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ABSTRACT The Home IoT Voice System (HIVS) such as Amazon Alexa or Apple Siri can provide voice-
based interfaces for people to conduct the search tasks using their voice. However, how to protect privacy is
a big challenge. This paper proposes a novel personalized search scheme of encrypting voice with privacy-
preserving by the granule computing technique. Firstly, Mel-Frequency Cepstrum Coefficients (MFCC) are
used to extract voice features. These features are obfuscated by obfuscation function to protect them from
being disclosed the server. Secondly, a series of definitions are presented, including fuzzy granule, fuzzy
granule vector, ciphertext granule, operators and metrics. Thirdly, the AES method is used to encrypt voices.
A scheme of searchable encrypted voice is designed by creating the fuzzy granule of obfuscation features of
voices and the ciphertext granule of the voice. The experiments are conducted on corpus including English,
Chinese and Arabic. The results show the feasibility and good performance of the proposed scheme.

INDEX TERMS Fuzzy search, granule computing, k-nearest neighbor, searchable encrypted voice, obfus-
cation function.

I. INTRODUCTION
Voice activation devices, such as Amazon Alexa, Apple Siri,
Google Assistant or Microsoft Cortana were widely used on
over 2 billion smartphones in 2018. Moreover, as the demand
for smart home devices continues to grow, sound interaction
devices such as Amazon Echo, Apple Home-Pod, or Google
Home are also widely deployed. When people enjoy using
these devices, personal privacy may be revealed if the data is
stored in the cloud server with the plaintext. Therefore, data
owners tend to encrypt the data and then outsource the cipher-
text to the cloud server. However, with the proliferation of
data volume and number of users, cloud servers may become
the performance bottleneck of cloud services. This results in
the long waiting time and seriously affects the user’s search
experience. Hence, how to quickly obtain the search results
in the vast ciphertext is a challenge for using the personalized
search technology.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaochun Cheng .

A. CIPHERTEXT SEARCH SCHEMES
The existing ciphertext search schemes can be classified into
searchable symmetric encryption (SSE) framework and pub-
lic key encryption with keyword search (PKEKS) framework.
According to technical details and its inherent nature, the SSE
scheme is further divided into a sequential scan scheme
and a secure index scheme. Song et al. first proposed the
SSE scheme based on sequential scanning in [1] by split-
ting the plaintext into ’’words’’ and then encrypting them.
When the user submits a search request, the ciphertext file
containing the keyword is returned by sequentially scanning
and comparing the ciphertext word with the keyword to be
retrieved. It was able to support searching for any word in a
file. However, its efficiency was extremely low as the server
had to traverse the entire file during the search. Moreover,
the scheme cannot resist the frequency analysis attack on
ciphertext.

Goh [2] proposed an improved SSE scheme based on
secure forward index. The secure index of each file was
matched to keywords by the server and the user’s keyword
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search can be supported with a high efficiency. However,
the search results were not completely correct due to the
positive mis-detection probability of the Bloom Filter in the
building index. This may bring some additional overhead of
bandwidth and computation to users. The scheme security
can reach the indistinguishability against chosen keyword
attack. In contrast, the scheme presented by Chang et al.
[3] can avoid the positive mis-detection probability of Goh’s
scheme. Furthermore, by adopting the inverted index con-
struction method, its ability to anti-selective keyword attack
was stronger than Goh’s scheme. It can resist the adaptive
selection keyword attack.

Curtmola et al. [4] further improved and clearly defined
the security of SSE scheme. On the one hand, they proposed
SSE-1 and SSE-2 solutions to achieve indistinguishable secu-
rity under adaptive and non-adaptive models. On the other
hand, PEKS. Boneh et al. [5] proposed the PEKS scheme
and presented several construction schemes based on bi-
linear pairings. Abdalla et al. [6] further gave the complete
definition of the PEKS scheme, and presented the process of
constructing PEKS based on the identity anonymity scheme.
In [7]–[9], researchers designed PEKS schemes that don’t
require a secure channel under the random language model
and the standard model.

Subsequently, some improved searchable encryption
schemes were proposed for various scenarios that pro-
moted the development of searchable encryption technology
[10]–[16], [20]. Zhao et al. [17] combined content filtering
and collaborative filtering to provide users with personalized
search results. Experimental results showed that the method
can provide accurate search results and improve the user’s
search experience. Leung et al. [18] obtained the user’s
interest preference by mining the user’s click data, and intro-
duced the user’s location information, and adopted entropy
to balance the weight between the user’s preference and
the location information. This method improved the search
accuracy and promoted the user’s search experience.

However, it is still a challenging task to achieve a person-
alized search in a ciphertext environment and improve the
user’s search experience. Fu et al. [19] constructed user mod-
els based on the user’s search history and integrated users’
interests into the user’s query keywords through keyword
priority according to the word net. Then they searched the
ciphertext stored on the cloud server and got the top K search
results with the highest relevance score of the user to achieve
personalized search in the ciphertext environment. These
searchable encrypted schemes proposed above are from the
perspective of numerical calculation.

In summary, the schemes mentioned above did not pay
much attention to the hierarchy of data. To improve the
performance, we will design a new scheme based on the
hierarchy of data from the granular computing viewpoint.

B. GRANULAR COMPUTING
Information granule is an information that is ubiquitous
around us. It is a basic concept of human to know the world.

Humans tend to put a part of similar things together as awhole
in understanding the world to study their nature or character-
istics. In fact, this way of dealing with things is information
granulation and the study of the ‘‘whole’’ is called informa-
tion granule. In granular computing, the information granule
is used as the basic operation unit instead of the sample, and
the exact solution is replaced by the approximation solution,
which can achieve the purpose of designing high performance
algorithm.

As a methodology, granular computing aims to effectively
establish an external world-based, user-centric concept that
simplifies the understanding of the physical world and the vir-
tual world. In the process of solving the problem, the ‘‘gran-
ule’’ with the appropriate level of granularity is used as the
processing object, so as to improve the efficiency of solving
the problem under the premise of ensuring satisfactory solu-
tion. Since Zadeh published the first paper on information
granularity in 1979, researchers have made in-depth research
on granular computing theory and models, and combined
them with computational intelligence and machine learning
techniques. A lot of research results have been achieved.

