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Abstract: The traditional environment maps built by mobile robots include both metric ones and
topological ones. These maps are navigation-oriented and not adequate for service robots to interact
with or serve human users who normally rely on the conceptual knowledge or semantic contents of
the environment. Therefore, the construction of semantic maps becomes necessary for building
an effective human-robot interface for service robots. This paper reviews recent research and
development in the field of visual-based semantic mapping. The main focus is placed on how to
extract semantic information from visual data in terms of feature extraction, object/place recognition
and semantic representation methods.

Keywords: semantic map; visual data; feature extraction; object recognition; place recognition;
semantic representation

1. Introduction

Traditionally, robotic mapping is broadly divided into two categories: metric and topological
mapping. Metric maps describe the geometric features of the environment, whereas topological maps
involve the connectivity of different places and are used for robots to navigate from one place to
another [1]. Figure 1 shows both a metric map and a topological map that were constructed. An early
representative of the metric mapping approach is based on occupancy grids that model the occupied
and free space. In contrast, the topological mapping approach uses nodes to represent distinct places
or landmarks and curved lines to describe the paths between nodes. Recently, a new hybrid mapping
that combines the metric and topological paradigm was developed to compensate the weakness of
individual approaches. This mapping approach applies a metric map for accurate navigation in a local
space and a global topological map for moving from one place to another.

All of these traditional mapping approaches are navigation oriented and enable mobile robots
to navigate around and plan a path to reach a goal [2]. The maps built by traditional mapping
approaches are relatively low-level maps since they are unable to interpret scenes or encode semantic
information. To serve people, service robots should be able to communicate with humans through
semantic information, such as human speech commands, “Can I have a cup of coffee?” or “Please
open the window”, so that they are able to interact with humans in a human-compatible way [3].

In a semantic map, nodes representing places and landmarks are named by linguistic
words. Examples of these include names and categories of different objects, rooms and locations.
More specifically, a semantic map can be regarded as an extension of a hybrid map, which contains
a geometric description, topological connectivity and semantic interpretation [4]. It provides a
friendly way for robots to communicate with humans. This survey reviews numerous literature
works in visual-based semantic mapping and attempts to provide an overview of the state-of-the-art
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methodologies in this field. It is mainly focused on how to extract semantic information from visual
data, including feature extraction, object/place recognition and semantic representation methods.
It differs from other existing comprehensive surveys on traditional robot mapping approaches [1] or
general semantic mapping methodologies [5].

(a) (b)

Figure 1. Maps obtained through traditional mapping approaches. (a) Metric map; (b) Topological map.

The rest of this paper is organised as follows. Section 2 overviews various visual-based approaches
in the semantic mapping process, including different visual sensors, such as conventional cameras,
RGB-D cameras and stereo cameras. In Section 3, visual feature extraction methodologies are outlined
and classified in terms of global and local features. Section 4 describes three basic recognition
approaches in semantic mapping, namely global, local and hybrid approaches. Subsequently, how
to generate semantic representations of the environment is outlined in Section 5, and some typical
real-world applications are presented in Section 6. Finally, a brief conclusion and discussion are given
in Section 7.

2. Overview of Visual-Based Approaches to Semantic Mapping

More recently, using semantic data to represent environments has become a popular research
domain and drawn enormous attention from different fields [6,7]. The application of visual data in
semantic mapping systems seems to be a sensible decision, as humans perceive the world through
their eyes. Visual data allow the representation of both low-level features, such as lines, corners and
shapes, and high-level features, such as colours, relations and texts. In this way, a wider variety of
objects can be recognized, which can highly enrich semantic maps.

2.1. General Process for Semantic Mapping

In general, a visual-based semantic mapping system consists of three parts. At first, the specific
features are pre-selected based on sensor type, and feature descriptors are computed and obtained.
Subsequently, features or descriptors are classified in terms of a priori knowledge so that objects and
places can be recognized. Finally, properties are endowed with semantic meanings on the basis of
topological and metric maps. Figure 2 presents the general process for semantic mapping. Note that a
metric map is considered as a complementary attribute of a semantic map. In addition, some systems
rely on direct image segmentation to obtain semantic information rather than using feature descriptors
to represent objects or scenes.
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Figure 2. Overview of the general process for semantic mapping.

Many types of visual sensors have been developed to provide a variety of interpretations of the
world. In addition, the subsequent processing methods are highly dependent on the data type used.
To some extent, the visual sensor applied plays a key role in a semantic mapping system. The visual
sensors used for robot mapping can be generally classified into two categories according to the data
generated: a 2D image and a 3D point cloud.

2.2. Use of Conventional Cameras

At the early stage of development, visually recognizing objects or places was normally done by
using conventional cameras that record two-dimensional images, as shown in Figure 3. In [8], models
of indoor Manhattan scenes [9] were acquired from individual images generated from a 2D camera
and then assigned with semantic labels. Anguelov et al. captured colour and motion properties with
an omni-directional camera for door modelling and detection [10]. Tian et al. also addressed this
problem, since doors are generally considered as distinguishable landmarks between rooms in indoor
environments [11]. Wu et al. [12] and Neves dos Santos et al. [13] employed 2D visual data to tackle the
problem of place recognition in semantic mapping, and object recognition with monocular cameras
was presented by Civera et al. [14] and Riazuelo et al. [15].

