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Indoor Topological Localization Based on a Novel
Deep Learning Technique
Qiang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu

Abstract—Introduction: Millions of people in the world suffer
from vision impairment or vision loss. Traditionally, they rely
on guide sticks or dogs to move around and avoid potential
obstacles. However, both guide sticks and dogs are passive. They
are unable to provide conceptual knowledge or semantic contents
of an environment.

Methods: To address this issue, this paper presents a vision-
based cognitive system to support the independence of visually
impaired people. More specifically, a 3D indoor semantic map
is constructed first with a hand-held RGB-D sensor. The con-
structed map is then deployed for indoor topological localization.
Convolutional Neural Networks are used for both semantic
information extraction and location inference. We additionally
use semantic information to further verify localization results and
eliminate errors. The topological localization performance can
thus be improved despite significant appearance changes within
an environment.

Results: Experiments have been conducted to verify that the
proposed method can increase both precision and recall rates.

Conclusions: The system can be potentially deployed by visu-
ally impaired people to help them move around independently.

Index Terms—Localization, semantic map, Convolutional Neu-
ral Networks, visually impaired people.

I. INTRODUCTION

Nowadays, 285 million people are estimated to be visually
impaired worldwide, among which 39 million suffer from
total blindness [1]. Guide sticks and dogs can be deployed
to help visually impaired people move around independently.
However, guide sticks are not effective enough to use and
guide dogs are expensive to train. Furthermore, both of them
are unable to interact with human users or provide conceptual
knowledge or semantic contents of an environment. Thus,
it remains a major challenge for visually impaired people
to move around independently, especially in an unfamiliar
environment. This paper proposes a potential solution by using
wearable electronic devices which are capable of localizing
objects, planning paths and providing audio prompts.

The proposed vision-based assistive system is shown in Fig.
1. The system consists of a wearable device and a server,
both of which are connected to the Internet. The server carries
out data processing tasks, e.g., map building, model training
and location inference. The wearable device consists of an
Odroid XU3 board, a USB camera and a pair of earphones.
The wearable device collects images, sends them to the server,
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Fig. 1: An overview of the proposed vision-based assistive
system.

receives localization results and provides audio prompts. The
system can infer topological locations when a user visits an
unfamiliar environment, e.g., shopping malls, museums or
office buildings.

In order to carry out the tasks mentioned above, a map of
the environment needs to be constructed beforehand. Maps
built by traditional robotic systems are either geometric or
topological maps, which are navigation oriented. Both of them
are designed for obstacle avoidance and path planning [2].
However, they are passive and cannot communicate with users
or provide semantic assistive guidance. A map containing
human-compatible information is required. Semantic informa-
tion such as location and object names should be interpreted
from scenes during map building [3]. In other words, a
semantic map containing linguistic words that represent places,
landmarks and daily objects is necessary since it serves as an
effective human-machine interface.

In this paper, we first build a 3D indoor geometric map with
an RGB-D sensor and an off-the-shelf algorithm [4]. To extract
semantic information, we adopt deep Convolutional Neural
Networks (ConvNets) for object detection, rather than the bag-
of-visual-words model (BoW) which is commonly deployed
by the SLAM community in recent years. In the case of
ConvNets, models trained for the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [5] can classify 1.3 million
images into as many as 1,000 classes with high accuracy.
Therefore, much more objects in an environment can be
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detected. Only object names are stored in our database rather
than raw images. Once an object is detected, the relationship
between the object and locations is then represented by the
anchoring method. A semantic map is thus obtained. We
then use the pre-built semantic map for indoor topological
localization.

Generally speaking, visual localization failure is always
caused by significant environmental appearance changes [6].
For instance, lighting conditions vary between day and night.
Objects (chair, laptop, mug, curtain or even human) may be
at random locations. To address these problems, we propose
a novel localization method based on a two-stream ConvNet.
Previous literature [7], [8], [9] has proven that object recog-
nition can help place recognition. Thus, we use distinctive
objects detected and labeled during semantic mapping to
further verify the localization results.

