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Abstract

To reveal transition dynamics of global neuronal networks of math-gifted adolescents

in handling long-chain reasoning, this study explores momentary phase-synchronized

patterns, that is, electroencephalogram (EEG) synchrostates, of intracerebral sources

sustained in successive 50 ms time windows during a reasoning task and non-task

idle process. Through agglomerative hierarchical clustering for functional connectivity

graphs and nested iterative cosine similarity tests, this study identifies seven general

and one reasoning-specific prototypical functional connectivity patterns from all syn-

chrostates. Markov modeling is performed for the time-sequential synchrostates of

each trial to characterize the interstate transitions. The analysis reveals that default

mode network, central executive network (CEN), dorsal attention network, cingulo-

opercular network, left/right ventral frontoparietal network, and ventral visual net-

work aperiodically recur over non-task or reasoning process, exhibiting high predict-

ability in interactively reachable transitions. Compared to non-gifted subjects, math-

gifted adolescents show higher fractional occupancy and mean duration in CEN and

reasoning-triggered transient right frontotemporal network (rFTN) in the time course

of the reasoning process. Statistical modeling of Markov chains reveals that there are

more self-loops in CEN and rFTN of the math-gifted brain, suggesting robust state

durability in temporally maintaining the topological structures. Besides, math-gifted

subjects show higher probabilities in switching from the other types of synchrostates

to CEN and rFTN, which represents more adaptive reconfiguration of connectivity

pattern in the large-scale cortical network for focused task-related information

processing, which underlies superior executive functions in controlling goal-directed

persistence and high predictability of implementing imagination and creative thinking

during long-chain reasoning.
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1 | INTRODUCTION

In the field of educational neuroscience, math-gifted adolescents/

children have been drawing much attention on their “atypical”

brain and “atypical” brain functioning (Winner, 2000), which

account for above-normal intelligence and specific talent in math-

ematics, especially exceptional traits in solving long-chain reason-

ing problems (Banfield, 2005). Previous neuroimaging studies

have revealed the major neural characteristics of math-gifted

brain in both structure and functioning, primarily including supe-

rior cognitive controlling functions of the prefrontal cortex (PFC),

highly developed right hemisphere and heightened inter-

hemispheric interaction via the corpus callosum, enhanced frontal

connectivity between the dorsolateral prefrontal cortex (DLPFC)

and premotor cortex, and strengthened anterior–posterior inter-

action in the frontoparietal network during reasoning, visuospatial

imagery or creative thinking tasks (Desco et al., 2011; Myers,

Carey, & Szűcs, 2017; Navas-Sánchez et al., 2014, 2016; Prescott,

Gavrilescu, Cunnington, O'Boyle, & Egan, 2010; Zhang, Gan, &

Wang, 2017). Importantly, the well-developed frontoparietal net-

work, especially increased anatomical connectivity in

frontoparietal association tracts, has been suggested as a crucial

neural correlate of specific giftedness in mathematics indepen-

dent of subjects' high-level intelligence scores (Navas-Sánchez

et al., 2014).

Because of the crucial role in mathematical thinking and problem-

solving, the frontal–parietal network of the math-gifted brain is worth

more in-depth data mining research. Recent findings from dynamic

functional connectivity (DFC) have provided new insight into rapid

fluctuations in the brain network structure underlying discrete epoch

of ongoing cognitive function (Duc & Lee, 2019; Mahyari, Zoltowski,

Bernat, & Aviyente, 2016). Through tracking dynamic interaction

among brain regions during the execution of a task, DFC analysis of

brain network can facilitate a better understanding of sub-second

brain dynamics involved in sensation, perception, high-order cogni-

tion, emotion, mental disorders, and so forth (Dimitriadis, Laskaris, &

Micheloyannis, 2015; Dimitriadis, Laskaris, & Tzelepi, 2013;

Dimitriadis, López, Maestu, & Pereda, 2019; Karamzadeh, Medvedev,

Azari, Gandjbakhche, & Najafizadeh, 2013; Michel & Koenig, 2017).

