

Using the Eq. 11 if we assume that for a different
operating frequency (Fi+1) a new reward (Ri+1) is generated
but the α (αi = αi+1) and β (βi = βi+1) values remain the
same during the profiling period, the value of α and β could
be evaluated from the linear functions of Ri and Ri+1. After
computing the α and β values from the Eq. 11 for every
possible frequencies11 RewardProfiler have to calculate the
angular degree of the slope of the linear function (see Eq.
12). The reason to calculate the angular degree (θ) of the
slope is to check for the rate of decrease or increase in
angular degree between different slopes (αi−1,αi ,αi+1, ....)
achieved through different reward (Ri−1,Ri ,Ri+1, ....) gener-
ation in order to decide which frequency level to choose
for maximized reward while minimizing design space for
resource allocation.

θi = arctan(αi ) (12)

In Eq. 12 θi is the angular degree of slope, αi , of reward,
Ri . After calculating θ for every possible combination from
C DPReduced , given that the reward generated is equal to
or more than the threshold reward (Rthr eshol d ), the profiler
fetches the difference between two adjacent θ values. Now,
we could assume that the difference between two adjacent
θ to be ω. Therefore, if we assume that the profiler needs
to calculate ωi for every θi−1 and θi (see Eq. 13), then
after calculating ω for all desired rewards the profiler would
suggest the mapping combination from C DPReduced where
ω is the least (ωl east , see Eq. 14). For instance a higher
value of ωi would mean that the difference in slope of
two different rewards (Ri−1,Ri ) is high and means that
for C DPi−1 & C DPi the rewards (Ri−1,Ri ) generated are
significantly different. However, in comparison if the value
of ωi is minimal then it means that for C DPi−1 & C DPi the
rewards generated do not defer a lot and hence, it is more
beneficial to choose the C DPi−1. Using this mathematical
approach we can guarantee selection of almost minimized
design space for resource allocation for almost maximized
reward generation using linear regression based technique.

ωi = θi −θi−1 (13)

ωleast = mi n( ω1,ω2, ....ωi , ....ωn) (14)

To predict our heuristic based threads-to-core mapping,
the profiler suggests the mapping combination from the
combined design point (C DPReduced ) that generates θi−1,
which leads to ωleast , and the operation that leads to this
suggestion of mapping resources is called f etchM appi ng
(see Eq. 15).

M appi ng Combi nati on = f etchM appi ng ( ωl east ) (15)

The aforementioned work-flow and pseudo-code of the
proposed RewardProfiler could be found from Fig. 3 and
Algo. 1 respectively.

114 different frequencies for each cluster of cores in our case.

B. Multivariate Reward Profiler & Multivariate Reward Max-
imization

The proposed approach of RewardProfiler also works
for multiple types of reward maximization and we call
this approach of the RewardProfiler as Multivariate Reward
Maximization (MRM). In Multivariate Reward Maximiza-
tion different types of “reward" with associated reward
threshold are selected such that the RewardProfiler could
try to maximize each type of reward for the profiled appli-
cation while trying to reduce the design space for resource
allocation. An example of such use case of Multivariate
Reward Maximization is provided in Sec. IV along with its
experimental results.
Note: Although the term Multivariate Reward Maximization
is used in this case but for rewards where the benefit for the
system is to minimize the reward during profiling period
such as reducing thermal gradient of the system while
executing an application, then the RewardProfiler’s goal is
to minimize the value of reward in that case while reducing
design space for resource allocation.

IV. EXPERIMENTATION AND VALIDATION RESULTS

A. Experimental Setup

Applications can be classified into three categories [17]:
compute intensive, memory intensive and mixed load (both
compute and memory intensive). To validate our pro-
posed methodology we implemented the RewardProfiler on
Exynos 5422 [24] (see Sec. II-A).

In order to validate the effectiveness of our RewardPro-
filer, Streamcluster (a data-mining benchmark of PARSEC
[33]) with native & simlarge options is chosen. The reason
behind this selection lies on the fact that the Streamcluster
represents a real world mixed load application and its
execution period is quite long to observe different op-
erations required for chosen reward type in the system.
Along with Streamcluster we also utilized facesim (with
simdev & simlarge options), vips and x264 benchmarks from
PARSEC to validate our methodology. We have also chosen
another real world mixed-load application to get profiling
suggestion from the RewardProfiler. We have used a face
detection algorithm based on Haar Cascade [34] to detect
faces and eyes on a video of 320 × 240 dimension for the
aforementioned purpose. We have ran all our experiments
for validation on UbuntuMate version 18.04 LTS (Linux
Odroid kernel: 4.14.37-135).