(a) (b)

Figure 3. Cameras that capture 2D images. (a) Monocular camera; (b) omni-directional camera.

2.3. Use of RGB-D Cameras

In recent years, extracting semantic information from 3D point clouds has become a new trend
due to the availability of low-cost and light-weight 3D point cloud capturing devices, such as stereo
cameras and RGB-D sensors, which allow the application to small robot platforms or even wearable
devices easily. Compared to 2D images, 3D point clouds overcome the limitation in the data-stream
itself by providing additional depth data. Moreover, humans recognize and perceive a 3D world in
terms of our eyes. Therefore, object recognition through capturing 2D projections of the 3D world
is inevitably inaccurate and might be even misleadingly suggested, especially when it comes to a
large variety of goods in our daily life [16]. Figure 4 presents good evidence. Judging from the
match between the two watches in the left image, this match seems quite successful. However, if
we zoom out from the second watch on the right, it is in fact another image stitched to the surface
of a mug. The semantic interpretation of a mug in this case is thus completely wrong. This is a
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clear example indicating that some semantic representations cannot be entirely precise without 3D
spatial information.

(a) (b)

Figure 4. Object recognition using features extracted only from 2D images. (a) Object matching
that seems correct; (b) After zooming out from the image on the right, we can tell that the semantic
information obtained is completely wrong.

Therefore, cameras that are capable of providing not only high-resolution 2D images, but
also positioning and other characteristics of objects are widely used in semantic mapping systems.
Various technologies can be used to build 3D scanning devices, such as stereoscopy, time-of-flight,
structured light, conoscopic holography and modulated light. However, each technology comes with
its own limitations, advantages and costs. Some of the RGB-D cameras deployed in the published
works are shown in Figure 5.

(a) (b)

Figure 5. RGB-D cameras. (a) Kinect for Xbox 360; (b) Kinect for Xbox One.

RGB-D cameras generate 3D images through structured light or time-of-flight technology, both of
which can provide depth information directly. In terms of a structured light camera, the camera projects
a known pattern onto objects and perceives the deformation of the pattern by an infrared camera to
calculate the depth and surface information of the objects, as shown in Figure 6. For a time-of-flight
camera, the camera obtains depth information by measuring the time of flight of a light signal between
the camera and objects. Compared to RGB-D cameras based on time-of-flight technology (e.g., Kinect
for Xbox One), the structured light sensors (e.g., Kinect for Xbox 360) are sensitive to illumination.
This limits their applicability in direct sunlight [17].

Projected Pattern Seen Pattern

Figure 6. Principle of RGB-D cameras based on structured light technology.
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2.4. Use of Stereo Cameras

A stereo camera has two or more lenses with a separate image sensor or film frame for each lens,
as shown in Figure 7. It simulates human binocular vision and therefore gives the ability to capture
3D images [18], even though the process only involves capturing 2D images with each lens. Figure 8
shows the simplest schematic representation and the basic principle of many 3D stereo camera systems.
A point in the real world is projected onto two film frames differently by two cameras due to their
disparate positions. The point in the left camera image is shifted by a given distance in the right camera
image. If the relative position of each point is known in each camera (sometimes a hard task), the
depth value can then be obtained by applying the following equation to each point pair as observed
by both cameras:

D = f (b/d) (1)

where D is the depth value, f is the focal length of the camera, b is the baseline between the cameras
and d is the disparity of the same point in different film frames. In this case for Point 2, d = d1 + d2.

(a) (b)

Figure 7. Stereo cameras. (a) Minoru 3D webcam; (b) Ensenso N10 stereo 3D camera.

Image 1 Image 2

Left Camera Right Camera

Real World Point 1

Real World Point 2

Baseline

DepthFocal

Length

d1 d2

Figure 8. Principle of most 3D stereo cameras.

3. Visual Features Applied in Semantic Mapping Systems

In the last decade, some researchers have reported systems in which semantic interpretation of
certain scenes was obtained [19,20]. However, the acquisition was done through conversations between
humans and robots or even hand-coded into the systems, rather than using the robots’ own sensors [21].
Visual features describe the elementary characteristics, such as shapes, colours, textures, motions and
relations, between pixels in raw visual data and can be broadly divided into two categories: global
and local features [22].

Global features represent an image as a whole without directly describing the spatial layout
of the properties in the image. More specifically, the statistics of all of the pixels in a movable
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fixed-size bounding box is extracted to generate feature vectors, which can determine the likelihood
for image matches. Such features are suitable for large-scale environment recognition, e.g., roads,
lawns in outdoor environments and rooms in buildings. However, global features are sensitive to
cluttered background and occlusion due to their essential attributes. Therefore, their performance
drops relatively in the case of object recognition in indoor environments where direct specification
of the content in an image is required or when an object is not enclosed by the bounding box.
Local features, on the other hand, rely on individual pixels or discrete regions. Typically, salient
features of highly textured objects are extracted by feature detectors and represented by compendious
feature descriptors. The representation of the content in an image is thus more robust to scale,
viewpoint or illumination changes.

3.1. Global Features

Despite the limitation of global features, they are still useful in cases where a rough place or object
classification is required. Global features consist of the statistics extracted from a whole image or a
bounding box, such as contour, shape, texture, colour or a combination of them [23]. They generally
represent an image with a single high-dimensional feature vector and, thus, can be easily applied with
any standard classification methods [24]. Moreover, thanks to the compact representation and low
computational cost, they have been employed by some semantic mapping systems in real time. Table 1
gives the differences and similarities of the global features used for object recognition in semantic
mapping systems.