Experiments with long-term operations have been carried
out. Compared to other state-of-the-art algorithms, our method
generates higher precision and recall rates (recall is an es-
sential factor for other tasks e.g. online map updating). The
rest of the paper is organized as follows. Section II reviews
related works on both semantic mapping and place recognition.
The proposed semantic information extraction and topological
localization methods are detailed in Section III. Training and
experimental results are subsequently presented and discussed
in Section IV. Finally, a brief conclusion and future works are
given in the last section.

II. RELATED WORKS

Semantic mapping has become a popular research topic in
the past decade and drawn enormous attention in the robotics
domain. Generally speaking, semantic mapping can be divided
into two steps, namely environment construction (also called
SLAM) and scene understanding.

In the case of environment construction, traditional methods
are feature-based [4], [10]. Endres et al. [4] proposed a real-
time indoor mapping system which deployed a low-cost, light-
weight Kinect camera. SURF feature [11] was adopted by this
system. Several deep learning based systems [12], [13], [14]
have also been proposed recently. These systems employ an
end-to-end training manner. Compared to traditional feature-
based methods, they can be easily applied to other scenes with-
out labor-intensive structure redesigning [15]. Since SLAM is
not our focus in this paper, we adopt an off-the-shelf feature-
based method [4] for environment construction.

Semantic information can be extracted from both range and
visual sensors. In indoor environments, semantic information
extraction can be essentially considered as object, place or
sign recognition. Grimmett et al. [16] proposed a vision-
only automated parking system which can identify driving
lanes and parking spaces. Hart et al. [17] presented a door
sign localization method based on a corner feature. A custom
ConvNet was proposed by Maturana et al. [18] to classify
ground types such as trail and grass. In our paper, types of
rooms and objects are considered as semantic information.

Topological localization tackles the problem of recognizing
places when we revisit a scene. Arroyo [19] and Li et al. [20]

realized outdoor topological localization with a visual sensor
and a GPS respectively. Several binary feature descriptors were
tested in [19]. In terms of visual features, the BoW model has
been widely used in recent SLAM systems [21]. However,
Sharif Razavian et al. [22] have shown that ConvNets outper-
form BoW in terms of most recognition tasks, especially when
significant appearance changes exist [23], [24].

ConvNets have been widely used as robust visual feature
extractors in computer vision and machine learning domains.
Although some ConvNets are trained for a specific task (e.g.,
object recognition), researchers have managed to transfer these
models for other related but different tasks such as image
super-resolution, image segmentation, place recognition and
object detection [25], [26], [22], [27]. This is because the
generic features learned by a ConvNet are always versa-
tile and transferable [28], [6]. In this paper, we adopt the
Inception-v3 model [29] due to its high performance in the
ImageNet competition. Inception-v3 is an updated version of
GoogLeNet [30]. Rather than simply stacking convolutional
layers deeper and deeper, it is heavily engineered and carefully
fine-tuned. The inception building blocks convolve the input
tensor with multiple filters and then concatenate their results.
Batch normalization is applied to activation inputs and is used
extensively throughout the model. The culmination of ideas
developed by multiple researchers leads to the first runner up
for image classification in 2015 with a top 5 error rate of
3.58%.

Researches have already shown that place recognition can
benefit from object recognition [7], [8], [9], especially in
indoor environments where the type of a room can be easily
revealed by the objects detected in it. However, if a recognition
method relies only on objects, it fails in the case where no
distinctive objects can be spotted within the camera’s field
of view. Moreover, some objects (curtain, mug, computer,
etc.) are not distinctive enough to infer locations on their
own. Zeng et al. [31] proposed a pedestrian reidentification
system by using a two-stream multi-rate recurrent neural
network to extract both spatial static feature and motion optical
flow feature. Chen et al. [27] also incorporated an addition
ConvNet for depth images to boost the object class detection
performance. In our paper, we propose a two-stream ConvNet
for topological localization which combines object detection
with holistic image recognition.

III. PRELIMINARIES

This section explains our semantic mapping and topologi-
cal localization methods. Readers who are familiar with 3D
environment construction or visual SLAM may wish to skip
to Section III-B directly.