The appropriate granularity is often determined by the
problem itself and its context, which is important for design-
ing data processing framework based on granular computing.
For example, someone asked his or her friend, ‘‘When did
you return home in China?’’. The time granularity chosen
to answer this question is actually determined by how long
his or her friend has been back to China. If it was not
more than one day, then the answer could be ‘‘Yesterday
afternoon’’. If it was more than one week, the answer can
be ‘‘Last week’’. Note that the above answers have different
granularities, namely afternoon and week. If you do not use
the appropriate granularity but the unified time stamp format
to answer, such as: ‘‘at 1:00 am yesterday’’, it might make
people feel awkward.

As early as 1979, a famous American cybernetic expert,
Zadeh [21] firstly presented the problem of fuzzy infor-
mation granulation. He believed that human cognition can
be summarized into three main characteristics: granulation,
organization, and causation. In 1985, Hobbs [22] proposed
the concept of granularity. In the early 1990s, Zhang et al.
[23] pointed out that ‘‘a recognized characteristic of human
intelligence is that people can observe and analyze the same
problem from very different granularities in their monograph
‘‘Question Theory and Application’’. People can not only
solve problems in different granular worlds, but also quickly
jump from one granular world to another, freely and easily,
without difficulty.’’ This ability can deal with different gran-
ular space and is a powerful manifestation of human problem
solving.

Yager and Filev [24] further pointed out that ‘‘people have
formed a granular view of the world, in which human obser-
vation, measurement, conceptualization and reasoning are
carried out.’’ These views all believe that granulation, as one
of the important characteristics of human cognition, plays
an important role in the knowledge discovery of complex
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data. The concept of granular computing was first proposed
in 1997, Zadeh [25] and the principles were identified by
Pedrycz [26]. Pedrycz showed how information granules
were constructed and subsequently used in describing rela-
tionships among data items. Later, many scholars in different
fields worldwide began to pay attention to this problem,
which gradually formed a new research direction in intelli-
gent information processing.

In addition, granular computing has promoted the develop-
ment of many concepts, such as diagrams [51], information
tables [52], knowledge representations [53] and so on. Gran-
ular computing is also widely used in time series forecasting
[54], manufacturing [55], mission forecasting [56] and infor-
mation fusion [58].

C. RESEARCH PROGRESS
1) DATA GRANULATION RESEARCH
Data granulation is the process of decomposing complex data
into information granules according to a given granulation
strategy. According to different data modeling goals and user
needs, a variety of granulation strategies can be adopted.
Most of the common granulation strategies relying solely
on data can be attributed to a granulation scheme based on
data binary relations, which essentially distributes two data
samples that satisfy a predefined binary relationship into
the same granule. In many granulation strategies, data can
be granulated into corresponding binary structure by using
equivalence relations, similarity relations, maximal similar-
ity relations, fuzzy equivalence relations, fuzzy similarity
relations, neighborhood relations, and dominant relations
[27]–[34]. The current data granulation strategies and meth-
ods are mostly based on single modal characteristics, setting
weight parameters between different modal features or sim-
ply integrating results, which can not effectively solve the
problem of data co-granulation with multi-modal features.

2) MULTI-GRANULARITY PATTERN DISCOVERY
AND FUSION
Multi-granularity pattern discovery and fusion are the inher-
ent logic requirements for solving complex problems under
the granular computing framework. The so-called multi-
granularity includes multiple data subsets, multiple sub-
spaces representing a space, multiple different modal variable
sets, multiple local or intermediate results in a problem solv-
ing process. They correspond to multiple problems angle and
multiple local or multiple levels. In order to obtain a global
solution to the overall data set or problem, it is necessary to
fuse multiple patterns found on a single granularity. Although
the term multi-granularity has not widely been used, scholars
have conducted research on multi-modality in the fields of
medical image analysis, network, video semantic analysis,
annotation and retrieval, emotion recognition, and mainly
consider data from different modalities. In these situations,
the features are extracted separately to form a multi-modal
feature space to develop the method of pattern discovery

with multimodal features. The current research focuses on
three aspects: multimodal data classification based on multi-
core learning [35], multimodal data modeling based onmulti-
dictionary collaborative expression [36] and multimodal data
fusion based on deep learning [37].

3) GRANULAR COMPUTING REASONING
Reasoning is one of the important abilities in human intel-
ligence. It is a formal logic, a science used to study peo-
ple’s forms of thinking, laws, and logical methods. The
role of reasoning is to obtain unknown knowledge from
known knowledge. The reasoning of Granular Computing
refers to the logical method of deducting using known
information granules or granule spaces. In the field of
Granular Computing, there have been some studies on
reasoning [21], [38]–[43].

4) HIGH PERFORMANCE ALGORITHMS
In recent years, there have been some preliminary explo-
rations on the use of granular computing to solve big data
problems. Ye et al. [44] achieved the clustering analysis of
large-scale data by granulating the data space and feature
space using integrated learning technology. Chang et al. [45]
proposed a big data decomposition method using deci-
sion trees, and then separately learned the Support-vectors
Machine classifier on each decomposed data granule, which
greatly improved the learning efficiency of Support-vectors
Machine. Gopal et al. [46] employed the hierarchical rela-
tionship between data categories and gave a corresponding
Bayesian model to increase its generalization performance.
Miao et al. [47] proposed a property reduction method that
can be computed in parallel by adopting the data decom-
position principle in MapReduce. By splitting the origi-
nal big data set into multiple easy-to-process information
granules,

Liang et al. [48] proposed an efficient big data feature
selection algorithm by solving and merging the feature selec-
tion results on each information granule. Qian et al. [49]
employed the information granularity to construct the for-
ward approximation of the rough set and proposed the feature
selection accelerator to accelerate a series of feature selec-
tion algorithms of forward greedy search. Chen et al. [50]
pointed out that different information granules imply differ-
ent characteristics and patterns, which can be used to design
machine learning and data mining algorithms effectively.
The challenges were mainly reflected in two aspects: Firstly
how to rationalize the information granulation and ensure
the effective solution; Secondly how to efficiently obtain an
approximate solution by balancing the algorithm efficiency
and the solution accuracy.

