
OctreeNet: A Novel Sparse 3-D Convolutional
Neural Network for Real-Time 3-D

Outdoor Scene Analysis
Fei Wang , Yan Zhuang , Member, IEEE, Hong Gu , and Huosheng Hu , Senior Member, IEEE

Abstract— Convolutional neural networks (CNNs) for 3-D data
analyses require a large size of memory and fast computa-
tion power, making real-time applications difficult. This article
proposes a novel OctreeNet (a sparse 3-D CNN) to analyze
the sparse 3-D laser scanning data gathered from outdoor
environments. It uses a collection of shallow octrees for 3-D
scene representation to reduce the memory footprint of 3-D-CNNs
and performs point cloud classification on every single octree.
Furthermore, the smallest non-trivial and non-overlapped kernel
(SNNK) implements convolution directly on the octree structure
to reduce dense 3-D convolutions to matrix operations at sparse
locations. The proposed neural network implements a depth-
first search algorithm for real-time predictions. A conditional
random field model is utilized for learning global semantic
relationships and refining point cloud classification results. Two
public data sets (Semantic3D.net and Oakland) are selected to test
the classification performance in outdoor scenes with different
spatial sparsity. The experiments and benchmark test results
show that the proposed approach can be effectively used in real-
time 3-D laser data analyses.

Note to Practitioners—This article was motivated by the limi-
tations of existing deep learning technologies for analyzing 3-D
laser scanning data. This technology enables robots to infer what
the surroundings are, which is closely linked to semantic mapping
and navigation tasks. Previous deep neural networks have seldom
been used in robotic systems since they require a large amount
of memory and fast computation power to apply dense 3-D
operations. This article presents a sparse 3-D-Convolutional
neural network (CNN) for real-time point cloud classification
by exploiting the sparsity of 3-D data. This framework requires
no GPUs. The practicality of the proposed method is verified
on data sets gathered from different platforms and sensors. The
proposed network can be adopted for other classification tasks
with laser sensors.

Manuscript received December 24, 2017; revised June 24, 2018 and
December 14, 2018; accepted September 9, 2019. Date of publication
October 11, 2019; date of current version April 7, 2020. This article was
recommended for publication by Associate Editor Z. Yin and Editor K. Saitou
upon evaluation of the reviewers’ comments. This work was supported by the
National Natural Science Foundation of China under Grant U1608253 and
Grant 61375088. (Corresponding author: Yan Zhuang.)

F. Wang and Y. Zhuang are with the School of Control Science and
Engineering, Dalian University of Technology, Dalian 116024, China (e-mail:
feiwang@mail.dlut.edu.cn; zhuang@dlut.edu.cn).

H. Gu is with the Faculty of Electronic Information and Electrical Engi-
neering, Dalian University of Technology, Dalian 116024, China (e-mail:
guhong@dlut.edu.cn).

H. Hu is with the School of Computer Science and Electronic Engineering,
University of Essex, Colchester CO4 3SQ, U.K. (e-mail: hhu@essex.ac.uk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2019.2942068

Index Terms— Deep neural network, octree forest, point clouds,
real-time classification, sparse convolution.

I. INTRODUCTION

POINT cloud classification is a challenging task that has
attracted great attention in the areas of computer vision

and robotics. Given a point cloud captured by a laser scanner,
the goal of classification is to assign one of the pre-defined
class labels to each point in the cloud. This classification
ability enables robots to build a high-level model of the
environment for their localization and navigation tasks [1].
With the rapid development of laser sensors, millions of points
can be acquired within a second. This has led to increasing
demand for data analysis algorithms that can be implemented
in real-time.

Convolutional neural networks (CNNs) have been deployed
for analyzing 3-D data in various tasks, such as classifica-
tion [2], object detection, [3], [4] and semantic segmentation
[5], [6]. When applying CNNs in 3-D, we have to deal with
two main difficulties. The first one is data representation of an
unorganized 3-D point cloud that is a set of scattered points in
3-D space, without a regular structure. The second difficulty
comes from the computational complexity that grows cubically
with the size of 3-D data. Consequently, existing 3-D networks
do not comply with the speed requirement in real-time robotic
applications, even with GPU acceleration.

One important property of 3-D point clouds is spatial
sparsity, which could be used to reduce the computational
and memory requirements. Graham used a sparse represen-
tation and corresponding algorithms to dramatically decrease
memory usage and increase the speed of 3-D operations if
the density of 3-D data is below 10% [7]. Following this
idea, the octree, a popular sparse representation of 3-D data,
is introduced to reduce the memory footprint of 3-D-CNNs
and an efficient data accessing algorithm is presented to speed
up 3-D operations [5]. However, to our knowledge, limited
research has been conducted in order to leverage the sparsity
of 3-D data to improve the efficiency of 3-D-CNNs.

To fully exploit the sparsity of 3-D data, we propose a novel
OctreeNet for real-time point cloud classification, which is a
sparse CNN based on the octree. The octree forest is used
to represent 3-D point clouds and OctreeNet is adopted to
perform classification on every single octree. This leads to

https://orcid.org/0000-0002-3973-6037
https://orcid.org/0000-0002-7640-4330
https://orcid.org/0000-0002-8224-146X
https://orcid.org/0000-0001-5797-1412

an efficient parallel implementation framework of inference.
A conditional random field (CRF) model is used to impose
spatial consistency on the coarse classification results of our
OctreeNet.

The key component of our OctreeNet is the smallest non-
trivial and non-overlapped kernel (SNNK), which enables
sparse convolutions to be performed directly on the octree
structure. Moreover, an inference algorithm is presented to
reduce the dense 3-D operations into small matrix operations
through a depth-first search. The efficiency of our OctreeNet
is demonstrated on two public outdoor data sets with different
point density. Qualitative and quantitative evaluations against
state-of-the-art methods are conducted in terms of both accu-
racy and efficiency.