Table 1. Global features for object recognition in semantic mapping systems. DOT, dominant
orientation template.

Feature Classification Performance

Haar-like [25] Texture Robust to illumination changes
Colour histograms [26] Colour Robust to viewing angles

HOG [27] Template Robust to illumination and shadowing changes, sensitive to object orientations
DOT [28] Template Computationally efficient, robust to small shifting and deformations

High dimensional composed
receptive field histograms [29] Combination Robust to illumination and minor scene changes

GIST [30] Combination Robust to occlusion and viewpoint changes; noise in isolated regions is ignored

Inspired by the application of the Haar-like feature in human face detection [25], a small number
of objects were first recognized as landmarks in [31]. The recognized objects were then applied as
supplementaries to the geometrical features in order to distinguish rooms that had similar geometrical
structure and could only be further identified by the objects found there. The Haar wavelets present
the average intensity differences between regions and likewise can be used to compare the differences
between the sum of pixel values in bounding boxes, which allows relatively high robustness to
illumination changes.

Ulrich and Nourbakhshthus implemented colour histograms for place recognition by comparing
query images with limited images of an entire dataset [32]. Applying colour histograms for image
matching was first brought up by Swain and Ballard [26]. The number of colour histograms is
based on the number of the colour bands used, e.g., red, green and blue. Each histogram is built
by simply counting the number of pixels with a specific intensity in different colour bands. Such a
feature is robust to viewing angle changes in the case when properties in the environment remain
fixed. Furthermore, it provides a highly compact representation of an image and, thus, requires
less memory space. However, one obvious drawback is that it fails to describe spatial relations,
which limits its applicability. Filliat et al. also adopted this feature to discriminate identical chairs of
different colours [33].

The spatial information, such as feature location, was not included by the holistic methods
presented above due to the lack of a segmentation step. Some features have managed to divide an
image into small discrete regions and then compute the global statistics within individual regions in
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order to obtain some rough spatial information. Grimmett et al. used the histogram of oriented gradient
descriptor (HOG) [27] to represent training data in order to detect a parking space [34]. HOG describes
objects by concatenating histograms of the gradient directions computed from the pixels within
individual regions divided from an image, called cells. Each histogram is then contrast-normalized
across a group of cells, called a block, to decrease the susceptibility to illumination or shadowing
changes, except for object orientations. Such a feature has a high performance for pedestrian detection
if they maintain a roughly upright position.

In the case of texture-less object detection, Hinterstoisser et al. proposed a feature named
dominant orientation templates (DOT) based on local region management [28], which was applied
in [35] to match the objects in a predefined database. Compared to the HOG feature, DOT relies on
dominant orientations rather than histograms. It only considers the orientations of gradients with
the biggest magnitude values, thus providing invariance to small shifting and deformations. DOT is
also computational time saving for object matching thanks to the ignorance of gradient values and the
implementation of orientations rather than directions.

Global features have also been combined in some systems to provide richer representations of
the environment. A high dimensional composed receptive field histogram was applied in [29], which
consists of normalized Gaussian derivatives, differential invariants and chromatic cues. Siagian et al.
attempted to incorporate context using the GISTdescriptor [30] for scene classification [36,37].
Orientation, colour and intensity channels are employed by GIST to filter input images with Gabor
filters at multiple spatial scales to extract the gistof images. Hinterstoisser et al. presented another
3D feature as a complement to the DOT feature, named LINE-MOD, by computing the object surface
normal with a depth sensor [38]. These methods tend to be relatively more robust than using a single
global feature, since the random noise produced by individual features can be averaged out.

3.2. Local Features

Local features that are widely used in semantic mapping systems for object and place recognition
can be further divided into three categories: edge-, corner- and blob-based approaches [39]. Figure 9
shows the definition of local visual features in computer vision. An edge is a set of pixels with strong
gradient magnitudes or located where the image intensities change sharply. This normally refers to the
boundaries between distinguishable regions. A corner is a pixel at which two edges intersect or has
edges with two or more directions in the neighbourhood. The term corner is additionally used in some
cases, which differ from our common sense, e.g., a small white spot (corner) on a black background,
since apart from relying on explicit edge detection, a corner can also be computed from the curvature
in the image gradient. A blob is a group of connected pixels with similar characteristics. It refers to an
interest point, as well, because many interest point detection methods are essentially based on corner
detection at multiple scales.

(d)(a) (c)(b)

Figure 9. Definition of local visual features in computer vision. (a) Original image; (b) Edge; (c) Corner;
(d) Blob.
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In this section, the local features are presented accordingly. Table 2 gives the differences and
similarities of the local features used for object recognition in semantic mapping systems.

Table 2. Local features for object recognition in semantic mapping systems. KLT, Kanade–Lucas–Tomasi;
FAST, features from accelerated segment test; AGAST, adaptive and generic accelerated segment test;
BRIEF, binary robust independent elementary features; CenSurE, centre surround extrema; ORB,
oriented FAST and rotated BRIEF; BRISK, binary robust invariant scalable keypoints; FREAK, fast
retina keypoint; MSER, maximally-stable extremal region.