This paper proposes a novel scheme for searchable sym-
metric encrypted-voice from the new perspective of granular
computing. The rest of this paper is organized as follows.
Section II presents the construction of system model for
voice retrievals. In Section III, we will discuss how to extract
the voice feature, transform the raw data into information
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FIGURE 1. Overview of system model.

granule, encrypt data, and search over encrypted data via
granule computing. The system evaluation is given in
Section IV to demonstrate the feasibility and performance of
the proposed approach. Finally, a brief conclusion and future
work are described in Section V.

II. SYSTEM MODEL
A. OVERVIEW
The system model has three types of entities: user, HIVS and
servers. It is composed of two phases, namely voice upload-
ing phase and voice retrieving phase. During the uploading
phase, users upload voice and the keywords to HIVS; the
voices are encrypted and the features of voices are extracted
and obfuscated by HIVS. Then the features and encrypted
voice are submitted to the server for storage. During the
retrieving phase, users send the voice query to HIVS; the fea-
tures of query voice are extracted, obfuscated and uploaded
by HIVS to the server; the features matching is done by the
server using the scheme proposed in this paper. The answers
(encrypted voices) are returned to HIVS. Then, these answers
are decrypted by HIVS and sent to the user (See Fig. 1).

B. SCHEME CONSTRUCTION
Our solution consists of two parts: (1) voice pre-processing
and uploading server; (2) retrieving data using voice com-
mands (See Fig. 1).

1) UPLOADING VOICE
In the voice uploading phase, the data structure is made up of
two parts: objects and keywords, which are uniquely stored on

the server. The object is the data that the user wants to store on
the server. The keyword represents a category or an attribute
of the object. More specifically, the objects are stored as
encrypted form on the server. The keywords are saved as
the form of features on the server. The relationship between
object and keyword can be many-to-many, i.e., one keyword
can be associated with multiple objects, or one object can
be associated with multiple keywords. For example, ‘‘What
holiday is today? holiday, today’’, the first element ‘‘What
holiday is today? ’’ is used as an query, and the second and
the third element ‘‘holiday, today’’ is as a keyword for query.
If the server receives another voice for ‘‘What is the holiday
today?, New Year’’, it will add the new keyword ‘‘New
Year’’ to the query ‘‘What is the holiday today?’’. During the
uploading process, the object is encrypted into a ciphertext by
AES. The keyword is extracted features by MFCC and then
these features are obfuscated. Thus, the obfuscation features
and the ciphertext are transmitted to the server for privacy
protection.

2) RETRIEVING VOICE
In the voice retrieval stage, when a user sends query com-
mand to a server to seek an answer, the query command is
firstly sent to HIVS including a keyword. After the feature
extraction and obfuscation are performed by HIVS, then the
feature is sent to the server. The k-nearest neighbors cipher-
text granule search (KNNCGS) algorithm proposed in the
paper is adopted. The encrypted answer is returned to HIVS.
Then it is decrypted by HIVS through AES algorithm, and the
plaintext is sent to the user. In the ciphertext retrieval process,
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the returned ciphertext may be multiple related answers, and
the number of answer can be set by the user to improve
performance.

III. SCHEME IMPLEMENTATION
In this section, we will discuss how to extract the voice fea-
ture, transform the raw data into information granule, encrypt
data, and search over encrypted data via granule computing.

A. EXTRACTING VOICE FEATURE
Mel-Frequency Cipstal Coefficients (MFCC) is a set of key
coefficients used to establish the Mel Cepstrum. From the
segments in the voice signal, we can get a set of cepstrums
that are sufficient to represent this voice signal. The Mel-
Frequency Cepstral Coefficient is the cepstrum (namely the
spectrum of the spectrum) derived from this cepstrum. Unlike
the general cepstrum, the frequency band on the Melt’s cep-
strum is evenly distributed on the Mel scale. That is, such a
frequency bandwill be closer to the human nonlinear auditory
system. MFCC is a distinguishable feature in speech signal
processing.

Let v be voice. The m-order of the ith frame can be repre-
sented as {vi1, vi2, . . . , vim}. After extracting feature, the sig-
nal of frames form a matrix below:

V =


v11 v12 · · · v1m
v21 v22 · · · v2m
. . . .

. . . .

vn1 vn2 . . . vnm

 (1)

To reduce the complexity, we employ a vector to denote the
signal, which is expressed by average value of frame of voice
at MFCC below.

average(V ) = (
1
n

n∑
i=1

vi1,
1
n

n∑
i=1

vi2, . . . ,
1
n

n∑
i=1

vim). (2)

B. OBFUSCATION OF FEATURES
In this section, we designed an approach based on adding
noise into feature of voice to match.That is, a reversible
(m + 3) × (m + 3) confusion matrix A and three random
numbers α, β and γ are introduced in order to hide the
features and prevent these ones from being revealed to the
server. In other words, voice feature is not directly uploaded
to a server, but they are done operation with an obfuscation
matrix before uploading, and then the result is uploaded to
the server. Specifically, A Egi

T is uploaded to a server firstly,
where

Egi = (
m∑
j=1

a2ij + α − β, ai1, . . . , aim, 1, β). (3)

When we are searching,
∑m

j=1 (aij − vj)
2 is used to mea-

sure the similarity between voice feature v = (v1, v2, . . . , vm)
and ai = (ai1, ai2, . . . , aim), and this metric can be equivalent
to calculate Ef Egi

T , where Ef = (1,−2v1, . . . ,−2vm, γ, 1). The
proof of the approach is given as the follows.

Lemma 1: Given two voice features v and ai, a reversible
random matrix A and a series of random number α, β, γ ,
we let gi = (

∑m
j=1 a

2
ij + α − β, ai1, . . . , aim, 1, β) and

Ef = (1,−2v1, . . . ,−2vm, γ, 1). Ef Egi
T can be used as a metric

of the similarity between v and ai.
Proof: Ef A−1A Egi

T
= Ef Egi

T
= (

∑m
j=1 a

2
ij + α − β) −

2(v1ai1+. . .+v1aim)+γ+β =
∑m

j=1 (aij − vj)
2
−

∑m
j=1 v

2
j +

γ + α Therefore, we have that
∑m

j=1 (aij − vj)
2
= Ef Egi

T
+∑m

j=1 v
2
j − γ − α.