The rest of this article is organized as follows. Section II
presents related studies on point cloud classification.
Section III describes our OctreeNet and corresponding algo-
rithms that could speed up the computations of CNNs for 3-D
data analyses. Experimental results are given in Section IV to
verify the performance of the proposed method in analyzing
the sparse 3-D laser scanning data. Finally, a brief conclusion
and future study are given in Section V.

II. RELATED WORK

A common paradigm in most previous studies for point-wise
labeling problem includes: 1) handcrafted feature extraction;
2) a discriminative classifier; and 3) a graphical model for label
refinement [9], [10], [11]. Under this paradigm, it is critical
to design appropriate feature representations to capture the
geometric properties at each point of the cloud.

Several features of outdoor scenes have been presented for
different purposes. In [9], the spectral features were computed
to capture the scatter-ness, linear-ness, and surface-ness of the
local geometry. To identify crease edges and occlusion bound-
aries, Hackel et al. [8] augmented the spectral feature set with
the first and second-order moments of the point neighborhood
around the eigenvectors. Fast point feature histograms (FPFH)
was used in [11] to describe the geometric relationships
between a point and its neighbors in terms of distance and
normal vector orientations. Himmelsbach et al. [12] combined
point level features (similar to the spectral features) and object-
level features (like object volume) to classify the segmented
objects in the cloud. However, it is a non-trivial task to find
the optimal feature combination for a specific problem.

For real-time 3-D data analyses, the 3-D nearest-neighbor
searching operation is the main bottleneck of feature-based
methods. A scrolling grid representation and the scanning
algorithm were proposed to speed up the range search opera-
tion by reusing previously computed data [13]. Hu et al. [10]
used a collection of pillars, blocks, and voxels as 3-D data
representation to improve the speed of long-range queries. The
point cloud was down-sampled to a multi-scale pyramid and an
approximate neighborhood was constructed at different scales
to speed up the feature computation [8].

Besides, the inference may be significantly slowed down
when global contextual information is considered. Considering
that the time cost of a graphical model is relative to the

number of nodes in the graph, Munoz et al. [9] speeded up the
inference by using segments as the nodes instead of the raw
3-D points. To avoid the use of expensive graphical models,
Hu et al. [10] proposed an iterative inference procedure over
a hierarchical segmentation of the point cloud.

Recently, deep learning technology has been applied for
3-D data analyses. A hierarchical feature learning framework
was proposed in [15] for a point-wise labeling problem, which
can directly deploy raw 3-D points to capture local structures.
Tchapmi et al. [6] combined a fully CNN (FCN) with a CRF
model via Trilinear Interpolation to output fine-grained point-
level predictions. The SqueezeSegV2 model was proposed
in [16] for road-object segmentation from 3-D LiDAR point
clouds.

As 3-D-CNNs require fast computers and a large scale
of memory, they have not widely used for robotic systems.
To avoid exhaustive dense convolution in 3-D space, several
researchers projected 3-D point clouds into 2-D images and
then leveraging the highly engineered CNN structures to
perform image classification [17], [18]. During the generation
of 2-D images, only a few properties of 3-D points (such as
depth and normal) were used and most of the 3-D geometric
information was lost. Consequently, these approaches often
required additional color information for classification.

Motivated by the idea of sparse matrices, Graham pre-
sented a sparse representation of 3-D data and corresponding
algorithms to convert 3-D convolutions to matrix operations
at sparse feature locations [7]. Unfortunately, the sparsity
decreased after each convolutional layer and the number of
required operations for deeper layers kept growing. To deal
with this problem, an L1-regularization was used on the
filter activations in [4] and the submanifold convolution was
proposed in [19] restricting outputs only to the set of active
inputs. Another way to speed up convolution on sparse data
is presented in [20], where convolution is performed in the
permutohedral lattice space. The kernels were viewed as a
high dimensional linear filter and only convolved at sparsely
populated lattice points. Ren et al. [21] proposed a tiling-
based sparse convolution algorithm for fast inference. They
reduced computation in the high-resolution main network by
using masks from a priori problem knowledge or a low-cost
network.

To improve the computational efficiency, Wang et al. [22]
designed an octree data structure to store the octant infor-
mation and CNN features into the graphics memory and
executed an entire network on the GPU. In [23], the voxel
block octree was proposed as the data structure for sur-
face prediction to facilitate high-resolution outputs. Similarly,
Tatarchenko et al. [24] proposed a convolutional decoder
based on octrees to represent high-resolution outputs with a
limited memory budget. Riegler et al. [5] proposed a hybrid
grid-octree data structure to reduce the memory requirement
of 3-D-CNNs and presented efficient data accessing algorithms
to improve the speed of dense 3-D operations. These studies
share the idea of using the octree data structure to save
memories. In contrast, our method is focused on exploiting the
sparsity of 3-D data to speed up the 3-D network operations.

III. OCTREENET

Unlike 2-D images, a 3-D point cloud is a set of scattered
points in space, which is not a suitable input to CNNs. Simple
voxelization strategy may provide regular 3-D grids, but the
memory usage would increase significantly. Thus, we restrict
our attention to a popular space partitioning structure, octree,
for 3-D data representation to reduce the memory footprint of
3-D-CNNs.

As we know, performing CNN operations directly on an
octree structure is not efficient. Convolutions often require
frequent access to the neighboring elements. Accessing an
arbitrary element in the standard implementation of the
octree requires a traversal from the root to the desired node,
which imposes an increased cost for deep octrees. Besides,
3-D-CNNs are time-consuming in nature. Applying a single
convolutional layer with stride s on an N × N × N grid,
we would need to apply it (N /s) more times than in the 2-D
case. To extend a whole model in 3-D would be trillions of
operations, which is unacceptable for robotic systems with
limited computing capacity and memory.

To tackle these challenges, we introduce the octree forest as
3-D data representation to form a novel sparse CNN, namely
OctreeNet. Our OctreeNet converts dense convolutions to
matrix operations at sparse locations and the classification
results can be carried out through a depth-first search
algorithm.