Category Classification Feature Performance

Edge based Differentiation based Sobel Computationally efficient, high error rate
Canny [40] High accuracy, computationally expensive

Corner based Gradient based Harris [41] Sensitive to noise, computationally expensive
KLT [42] Computationally efficient, sensitive to noise

Corner based Template based FAST [43] Computationally efficient, low level of generality
AGAST [44] High level of generality, computationally efficient
BRIEF [45] Computationally efficient, sensitive to viewpoint rotations

Blob based PDE based SIFT [46] Robust to scale and transformation changes, computationally expensive
(keypoint) SURF [47] Robust to scale and transformation changes, computationally efficient

CenSurE [48] High accuracy, computationally efficient

Blob based Template based ORB [49] Computationally efficient, robust to viewpoint rotations
(keypoint) BRISK [50] Robust to scale changes, computationally efficient

FREAK [51] Computationally efficient, robust to scale changes

Blob based
(region) Intensity based MSER [52] Robust to affine transformations, computationally efficient

3.2.1. Edge-Based Approaches

The primary characteristic of edges in an image is a sharp change, which is commonly used and
captured by classical differentiation-based edge detectors. Currently, such edge detectors are only used
to generate fundamental cues to construct more robust features or provide complementary information
for semantic mapping systems [53]. Ranganathan and Dellaert [54] converted each training image
into a set of regions of interest with the Canny edge detector [40]. Clustered edges were obtained to
facilitate modelling texture-less objects, like desks. The Canny edge detector sets three general criteria
for edge detection: low error rate, precise localization on the centre of edges, and a given edge in
an image should only be marked once. Owing to these criteria, it is one of the most strictly-defined
methods that provides robust and reliable edge detection. Wu et al. attempted to filter each input
image with a Sobel operator beforehand, since they were interested in the spatial structure property of
an image rather than detailed textural information [12].

In recent years, edge detection in computer vision has been extended to a broader concept, which
is quite similar to object segmentation, named boundary detection. Boundary detection considers
an object as a whole. It suppresses the internal edges extracted from the textures within objects and
only presents the edges between objects and background. Multiple low-level features are combined to
detect boundaries based on machine learning algorithms. However, simply using 2D images tends to
be computationally more expensive or less reliable than applying an additional depth channel for them,
since it is relatively straightforward to obtain object boundaries from a 3D image. Thus, boundary
detection using only 2D images is rarely implemented in semantic mapping.

3.2.2. Corner-Based Approaches

Primitive corner-based approaches rely on gradient assessment, which is a theoretical concept
abstracted from our common sense understanding for the term corner. In [54,55], a Harris corner
detector [41] was used to facilitate training the database. It computes the differential of autocorrelation
according to directions directly. A similar detector, named Kanade–Lucas–Tomasi (KLT) [42], was
employed in [56] for efficient and continuous tracking. Compared to the Harris detector, KLT has an



Robotics 2016, 5, 8 9 of 22

additional greedy corner selection criterion; thus, it is computationally more efficient. However, these
corner detectors are not reliable in all circumstances during semantic mapping, since the gradient
assessment method is highly sensitive to noise.

In order to decrease the complexity of gradient assessment and increase computational efficiency,
some methods based on a template have been implemented. Such features extract corners by comparing
the intensity of a pixel with other pixels in the local neighbourhood, i.e., a predefined template.
Henry et al. [57] and Gálvez-López et al. [58] attempted to apply features from accelerated segment
test (FAST) [43] for indoor mapping and loop closure, respectively. Based on machine learning
algorithms, FAST yields a large speed increase, thus being widely employed by real-time systems.
FAST uses a circular template of 16 pixels to evaluate whether a candidate pixel is actually a corner.
The candidate pixel is classified as a corner in cases when a certain number of contiguous pixels in
the circle are all brighter than the intensity of the candidate pixel plus a threshold value or all darker
than the intensity of the candidate pixel minus a threshold value. During the high-speed test for
rejecting non-corner points, a decision tree is applied to address the correct rules of the chosen detector.
However, FAST suffers from a low level of generality, since it has to be trained for specific scenes
before applied. FAST-ER [59] and adaptive and generic accelerated segment test (AGAST) [44] increase
the performance of FAST in terms of repeatability and generality, by widening the thickness of the
Bresenham’s circle and training a set of decision trees rather than relying on one tree, respectively.

Due to the high demand for real-time applications, Gálvez-López and Tardós adopted binary
robust independent elementary features (BRIEF) [45] to find the best frame-to-frame matches for
real-time localization over long periods [58]. BRIEF is a binary string constructed by classifying image
patches according to pairwise intensity comparisons, which leads to small memory usage and is highly
computational efficient during recognition.

3.2.3. Blob-Based Approaches

Blob-based approaches rely on identifying the unique regions in an image by comparing local
properties (e.g., intensity and colour) to their neighbouring regions. In a blob, specific properties
of all of the points remain constant or approximately constant, i.e., to some extent, the points are
similar to each other. Blob-based approaches can be further divided into two categories: keypoint- and
interest region-based approaches. Keypoint-based approaches are focused on finding local extrema
in scale spaces, whereas interest region-based approaches aim at segmenting regions. A scale space
is a representation of gradually-smoothed images obtained by the rules that can describe the basic
properties of interest. The scale space presents an image with an additional third dimension. Note that
a corner can also be regarded as a keypoint at a specific scale.