Because
∑m

j=1 v
2
j −γ−α is a constant, the server can adopt

Ef Egi
T as a metric of distance between f and ai.

�

C. FROM RAW DATA TO FUZZY GRANULE
Fuzzy granulation is inspired by human granulation and infor-
mation processing and is on the basis of mathematics. The
promotion mode is divided into fuzzy and granular. Among
them, fuzzification is to replace a clear set with a fuzzy
set. Granulation is that a collection is divided into granules.
Fuzzy granulation is composed of two phases: (1) The fuzzy
granulation method is used to transform keyword into fuzzy
granule. In this process, fuzzy granule, fuzzy granule vec-
tor and operators are defined to represent the feature. (2)
The δ-neighborhood of fuzzy granule vector is employed
to cluster the encrypted data (namely ciphertext granule).
Some concepts such as δ-neighborhood ciphertext granule,
ciphertext granule vector and related operators are defined to
denote the encrypted data.

1) FUZZY GRANULATION
Definition 1: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-
able system over ciphertext, where P = {p1, p2, . . . , pn}
is a plaintext set, E = {e1, e2, . . . , en} is a encryption
set corresponding to P, R = {r1, r2, . . . , rm} is a attribute
set, V = ∪r∈RVr is a set of the feature value. Vr is the
range of feature value and it is satisfied to Vr ∈ [0, 1].
θ : P × RarrowV is an information function, which repre-
sents the feature value of each object p in P. K = {(key1,
A1, α1, β1, γ1), (key2,A2, α2, β2, γ2), . . . , (keyn,An, αn, βn,
γn)} is a key set. Here,A is a 4×4 reversible confusionmatrix.
α, key, β and γ are random numbers. Ef = (1,−2Vr , γ, 1) and
Eg = (V 2

r + α + β,Vr , 1, β) represent obfuscation vector on
the feature r . The encrypted plaintext can be represented as
Encrypt(pi, keyi) = ei and the decrypted ciphertext can be
expressed as Decrypt(ei, keyi) = pi.
Definition 2: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-

able system over ciphertext. For ∀pi, pj ∈ P and ∀r ∈ R,
the distance on r between pi and pj is defined by:

dr (pi, pj) = Ef A−1AEgT = Ef EgT (4)

where dr (pi, pj) ∈ [0, 1]. According to Lemma 1, dr (pi, pj)
can be metric between pi and pj on the feature r .
Definition 3: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-

able system over ciphertext. For ∀p ∈ P and ∀r ∈ R,
fuzzy granule of the plaintext p on an atom feature r can be
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defined by:

Nr (pi) = {(p1, di1), (p2, di2), . . . , (pn, din)} (5)

The former of the sequence pair is the plaintext, the latter of
that is the distance between pi and pj on the feature r , in short,
that is dij = dr (pi, pj).
Definition 4: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-

able system over ciphertext. For ∀p ∈ P and ∀r ∈ R,
the module of fuzzy granule Nr (p) can be defined by:

|Nr (p)| =
∑
q∈P

dr (p, q) (6)

It is easy to get 1 ≤ |Nr (p)| ≤ |P|, where |P| denotes the
number of elements in P.
Definition 5: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-

able system over ciphertext. For ∀p ∈ P, any Q ⊆ R, and
Q = {r1, r2, . . . , rk}, (k ≤ m), the fuzzy granule vector of p
on feature subset Q can be defined by:

N̂Q(p) = (Nr1 (p),Nr2 (p), . . . ,Nrk (p)) (7)

Definition 6: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-
able system over ciphertext. For ∀p ∈ P, any Q ⊆ R and
Q = {r1, r2, . . . , rk}, (k ≤ m), the module of fuzzy granule
vector on p of feature subset Q can be defined by:

|N̂Q(p)| =
∑
r∈Q

|Nr (p)| (8)

Definition 7: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be two
fuzzy granules on the feature r , we define three operators
∩,∪,⊕ as follows:

Nr (p) ∩ Nr (q) = {(p1, dmin,1), (p2, dmin,2),

. . . , (pn, dmin,n)} (9)

Nr (p) ∪ Nr (q) = {(p1, dmax,1), (p2, dmax,2),

. . . , (pn, dmax,n)} (10)

Nr (p)⊕ Nr (q) = {(p1, dmax,1 − dmin,1),

(p2, dmax,2 − dmin,2), . . . ,

(pn, dmax,n − dmin,n)} (11)

dmin,i = min{1, dr (pi, p)+ dr (pi, q)},

dmax,i = max{0, dr (pi, p)+ dr (pi, q)− 1},

dij = dr (p, pj) (12)

Definition 8: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-
able system over ciphertext. Here, P = {p1, p2, . . . , pn}
represents plaintext set, and R = {r1, r2, . . . , rm} denotes
feature set. For ∀p, q ∈ P, there exists two fuzzy granule
vectors N̂R(p) = (Nr1 (p),Nr2 (p), . . . ,Nrm (p)) and N̂R(q) =
(Nr1 (q),Nr2 (q),
. . . ,Nrm (q)) on R, we define three operators ∪,∩,⊕ as
follows:

N̂R(p) ∩ N̂R(q) = (Nr1 (p) ∩ Nr1 (q),Nr2 (p) ∩ Nr2 (q),

. . . ,Nrm (p) ∩ Nrm (q)) (13)

N̂R(p) ∪ N̂R(q) = (Nr1 (p) ∪ Nr1 (q),Nr2 (p) ∪ Nr2 (q),

. . . ,Nrm (p) ∪ Nrm (q)) (14)

N̂R(p)⊕ N̂R(q) = (Nr1 (p)⊕ Nr1 (q),Nr2 (p)⊕ Nr2 (q),

. . . ,Nrm (p)⊕ Nrm (q)) (15)