A. Octree Forest
As mentioned above, the data-accessing problem in the

octree data structure is worsening as the tree depth increases.
Therefore, instead of representing the entire 3-D point cloud
with a single deep octree, we adopt the octree forest, a col-
lection of shallow octrees, for data representation as shown in
Fig. 1(c). More specifically, we coarsely partition the entire
3-D space into cube-shaped local regions. Only the occupied
local regions are stored. Each of them is represented by a
shallow octree with a small fixed depth (we use depth = 5 in
our experiments). These shallow octrees are indexed based on
their global locations and stored in a hash table. We can loop
over these octrees and retrieve the voxels within them.

With the octree forest structure in Fig. 1, we could use
3-D-CNNs to learn global features for classification if we feed
an entire scene into the network. This makes the computational
complexity unacceptable as we have to perform all operations
on a large-scale 3-D space. To reduce time costs, we first
utilize 3-D-CNNs to extract local semantic information within
a cube-shaped region (represented by a shallow octree in the
forest) of the scene and classify on each region independently.
This provides a coarse prediction since global relationships
among different regions are ignored. Then, we introduce a
CRF model to learn global semantic information and refine
the output. This strategy has the following benefits.

1) Applying CNN operations on a local region is much
faster as the input size becomes smaller and all required
data are restricted within a single shallow octree.

2) Treating regions separately for a parallel implementation
of inference.

3) Sufficient samples are obtained to train a deep network.

Fig. 1. Illustration of the octree forest representation of a point cloud.
The 3-D space is first partitioned into cube-shaped regions and only the
occupied regions are stored. An occupied region is represented by a shallow
octree and indexed by its global location. To retrieve a voxel in the octree
forest, we need to search within the octree where the desired voxel lies. The
red lines show a traversal path to the desired voxel. (a) Space partitioning.
(b) Occupied regions. (c) Octree forest structure.

B. Smallest Non-Trivial and Non-Overlapped Kernel

Convolution is the most important operation in modern
networks but also the most expensive. Simply extending the
widely used convolution with a 3 × 3 kernel to 3-D would
significantly increase the computational cost. Considering that
3-D data is sparse in nature, Graham [7] proposed to use
the smallest non-trivial kernel (kernel size = 2) to perform
sparse 3-D convolutions for speedup. Motivated by this arti-
cle, we present the SNNK (stride = kernel size) to enable
convolutions to be computed directly on the octree structure.

Data Accessing: Let Ti, j,k denote the value of a 3-D tensor
T at the location (i , j , k). Formally, convolving a 3-D tensor
T with a 3-D kernel W ∈ R

L×M×N can be written as follows:

Hi, j,k = (T ∗W)i, j,k =
L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

Tî, ĵ ,k̂ · Wl,m,n (1)

where î = i + l − L/2, ĵ = j + m−M/2, k̂ = k + n−N/2.
To compute a single element in H , we need to retrieve

L × M × N elements in T . For the typical convolution with
kernel size = 3 and stride = 1, the number of required
elements is (3)3. Unfortunately, those elements are located
on different branches of an octree and we have to traverse
the octree four times to access them, as shown in Fig. 2(a).
This top-down traversal is a time-consuming operation for the
octree structure. Since convolution requires frequent access to
the neighboring elements, convolving with the typical kernel
on the octree structure is less efficient.

To access data quickly, we let kernel size = stride = 2 in
SNNK. Hence, convolution with SNNK becomes

Hi, j,k =
1∑

l=0

1∑

m=0

1∑

n=0

T2i+l,2 j+m,2k+n · Wl,m,n (2)

where H ∈ R
P×Q×S and T ∈ R

2P×2Q×2S . The (2)3 elements
required in (2) come from the same parent in an octree.

Fig. 2. Comparison of the required data (red color) in the calculation
of (a) convolution with a typical kernel (kernel size = 3, stride = 1) and
(b) convolution with SNNK. In (a) we have to traverse the octree four times
to get the required data. In contrast, all required data lie in the same branch
of an octree in (b). To access them, only a single traversal of the octree
is needed. This can reduce the computational cost since the convolution
operation requires frequent data access.

To access them, only one traversal is needed [see Fig. 2(b)].
This could save us 3/4 of time for data accessing.

Naïve Implementation: The naive implementation of convo-
lution with SNNK is as follows. Let t(i, j,k) denote a vector
that contains the eight required elements in (2) and reshape
W to a 1-D vector w. The vectorization of (2) is

Hi, j,k = tT
(i, j,k) ·w. (3)

As kernel size = stride = 2, each t(i, j,k) does not overlap and
all t(i, j,k) cover every single element in T . So, we define a
function ten2vec to map from a 3-D tensor T ∈ R

N×N×N to
a matrix T̃

ten2vec : T̃p = tT
(i, j,k) = sequence

(ī, j̄ ,k̄)∈�[i·s, j ·s,k·s]
(Tī, j̄ ,k̄) (4)

where p = i · (N/s)2 + j · (N/s) + k, (s3) is the size of
each small input block. sequenceis a function that converts its
input into a vector and �[i, j, k] denotes a set of locations of
elements in an input block. Similarly, the reverse mapping is
given by

vec2ten : Tī, j̄ ,k̄ = desequence(T̃p) (5)

where desequence is the reverse function of the sequence.
With the two functions defined above, convolution with

SNNK can be written as follows:

H = vec2ten(ten2vec(T) ·w) (6)

where s = 2 in ten2vec and s = 1 in vec2ten.
Sparse implementation: The above implementation is time-

consuming since T̃ is very large. Following the definition of an
active vector in [7], we define a vector to be active: 1) if it is
a non-zero vector for the input layer or 2) if any vector in the
layer below from which it receives input is active. As T̃ has
a few active vectors, we divide T̃ into active and non-active
parts

T̃ = {T̃act, T̃non}. (7)

Fig. 3. Illustration of unfolding convolution with SNNK. If the eight elements
in a grid are labeled as (a), then convolution with SNNK can be unfolded as
(b). In the structure of the unfolded convolution, one node is linked to eight
child nodes, which is consistent with the structure of an octree as shown
in Fig. 1. There exists a one-to-one correspondence between each node in
(b) and each node in an octree, indicating that the convolution operation with
SNNK could be performed directly on the octree structure.