Classical interest point-based methods are based on partial differential equations (PDE), among
which the Laplacian of Gaussian (LoG) is one of the most widely-used methods. An input image is first
convolved by a Gaussian function at a certain scale to represent the image in a Gaussian scale space.
The Laplace operator is then applied to obtain strong responses for bright and dark blobs. Compared to
LoG, the difference of Gaussians (DoG) computes the Laplacian of Gaussian operator by the difference
between two continuous images smoothed by a Gaussian function. DoG can also be viewed as an
approximation of the Laplacian operator, thus being computationally more efficient. A hybrid blob
detector Hessian–Laplacian combining the Laplacian with the determinant of the Hessian (DoH) blob
detectors has also been proposed, where spatial selection is done by the determinant of the Hessian
matrix and scale selection is performed with the scale-normalised Laplacian.

Based on DoG and the Hessian matrix, Lowe proposed scale invariant feature transform
(SIFT) [46], which has been widely applied by robot SLAM and object recognition systems [3,60–62].
The original image is convolved with DoG to identify potential interest points that are invariant to
scale and orientation changes. The points selected from the training image, which usually lie on
high-contrast regions of images, such as edges and corners, are detectable even under changes in image
scale, noise and illumination. Another property of these points is that the relative positions between
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them in the original image remain stable from one image to another. Subsequently, low contrast and
unstable points are rejected based on their locations and scales. Orientations are then assigned to
the points based on gradient directions, thus providing invariance to transformations. Finally, SIFT
computes a descriptor vector (histogram of oriented gradient) as a representation for each keypoint.
Compared to other feature descriptors, SIFT is highly robust to scale and transformation changes, but
is computationally expensive. A refinement of SIFT was proposed by Mikolajczyk and Schmid, named
gradient location and orientation histogram (GLOH) [63], which proves to be more distinctive than
SIFT, yet requires even more computational cost.

Riazuelo et al. initially extracted speeded up robust features (SURF) from each image and stored
them for later object recognition in the RoboEarth database, which is a knowledge-based system
providing web and cloud services [15]. SURF has claimed to be several times faster than SIFT, and the
accuracy still remains relatively acceptable. SURF employs integral images and uses square-shaped
filters to approximate the determinant of the Hessian matrix during Gaussian smoothing, thus being
more computational efficient. Morisset et al. used centre surround extrema (CenSurE) [48] to obtain
visual odometer in real time [64]. CenSurE is another approximation of LoG. Compared to SIFT and
SURF, CenSurE features are evaluated for all of the pixels across all scales in raw images. This leads
to higher accuracy. Moreover, even seeking extrema at all scales, it still maintains a relatively low
computational cost by adopting a set of simple centre surround filters. Implementations of these
refinements in semantic mapping systems can also be found in [33,65,66].

Inspired by FAST and BRIEF corner detector based on a template, Rublee et al. presented oriented
FAST and rotated BRIEF (ORB) by estimating the patch orientation [49], thus being invariant to
viewpoint rotations. The scale pyramid is also applied to increase its robustness to scale changes. Such a
method was employed in [67] to generate the photometric feature for RGB-D mapping. Grimmett et al.
used binary robust invariant scalable keypoints (BRISK) [50] to build maps for automated parking [68].
BRISK applies the AGAST detector in both the image plane and scale space to classify keypoints, so
that it is invariant to scale changes. A keypoint detector motivated by human retina and derived from
BRISK was presented by Alahi et al. [51], named fast retina keypoint (FREAK), which was applied
in [69] for facial point detection and emotion recognition. Compared to BRISK, FREAK has a higher
density of points near the centre of the sampling grid.

Meger et al. [60] and Sun et al. [70] applied the maximally-stable extremal region (MSER) [52] in
their systems to provide object location information for an attentive system and to extract lane marking
features, respectively. MSER is one of the most widely-used methods for interest region detection.
It is robust to affine transformations and is highly computationally efficient. However, it is sensitive
to image blur changes. Moreover, MSER is a region detector in essence, thus being only suitable to
distinguish objects with little variation in colour from high contrast scenes.

3.2.4. Discussion

One of the most important factors to evaluate the feature detectors and descriptors implemented in
semantic mapping systems is their accuracy (reliability). To assess it, a repeatability criterion presented
by Schmid et al. measures whether or not the same feature is detected in two or more different images
of the same scene under varying viewing conditions [71]. The repeatability is the ratio between
the accurate pairing number and the minimum number of keypoints detected in the given images.
The repeatability of some local features is shown in Figure 10 [22]. Three image transformations are
considered: zoom factor, viewpoint and rotation.

With respect to some SLAM or object recognition systems running in real time, the computational
complexity of the applied feature detectors also plays a key role. Figure 11 [22] shows the efficiency
evaluation of some widely-used keypoint detectors in semantic mapping systems. The first graph
assesses the average processing time based on the number of keypoints detected. FAST and AGAST are
computationally more efficient than other detectors. Another noticeable difference is that the processing
time of CenSurE and ORB remains constant, whereas with the increase of the keypoint number, the
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processing time of other detectors grows linearly. The second graph presents the influence of image
scale changes on the detectors. The processing time for all of the detectors rises as a quadratic function
with the increase of image scale. Again, SIFT and SURF are several times more time consuming.

(a) (b) (c)

Figure 10. Repeatability based on image: (a) Zoom; (b) Viewpoint angle; and (c) Rotation
transformations [22]. Reproduced with permission from Dr. Canclini.