Definition 9: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a search-
able system over ciphertext. Here, P = {p1, p2, . . . , pn}
is plaintext set, and R = {r1, r2, . . . , rm} is fea-
ture set. For ∀p, q ∈ P, there exists the two fuzzy gran-
ule vectors N̂R(p) = (Nr1 (p),Nr2 (p), . . . ,Nrm (p)) and
N̂R(q) = (Nr1 (q),Nr2 (q), . . . ,Nrm (q)) on R, their distance is
defined by:

d(N̂R(p), N̂R(q)) =
1

|R| ∗ |P|

∑
r∈R

|Nr (p)⊕ Nr (q)|
|Nr (p) ∪ Nr (q)|

(16)

Theorem 1: For ∀p, q ∈ P, the two fuzzy granule vector
satisfy:

0 ≤ d(N̂R(p), N̂R(q)) ≤ 1 (17)

Proof: Assuming that p = pi, q = pj, according to def-
inition 1-3, we have Nr (pi) = {(p1, di1), (p2, di2), . . . , (pn,
din)}, Nr (pj) = {(p1, dj1), (p2, dj2), . . . , (pn, djn)}, dij =
dr (pi, qj) ∈ [0, 1], |Nr (p)| =

∑
q∈P dr (p, q) N̂R(pi) =

(Nr1 (pi),Nr2 (pi), . . . ,Nrm (pi)), N̂R(pj) = (Nr1 (pj),Nr2 (pj),
. . . ,Nrm (pj)). According to equation (6)-(13), we also
have that ∀r ∈ R, 0 ≤

|Nr (p)⊕Nr (q)|
|Nr (p)∪Nr (q)|

≤ |P|,

0 ≤
∑

r∈R
|Nr (p)⊕Nr (q)|
|Nr (p)∪Nr (q)|

≤ |R| ∗ |P|, and 0 ≤

1
|R|∗|P|

∑
r∈R
|Nr (p)⊕Nr (q)|
|Nr (p)∪Nr (q)|

≤ 1. Because of d(N̂R(p), N̂R(q)) =
1

|R|∗|P|

∑
r∈R
|Nr (p)⊕Nr (q)|
|Nr (p)∪Nr (q)|

, the equation 0 ≤ d(N̂R(p), N̂R(q))
≤ 1 is established. �
Theorem 2 (Monotony): Let SS = (P,E,R,V ,K , θ, Ef , Eg)

be a searchable system over ciphertext. For ∀p ∈ P, fea-
ture subset T ⊆ Q, N̂T (p), and N̂Q(p) are two fuzzy
granule vectors on p about T and Q respectively, then
|N̂T (p)| ≤ |N̂Q(p)| is established.

Proof: According to the definition of fuzzy granule
vector, we have that N̂T (p) = (Nr1 (p),Nr2 (p), . . . ,Nru (p)),
and N̂Q(p) = (Nr1 (p),Nr2 (p), . . . ,Nrv (p)). For ∀r ∈ T ,
the fuzzy granule on r is Nr (p). Since T ⊆ Q, we have
r ∈ Q. Hence, the fuzzy granule satisfies Nr (p) ∈ N̂Q(p)
and |T | ≤ |Q|. Therefore,

∑
r∈T |Nr (p)| ≤

∑
r∈Q |Nr (p)| is

established. That is, |N̂T (p)| ≤ |N̂Q(p)| is established. �

2) CIPHERTEXT GRANULATION
We give some definitions of fuzzy granule, fuzzy granule
vector, metrics and operators based on fuzzy set in the last
section. In this section, on the basis of ciphertext, key and
fuzzy granule of plaintext, we define ciphertext granule,
ciphertext granule vector, operators and metrics to prepare
the presentation of KNNCGS. As shown in the definition
10, we decrypt the ciphertext by the key to get the plaintext.
On the basis of fuzzy granule of plaintext, we can define
ciphertext granule of δ-neighborhood. After that, ciphertext
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granule vector, operators and metrics are also defined by
ciphertext granule.
Definition 10: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a

searchable system over ciphertext. For ∀e ∈ E and ∀r ∈ R,
the ciphertext granule of e on the feature r in δ-neighborhood
(δ > 0) can be defined by:

M δ
r (e) = {u|u ∈ E, r ∈ R, p = Decrypt(e, keye),

q = Decrypt(u, keyu), d(Nr (p),Nr (q)) ≤ δ} (18)

Definition 11: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a
searchable system over ciphertext. The ciphertext granule
vector of e on the feature set R in δ-neighborhood can be
defined by:

M̂ δ
R(e) = (M δ

r1 (e),M
δ
r2 (e), . . . ,M

δ
rm (e)) (19)

Definition 12: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be
a searchable system over ciphertext. For ∀e ∈ E and
∀r ∈ R, the cardinal number associated with cipher-
text granule in δ-neighborhood M δ

r (e) can be defined by
|M δ

r (e)|, which denotes the number of elements. It is easy to
get: 1 ≤ |M δ

r (e)| ≤ |E|.
Definition 13: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a

searchable system over ciphertext. For ∀e ∈ E and any subset
Q ⊆ R (here, Q = {r1, r2, . . . , rk}, (k ≤ m)), the module
of ciphertext granule vector of e on feature subset Q can be
defined by:

|M̂ δ
Q(e)| =

∑
r∈Q

|M δ
Q(e)| (20)

Definition 14: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be
a searchable system over ciphertext. For ∀ei, ej ∈ E ,
M δ
r (ei) and M δ

r (ej) are ciphertext granules on r ∈ R in
δ-neighborhood. We define four operators, ∩, ∪, − and ⊕
below:

M δ
r (ei) ∩M

δ
r (ej) = {e|e ∈ M

δ
r (ei) and e ∈ M

δ
r (ej)} (21)

M δ
r (ei) ∪M

δ
r (ej) = {e|e ∈ M

δ
r (ei) or e ∈ M

δ
r (ej)} (22)

M δ
r (ei)−M

δ
r (ej) = {e|e ∈ M

δ
r (ei) and e /∈ M

δ
r (ej)} (23)