In the the validation results (see Sec. IV-B) and in the
discussion sections (see Sec. V) we have only provided a
snapshot of the total execution time due to repetitive pat-
tern of result in all the graphs. We executed the benchmark
applications on all eight cores (big.LITTLE) of our Exynos
5422 SoC platform for different frequencies (frequency be-
longing to Fh ,Fmh ,Fml &Fl ). Due to this approach we could
save at least 14.17x more time than usual offline resource
mapping techniques using combined design space mapping
for our chosen platform. For Exynos 5422 considering big
and LITTLE CPU cores, and GPU core as unity with only
one frequency level, there could be 4080 (see Eq. 16)
combined design points (C DP ) whereas, for our reduced



CDP (C PDr educed ) it would be just 288 points (see 17) based
on our experimental setup.

C DPReducedC al . = {((4×19)+ (4×13))+ (4×19×4×13)}

wher e, nb = 4,nL = 4,

fb = 19, fL = 13
(16)

C DPReducedC al . = {((4×4)+ (4×4))+ (4×4×4×4)}

wher e, nb = 4,nL = 4
(17)

We could further reduce these combined design points by
allocating set of tasks to the clusters of big.LITLLE instead of
allocating them to each CPU cores. Therefore, nb = 1,nL = 1
instead. This would also ensure that symmetry-elimination
[32] is solved and the RewardProfiler do not waste time in
profiling similar resource allocation more than once. Thus,
the total number of CDP that would be profiled by the
RewardProfiler in this case would be only 24 as shown in
Eq. 18 using Eq. 6. Using this approach we are saving 170x
(= 4080

24 ) more time in profiling than usual offline resource
mapping techniques using combined design space mapping
for our chosen platform.

C DPReducedC al . = {((1×4)+ (1×4))+ (1×4×1×4)} (18)

Fig. 4: Computed fps at 4 different frequency levels:
Fh ,Fmh ,Fml ,Fl

B. Validation Results

1) Using RewardProfiler with single reward: For Stream-
cluster in nati ve mode we chose operating temperature
as our reward and the objective of the RewardProfiler was
to get the best possible combination of CPU cores and
frequency level for which we could achieve low operating
temperature (threshold of 90°C is selected, which is the
operating thermal cap of the system) without compromising
much on performance based on our heuristic approach.
We achieved an operating temperature of 89.79°C (avg.) at
Fmh frequency level (big cores running at 1200 MHz and
LITTLE cores running at 900 MHz) for Streamcluster with an
execution time of 393.64 seconds. RewardProfiler was able
to reduce the operating temperature (reward) to 89.79°C
(avg.), which was within 2.034% (avg.) of the optimal value

TABLE I: Avg. fps at
different freq. levels

Freq. Levels Avg. fps

Fh 8.709
Fmh 6.171
Fml 4.440
Fl 0.914

TABLE II: α, β, θ at different frequency
levels

Frequency Levels α β θ

Fh 0.0001 8.6613 0.001
Fmh 0.0002 5.4304 0.011
Fml 0.0013 3.9309 0.074
Fl 0.0027 0.7853 0.154

(88°C avg.) of the operating temperature on the Odroid
XU4 along with optimal execution time (392.01 seconds).
RewardProfiler only required to profile the Streamcluster
application 24 times (see Eq. 18) instead of profiling the
application for 4080 times (see Eq. 16) to find a reward
close to the optimal reward (~2.034% difference) and hence,
reducing the profiling time by 170x.

For face detection application we chose computed fps
(frames per second) to be our reward and the objective
of the RewardProfiler is to maximize fps while keeping
resource mapping to least. For this application we chose our
threshold value to be 6 fps. We found out that according
to RewardProfiler the best frequency level is at Fmh and
running the application on all eight CPU (big.LITTLE) cores.
Tables I and II show the corresponding average computed
fps and different values of parameters of regression ex-
pression (see Eq. 11) and θ for different frequency levels.
Fig. 4 reflects the aforementioned average fps values in
a graphical representation for 4 different frequency levels
(Fh ,Fmh ,Fml &Fl ). In this experiment, both the big and
LITTLE clusters were set to Fh ,Fmh ,Fml &Fl respectively at
the same time and the results in Fig. 4 reflect the achieved
fps for these operating frequency selection. In the figures
(4, 6 & 7) the video recorded fps, which represents the fps of
the original video when recorded, is presented on the X axis
and the Y axis reflects the computed fps during profiling.