(a) (b)

Figure 11. Processing time evaluation based on: (a) The number of keypoints; and (b) Image
scale changes [22]. Reproduced with permission from Dr. Canclini.

4. Recognition Approaches

This section presents some basic object/place recognition approaches in semantic mapping
systems, namely global, local and hybrid approaches [72]. Object recognition methods based on global
features are classified into global approaches. Such approaches also consist of some place recognition
methods that employ image segmentation algorithms directly, rather than referring to the properties
in the environment. Local approaches include pixel-wise operations on the basis of local feature
extraction and the straightforward sampling of pixel contributions. Some systems combine global
approaches with local approaches to achieve a more robust performance, which is discussed in hybrid
approaches. In addition, information that is retrieved to distinguish individual instances within an
object class (e.g., shampoo or conditioner, someone’s office) is also discussed.

4.1. Global Approaches

Based on the global statistic feature retrieved from texture, the hidden Markov model (HMM)
was applied in [73] for place recognition and new place categorisation. For HMM, the states that
represent different locations are not directly visible, whereas the output acquired from the states
is visible. Compared to using a uniform transition matrix, HMM provides a significant increase in
recognition performance. Furthermore, the computational cost is quite low and can be neglected
during mapping. However, it is only applicable for a small database. Mozos et al. implemented a
cascade of classifiers [74], which depended on boosting to detect eight different objects in order to



Robotics 2016, 5, 8 12 of 22

recognize six places [31]. Boosting is a supervised learning-based method combing several simple
weak classifiers to achieve a relatively high performance. For each of the weak classifiers used, the
requirement is that its accuracy should be better than random guessing. The accuracy of the weak
classifiers leads to their distributions once they are added. The cascade of classifiers is essentially
a degenerated decision tree that rejects non-object regions at each stage and retains interest regions
for further classification. Although the training time is long, the prediction can be run in real time.
Gentle AdaBoost was also applied by Murphy et al. for object and scene recognition [30].

In the case of colour histogram features, Ulrich and Nourbakhsh used a simple unanimous voting
scheme to classify places [32]. The input images were voted by each colour band with the smallest
minimum matching distance. A certain place was classified when the colour bands unanimously
voted for the same place and the total confidence was above a threshold. Such a method is quite
straightforward and computationally efficient. However, one important prerequisite is that the visible
properties in scenes should remain relatively fixed, and its performance drops when it comes to a large
database (over 100 images).

A support vector machine(SVM) [75] was applied with the HOG feature by Dalal and Triggs [27].
SVM is a set of supervised models with associated learning algorithms widely used for data analysis
and pattern recognition. The training process tries to build a model by the given examples to assign
new examples into two categories, making it a non-probabilistic binary linear classifier. This step
is essentially a process to find a model with high performance, i.e., a clear gap that is as wide as
possible. In this paper, positive examples (images that contain pedestrians) and negative examples
(person-free images) were provided for SVM training. The implementation of linear SVM rather than
using the kernel decreased the computational cost of the system. Pronobis et al. also applied SVM
to recognize places [29], yet based on the kernel [76], which proved to achieve better performance
for histogram-like features. Results in this paper showed that the places were recognized with high
precision and robustness, even when training on images from one camera device and testing on another.
Inspired by Taylor and Drummond [77], the streaming SIMDextension (SSE) was applied to efficiently
compute error functions [28].

4.2. Local Approaches

Apart from the approaches mentioned above, one of the most promising works has been done
by Lowe [46]. Once the SIFT features are detected and described, recognizing objects becomes a
problem of finding groups of similar descriptions that have all undergone the same transformation.
More specifically, an interest point in the test image is compared to an interest point in the reference
image by the differences between their description vectors, which is based on Euclidean distance.
For rapid computation against large databases, the features are put in a KD-tree, which is a data
structure based on nearest neighbour searching for large databases. The Hough transform is used to
cluster the features that belong to the same object. Clusters of at least three features that agree on the
object and its pose are identified as candidate matches. A least-square approximation is then made to
obtain the best estimated affine projection parameters, which are further applied to decide whether to
keep or reject the matches. This method has been widely implemented in robot semantic mapping
systems [3,60,61] thanks to its high robustness. However, due to the complexity of the SIFT feature,
the recognition process still suffer from high computational cost.

In the case of the binary features inspired by modern computer architecture, such as BRIEF, BRISK,
ORB and FREAK, the Hamming distance is used for matching. The Hamming distance between
two feature vectors is the number of positions at which the corresponding symbols are different. Such a
matching method is highly computationally efficient. However, the accuracy is lower than the method
presented by Lowe.
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4.3. Hybrid Approaches

Some systems adopted global features, local features and depth information to generate a more
robust recognition performance. Depth information additionally provides spatial dimensions of objects
and represents objects in more detail, thus leading to a higher recognition accuracy compared to using
solely 2D features. Histograms of oriented energy and colour were directly applied for object detection
in [78]. Stückler et al. employed region features in both colour and depth space and applied object-class
segmentation algorithms for semantic mapping [79], based on random decision forests (RFs), which
is an ensemble learning method for classification and has been demonstrated to achieve comparable
performance to SVM [80]. In this work, a subset of images from the training set was randomly selected
as a sample to train the decision trees. Small objects were better sampled for training; thus, the actual
individual distributions of class labels were reassigned according to this. One advantage of RFs is the
high computational efficiency during outputting, yet the training time is still relatively long.