A. Environment Construction

Our environment construction method is modified from
Felix’s approach [4]. The method is presented with the blue
boxes in Fig. 2. Both RGB and depth images are deployed as
system inputs. All RGB images are saved to train our ConvNet
later. SURF feature is first extracted from an RGB image. We
then calculate a pose transformation (rotation and translation)
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Fig. 2: Semantic mapping. Blue boxes: 3D scene construction. Orange boxes: semantic information extraction.

Fig. 3: The 3D map of a floor in an office building.

matrix from the RGB image and the depth image of its
previous keyframe. A new keyframe is labeled if the movement
of the camera is substantial enough. Both local and global loop
closure detection is employed for post-processing. Finally, the
global pose graph is optimized by the g2o framework [32].
Fig. 3 shows the 3D map of a floor at the University of Essex
and Fig. 4 shows the 3D map of a student flat.

Perspective-n-Point (PnP), which originates from cam-
era calibration is used to calculate transformation matrices.
RANSAC [33] is applied to eliminate outliers during this pro-
cess. A transformation matrix consisting of a rotation matrix
(roll, pitch and yaw) and a translation vector is calculated by
pairs of continuous keyframes. Based on the pinhole camera
model, a scene view can be formed by projecting 3D points
in the world coordinate system into an image 2D plane using
the perspective transformation formula

sp = CP , (1)

where s is the scale factor, C is the camera intrinsic matrix,

p is a pixel in the image 2D plane and P is its associated 3D
point in the world coordinate system.

The transformation matrix can thus be calculated by

s

 u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1


(2)

where fx, fy , cx, cy are the parameters of the camera intrinsic
matrix, (u, v) are the 2D coordinates of a point pt in the
current frame, (x, y, z) are the coordinates of its associated
3D point Pt−1 in the previous frame, R, T are the estimated
rotation matrix and translation vector.

Equation 2 can also be expressed in a more concise way:

spt = C
[
R T

]
Pt−1. (3)
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Fig. 4: The 3D map of a student flat.

We then apply loop closure detection with an efficient
strategy [4]. Specifically, we first try to detect local loop
closure in the neighboring frames of a keyframe. Then we
randomly select several much earlier keyframes for global
loop closure detection. Once found, the best match among its
neighboring keyframes is marked as a successful loop closure.

Finally, the g2o framework is used for global pose graph
optimization in order to minimize accumulated errors by

F (x) =
∑

(i,j)∈C

e(xi,xj , zij)
TΩije(xi,xj , zij), (4)

where x = (xT
1 , · · · ,xT

n )
T is the vector of the estimated

camera pose, zij and Ωij are the mean and the information
matrix of a constraint of pose xi and xj , e(xi,xj , zij) is the
error between pose xi and xj . Ideally, the error e(xi,xj , zij)
is 0 if the estimated poses are absolutely accurate, i.e., equal
to the ground truth.

B. Semantic Information Extraction and Representation

The semantic information used in this paper consists of
objects and room types. Room types are hand-coded into the
database, whereas objects are detected from the aforemen-
tioned keyframes. An indoor environmental map constructed
by hundreds of keyframes normally contains various objects.
If all objects in each keyframe are identified and labeled, our
database would be redundant and intractable.

In fact, we are more interested in distinctive objects which
can directly infer types of rooms. Moreover, errors inevitably
exist during object detection. Thus, the following rules are
used for object detection.

Fig. 5: Semantic information representation.

• Only one object can be detected from each keyframe.
• The score of the detected object needs to exceed a

threshold.
• An object can be labeled only if it has been detected in

15 continuous keyframes.

Therefore, semantic information extraction becomes an object
recognition problem in our paper since it only identifies
whether an image contains a specific object, rather than
the location of the object within the image. A pre-trained
Inception-v3 model [29] is deployed. The model is trained for
the ImageNet competition and can classify objects into 1,000
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categories, which is powerful enough for our task.
Finally, the conceptual knowledge is represented with the

“has-a” relations [34], as shown in Fig. 5. The straight lines
from left to right indicate this relationship. On the other hand,
the objects on the right can reveal the associated locations
on the left. Note that some objects in our database can infer
multiple locations.