Being related to the criticality of phase synchrony, metastable interac-

tions or connections within a functional network can flexibly adapt

and continuously evolve from one coordination system to another,

which is supposed to be the neurophysiological basis for cognitive

and behavioral adaption (Allen et al., 2014; Bassett et al., 2011; Bola &

Sabel, 2015; Kitzbichler, Smith, Christensen, & Bullmore, 2009). By

investigating frequency-specific phase synchronizations in the multi-

channel electroencephalogram (EEG) or magnetoencephalogram sig-

nals, some studies have revealed that there are a limited number of

quasi-stable connectivity patterns in functional brain networks (about

100–200 ms), named synchrostates or functional connectivity micro-

states (Baker et al., 2014; Daly, Sweeney-Reed, & Nasuto, 2013;

Dimitriadis et al., 2013; Dimitriadis et al., 2015; Jamal, Das, &

Maharatna, 2013; Jamal, Das, Oprescu, & Maharatna, 2014).

Specifically, these synchrostates undergo interstate transitions follow-

ing a well-defined Markov chain, showing distinctive probabilistic

transition modes in different cognitive tasks or different groups of

populations (Baker et al., 2014; Jamal et al., 2015; Rothmaler &

Ivanova, 2018; Rukat, Baker, Quinn, & Woolrich, 2016).

During the problem-solving process, an exceptional logical capa-

bility is the major characteristic of math-gifted adolescents, especially

the ability to handle long chains of deductive reasoning

(Banfield, 2005). The previous studies on math-gifted adolescents

made use of related measurements from time average or time interval

covering the whole cognitive task period, regardless of the fact that

high-level cognition, such as logical reasoning, usually contains multi-

ple heterogeneous cognitive subprocesses and information processing

stages (Yule, Fox, Glasspool, & Cooper, 2013). From the perspective

of brain microstates, a complex cognitive process is constructed by a

series of focused and momentarily assembled temporal fragments,

and thus brain activity can be divided into a chain of transient and

quasi-stable spatiotemporal activity patterns (Duncan, 2013; Michel &

Koenig, 2017). In some DFC studies, math-gifted adolescents showed

highly adaptive functional network reorganization in both high- and

low-frequency neuronal oscillations while coping with varying cogni-

tive requirements (Zhang, Gan, & Wang, 2014, 2015). Besides, a struc-

tural brain network study has demonstrated that gifted children have

more integrated and versatile topology (Solé-Casals et al., 2019).

Therefore, further time-frequency decomposition of functional net-

works and statistical modeling for the pseudorandom switching rela-

tionship among discrete synchrostates could establish spatiotemporal

patterns of the interstate transition of ongoing brain activity, which

might imply specific rules of the adaptive reorganization of large-scale

neuronal networks related to high-level ability in the persistent

problem-solving process.

Unlike previous sensor-level analysis of EEG synchrostates, this

study extends brain signals to reconstructed cortical sources, for

reducing volume conduction effect on functional network analysis

and better estimating the synchronized activities among intracerebral

cortical regions. On the basis of a single-trial analysis of phase-

synchronized networks for both math-gifted and non-gifted subjects,

time-sequential synchrostates are constructed in consecutive 50 ms

time windows along a 9,000 ms three-stage deductive reasoning task

and a time-matched task-free process. With the consideration of indi-

vidual variability in brain network topology, the agglomerative hierar-

chical clustering (AHC) method is adopted to cluster an individual's

functional connectivity graphs (FCGs). Through further integrating

subject-specific clusters, this study extracts a limited number of general

functional connectivity patterns as the prototypical networks. After

that, nested iterative cosine similarity tests are conducted to reallocate

every synchrostate back to its “optimal” cluster(class) and update the

prototypes, until the prototypical connectivity patterns become stabi-

lized. From interstate transition probability matrices, this study estab-

lishes and statistically compares the Markov chains of synchrostate

sequences formed in different task conditions and subject groups, so as

to further distinguish and discuss the probabilistic transition patterns

specific to the logical thinking process of the math-gifted brain.
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2 | MATERIALS AND METHODS

2.1 | EEG experiment and data acquisition

2.1.1 | Participants

In this study, the math-gifted group was composed of 12 subjects

including nine males and three females aged 16.5 ± 0.7 (mean ± SD),

who were selected from the Science and Engineering Experimental

Class at Southeast University, Nanjing, China. Three basic criteria

were carried out to screen the math-gifted subjects, that is, teachers'

nomination and evaluation on math talent from performance-based

observation, award-winning experience in at least one of some impor-

tant mathematical competitions (e.g., Maths Olympic Competition),

and intelligence test scores on Raven's Advanced Progressive Matri-

ces (RAPM) (higher than 32). The control group consisted of 14 sub-

jects including eight males and six females aged 15.4 ± 0.4

(mean ± SD), who were from the Fourth Nanjing High School and had

average-level mathematical performance in school tests and intelli-

gence scores in RAPM tests. The exclusion criteria for all subjects

included left-handedness, medical, neurological, or psychiatric illness,

and history of brain injury or surgery.