Filliat [81] and Martínez-Gómez et al. [82] employed a bag of binary words (BoW) model [83]
to incrementally learn to recognize different rooms from any robot position. The model is inspired
by the technique in document classification. BoW consists of two phases, representation (indexing)
and recognition (retrieval). Image features that are robust to intensity, rotation, scale and affine are
detected and described by independent feature descriptors with vectors, such as SURF and FAST (SIFT,
colour histograms and normalised grey level histogram in this paper). Subsequently, the vectors are
clustered by vector quantisation algorithms, e.g., K-means clustering [84]. The predefined codewords
(words in documents) are then assigned to the clusters to generate a codebook (a word dictionary);
thus, the images are represented by a histogram of codewords. In the case of the recognition stage,
generative or discriminative models, such as the naive Bayes classifier, SVM and AdaBoost, are applied
as the classifiers. Such a method is quite flexible in terms of both applicable features and recognition
approaches. However, the spatial relationships among the clusters are ignored when BoW is used
alone, which has been compensated by Lazebnik et al. [85].

Text or signs can provide location information directly. Most text recognition systems implemented
optical character recognition (OCR) for classification [86–88], which is an off-the-shelf technology to
convert images of typed, handwritten or printed text into machine-encoded text. Sami et al. [87]
adopted a back-projection of the colour histogram to locate interest regions and applied the Canny
edge detector to remove background. A pan/tilt/zoom camera was used in [88] to provide better
focusing performance on potential text regions in the wild. However, text retrieval still suffers from
low performance in cluttered environments, which limits its practicability.

5. Semantic Representation

Semantic representation is the interpretation process from objects or places to a human-compatible
or even human-like language. Some systems presented above apply classification or segmentation
methods for the purpose of recognizing specific objects or scenes; thus, the semantic information is
directly obtained. In this section, we mainly focus on the semantic information inferred by robots.

Early systems [3,21] adopted the idea that a semantic map consisted of two separate, but tightly
interconnected parts: a spatial part and a terminological part [89]. This is a typical structure of hybrid
knowledge representation (KR) systems [90], as shown in Figure 12 (redrawn according to [21]).
The spatial part contains raw images from the sensors, geometric information of the environment
and connectivity between the rooms, whereas the terminological part consists of general semantic
knowledge about the environment, giving meanings to the features of the corresponding properties
in the environment in terms of general concepts and relations. These two hierarchies are interrelated
by the concept of anchoring [91]. In [21], NeoClassicAI language was employed to establish the
conceptual hierarchy and provided the robot with inference capability. However, the conceptual
knowledge was hand-coded into the system, and uncertainties about the properties in the environment
were not included in the representation.
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Vasudevan and Siegwart attempted to classify places based on objects, as well [92], but the
system was fully probabilistic. In their system, objects were grouped into predefined clusters and
conceptualised during the training process. A simple naive Bayesian classifier (NBC) was then
employed to infer and identify the place categories on the basis of the clusters.

Meger et al. [60] developed an attentive system projecting the location and semantic information of
the recognized objects back into the grid map. Since the object recognition subsystem were trained by
collecting object model data through submitting text-based queries to Internet image search engines, the
semantic information was thus easily incorporated into the object models. Once an object was observed,
the semantic information was directly acquired. A similar work [93] built the spatial-semantic object
models based on the LabelMe database [94]. Bayes’ theorem was applied to define place categories by
the recognized objects. More specifically, a cluster model grouped objects on the basis of their locations;
thus, the place categories were just another representation of the clusters.

Living
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Figure 12. The spatial and conceptual hierarchy interrelated by anchoring [21]. Redrawn with
permission from Prof. Galindo.

Zender et al. [61] and Capobianco et al. [95] encoded conceptual knowledge into a Web Ontology
Language-description logic (OWL-DL) ontology. In [61], a description-logic reasoner employed some
situated dialogues between a robot and a user to provide new knowledge for the robot to further infer.
In addition, a laser sensor was implemented for place classification. More specifically, a navigation
node (a marker) was placed in the metric map after the robot moved one metre away from the last node.
The nodes were then connected and classified for room type identification. Pronobis et al. extended
such a method and applied the doors detected in indoor environments to bound areas [96]. The final
map is shown in Figure 13. In [95], a standard methodology for representing and evaluating semantic
maps was proposed. The formalisation consisted of a reference frame, spatial information and a set of
logic predicates. With this system structure, the performance of semantic representations can then be
compared against those of other systems.
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Figure 13. The final semantic map obtained in [96]. Reproduced with permission from Dr. Pronobis.

6. Typical Applications

Service robots are gradually working their way into our daily lives to become household servants,
healthcare systems and even cognitive companions. The primary responsibility of service robots is to
obey the orders given by humans and perform tasks with high efficiency and accuracy. A semantic
map provides a friendly human-robot interface and enables these service robots to be used by the
general public without the need for training.

6.1. Indoor Applications

Some applications can be found in indoor environments. Galindo et al. presented a typical
autonomous navigation method based on a pre-built semantic map [21]. In their experiment, the robot
was given a command “go to the bathroom”. Following this command, the robot inference system
found a node in the topological map, and the spatial information in the metric map that connected to
the node was retrieved by anchoring. Thus, the command was translated to “go to the node” and then
executed between the topological and metric hierarchies. Figure 14 describes this navigation method.