C. Topological Localization

In this section, we explain the proposed topological local-
ization method in detail. An overview of our method is shown
in Fig. 6. In some cases, distinctive objects in an indoor
environment can directly infer types of rooms. However,
it is still necessary to deploy a holistic place recognition
approach since not all observations contain distinctive ob-
jects. In addition, some objects can be discovered at multiple
locations. Therefore, relying entirely on object detection for
localization is impractical. Thus, a two-stream Convolutional
Neural Network is proposed in this paper.

Fig. 6: An overview of the proposed topological localization
method.

Once a query RGB image is captured, we directly feed
the image into the two ConvNet steams for place recognition
and object detection, respectively. A place recognition result
consisting of normalized prediction scores for all locations can
be obtained. If the object detection score is over a threshold,
i.e., a distinctive object in the database is found, we use this
additional semantic information to rectify the place recognition
prediction scores, which can be viewed as a post-processing
step. Otherwise, the place recognition result is taken as the
localization final result. The threshold is discussed in the
experiment section.

Researches have shown that generic features learned from
different ConvNets are transferable. One ConvNet can be
retrained and utilized for other recognition tasks. Therefore,
we adopt the same Inception-v3 model [29] for both place
recognition and object detection. The training methods are
detailed in the next section.

If a distinctive object in the database is found, we then use
a Bayesian approach to rectify the place recognition scores.
Let L be the location vector

L = {l1, l2, . . . , ln}, (5)

where n is the total number of locations in the database, li
represents location i. Given a query image x with a distinctive
object detected within it, the basic Bayesian inference is
applied to estimate the rectified score P (li|x)

P (li|x) =
P (li)P (x|li)

P (x)
, (6)

where P (li) is the place recognition score generated from
the place recognition ConvNet stream, P (x) is the object
detection accuracy, P (x|li) is the empirical knowledge. Since
the denominator P (x) is identical to all locations, we have

P (L|x) ∝ P (L)P (x|L), (7)

in which P (x|L) is the empirical probability distribution. The
normalized distribution P (L|x) is then considered as the final
topological localization result.

Each object in the database has its own empirical probability
distribution in terms of all locations. Based on the semantic
representation detailed in semantic mapping, assume Lw =
{l1, l2, . . . , lp} is a set of locations with a specific labeled
object y in them, whereas Lwo = {l1, l2, . . . , lq} is a set of
locations without this object in them. A ratio is used to obtain
the distribution by

ξ =
P (y|lr)
P (y|ls)

, (8)

in which ξ is a given factor, lr ∈ Lw, ls ∈ Lwo.
The factor ξ plays an important role in our system. It

controls the weights of the two ConvNet stream outputs. On
one hand, we prefer a large value so that the system still
performs well even though a location suffers from significant
appearance change or human intervention (Fig. 7a and Fig.
7b, sliding door detected). However, the precision drops if
the value is too high since object detection errors inevitably
exist. Furthermore, objects randomly appear at other locations
where they should not belong to also lead to localization errors.
For example, although a vacuum cleaner is found in Fig. 7d,
the location should still be recognized as “accommodation
corridor” rather than “storage room”. The factor ξ is further
discussed in Section IV.

IV. EXPERIMENTS

A. System Configuration

This section details how the vision-based cognitive system
is configured in our experiments. The system consists of a
server, an RGB camera, an Odroid XU3 board and a pair of
earphones, as shown in Fig. 1. The server is used for data pro-
cessing. The user carries the camera, Odroid (with a portable
power supplier) and earphones. The camera and earphones
are plugged into the Odroid. The Odroid communicates with
the server via a wireless connection. Specifically, the Samba
file server [35] is installed on the Odroid. The Odroid has
a wireless access point (a Wi-Fi dongle in “master” mode),
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(a) Elevator when the door is closed.

(b) Elevator when the door is open and a person is
walking in.

(c) Storage room with a vacuum cleaner.

(d) Accommodation corridor with a randomly appeared
vacuum cleaner.