M δ
r (ei)⊕M

δ
r (ej) = {M

δ
r (ei)−M

δ
r (ej)} ∪ {M

δ
r (ej)−M

δ
r (ei)}

(24)

Definition 15: Let SS = (P,E,R,V ,K , θ, Ef , Eg) be a
searchable system over ciphertext. For ∀ei, ej ∈ E , M̂ δ

R(ei)
and M̂ δ

R(ej) are ciphertext granule vectors on feature set R in
δ-neighborhood. We define four operators ∩, ∪, −, and ⊕
below:

M̂ δ
R(ei) ∩ M̂

δ
R(ej) = {r ∈ R|M

δ
r (ei) ∩ M̂

δ
r (ej)} (25)

M̂ δ
R(ei) ∪ M̂

δ
R(ej) = {r ∈ R|M

δ
r (ei) ∪M

δ
r (ej)} (26)

M̂ δ
R(ei)− M̂

δ
R(ej) = {r ∈ R|M

δ
r (ei)−M

δ
r (ej)} (27)

M̂ δ
R(ei)⊕ M̂

δ
R(ej) = {r ∈ R|M

δ
r (ei)⊕M

δ
r (ej)} (28)

Definition 16: Let SS = (P,E,R,V ,K , θ, Ef , Eg)
be a searchable system over ciphertext, where E =

{e1, e2, . . . , en} is ciphertext set and R = {r1, r2, . . . , rm}

is feature set. For ∀ei, ej ∈ E , there are two ciphertext
granule vectors M̂ δ

R(ei) = (M δ
r1 (ei),M

δ
r2 (ei), . . . ,M

δ
rm (ei))

and M̂ δ
R(ej) = (M δ

r1 (ej),M
δ
r2 (ej), . . . ,M

δ
rm (ej)) on R in

δ-neighborhood. The distance between M̂ δ
R(ei) and M̂

δ
R(ej) is

defined by:

d(M̂ δ
R(ei), M̂

δ
R(ej)) =

1
|R| ∗ |S|

∑
r∈R

|M δ
r (ei)⊕M

δ
r (ej)|

|M δ
r (ei) ∪M δ

r (ej)|
(29)

Definition 17: Let SS = (P,E,R,V ,K , θ, Ef , Eg)
be a searchable system over ciphertext, where P =

{p1, p2, . . . , pn} is a plaintext set, R = {r1, r2, . . . , rm}
is a feature set, and E = {e1, e2, . . . , en} is a ciphertext
set. For ∀p ∈ P, ep ∈ E , we can define a rule on R as:
lbR(p) =< N̂R(p), M̂ δ

R(ep), ep >. Furthermore, rule library
can be defined as: LBR = {lbR(p)|∀p ∈ P}. Search over
ciphertext can be converted into reasoning and matching in
the rule library LBR.

D. ENCRYPTING DATA
In this paper, we adopt AES for encryption and decryption
for the small calculation overhead and a large block of data.
The limitation is that a key has to be negotiated between the
encryption side and the decryption side in advance, and then
transmitted through the secure channel.

E. K-NEAREST NEIGHBORS CIPHERTEXT
GRANULE SEARCH
1) k-NEAREST NEIGHBORS FUZZY
GRANULE VECTOR
Definition 18: Given a searchable system over ciphertext
SS = (P,E,R,F,K ), let Z be a fuzzy granule vector group
on R, where k > 0 and k is an integer. For any fuzzy granule
vector z ∈ Z , k-nearest neighbors fuzzy granule vector of z
can be defined by:

KNN (z,Z ) = {T ⊆ Z |∀ti ∈ T ,∀tj ∈ Z − T ,

(|T | = K )&d(z, ti) ≤ d(z, tj} (30)

A fuzzy granule vector group can be viewed as a set. The
k-nearest neighbors fuzzy granule vector group is a subset of
fuzzy granule vector group. They are the nearest k granule
vectors to z in the fuzzy granule vector group. k-nearest
Neighbors Ciphertext Granule Search (KNNCGS) is a deci-
sion algorithm based on fuzzy set operation, which is divided
into granulation, matching and making decision process. The
principle of KNNCGS is discussed below, and the algorithm
is given.

2) PRINCIPLE OF KNNCGS
The KNNCGS includes granulation, matching, and making
decision processes. The granulation process involves data
pre-processing, dividing the training set and the test set.
In the training set granulation, the feature fuzzy granulation
and ciphertext granulation can form a rule library. Fuzzy
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TABLE 1. K -nearest neighbors ciphertext granule search algorithm on server.

TABLE 2. K -nearest neighbors ciphertext granule search algorithm on client.

granule vector matching process includes: Calculating the
distance between test granule vector and all granule vectors in
the rule library; Sorting by the distance; Selecting k-nearest
rules. The decision process is to judge category of ciphertext
granule according to fuzzy granule vector. The principle is as
follows.
• Step 1. Pre-processing data - Delete the data with miss-
ing values and normalize the data set to the range [0, 1].

• Step 2. Divide 80% of data set as the training set and
20% of that as the test set.

• Step 3. Granulate data according to atom feature
extracted byMFCC and obfuscated by obfuscation func-
tion and form fuzzy granule, fuzzy granule vector and
ciphertext granule to build a rule library.

• Step 4. Searching and matching of fuzzy granule vec-
tors. Take a test fuzzy granule vector, and calculate the
distance between the test fuzzy granule vector and that
of each rule, then sort the distance by ascend and select
the top k fuzzy granule vectors.

• Step 5.Decision. The class of having the largest number
of ciphertext granules associated with the k fuzzy gran-
ule vectors are selected as the final ciphertext granules
(i.e., decision ciphertext granules).

• Step 6. Go to Step 4 (Searching and matching of
fuzzy granule vectors) and make the next test granule
to decide, until all the test granule are finished. Get all
decision ciphertext granules corresponding to all test
fuzzy granule vectors.

• Step 7. Return the ciphertext with the corresponding
ciphertext granule.