All non-active vector in T̃ are the same and the shared
output can be pre-computed. As outputs corresponding to
active vectors need to be computed at runtime, operations in
(6) are only applied on the active part of T̃ . This can reduce
the computational cost of 3-D convolution since the size of
T̃act is relatively small.

Furthermore, it is straightforward to find active vectors in
the octree structure. Fig. 3 shows the unfolded version of
convolution with SNNK. The structure of a vector t with eight
elements is consistent with the structure of a node comprising
eight children in an octree. Under our definitions, an active
vector indicates that the corresponding space is occupied while
a non-active vector stands for the unoccupied area. Hence,
each active vector can be interpreted as a non-leaf node in the
octree structure and the eight elements in the vector correspond
to the eight children of the node. The vector is active if and
only if the corresponding non-leaf node in the octree does
exist. Suppose that the depth of an octree is Dtree. To compute
the output of the i th convolutional layer, we only have to
accomplish.

1) To initialize H with the pre-computed value.
2) To search for all non-leaf nodes with depth (Dtree − i)

in the octree and construct T̃act.
3) To update the active elements in H using T̃act · w.

C. Overall Architecture

Our OctreeNet structure is summarized in Fig. 4, which has
two parts: convolution network and deconvolution network.
More specifically, a convolution network is a feature extractor
that transforms the input grid into different-level feature repre-
sentations. High-level features capture global shape informa-
tion in a point cloud, whereas low-level features correspond
to details, such as edges and corners. Our deconvolution
network is a hierarchical classifier that handles classification
results according to different levels of features learned by the
convolution network. Its final output is a dense score map
with the same size as the input grid. The score map represents
the probability of each voxel that assigned to one of the pre-
defined classes.

Fig. 4. Overall architecture of OctreeNet. Our network is composed of two parts: a convolution network for different-level feature extraction and a deconvolution
network as a hierarchical inference procedure that fuses score maps from high level and detailed feature maps from low level. (size, chn) denotes the spatial
size and the number of channels of each feature map and score map. The downsampling/upsampling is achieved by convolving/deconvolving with SNNK
(kernel size = 2, stride = 2).

Our convolution network involves a series of conv-blocks
to learn features from different levels. The i th conv-block
computes feature maps fi from the input data through a
convolution layer, a batch normalization layer and a rectified
linear unit layer. The convolution layer is applied with SNNK.
Since the spatial size has been reduced after convolving with
SNNK, no pooling layer is used in our OctreeNet. The number
of channels starts with 32 in the conv-block furthest from the
output and increases by 32 at each subsequent block.

Motivated by [25], we introduce the deconvolution network
as a hierarchical classifier for label prediction. The output of
the top convolution layer is a score map that indicates which
object is contained in the grid. Our deconvolution network
leverages this high-level score map and features from lower
levels to form a hierarchical inference procedure. Assuming
that fi , si are feature maps and score maps at level i . The
mathematic operation of a deconv-block can be written as
follows:

si = DC(si+1)+ C(fi) (8)

where dc denotes a deconvolution operation that enlarges a
previous score map to a finer one, and C is a convolution
operation that transforms a feature map into a class-specific
score map. Deconvolution operation is also applied with
SNNK while the convolution operation is performed with a
1× 1× 1 kernel.

D. Inference Algorithm Based on Octree Searching

One key contribution of this article is to show that the
inference of OctreeNet can be carried out through a depth-first
search algorithm. Dense 3-D operations in a neural network are
simplified to matrix operations and directly performed on the
octree structure in a depth-first search of the octree, improving
the computational efficiency when the input data is sparse.

The mathematic operation of a conv-block can be written
by

fi = relu(BN(C(T))) (9)

where C denotes the convolution operation with SNNK, BN
is the batch normalization operation and relu is the rectified
linear unit operation. First, convolutions with SNNK can
be sparsely computed through an octree searching approach,
as suggested in Section III-B. According to [26], BN(T) is
computed by

Y = BN(T) = γ · T̂ + β

T̂ = (T − μ)/
√

σ 2 + ε (10)

where μ and σ 2 denote the expectation and variance of T , γ ,
and β are learned parameters and ε is an error term.

Because all operations in (10) are element-wise, BN(T) can
be applied for every element separately. Since relu is also an
element-wise operation, the output of i th conv-block can be
computed as follows.

1) Initialize fi with the pre-computed values.
2) Search for all non-leaf nodes with depth (Dtree − i) in

the octree and construct T̃act.
3) Compute Ttemp by relu(γ (T̃act · w−μ)/(σ 2+ε)1/2+β).
4) Update the active parts of fi with Ttemp.

As our convolutional network is a stack of conv-blocks,
the above approach can be computed several times for the final
output. However, it involves several non-leaf nodes’ searching
which is time-consuming. The vector comprising its output
Hi, j,k in the next conv-block is an active vector if t is an
active vector in the current conv-block. This suggests that the
output of a conv-block can be used to initialize the input of
the next conv-block.