The experiment was approved by the Academic Committee of

the Research Center for Learning Science, Southeast University,

China. Before the experiment, all subjects and their guardians were

informed of the detailed experimental requirements and signed a fully

informed consent form. After accomplishing the experimental task,

the subjects received financial compensation for their participation.

2.1.2 | Experimental task

As a standard type of deductive reasoning, a categorical syllogism task

of verbal-logical type was performed by all the subjects. The task con-

sists of three successive stages, that is, a major premise, a minor

premise, and a conclusion. The major and minor premises are com-

posed of abstract letter items, from which the subjects were asked to

infer the relationship implied between the given items and make a

judgment in the conclusion stage. Neuroimaging studies have identi-

fied that the complex of multiple brain regions, including frontal, pari-

etal, temporal, and occipital regions, is involved in the categorical

syllogism reasoning process (Goel & Dolan, 2001).

In this experiment, there are 64 task trials, composed of 32 valid

and 32 invalid reasoning problems, and 40 non-task baseline trials.

For the reasoning task, each valid trial contains syllogistic sentences

following true logical rules, but in an invalid trial, the relationship

among three syllogistic sentences is illogical, inconclusive, or incorrect.

Besides, the non-task baseline trials consist of the same letter items in

each sentence, in order to just match the time course of the valid and

invalid reasoning trials.

As illustrated in Figure 1, the stimuli for each trial were pres-

ented along the timeline, with the total time length of 9,500 ms. The

valid, invalid, and baseline trials were cross-presented with a pseu-

dorandom probability. Following the presentation of symbol “+” for

1,000 ms and a black screen for 500 ms, the major premise, minor

premise, and conclusion appeared in order on the screen for

3,000 ms, respectively. After the conclusion of a valid or invalid rea-

soning trial had been presented, the subjects were asked to judge

whether the conclusion was correct or not, by pressing “K” for right

and “D” for wrong. When a baseline trial with the same letter items

was shown, the subjects just needed to quietly stare at the screen

until the end of the entire presentation, without the requirement of

conscious thought about the relationship between letter items.

Before the formal experiment, a practice procedure containing 15 tri-

als equally allocated for the three types was performed by the sub-

jects. After that, they could decide to quit, practice again, or start

the formal procedure. In the middle period of the task course, there

was a pause when subjects could decide the time for a short break

to avoid mental fatigue. For each subject, the total time length of the

experimental task was about 30 min.

F IGURE 1 Timeline of
stimulus presentation of a
categorical syllogism task. Top to
bottom: examples of a valid
reasoning trial, an invalid
reasoning trial, and a non-task
baseline trial
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2.1.3 | Data recording and preprocessing

The EEG data were recorded by the Neuroscan international 10–20

system with 1,000 Hz sampling rate and 60 electrodes covering fron-

tal, parietal, temporal, and occipital regions. Besides, there were two

reference electrodes placed on the bilateral mastoids. In order to

monitor ocular movements and eye blinks, four surface electrodes

were used to simultaneously record electrooculographic (EOG) signals,

one pair of which was placed over the higher and lower left eyelids

and the other pair was placed 1 cm lateral to the outer corner of the

left and right orbits.

The raw EEG data were preprocessed by the Scan 4.3 software.

The continuous signals were preliminarily band-pass filtered within a

frequency band of 1–100 Hz. Each trial was extracted within a time

window of 9,500 ms, with 500 ms for the pre-stimulus time interval

and 9,000 ms for the poststimulus period. The baseline correction

was performed following the pre-stimulus time interval. According to

an EEG-vertical EOG covariance analysis (i.e., a linear regression pro-

cedure), ocular artifacts were reduced by performing point-by-point

proportional subtraction of the blinks. Besides, the trials contaminated

by eye blinks and electrocardiogram noise were excluded through arti-

fact rejection with a threshold of about 50–75 μV. After notch filter-

ing for the removal of 50 Hz line noise, the independent component

analysis of the EEGLAB toolbox was run in a trial-by-trial manner,

whereby the independent components (ICs) related to visible artifacts

were cleared, such as the ICs of ocular and muscle movements

(Delorme & Makeig, 2004). As a result, the original EEG data were

decomposed into 60 ICs, in which 0–4 ICs were detected and

removed for each subject. Finally, 261 reasoning and 234 baseline tri-

als were retained for the math-gifted subjects, and 336 reasoning and

265 baseline trials were available in the non-gifted group, of which

16–35 trials were retained for each subject under each condition.