3) k-NEAREST NEIGHBORS CIPHERTEXT
GRANULE SEARCH
After giving the principle above, we design the related
algorithm, k-nearest neighbors ciphertext granule search
(KNNCGS). The part of the algorithm is performed in a
server (see Table 2), and the other part of the algorithm is
executed in a client (see Table 3).
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TABLE 3. Search performance of dataset.

IV. EVALUATION
A. SECURITY ANALYSIS
In our scheme, each sound can be encrypted with a unique
key using AES which belongs to a symmetric encryption
algorithm. Because of the AES security, the voice can not be
decrypted by the adversary. Since each voice can be encrypted
with a different key, it can be guaranteed that the same content
in different voices will be encrypted into different ciphertext.
It is a deterministic encryption that is resistant to selective
plaintext attacks. When voice is uploaded to server, stored in
server, and downloaded from server, the voice exists in the
form of obfuscation feature and ciphertext. The features are
calculated by MFCC and processed by obfuscation function,
which can be hided and almost irreversible. In other words,
the obfuscation features are very difficult to be recovered to
the original voices. Therefore, the whole process is secure and
reliable.

We analyse the security of our concrete scheme. The pro-
posed scheme is adaptively secure (i.e. satisfies definition
in [57]).

Proof: What we need to do is to construct a simula-
tor S = {S0, . . . ,Sq} such that for the adversary A =

(A0, . . . ,Aq), the outputs of Real(k) and Sim(k) are compu-
tationally indistinguishable. We construct a simulator S =
S0, . . . , Sq that adaptively produces a vector v′ = (t ′,E ′) =
(t ′1, . . . , t

′
n,M

δ
R(e1)

′, . . . ,M δ
R(en)

′) where t ′i indicates the trap-
door of Efi and t ′i = EfiQ

−1, (QarrowrMm+3,m+3(F), where
Mm+3,m+3(F) is a predetermined finite integral matrix group
consisting of invertible (m + 3) × (m + 3) matrices over
field F.) as the follows:
1. S0(1k , τ (F)): it constructs a simulated Aiarrowr

Mm+3,1(F) such that for the matrix A|E|×(m+3) =

(AT1 , . . . ,A
T
|E|). For a matrix A, the rank of A is denoted by

Rank(A) = min(|E|,m + 3). So then includes A in A′s state
sts and outputs (E ′, sts). We now claim that Ai are indistin-
guishable from AEgi , where AEgi = QEgTi . It is evident that the
distributions over Ai and AEgi are identical. Furthermore, since
the private-key encryption scheme is secure, each M δ

R(ei)
′ is

indistinguishable from a real cipher granule vector.
2. S1(sts, τ (F, Ef1)): it solves system of linear equations

AEf = b1, where b1 indicates the closeness degree between
queried word Efi and noisy keyword Egj. Note that it knows b1
from the trace of (F, Ef1). We denote a solution of AEf = b1 by
t∗ (if there exists solution). Let t ′1 = t∗T that is indistinguish-
able from a real trapdoor t1, since t1 × AEgi = t ′1 × Ai holds
for i ∈ [1, |E|]. S1 then includes t ′1 in sts and outputs (t

′

1, sts).

3. Si(sts, τ (F, Ef1, . . . , Efi)) : Si generates a trapdoor t ′i in the
same way that S1 does, i.e. by solving the system of linear
equations AEf = bi. Si then includes t ′i in sts and outputs
(t ′i , sts). It is evident that t

′
i is indistinguishable from a real

trapdoor ti. This completes the proof.

B. EXPERIMENTAL RESULTS
To measure how well the KNNCGS performed at encrypted
voice, we used 300 words of voice as a corpus to experiment,
involving English, Chinese and Arabic. Since the value range
of the data set is different, the data set needs to be normalized
and obfuscated (see Table 2). The features of voice can be
fuzzy granulated and form a fuzzy granule vector. Then,
we granulated the ciphertext with δ-neighborhood of the
fuzzy granule vector to build ciphertext granules. In order
to verify the performance of the scheme, we compared
KNN adopted in raw data with KNNCGS used in granule
form. And we took the accuracy and recall as metrics of
performance.
We fist explain criteria of the performance evaluation.

True Positive (TP) is the number of positive samples pre-
dicted by model. True Negative (TN) denotes the number
of negative samples predicted by model. False Positive (FP)
expresses the number of the negative samples that is predicted
as positive label by model. Relatively, False Negative (FN)
represents the number of positive samples that is predicted
as negative label by model. TP Rate = TP

TP+FN is called
true positive rate. FP Rate = FP

FP+TN denotes false positive
rate We use accuracy, recall to metric the performance as
the follows: Accuracy = TP

TP+FP ; Recall =
TP

TP+FN . In the
evaluation, we exhibited the relationship between metrics
and the parameters of nearest neighbor and δ neighborhood
(See Fig. 2-9).

As shown in Fig. 2, when K = 3 (the parameter of near-
est neighbor), the accuracy of KNN was 0.93. In constrast,
KNNCGS’ accuracy reached peak value 0.951 at δ = 0.55.
It improved by 2.26%. The accuracy of KNNCGSwas almost
higher than that of KNN between δ = 0.05 and δ = 0.85.
From δ = 0.85 to δ = 1, with δ rising, KNN’s accuracy was
higher KNNCGS’s. In most cases with K = 3, KNNCGS is
better than KNN at accuracy.

When K is 5, the results for different δ are exhibited
in Fig. 3. Compared by Fig. 1, KNN got 0.933 (improve-
ment by 0.32%). KNNCGS reached 0.95 at δ = 0.20 and
δ = 0.55, respectively. Compared with KNN, KNNCGS
got improvement by 1.82%. From δ = 0.15 to δ = 0.85,
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FIGURE 2. The Accuracy of K = 3 and δ ∈ [0,1].

FIGURE 3. The Accuracy of K = 5 and δ ∈ [0,1].

FIGURE 4. The Accuracy of K = 7 and δ ∈ [0,1].

the accuracy of KNNwas lower than that of KNNCGS.When
δ = 1.0, KNNCGS reached the lowest value 0.921 (decreased
by 1.2%).