As mentioned above, there is a one-to-one correspondence
between the structure of convolution with SNNK and the

Algorithm 1 Octree Searching For CNN
Input: an octree node N and its depth d
1: N .feature ← getPrecomputedFeature(d)
2: w← getConvolutionParameterOfCB(d)
3: μ, σ, γ, β ← getBNParameterOfCB (d)
4: if N is NULL then
5: return pre-computed feature map N .feature
6: end if
7: for i = 0 to 8 do
8: t[i]← OctreeSearchingForCNN(N .children[i], d+1)
9: end for
10: C ← tT · w
11: Ĉ ← (C − μ)/

√
σ 2 + ε

12: B N ← γ · Ĉ + β
13: N .feature ← relu(BN)
14: return current feature map N .feature

Algorithm 2 Octree Searching For DeCNN
Input: an octree node N and its depth d
1: wd ← getDeconvolutionParameterOfDCB (d)
2: wd , b← getConvolutionParameterOfDCB (d)
3: Sparent ← N .score_map·wT

d
4: for i = 0 to 8 do
5: if N .children[i] is not NULL then
6: Schild ← (N .children[i].feature)T · wc + b
7: N .children[i]. score_map ← Sparent[i] +Schild
8: OctreeSearchingForDeCNN(N .children[i], d+1)
9: end if
10: end for

structure of an octree. Then, in the octree structure, if a node is
used for the calculation of the i th conv-block, its parent is just
the non-leaf node we are searching for the next conv-block (see
Fig. 5). Thus, we can get active vectors for all conv-blocks by
searching the octree once. Finally, our convolutional network
can be implemented using Algorithm 1.

Similarly, our deconvolution network can be computed
through another depth-first search of an octree, that is

H = vec2ten(ten2vec(T) · wT) (11)

with s = 1 and s = 2 for ten2vec and vec2ten, respectively.
This is a transposed version of convolution and can be

computed in the same way. Besides, the 1×1×1 convolution
in our deconv-block is treated as element-wise multiplication
operation. Therefore, our deconvolution network can be imple-
mented by using Algorithm 2.

IV. EXPERIMENTS

To demonstrate the effectiveness of our OctreeNet, we test
it on two public data sets of outdoor scenes with different
point densities. Our approach is evaluated against several
existing state-of-the-art methods in terms of both accuracy
and efficiency. We compare time costs and memory usages of
our network implemented under GPU and CPU environments.
A qualitative comparison among different methods is also
presented in this section.

Fig. 5. Illustration of the similar hierarchical structures of convolution
network and the octree. f0 is the 3-D voxel input and s denotes the stride
used in convolution. Red arrows show a deep-first search of the octree. There
is a one-to-one correspondence between each element in fi and each node
with depth (5−i) in the octree. The calculation of the convolution network
is a bottom-up approach, so the output can be computed through a deep-first
search of the octree. This can reduce both computational and memory costs
according to the sparsity of each fi .

A. Training

Our network is trained in two phases. First, we train the
convolution network to learn robust feature representations
of 3-D shapes. Especially, a sigmoid layer is added after the
top convolution layer to predict which object is contained in
the local region. This is a multi-label problem since different
objects may occur in the same local region. The cross-entropy
loss function is given by

L = − 1

N

N∑

n=1

(yn log ŷn + (1− yn) log(1− ŷn)) (12)

where yn and ŷn denote the ground-truth and predictions for
the nth training sample.

Then, we fix parameters in the convolution network and
train the deconvolution network in a similar way. Fig. 6 shows
the loss curves of the above two training phases. With batch
normalization in each conv-block, our OctreeNet can be effi-
ciently optimized using stochastic gradient descent. We utilize
the popular Adam algorithm with a learning rate of 1e−5 for
optimization. The weights in each layer are initialized from
a zero-mean Gaussian distribution with a standard deviation
of 0.001. The batch size is 32. Here, we rotated the entire point
cloud 360◦/n intervals around the z-axis and translated half of
the size of a local region along each dimension to augment the
training data. This could avoid overfitting during the training
of our network, which is implemented with Tensorflow on a
single NVIDIA GTX 1080 to speed up the training process.

B. Classification Results

We evaluate the performance of OctreeNet on two public
data sets, namely the Semantic3D.net data set and the Oakland
data set. Classification results on these two data sets are given,
respectively. Our approach is compared with state-of-the-art
methods in terms of precision, recall, and F1 score.

TABLE I

EVALUATIONS OF DIFFERENT METHODS ON THE SEMANTIC3D.NET DATA SET

Fig. 6. Visualization of losses during the two training phases of OctreeNet.
(a) Losses during the training of our convolution network. (b) Losses during
the training of our deconvolution network.

Pre-Processing and Post-Processing: In pre-processing,
the raw 3-D points are first voxelized to voxels. Any voxel with
a point inside is assigned a scalar value 1 (otherwise 0) as [3].
Then, we partition the space into cube-shaped local regions
with a resolution of 32 × 32 × 32. Finally, shallow octrees are
constructed from each local region as inputs to the OctreeNet.
This pre-processing procedure is applied on the two data sets

with different voxel size (8 cm for the Semantic3D.net data
set and 16 cm for the Oakland data set), which is chosen
according to the point density of the data set, as suggested
in [10].

The CRF model is adopted as post-processing to learn the
relationships between local regions and refine classification
results. The model employs the energy function

E(x) =
∑

i

φu(xi)+
∑

i< j

φp(xi , x j). (13)

φu is the unary energy defined as φu(xi) = − log(p(xi)),
where p(xi) is the label probability produced by the
OctreeNet. φp denotes the pairwise energy that incorporates
the neighbor information

φp(xi , x j) = μ(xi , x j)Wθ (‖xi − x j‖) (14)

where Wθ is the Gaussian function with a standard devia-
tion θ . The label compatibility function μ(xi , x j) and hyper-
parameter θ are learned with the algorithm provided by [14].

Semantic3D.netData Set: This data set contains more than
3 billion points and covers a variety of urban scenes, such as
streets, squares, and churches. Points are extremely dense and
the resolution is smaller than 0.01 m. This increases the time
costs for both training and testing. The points are labeled into
eight categories, i.e., high/low vegetation, buildings, and cars.