2) Using RewardProfiler with multiple rewards: We also
chose multiple rewards to profile the following benchmarks
from PARSEC: Streamcluster with simlarge option, faceism
with simdev & simlarge options, vips and x246. For multiple
rewards we chose the execution time and the thermal
gradient of the system as the Rewards. For execution time
we selected different reward threshold for each applications,
which are being profiled. In this test case, instead of
choosing the reward threshold as the value for which the
RewardProfiler should try to generate rewards, which is
more than the threshold, the threshold is the maximum
allowed value for that specific reward. Therefore, for the
chosen reward threshold if the reward generated surpasses
the threshold value then the RewardProfiler do not consider
those rewards. Even for the reward where thermal gradient
of the system is chosen, the threshold value is the operating
thermal cap of the system. The goal of the RewardProfiler
is to find the operating frequency for which the system can
achieve an overall reduction in thermal gradient (spatial
and temporal) of the system while meeting performance
deadline (execution time) for the respective benchmark ap-
plications. Therefore, for these test cases the RewardProfiler
has to meet both performance and thermal constraints and
hence, these are a multi-reward examples.

Fig. 5 shows the resultant rewards generated for each



(a) Reward: Execution Time (b) Reward: Thermal Gradient

Fig. 5: RewardProfiler: Profiling with multiple rewards (Execution Time & Thermal Gradient)

benchmark applications, which were profiled. In the Fig.
5.(a) sc_sl represents the results for Streamcluster with
simlarge option, f ace_sd represents the results for facesim
with simdev option, f ace_sl represents the results for
facesim with simlarge option, vips represents the results
for vips benchmark and x264 for the x264 benchmark. The
execution time in Fig. 5.(a) are in seconds. For the reduction
in thermal gradient the chosen reward threshold was 70° C,
which acted as the thermal cap for the system. In the Fig.
5.(b) perf 4, 5, 6, 7 represent the operating temperature of
the 4 ARM Cortex A-15 big CPU cores respectively while
profiling the aforementioned benchmarks in performance
governor of linux, whereas the T _RP 4, 5, 6, 7 represent the
operating temperature of the 4 ARM Cortex A-15 big CPU
cores respectively while profiling the benchmarks in Fmh
for big CPU cluster and Fml for the LITTLE CPU cluster
using RewardProfiler. From Fig. 5 we could observe that
RewardProfiler is able to reduce the thermal gradient of
the system by 27.37% and reduce thermal cycle by 72.31%
while achieving execution time by performance deadline
(reward threshold for execution time). All the temperature
readings are in ° Centigrades and we could only profile
the temperatures of the 4 ARM Cortex A-15 big CPU cores
because the temperature sensors are only available on the
4 big CPU cores and 1 on the GPU of the Odroid XU4
platform.

We also compared our RewardProfiler with state-of-the-
art TheSPot methodology [35], which is a thermal stress-
aware power and temperature management approach for
MPSoCs. Table III shows the average reduction in thermal
gradient achieved using TheSPot methodology for facesim,
vips and x264 benchmarks. Since we profiled several appli-
cations (Streamcluster, facesim, vips and x264) in the same
profiling session using RewardProfiler, Table III reflects the
average reduction in thermal gradient (spatial and tempo-
ral) for the whole profiling session instead of individual pro-
filing of each benchmark application. In the study by Iranfar
et al. [35] TheSPot approach is implemented in two ways:
Optimal TheSPot and Heuristic TheSPot methodologies. In
the Table ??, O.TheSPot represents the results for Optimal

TheSPot methodology, H.TheSPot represents the results for
Heuristic TheSPot methodology, whereas, R.Profiler repre-
sents the results for our RewardProfiler. Since TheSPot is
able to achieve different temperature reduction for spatial
and temporal thermal gradient, the table reflects the aver-
age reduction of spatial and temporal thermal reduction in
percentage (%). We could observe that TheSPot method is
able to reduce the thermal gradient by 15.83% on an average
if we take average of all the results, whereas, our RewardPro-
filer is able to achieve 27.37% reduction in thermal gradient
while meeting the performance constraint (execution time
threshold). Therefore, RewardProfiler is able to outperform
TheSPot DPTM12 by 72.87% for this experimental setup.