As demonstrated in Fig. 4, when K = 7, KNNCGS
achieved top value 0.952 at δ = 0.6 and was increased
by 1.38% (KNN’s accuracy was 0.939). KNN made an
improvement by 0.64% and 0.97% compared by itself with
K = 5 and K = 3 respectively. From δ = 0.15 to δ = 0.85,

FIGURE 5. The Accuracy of K = 11 and δ ∈ [0,1].

KNNCGS’accuracy was always higher than KNN’s accuracy.
However, when δ > 0.85, the accuracy of KNNCGS was
dropped quickly and decreased by 2.84% compared with its
top value.

As shown in Fig. 5, when K reached 11, KNN and
KNNCGS both decreased at top value. As far as KNN was
concerned, it only reached 0.91 and dropped by 4.41% com-
pared with its peak value. In contrast, KNNCGS’s accuracy
was 0.932 and decreased by 2.10% at its top value. Compared
by KNN, the accuracy of KNNCGS is still higher than that of
KNN between δ = 0.25 and δ = 0.75.
The recall rate is another important metric of performance.

From Fig. 6 to Fig. 9, we compared the recall rate between
KNN and KNNCGS. As shown in Fig. 6 (here, K = 3),
KNNCGS achieved 0.961 at its peak value, but KNN was
0.95. KNNCGS improved by 1.12%. KNN was lower than
KNNCGS between δ = 0.4 and δ = 0.65. The valley
value of KNNCGS was 0.937 (decreased by 1.37%). At δ =
0.1, 0.2, 0.4 and 0.7, KNN and KNNCGS were almost
the same.

Note that K = 5 in Fig. 7. When δ = 0.5, KNNCGS
achieved a recall rate of 0.962, while KNN got 0.95 (1.26%
improvement). From δ = 0.4 until δ = 0.65, the recall rate
of KNN was lower than KNNCGS. When δ = 0.9, the recall
rate of KNNCGS reached its valley value of 0.937 and was
decreased by 1.37%. When δ = 0.1 and δ = 0.7, their recall
rate were almost same.

WhenK= 7 in Fig. 8, KNNCGSgot a recall rate of 0.958 at
δ = 0.5 but KNN reached 0.949 (improvement 0.95%).
When δ < 0.3, the recall rate of KNN was higher than
that of KNNCGS. The metric of KNNCGS was increased
quickly between δ = 0.05 and δ = 0.3. The rate of growth
was 19.2%. It reflected that the neighborhood parameter δ is
important to the results.

The recall rates of both KNN and KNNCGS were
decreased when K = 11, as shown in Fig. 9. KNN reached
its valley value of 0.906 and had dropped by 4.63% compared
with the highest value (when K= 5). Similarly, the maximum
recall rate of KNNCGS was down to 3.12% from the highest
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TABLE 4. Compare of search performance between [59] and KNNCGS.

FIGURE 6. The Recall of K = 3 and δ ∈ [0,1].

FIGURE 7. The Recall of K = 5 and δ ∈ [0,1].

historical value. KNNCGS made an improvement by 2.87%
at δ = 0.5 compared with KNN. From δ = 0.25 to δ = 0.7,
KNNCGS was performing slightly better.

The space cost is to measure the space efficiency of the
index data structure. The space cost of the index should be
practical compared to the original data size. Search time is
to evaluate the search speed of answering on search query
over the encrypted similarity sample. It includes the times
of extracting features, cluster, fuzzy granule, encryption and
decryption. As shown in Table 4, when the dictionary size is
10, the average search time of KNNCGS is more than that of
KNN, and the average space cost of KNNCGS is a little more
than that of KNN. When K = 25, the average search time of
KNN is 0.12 seconds and that of KNNCGS is 0.16 seconds.
The search time and space cost of KNN is superior to those

FIGURE 8. The Recall of K = 7 and δ ∈ [0,1].

FIGURE 9. The Recall of K = 11 and δ ∈ [0,1].

of KNNCGS. The main reason is that KNNCGS involves the
granule process compared with KNN.

When the size of dictionary is 30, scheme I and II of [59]
were compared with KNNCGS. As demonstrated in Table 5,
the security of scheme I and II were both CPA-secure and
that of KNNCGS was adaptively secure. KNNCGS achieved
the average accuracy of 95%. Scheme I and II were 93% and
94%. It enhanced by 2.05% and 1.06% respectively. The aver-
age recall rates of three algorithms were the same and were
93%. The average search time of KNNCGS is 0.17 seconds.
It increased by 13.33% and 21.43% respectively. It costed
time in granule process. The average space cost of KNNCGS
increased by 0.06 MB and 0.07 MB respectively compared
with scheme I and II.

Overall, KNNCGS outperforms KNN by adjusting its
neighborhood parameter δ. The main reason lies in two
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aspects. On the one side, fuzzy granulation was considered
before searching and it embodied the view of the collec-
tive structures of all voices. On the other side, the equiv-
alence class principle was taken into account, which can
cluster the encrypted voice according to fuzzy granule vector.
The cluster voice can be achieved by KNNCGS. In con-
trast, KNN only got the optimal solution by calculating raw
features.

V. CONCLUSION
This paper has presented the design of a searchable scheme
over encrypted voice by using the Granule Computing
technique. The voices’ features obfuscated and the voices
encrypted by AES algorithm were stored in the server. In
order to prevent the restoration of voice features, we also
use the obfuscated function to further process the features
of the voice. The security is improved greatly by binding
obfuscated features and encrypted voice. In addition, a series
of concept have been defined, such as fuzzy granule, fuzzy
granule vector, ciphertext granule, operators and metrics.
Based on the defined concepts, both the neighbor fuzzy gran-
ule vector and the counting voting strategy were deployed
to retrieve the ciphertext. The results were returned as the
form of ciphertext granule, i.e. ciphertext equivalence class.
Its security was analysed. The experimental results demon-
strated that KNNCGS employed in encrypted voice is feasible
and secure. Also, its performance is superior to that of KNN
given special parameters.

The performance of KNNCGS is very much depended on
neighbor parameter δ and the balance of dataset. In the future,
we plan to consider the localized granulation rather than
the global one, as well as parallel and distributed strategies,
in order to improve the performance further and apply the
scheme to the research of big data.
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