Fig. 7: Test images showing the importance of the factor.

which allows the Odroid to share files with the server. A person
with normal vision needs to build the semantic map of an
environment with the mapping approach detailed in Section
III-A and III-B. Now we assume the semantic map is already
obtained.

The camera captures RGB images and saves them to the
Odroid. The server reads the images in the shared folder at a
specific frequency, runs the topological localization algorithm
and writes the result into a text file on the Odroid. The Odroid
then reads the result and plays the pre-recorded audios. This
process is shown by the arrows in Fig. 1. The Odroid plays the
“you are in ***” audio every 10 seconds if the user remains
in the same room. The Odroid plays the “you are entering
***” audio after the localization result has changed over 5
continuous frames.

B. Training

The two-stream ConvNet is trained on a desktop with an
Intel Core i7-3370 @3.4GHz CPU and a GeForce GTX 980
GPU. The code is written on the TensorFlow platform [36].
TensorFlow is an open-source software library originating
from Google’s Machine Intelligence research organization for
numerical computation using data flow graphs.

The 2D images used for environment construction are
directly deployed to train the place recognition ConvNet. The
training dataset contains 20,298 images from 17 locations.
We have tried three ways to train the Inception-v3 network.
Our first attempt is to train the entire network from scratch
with random initialized variables, which is a computationally
intensive task. However, we fail to obtain a decent result after
training for 3 days since the number of images is not sufficient
for Inception-v3.

Our second attempt is to use transfer learning strategy to
fine-tune a pre-trained model. The pre-trained model is trained
on the ImageNet dataset. We divide our dataset into training,
validation and test subsets based on the ratio of 8:2:1. We build
a similar model to Inception-v3 with the number of labels in
the final classification layer altered to 17. All weights from the
pre-trained model are restored except the final classification
layer is randomly initialized.

During this process, all previous weights from all layers can
be modified. The smoothed curve in Fig. 8 evaluates the model
precision against training steps. The training time at step
20,000 is about 8 hours. The precision increases significantly
until 14,200 steps and reaches 96.2%, and then starts to drop
slightly afterward. At the same time, we find the loss remains
steady after 14,200 steps. Thus, the precision drop is caused
by over-fitting since the model is too complex for our dataset.
Some particular features in the training images that can not
be applied generally are memorized by the model.

In order to further reduce the training time, we only retrain
the final classification layer from scratch, while leaving all the
previous layers untouched. In other words, the previous layers
are treated as a fixed feature extractor for our own dataset.
This is due to the fact that lower-level portion of a ConvNet
generates more generic features that can be deployed for other
tasks, whereas top layers contain more specific features of the
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Fig. 8: Precision evaluation when fine-tuning among all layers.
X-axis: training steps. Y-axis: precision.

Fig. 9: Precision evaluation when only fine-tuning the final
layer. X-axis: training steps. Y-axis: precision.

training dataset. The ratio of the image numbers in training,
validation and test subsets is 8:1:1. The initial learning rate
is set to a low value so that we can obtain higher overall
precision.

We find that the system has the best performance when the
learning rate is 0.001. The entire validation subset is used for
calculation to reduce the fluctuation among iterations. How-
ever, its drawback is longer training time. The unsmoothed
curve in Fig. 9 shows the precision of the model against
training steps. The training time at step 8,000 is 24 minutes,
with average 97.7% precision. If the GPU is not used and the
model is trained only on an Intel Core i7-3370 @3.4GHz CPU,
the time is 103 minutes. In this case, training is much quicker
than fine-tuning among all layers. Moreover, the precision of
the trained model is slightly higher.

In terms of the ConvNet stream for object detection, we
adopt the pre-trained Inception-v3 model. Since the model
classifies objects into 1,000 categories, another linear classifier
is added to minimize the number of labels. For example,
“bobtail”, “chow chow”, “tabby cat” are merged into “ani-
mals”. “Police van”, “shark”, “military plane” are merged into
“others”. We have also modified some labels to make them
suitable for our task.

TABLE I: Distinctive objects found at each location.