2.2 | Constructing synchrostate sequences from
time-segmented source signals

To establish a sequence of momentarily assembled states of large-

scale neuronal oscillatory activity, each trial was parsed into 180 dis-

crete epochs, in which phase-synchronized networks of cortical

sources sustained for every 50 ms time windows (i.e., synchrostates)

were constructed along the reasoning task course and the task-free

baseline process. For accurately detecting state-dependent functional

connectivity and its fluctuations that constitute a complete cognitive

process, single-trial source data were used in the analysis of phase-

locking statistics, with consideration of trial-to-trial variation in brain

activities (Lachaux, Rodriguez, Martinerie, & Varela, 1999).

2.2.1 | Cortical source transformation

It has been demonstrated that the source-based construction of

phase-synchronized networks could well reduce volume conduction

effect on the estimation of authentic functional connectivity of the brain

network (Langer et al., 2012; Schmidt, Ghuman, & Huppert, 2014). A

source transformation procedure in the Brainstorm toolbox was exe-

cuted to reconstruct the intracerebral sources of EEG signals in the man-

ner of entire trials (http://neuroimage.usc.edu/brainstorm; Tadel, Baillet,

Mosher, Pantazis, & Leahy, 2011). Here, the EEG recording from the

scalp sensors was assumed to be composited by a block of electric

dipoles at the surface of the cortex of a template MNI brain (“ICBM152”

nonlinear atlas). After setting the layers (head, outer skull, and inner skull)

and the relative conductivities of each layer, the forward model

(i.e., volume conduction modeling for all subjects) was obtained according

to a symmetric Boundary Element Model in OpenMEEG software

(Gramfort, Papadopoulo, Olivi, & Clerc, 2010). The forward model is also

called leadfield matrix (number of sensors × number of sources) related

to the activity of the sources to the sensor data. Then, for each individ-

ual's trials, the noise of scalp sensors was removed based on the noise

covariance matrix of signals in the pre-stimulus interval. The solution to

the inverse problem was to estimate the activity of the dipoles described

by the forward model. Here, the “illposedness” of the source modeling,

that is, using 60 spatial measurements (the number of sensors) as input

to estimate the activity of hundreds of dipoles, was dealt with minimum-

norm estimation (MNE) by introducing a regularizer or prior in the form

of a source covariance that favors minimum energy solutions. By using

standardized Low-Resolution brain Electromagnetic Tomography

(sLORETA) as the normalization method, the MNE current density map

was normalized at each time point. As a result, the sources were mapped

to a distributed model composed of 151 dipoles uniformly covering the

surface of dorsal and ventral cortices, which were used as the fundamen-

tal nodes for the following functional brain network analysis.

2.2.2 | Phase-locking value of γ-band source
signals

Phase lock representing synchronization of oscillations is a usual mea-

surement to estimate information integration in the brain, since in

phase-locking state the communication windows for input and output

between neuronal groups may be open at the same time (Fries, 2005).

It is also suggested that a synchronization relationship measured

between two neuroelectric signals is derived from true interaction

between their corresponding neural sources (Vinck, Oostenveld,

Wingerden, Battaglia, & Pennartz, 2011).

After filtering the source signals in a low γ frequency band

(30–45 Hz), one of the most relevant frequency bands of cognitive

task processing (Duc & Lee, 2019), through linear finite response filter,

we computed phase-locking value (PLV) for pairwise time series. Neu-

ronal population oscillating in the γ frequency range can mediate

large-scale integration through entering into precise phase-locking

activity over a limited period (Lachaux et al., 1999). Besides, γ-band

oscillation has also been suggested to be highly involved in various

cognitive functions, such as sensation, perception, working memory

load, high-order cognition, and so forth. (Herrmann, Fründ, &

Lenz, 2010; Howard et al., 2003). Moreover, γ-band phase
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synchronization is considered as the important building blocks of the

electrical activity of the brain, by undertaking important feature bind-

ing function among neuronal populations that underlies a large-scale,

transient, and state-dependent functional neurocognitive network

(Doesburg, Roggeveen, Kitajo, & Ward, 2008). More importantly, pre-

vious dynamic brain network studies have found that the γ-band syn-

chronization network exhibits the highest global synchronizability and

temporal lability of topological reorganization in the fractal small-

world networks of the human brain (Bassett, Meyer-Lindenberg,

Achard, Duke, & Bullmore, 2006).