Command: Go to the bathroom

Semantic hierarchy

Bathroom

Topological hierarchy

Node-1

Metric Hierarchy

Spatial dimensions

Figure 14. Robot navigation based on a semantic map.

The authors in [97] enhanced the inference capability of a robot with a semantic map. The common
knowledge known by almost everyone was applied to detect deviations from normal conditions. A goal
was then autonomously generated by the encoded information about how things should be, e.g., if a
bottle of milk was observed on a table, the robot would set a goal by itself and bring the milk into a
fridge. Crespo et al. also presented a reasoning module to infer new knowledge for mobile robots [98].
A relational database used for storing objects and perceiving information was implemented to provide
inference capability based on objects’ links.
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Blodow et al. extracted semantic information by a laser scanner and a high-resolution 2D camera
for a PR2 robot to perform tasks in kitchen environments [99]. Segmentation algorithms were applied
to identify and distinguish certain kitchen facilities and their functional components. The robot was
capable of analysing the task-relevant objects, locating them in the map and acting on them, e.g., using
the handle to open the drawer and close it, as shown in Figure 15.

A semantic map can be inversely utilized to further improve robot localization capabilities.
One basic method is to identify room categories by specific objects. For example, the room is classified
as a kitchen once an oven is found inside. Initial localization errors can be reduced by reasoning about
the expected location of the recognized objects [21]. Ko et al. extended such a method by continuously
searching for other memorized objects as landmarks before referring to spatial relationships, since
one object may not be enough to infer the accurate location [100]. In addition, the times for searching
regions in topological and metric space were largely reduced by discarding the irrelevant areas.
The computational cost in the initial stage during robot localization was thus minimized [89].

Figure 15. Interaction between the robot and the kitchen facilities [99]. Reproduced with permission
from Dr. Pangercic.

6.2. Outdoor Applications

Semantic maps can also be applied to outdoor environments. Wolf and Sukhatme analysed
and classified terrain to resolve issues related to non-navigable areas during path planning [2].
Boularias et al. additionally adopted natural language to command a mobile robot for navigation
in outdoor environments, e.g., “Navigate to the building behind the pole” [101]. Bernuy and Solar
presented a graph-based topological semantic mapping method for autonomous off-road driving [102].

Other applications include self-driving cars and augmented reality (AR). Reasoning about
environments with additional semantic information plays a key role for self-driving cars, since the cars
should be able to recognize roads, pedestrian crossings, humans, traffic lights, etc. However, current
self-driving cars still have difficulty in identifying some kinds of objects, such as trash, which is
harmless, but causes the vehicles to veer unnecessarily. When a police officer signals them to stop, they
may not react accordingly. These problems can be solved by associating the metric map with semantic
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information. With respect to AR, the augmentation should be conventional in semantic context with
environmental elements, e.g., directing the way by virtual paths. Semantic maps are necessary for
identifying objects and destinations in real environments.

7. Conclusion and Discussion

This paper has presented a survey on current semantic mapping system architectures and
the state-of-the-art algorithms. The visual sensor-based approaches to semantic mapping were
first introduced, and the features extracted from images were then detailed. Subsequently, the
recognition and classification methods based on the extracted features were discussed, as well as the
direct segmentation methods. Lastly, the semantic representation strategies and typical applications
were presented.

Although semantic mapping has made significant progress, some challenging problems remain
and can be summarized as follows.

• A 3D visual sensor with high accuracy and resolution is needed for abstracting semantic
information, since a 2D camera is not adequate for the recognition of a wider range of objects and
places. Furthermore, the blurred images produced by low accuracy and resolution 3D cameras
cannot be used for a robot to recognize objects in the real world. Apart from the improvement
of hardware, several software methodologies, such as super-resolution or data fusion, could be
deployed for accurate semantic mapping. Super-resolution is a class of techniques that enhances
the resolution of an imaging system. Data fusion is a process of integrating multiple data and
knowledge representing the same scene in order to produce an accurate output.

• The current feature detectors and descriptors need to be extended in semantic mapping systems.
Although local visual features are robust to geometric transformations and illumination changes,
the features are quite limited to the appearance of objects, such as edges, corners and their relations.
Extracting the semantic inherent characteristic of objects might be a solution, e.g., the legs of a
chair, the keyboard and display of a laptop, etc. Another solution is to abstract the text information
that can normally be found on the packaging of products. The text is quite easy to distinguish
between a bottle of shampoo and conditioner by their labels.

• Classifiers should be adaptive to the dynamic changes in the real world. The current semantic
mapping systems need pre-training and can only recognize the trained objects or certain scenes.
However, the real-world environments are changing dynamically, and object appearances are
changing all the time. Any semantic mapping algorithms need the ability of self-learning to adapt
these changes and recognize new objects. Solutions might be found in deep learning algorithms.

• Semantic mapping systems should be able to detect novelty and learn novel concepts about
the environment continuously and in real time. The conceptual definitions that are initially
encoded by using common sense knowledge should only be used for bootstrapping, which
should be updated or extended based on new experience. For instance, a robot operating in a
home environment should link its actions to rooms and objects in order to bridge the gap between
the metric map and semantic knowledge. Moreover, this conceptual learning performance opens
new possibilities in terms of truly autonomous semantic mapping and navigation. Thus, an
incremental adaptive learning model should be built by using machine learning algorithms.
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