Location Objects

arena desk, monitor, tripod, Baxter robot, projector
window shade

arena lab desk, desktop computer, monitor, printer

bedroom
umbrella, running shoe, folding chair, quilt

radiator, desk, table lamp, monitor, paper towel
backpack, wardrobe, suit

big office desk, desktop computer, monitor, file cabinet
printer

hardware lab desk, desktop computer, monitor, printer
lab chair, oscilloscope

home corridor corridor

home stairway banister, handrail

home toilet washbasin, toilet seat

kitchen refrigerator, microwave, washbasin, toaster
dining table

lecture room board, desk, folding chair, theater seating

elevator sliding door

office corridor sliding door, corridor

office stairway banister, handrail

office toilet washbasin, toilet seat

shower room bathtub, shower curtain, washbasin

small office desk, desktop computer, monitor, radiator
file cabinet, bookcase

storage room
file cabinet, space heater, crutch, mop, desk

oscilloscope, croquet ball, project
vacuum cleaner, lab chair

C. Evaluation on Various Appearance Change Conditions

In this section, we evaluate the performance of our model
based on various condition changes. We compare the perfor-
mance of the proposed localization system with other state-
of-the-art methods. The test environment (accommodation and
office) contains 17 locations in total, among which some of
them have similar appearances, such as toilets, corridors, labs
and offices.

The objects detected in the process of mapping are listed
in Table I. Some objects are unique objects that can be found
at only one location, while others can be found at multiple
locations.

We captured new images for testing rather than modifying
the images in the training dataset. Since the training images are
directly obtained from the mapping process and the images are
captured from different viewpoints, the training result indicates
the localization performance when camera viewpoint changes.
Topological localization is similar to place recognition. Thus,
precision-recall curves are used for performance evaluation.

1) Change in Lighting Conditions: We first evaluate the
influence of lighting condition on the localization performance.
The number of test images is 6,875. All objects in the envi-
ronments remain untouched. The training images are captured
during the day, while the test images are captured at night.
Regarding the locations where there are no windows or use
window shades all the time, we switch some of the lights off
to simulate the change in lighting conditions. Examples are
shown in Fig. 10.

Since the experiment is carried out in indoor environments,
the change in lighting conditions has a minor impact on both
methods. From the precision-recall curves in Fig. 11, we can
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(a) Training image captured during the day.

(b) Test image captured at night.

(c) Training image captured when the light is on.

(d) Test image captured when the light is off.

Fig. 10: Images captured when lighting conditions change.

Fig. 11: Model evaluation when lighting conditions change
(ξ = 1.3).

see our method performs slightly better than the Inception-v3
model. Based on the entire test dataset, our method results in a
96.3% localization accuracy with the maximum recall rate of
96.0%. Some errors are caused by different shapes of shadows
captured.

2) Blur Images: When a camera is placed on a robot or
a wearable device, we can not guarantee all captured images
to be sharp at all times. If the sensor is moving or rotating
at a high speed, blur images are inevitably generated. In this
experiment, we test the robustness of our method to these
images. There are 2316 blur images captured during the day
for testing. Some of them are shown in Fig. 12. Fig. 13 shows
both methods perform poorly in this experiment. The two

(a) Shower room. (b) Bedroom.

(c) Arena lab. (d) Small office.

Fig. 12: Blur images captured for testing.
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Fig. 13: Model evaluation when blur images exist (ξ = 1.3).

Fig. 14: Model evaluation when object location changes (ξ =
1.3).

curves are almost coincident. The reason is that the object
detection scores are not high enough to exceed the threshold.

3) Change of Object Locations: The change of object lo-
cations usually causes significant appearance change in indoor
environments. In this experiment, 5,208 images are used for
testing and the following conditions are considered.

• The locations of objects (chair, kitchen utensil, vacuum
cleaner, clothes, elevator door, etc.) are changed.

• The deformation of some objects, such as curtain, win-
dow shade and quilt.

• New facilities or appliances are installed, such as the
stove and oven in the newly refurbished kitchen.

• Randomly appeared humans.

(a) Training image.

(b) Test image.

Fig. 15: Example of how localization results can be rectified
by a distinctive object.