Fig. 7 shows the classification results of four different
scenes. In the third example, some parts of buildings are
incorrectly labeled as cars or vegetation by our OctreeNet.
There are also some misclassifications between hard scape and
buildings in the first and last cases. This is because only the
geometric information within a local region is used by our
OctreeNet and global relationships among different regions
are ignored. From a local view, some parts of buildings, cars,
and fences may share a similar 3-D shape and difficult to

Fig. 7. Classification results of four different scenes of the Semantic3D.net data set. From left to right—ground truth annotation, our OctreeNet and
OctreeNet + CRF.

TABLE II

PROPERTIES OF DIFFERENT METHODS

be distinguished completely. However, the global contextual
information lost in OctreeNet can be learned by a CRF model.
As post-processing, the CRF can remove some noises in the
output and achieve about 3% improvement in average.

The performance of different methods on this benchmark
is reported in Table I. To give a better comparison among
different methods, we summarize the data requirement, feature
extraction method, and contextual information usage of them
in Table II. More benchmark test results can be found at
http://www.semantic3d.net/view_results.php?chl = 2.

TMLC-MSR [8] is a handcrafted-feature-based method that
introduces a multi-scale pyramid to the model local context at

different scales. DeePr3SS [17], SnapNet [18], and SEGCloud
[6] are deep-learning-based methods. The data was augmented
by rotating 360◦/n intervals around a fix vertical axis in [17].
In [6], randomly rotating 360◦ along the z-axis and scaling
were used for data augmentation. In [18], 3-D points were
projected to 2-D images first and data augmentation is done
by randomly generating the camera positions and orientations.

As shown in Table II, existing deep learning methods
require additional color information for classification. How-
ever, our approach does not require color information as it
is not available with a standard laser scanner equipped on
an outdoor robotic platform. Even without color information,
our approach shows only 4% F1-score decrease in average
when compared against the state-of-the-art methods on this
benchmark.

Oakland Data Set: This data set was collected by an
unmanned ground vehicle equipped with two SICK laser
measurement sensor (LMS) laser scanners vertically facing
sideways. The data covers typical urban scenes and is mainly
labeled into seven outdoor objects, i.e., leaves, buildings,
ground, pole, tree trunk, wire, and vehicle. Since pole and
tree trunk share similar local geometric structure, we merge
them into one category referred to as pole.

Fig. 8 shows some typical experimental results of our
approach to this benchmark. There are many noises in the

Fig. 8. Classification results of four different scenes in the Oakland data set. From left to right—ground truth annotation, our OctreeNet and
OctreeNet + CRF.

classification results of our OctreeNet. This is mainly because
the distribution of points in 3-D space is very imbalanced.
The point density varies with both: 1) the distance between
objects and the laser sensor and 2) the speed of the moving
platform. For example, the measurement points of buildings
far away from the sensor seem to be several horizontal lines
rather than a plane. Hence, our OctreeNet classified them as
wires incorrectly. Similarly, when the platform moves fast,
the distance between the two adjacent scan lines increases.
Consequently, some points on the surface of a building or a
vehicle may look like a vertical line and are misclassified as
poles. As most of these misclassifications can be corrected by
the CRF model, this post-processing improves 9% F1-score in
average.

Table III presents the evaluation results among our approach
and some state-of-the-art methods on this benchmark. All three
methods used for comparison leverage the global semantic
information in the point cloud during classification and none
of them require the additional color information. Our approach
achieves the good performance on this data set.

C. Efficiency

The goal of this article is to achieve the real-time perfor-
mance of point cloud classification, which is fundamental for

robotic systems. To demonstrate this, we analyze the memory
usage and time cost of our OctreeNet on 3-D point clouds
with different sparsity and different size.

Sparsity Analysis: Since the sparsity of 3-D data has a great
impact on the efficiency of our OctreeNet, we provide sparsity
analyses on the two data sets first. The sparsity is measured
in two levels: 1) the sparsity of an entire scene is captured
by the number of occupied local regions and 2) we define the
sparsity of a local region as follows:

sl = # free voxel

total voxel
. (15)

Low sparsity of local regions means more voxels need to be
stored and more time it takes for classification.

Fig. 9 shows the proportion of local regions with different
sparsity in the two data sets. All local regions in the Seman-
tic3D.net data set have the sparsity over 90%, and the sparsity
of more than 90% of local regions is over 96%. The point
density of the Oakland data set is even sparse. Almost 90%
of local regions have 99% above sparsity. Fig. 10 shows the
variation of the number of occupied local regions along with
3-D scene size. These two figures indicate that although the
number of measurement points could be millions or billions,
the distribution of points in 3-D space is extremely sparse

TABLE III

EVALUATIONS OF DIFFERENT METHODS ON THE OAKLAND DATA SET

Fig. 9. Proportion of local regions with different sparsity in the two data
sets.

Fig. 10. Variation of the number of occupied regions in a natural scene along
with the scene size.

Memory: Fig. 11 shows the memory usages of representing
a local region as dense voxels or an octree. Most of the modern
networks require a regular input which is dense voxels in
the 3-D case. This representation requires a large amount of
memory. In contrast, OctreeNet leverages the octree to reduce
memory cost. When the sparsity of a local region is over 90%,

Fig. 11. Memory usages of two data representations: dense voxel and the
octree.

Fig. 12. Memory usages of the two data representations with different scene
sizes.

using the octree representation can save at least 50% memory
usage. With the increase of sparsity, up to 95% memory can
be saved. Fig. 12 compares the memory usages of two data
representations with different scene sizes. As before, using
the octree forest to represent point clouds can reduce memory
requirements.

Fig. 13. Time costs of different implementations of our network for
classifying local regions with different sparsity.

Fig. 14. Time costs of different implementations of our network for
classifying a natural scene with different sizes.

Time: In this experiment, the time cost of the inference
algorithm proposed in Section III-D is compared with the time
cost of a standard implementation of deep network based on
Tensorflow. Our inference algorithm is created in C++ with
Eigen library and tested on an Intel Core i5-4590 CPU with
8G memory. The time cost of the standard implementation is
counted using an NVIDIA GTX 1080 GPU.