TABLE III: Average reduction in thermal gradient compari-
son between TheSPot and RewardProfiler

Thermal gradient reduction (%)

O.TheSPot H.TheSPot RProfiler

facesim 16 21.5 27.37

vips 9.5 13.5 27.37

x264 13 21.5 27.37

3) Comparative study: Although in Sec. IV-B2 we have
compared a test case of using RewardProfiler with multiple
rewards to the TheSPot thermal management methodology
to show the efficacy of the proposed methodology in
reducing thermal gradient, being selected as one of the
chosen rewards. In this section we compare RewardProfiler
with some of the state-of-the-art methodologies dealing
with reduction in design points in design space exploration
(DSE) [32], [36], [37].

In the study [36], Shahid et al. propose a methodology
to utilize approximate computing in DSE. Since majority
of proposed studies in traditional DSE [38]–[40] try to
optimize energy consumption while achieving the best
performance/throughput as the multi-objectives, [36] also

12DPTM stands for Dynamic Power and Thermal management method-
ology.



focuses on the same objectives. Unfortunately, modern
MPSoCs utilized in embedded devices are now capable of
doing much more due to immense improvement in chip
technology. Now a days we could see that devices from
smart-phones to laptops, which have become an integral
part of most human beings’ life, can utilize similar MPSoCs
as the computational resource of the device. Therefore, DSE
should not just focus on optimizing energy consumption
while achieving the best throughput but should also con-
sider optimizing other factors such as thermal gradient
reduction for improved device reliability and hardware
security for improved confidence in communication and
storage of data on the device and between devices. In [36],
the methodology executes several optimization techniques
used in DSE in time-parallel to fetch the inputs to be
used to train a neural network, which in terms generate an
approximate solution. Here, the approximate solution is the
optimized configuration/design points which generates the
reduced energy consumption while maximizing throughput.
Comparatively, RewardProfiler is capable of accommodating
multiple objectives, which in terms is known as the rewards
for the methodology, and is not just limited to minimizing
energy consumption and maximizing performance. Reward-
Profiler is also faster in execution because every time when
the program code changes or the hardware architecture
of the device changes then the neural network has to be
retrained, which is itself a time consuming process. More-
over, the methodology provided in [36] is evaluated through
simulation, whereas, RewardProfiler is implemented on real
hardware platform, which provides more confidence in the
methodology and it’s efficacy.

In the study [37], Rosvall et al. propose a methodol-
ogy to find design point implementations for a set of
streaming applications on a shared multiprocessor plat-
form which guarantee required performance by leveraging
constraint programming approach and data-flow to find
optimal mappings. Hence, [37] achieves to meet perfor-
mance requirements of streaming applications by micro-
managing mapping, scheduling, and performance of each
such application. Additionally, the proposed methodology
in [37] is only restricted for streaming applications and is
evaluated on simulation platform. Whereas, RewardProfiler
works for any type of application as shown in Sec. IV
and focuses on resource allocation based on the chosen
reward constraints, hence, avoiding micro-management of
scheduling problems, which would add more overhead to
the current solution.

In [32], Schwarzer et al. propose a methodology to elimi-
nate symmetry by clustering tasks and mapping them using
Integer Linear Program (ILP) which eliminates all architec-
tural as well as encoding symmetries from the search space.
Moreover, efficacy of [32] is shown through simulation
platform and one of the biggest issue of the proposed
methodology is that as the number of task clusters grow,
the time to solve the ILP also increases proportionately.
Since, in RewardProfiler each application is treated as a
clustered task and resource allocation and frequency scaling
is used to maximize rewards as a whole for each application,
symmetry elimination as well as the number of design

TABLE IV: Comparative study of AC-DSE [36], Rosvall et al.
[37] and Schwarzer et al. [32] with RewardProfiler

Method Sim Flex. S. M. Obj.

AC-DSE [36] 3 3 7

Rosvall et al.
[37]

3 7 7

Schwarzer et al.
[32]

3 3 7

RewardProfiler 7 3 3

point combination remains same for a particular hardware
platform and hence computation time required for the
application also remains same.

Table IV summarizes the differences between AC-DSE
[36], Rosvall et al. [37], Schwarzer et al. [32] and Reward-
Profiler based on the following criteria:

• Sim: Whether the methodology is implemented on a
simulator or not. If the implementation and experi-
mentation is on a simulated platform then this feature
has 3in the table.

• Flex. S.: Whether the methodology could be imple-
mented for any type of software/application/task set
or not. If the implementation works for any type of
software/application/task set then this feature has 3in
the table.

• M. Obj.: Whether the methodology could be im-
plemented for multiple objectives/rewards such as
reducing energy consumption, increasing perfor-
mance/throughput, reducing thermal gradient, etc. If
the methodology is capable of handling multiple ob-
jectives/rewards as mentioned above then this feature
has 3in the table.