The images in Fig. 15 illustrate how a topological local-
ization result can be rectified by semantic information in
spite of human intervention. The test image is incorrectly
identified as “home corridor” by the place recognition stream.
However, a distinctive object “washbasin” is detected. Thus,
the localization result is rectified as “office toilet”. Fig. 14
shows the performance of these two methods. The precision
of Inception-v3 starts to drop significantly from the recall rate
of 48%, whereas our method drops from 70%. The evaluation
on the entire test dataset shows that the precision of Inception-
v3 is 79.9% with the maximum recall rate of 73.4%, while our
method results in 91.7% precision with the maximum recall
rate of 84.1%.

D. Factor ξ

The factor ξ plays an important role. Generally speaking,
it controls how much the object detection stream is involved
in our system. In this section, we evaluate ξ based on the
dataset used for object location change evaluation. Results are
shown in Fig. 16. When ξ = 1.0, the output from the place
recognition stream actually remain unchanged. Thus, the curve
is the same as the one generated by Inception-v3. We start to
raise the value of ξ from 1.1. Both precision and recall rates
increase with the value of ξ, which means the object detection
stream starts to work and the distinctive objects detected start
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Fig. 16: Model evaluation when factor ξ changes.

to rectify the localization results. The precision and recall
reach their peak values when ξ = 1.3.

However, if we continue raising the value of ξ, both the
precision and recall rates begin to drop. This is due to
the object detection errors. In addition, distinctive objects
in certain rooms which somehow randomly appear at other
locations also contribute to localization errors. We have also
carried out some tests when ξ > 2 and found that the curves
are all similar to the curve produced by ξ = 2. But all of them
performs better than Inception-v3. Therefore, ξ = 1.3 is used
in all the aforementioned experiments.

E. Comparison with Other Algorithms

In this section, we compare the proposed algorithm to
other state-of-the-art algorithms, namely VGG-16 [37] and
Places365-ResNet [38]. The test dataset used for object loca-
tion change evaluation is again employed here. Transfer learn-
ing is applied to all models. Inception-v3, VGG-16 and our
model are pre-trained on ImageNet and fine-tuned, whereas
Places365-ResNet is pre-trained on Places365 [38], which is a
10 million image dataset for scene recognition. The precision-
recall curves are shown in Fig. 17.

Places365-ResNet generally performs better than Inception-
v3 and VGG-16, both of which have similar performance
in terms of object location changes. This is due to the fact
that Places365-ResNet is pre-trained on a dataset of scene
photographs. Thus, it contains more generic visual features
for place recognition. However, the proposed model still
outperforms Places365-ResNet even though ours is pre-trained
on a dataset of object photographs.

F. Time Complexity

In this section, we evaluate the time complexity on a
desktop computer with an Intel Core i7-3370 @3.4GHz CPU,
a GeForce GTX 980 GPU and 16GB RAM. The captured

Fig. 17: Model performance compared to Inception-v3, VGG-
16 and Places365-ResNet.

image size is 640×480×3 and then resized to 299×299×3.
Each batch has 32 images. We have also tested the processing
time without using the GPU. Results are presented in Table II.
Compared to Inception-v3, our method costs more than twice
the processing time.

TABLE II: The average processing time of one image. Unit:
second.

Processing Time

Our method with GPU 0.079

Our method without GPU 3.432

Inception-v3 with GPU 0.037

Inception-v3 without GPU 1.492

VGG with GPU 0.081

Places365-ResNet with GPU 0.046

V. CONCLUSION

We have proposed a vision-based assistive system to help
visually impaired people move around independently. The
system can provide audio prompts when the user visits an
unfamiliar environment. A two-stream ConvNet is proposed
for topological localization. Semantic information is used to
further rectify the localization result by detecting distinctive
objects within the environment. The performance of our sys-
tem is evaluated in terms of various appearance changes in
two indoor environments. Experimental results show that both
the precision and recall rates are improved over Inception-v3.
But our model is less computationally efficient. The proposed
localization approach can also be applied to a mobile robot
for its indoor navigation.

In the future, we will continue improving the reliability
and real-time performance of the proposed system. Recurrent
Neural Networks will be incorporated for higher accuracy.
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