Fig. 13 shows the time costs of different implementations
for classifying local regions of different sparsity. We observed
that when the sparsity is above 94%, a single thread CPU
version of our inference algorithm is faster than the standard
implementation with GPUs. With multi-thread programming,
our algorithm can speed up three times. The multi-thread
CPU version shows superior performance than the standard
implementation with GPUs until the sparsity is less than 80%.

Fig. 14 shows the variation of time costs of different
implementations along with the scene size. An interesting
thing is that the single thread CPU version of our algorithm
achieves about 2× speedup over the standard implementation
with GPUs. Furthermore, the multi-thread CPU version is
even faster and can speed up five times. The time cost of
the multi-thread version for classifying a natural scene is less
than 200 ms.

Overall: Fig. 15 reports the overall memory and time costs
of processing different scenes from the two data sets. In the
Semantic3D.net data set, the number of voxels in each scene
varies from 0.8 to 3.1 million. In the Oakland data set, each

Fig. 15. Overall memory and time costs of classifying different scenes from
the two data sets.

TABLE IV

QUALITATIVE COMPARISON OF DIFFERENT METHODS

scene contains roughly 35 thousand voxels. Since the unary
energy and features in the CRF share the same variables with
OctreeNet, the memory cost of the CRF is very limited and not
shown explicitly. The time cost of the CRF compared to that
of the OctreeNet differs much on these two data sets because
the former depends upon the number of voxels while the latter
relates to the number of octrees. The ratio between the number
of voxels and octrees varies a lot between these two data sets
since they have different point densities.

D. Synthesis

An overall comparison among different approaches is given
in Table IV. The feature-based method with a local classifier
[8] provides reasonable results with limited memory require-
ments. Since most popular feature extraction methods can
be found in the Point Cloud Library, their implementation
is easy. When the global contextual information is involved
during inference, the overall accuracy can be improved; while
the efficiency is decreased with respect to memory usage or
computational cost [10], [11], [27]. Some deep-learning-based
approaches present dominant performance in accuracy with the
requirement of additional color information [6], [17], [18].

Often, a GPU is required to speed up both the training and
testing processes. In contrast, our OctreeNet is comparatively
efficient by leveraging the sparsity of 3-D data and demands no

GPUs. When a CRF is used for label refinement, our approach
presents fine-grained results comparative to the state-of-the-
art deep-learning-based methods. Note that our approach only
involves coordinates of 3-D points which are direct outputs of
a standard laser scanner and no additional color information
is required. In the above approaches, only [10] and ours can
be applied in real-time applications. However, our OctreeNet
is a general model that can be adopted for many classification
tasks.

V. CONCLUSION

This article is focused on the problem of 3-D point cloud
classification toward real-time applications of robotic systems.
We first introduced the octree forest for 3-D data represen-
tation to reduce the memory footprint of 3-D-CNNs. Then,
a novel sparse 3-D CNN, OctreeNet, was proposed. Our
OctreeNet speeds up convolutions on sparse 3-D data by
utilizing the SNNK, which reduces the dense 3-D convolution
to small matrix operations and enables computations to be
performed directly on the octree structure.

Furthermore, we presented a parallel inference algorithm
based on octree searching. A CRF model was used to impose
spatial consistency and refine the output. We experimented on
two public data sets in outdoor environments with different
point densities. Experimental results show the validity and
practicality of the proposed approach. Our future study will
be focused on extensive testing of our OctreeNet on diverse
real-time outdoor navigation tasks.

REFERENCES

[1] A. Maligo and S. Lacroix, “Classification of outdoor 3D LIDAR data
based on unsupervised Gaussian mixture models,” IEEE Trans. Autom.
Sci. Eng., vol. 14, no. 1, pp. 5–16, Jan. 2017.

[2] Z. Wu et al., “ 3D shapenets: A deep representation for volumetric
shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Boston, MA, USA, Jun. 2015, pp. 1912–1920.

[3] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Hamburg, Germany, Sep. 2015, pp. 922–928.

[4] M. Engelcke, D. Rao, D. Wang, C. Tong, and I. Posner, “Vote3Deep: Fast
object detection in 3D point clouds using efficient convolutional neural
networks,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Singapore,
May/Jun. 2017, pp. 1355–1361.

[5] G. Riegler, A. Ulusoy, and A. Geiger, “OctNet: Learning deep
3D representations at high resolutions,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 3577–3586.

[6] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, “SEGCloud:
Semantic segmentation of 3D point clouds,” in Proc. Int. Conf. 3D Vis.
(3DV), Qingdao, China, Oct. 2017, pp. 537–547.

[7] B. Graham, “Sparse 3D convolutional neural networks,” in Proc. Brit.
Mach. Vis. Conf. (BMVC), London, U.K., Sep. 2016, pp. 1–11.

[8] T. Hackel, J. D. Wegner, and K. Schindler, “Fast semantic segmentation
of 3D point clouds with strongly varying density,” ISPRS Ann. Pho-
togramm., Remote Sens. Spatial Inf. Sci., vol. 3, no. 3, pp. 177–184,
Jul. 2016.

[9] D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classi-
fication of 3-D point clouds with learned high-order Markov random
fields,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Kobe, Japan,
May 2009, pp. 2009–2016.

[10] H. Hu, D. Munoz, J. Bagnell, and M. Hebert, “Efficient 3-D scene
analysis from streaming data,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), Karlsruhe, Germany, May 2013, pp. 2297–2304.

[11] M. Najafi, S. T. Namin, M. Salzmann, and L. Petersson, “Non-
associative higher-order Markov networks for point cloud classifica-
tion,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Zürich, Switzerland,
Sep. 2014, pp. 500–515.

[12] M. Himmelsbach, T. Luettel, and H.-J. Wuensche, “Real-time object
classification in 3D point clouds using point feature histograms,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), St. Louis, MO, USA,
Oct. 2009, pp. 994–1000.