V. DISCUSSION AND FUTURE SCOPE

Fig. 6: Computed fps at 1700 MHz for big cores and LITTLE
cores at 1100 MHz

From our experimental results we have also validated
that the clustering technique of frequency levels was in
fact effective due to the fact the differences between the
reward gained at intermediate13 frequency levels weren’t

13Here intermediate frequencies are other frequency levels that lie
between Fh ,Fmh ,Fml &Fl



Fig. 7: Computed fps at 800 MHz for big cores and 400 MHz
for LITTLE cores

noticeable. Fig. 6 and Fig. 7 show the fps achieved in
the face detection application for intermediate frequency
levels respectively. From the figures we could see that
the difference between the fps achieved by executing the
application at Fmh

14 (see Fig. 4) is not very different from
running the application at 1700 MHz for big cores and
LITTLE cores at 1100 MHz. The same could be inferred
if we compare the resultant fps achieved by executing the
application at 800 MHz for big cores and 400 MHz for
LITTLE cores with that of the result of the computed fps
achieved by executing the application at Fml .

Another point we need to keep in mind is that the reason
to choose four different frequency levels instead, especially
middle high and middle low frequency, for clustering re-
ward based design space mapping points is to get four
different values15 of angle of slope for the linear function.
The main motivation behind it is to measure the angular
increase and decrease between these slopes in order to
be able to decide automatically which frequency to select
so that maximum reward could be achieved. The same
ideology of measuring the decrease and increase in angular
difference between the slopes could be used for mapping
allocation and suggestion, even without profiling that CDP
itself. For example, if we could notice that the values of
ω (....ωi−1,ωi ,ωi+1....) increase or decrease gradually then
from the gradual variation of the values of ω we could
develop a prediction model for resource allocation and op-
erating frequency selection based on that knowledge. Since
this approach is not within the scope of this research, we
could focus on implementing such approach of developing
prediction model in a future extension of this work.

We also have to keep in mind that it could be argued, we
could just decide to suggest the best possible frequency and
maximize reward just from the linear expression. But from
the experimental data we could notice that the relationship
between reward and frequency is not exactly linear for every
chosen reward16 and hence computing either of their value
from the linear equation without considering the difference
between the angle achieved from the linear functions into

14The face detection application was executed on the big cores at 1200
MHz and LITTLE cores at 900 MHz.

15One value for each frequency level out of four: Fh ,Fmh ,Fml &Fl .
16Here, reward could be energy efficiency or performance or operating

temperature of the cores, etc.

account would lead to high degree of errors. When we
executed Streamcluster of PARSEC workbench at Fh and
Fmh frequencies respectively, we chose temperature as the
reward that we wanted to minimize. Here, we want to
minimize the reward because least operating temperature
results in more reliability of the device thus contributing
to overall benefit of the system. The relationship between
execution time and operating temperature of the big cores
follows a quadratic equation instead of linear. From Fig. 8
we could notice that for different frequencies the operating
temperature of big cores is not linear as mentioned earlier
and the angle between the linear function lines are different
as well.

Fig. 8: Computed temperature of big cores at Fh and Fmh

One shortcoming of this proposed approach (RewardPro-
filer) is that if the number of allowed frequency scaling
levels on the cluster of CPU cores is less than five then
the RewardProfiler does not really provide any reduction
of CDP since we are selecting 4 frequency scaling levels
(Fh ,Fmh ,Fml &Fl ). This is evident even in Fig. 2, where for
a system with only 2 frequency scaling level there was
no reduction in CDP. However, since most of the current
MPSoC such as Exynos 5422 SoC [24] used in popular
Samsung phones, HiSilicon Kirin 970 SoC [41] used in pop-
ular Huawei phones, etc. support more than 13 frequency
scaling levels at the least and for such popular MPSoC
our RewardProfiler would be very beneficial to reduce CDP
and suggest appropriate resource mapping for maximized
reward generation.

VI. CONCLUSION

In this paper we proposed a profiling strategy for IDEs
to map available resources in a heterogeneous MPSoC
device to applications in such a way that we could achieve
maximum overall “reward" for the executing applications.
In our experimental and validation section we were able to
prove that our profiling methodology is not just capable of
reducing the design points (mapping) of combined design
space by 170x at max for Exynos 5422 MPSoC without
loosing any important design points, but at the same time
able to outperform the state-of-the-art DPTM approach
and yet being able to achieve high reward for executing
application as desired by the user.
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