[13] J. Lalonde, N. Vandapel, and M. Hebert, “Data structures for effi-
cient dynamic processing in 3-D,” Int. J. Robot. Res., vol. 26, no. 8,
pp. 777–796, Aug. 2007.

[14] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
CRFs with Gaussian edge potentials,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), Granada, Spain, Dec. 2011, pp. 109–117.

[15] C. Qi, H. Su, K. Mo, and L. Guibas, “PointNet: Deep learning on
point sets for 3D classification and segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 77–85.

[16] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2:
Improved model structure and unsupervised domain adaptation for
road-object segmentation from a LiDAR point cloud,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Montreal, QC, Canada, May 2019,
pp. 4376–4382.

[17] F. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. Khan, and M. Felsberg,
“Deep projective 3D semantic segmentation,” in Proc. Int. Conf. Comput.
Anal. Images Patterns, Ystad, Sweden, Aug. 2017, pp. 95–107.

[18] A. Boulch, B. Saux, and N. Audebert, “Unstructured point cloud seman-
tic labeling using deep segmentation networks,” in Proc. Eurograph.
Workshop 3D Object Retr., Geneva, Switzerland, Apr. 2017, pp. 1–7.

[19] B. Graham, M. Engelcke, and L. van der Maaten, “3D semantic
segmentation with submanifold sparse convolutional networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, UT,
USA, Jun. 2018, pp. 9224–9232.

[20] V. Jampani, M. Kiefel, and P. Gehler, “Learning sparse high dimensional
filters: Image filtering, dense CRFS and bilateral neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas,
NV, USA, Jun. 2016, pp. 4452–4461.

[21] M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun, “SBNet: Sparse
blocks network for fast inference,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 2018,
pp. 8711–8720.

[22] P. S. Wang, Y. Liu, Y. X. Guo, C. Y. Sun, and X. Tong, “O-CNN:
Octree-based convolutional neural networks for 3D shape analysis,”
ACM Trans. Graph., vol. 36, no. 4, p. 72, Jul. 2017.

[23] C. Häne, S. Tulsiani, and J. Malik, “Hierarchical surface prediction for
3D object reconstruction,” in Proc. Int. Conf. 3D Vis. (3DV), Qingdao,
China, Oct. 2017, pp. 412–420.

[24] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating
networks: Efficient convolutional architectures for high-resolution 3D
outputs,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Venice, Italy,
Oct. 2017, pp. 2088–2096.

[25] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 4, pp. 640–651, Apr. 2017.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn. (ICML), Lille, France, Feb. 2015, pp. 448–456.

[27] X. Xiong, D, Munoz, J. A. Bagnell, and M. Hebert, “3-D scene
analysis via sequenced predictions over points and regions,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai, China, May 2011,
pp. 2609–2616.

Fei Wang received the B.Sc. and M.Sc. degrees
in computer science and technology from Dalian
Maritime University, Dalian, China, in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree with the School of Control Science
and Engineering, Dalian University of Technology,
Dalian.

His research interests are in robotics, deep learn-
ing, 3-D data processing, and semantic scene under-
standing.

Yan Zhuang (M’11) received the B.Sc. and M.Sc.
degrees from Northeastern University, Shenyang,
China, in 1997 and 2000, respectively, and the Ph.D.
degree from the Dalian University of Technology,
Dalian, China, in 2004, all in control theory and
engineering.

He joined the Dalian University of Technology as a
Lecturer in 2005 and became an Associate Professor
in 2007, where he is currently a Professor with
the School of Control Science and Engineering. His
research interests include mobile robot 3-D mapping,

outdoor scene understanding, 3-D-laser-based object recognition, and 3-D
scene recognition and reconstruction.

Hong Gu received the B.Sc. and M.Sc. degrees from
the Shenyang University of Technology, Shenyang,
China, in 1982 and 1984, respectively, and the Ph.D.
degree from Zhejiang University, Hangzhou, China,
in 1990.

Since 1996, he has been a Full Professor with the
Dalian University of Technology, Dalian, China. His
current research interests include machine learning,
big data, and bioinformatics.

Huosheng Hu (M’94–SM’01) received the M.Sc.
degree in industrial automation from Central South
University, Changsha, China, in 1982, and the Ph.D.
degree in robotics from the University of Oxford,
Oxford, U.K., in 1993.

He is currently a Professor with the School of
Computer Science and Electronic Engineering, Uni-
versity of Essex, Colchester, U.K., where he is
leading the Robotics Research Group. His research
interests include behavior-based robotics, human-
robot interaction, service robots, embedded systems,

data fusion, learning algorithms, mechatronics, and pervasive computing. He
has published around 450 articles in journals, books, and conferences in these
areas.

Prof. Hu is a founding member of the IEEE Robotics and Automation Soci-
ety Technical committee on Networked Robots, a fellow of Institution of Engi-
neering and Technology (IET) and the Institute of Measurement & Control
(InstMC), London, U.K., and a Senior Member of Association for Computing
Machinery (ACM). He received a number of best article awards. He has been
a Program Chair or a member of Advisory/Organizing Committee for many
international conferences such as IEEE International Conference on Robotics
and Automation (ICRA), IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE International Conference on Mechatronics
and Automation (ICMA), IEEE International Conference on Robotics and
Biomimetics (ROBIO), IEEE International Conference on Information and
Automation (ICIA), IEEE International Conference on Automation and Logis-
tics (ICAL), and International Association of Science and Technology for
Development (IASTED) International Conference on Robotics Applications
(RA), IASTED International Conference on Control and Applications (CA),
and IASTED International Conference on Computational Intelligence (CI)
conferences. He currently serves as the Editor-in-Chief for the International
Journal of Automation and Computing, Editor-in-Chief for the online Robotics
Journal, and the Executive Editor for the International Journal of Mechatron-
ics and Automation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