In the definition of PLV (Lachaux et al., 1999), x(t) and y(t) represent

two time series with equal length, and ∅x(t) and ∅y(t) refer to the instan-

taneous phases of x(t) and y(t), respectively. Phase synchrony indicates

the locking of ∅x(t) and ∅y(t) associated with each signal, that is, |∅x(t)

− ∅y(t)| = const. Here, the phase of a signal can be acquired by the Hil-

bert transform (HT) that constructs an analytical signal H tð Þ= x tð Þ+ i~x tð Þ,
where ~x tð Þ representing the HT of x(t) is obtained according to

~x tð Þ= 1
πPV

Ð∞
−∞

x t0ð Þ
t−t0 dt

0 (PV is the Cauchy principal value). The phases of

x(t) and y(t) are obtained by ∅x tð Þ= arctan~x tð Þ
x tð Þ and ∅y tð Þ= arctan~y tð Þ

y tð Þ ,

respectively. Then, the bivariate metric PLV is produced from

PLV =
1
M

XM−1

j=0

expði ∅x jΔtð Þ−∅y jΔtð ÞÞð Þ
�����

����� ð1Þ

Here, Δt is the sampling period and M refers to the number of

sample points of a signal in a specified time window. PLV is always

represented by a value between 0 and 1, where 0 signifies purely ran-

dom rise and fall whereas 1 indicates that one signal perfectly follows

the other (Sakkalis, 2011).

In every 50 ms time window, a PLV association matrix was com-

puted for each pair of source signals to produce a functional connec-

tivity network (a synchrostate). Thus, a sequence composed of

180 continuously evolving synchrostates was formed for each trial.

By integrating the synchrostates across all time windows and all trials

of a subject, under non-task or reasoning condition, this study con-

structed a set of individual synchrostates with the size equaling (num-

ber of trials) × (number of time windows), as shown in Figure 2.

2.2.3 | AHC for individual graphs

For each PLV association matrix of size 151 × 151, an adjacent matrix

can be acquired by applying a fixed connection density pden = 2lnn/n

defined by the Erd}os-Rényi model (Erd}os & Rényi, 1961), where n is

the number of nodes. Then, the undirected graphs of synchrostates

are obtained from the time-sequential adjacent matrices. From a set

of graphs, a limited number of prototypical connectivity patterns,

manifested as the repetitive occurrence in temporal sequence, can be

reliably identified.

In a binary FCG, let N be the set of all the nodes in a network and

(i, j) represent the edge between nodes i and j (i, j � N; i 6¼ j). If there is

a connection status between nodes i and j, Aij = 1; otherwise, Aij = 0

(Bullmore & Sporns, 2009). Based on the connectivity matrix defined

F IGURE 2 Flow diagram of classifying synchrostates and producing prototypical functional networks
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by Aij, node degree centrality is equal to the number of connections

linked to node i:

ki =
X
j�N

Aij ð2Þ

As the most fundamental measure of functional connectivity

within a brain connectome, node degree centrality quantifies the

structural importance of a node with respect to the rest of the net-

work, especially stronger effects within its own cluster. A node with

high degree centrality can be viewed as a provincial hub in a network

(Sporns, Honey, & Kötter, 2007; van den Heuvel & Sporns, 2013).

Complex brain networks show “heavy-tailed” degree distributions,

that is, a small number of nodes having high degree centrality (van

den Heuvel & Sporns, 2013). Thus, nodal degree maps were thought

to ideally represent local maxima of connection in global neuronal

networks.

In the clustering process, we used thresholding FCGs as the topo-

graphic features to group these synchrostates. Compared with non-

thresholding association matrices, FCGs better represent authentic

functional connectivity status, because of the small-world properties

of brain networks. Besides, FCG is the binary pattern of the associa-

tion matrix, where vertices are separated into two disjoint sets. There-

fore, FCG is expected to gain better data classification performance in

accuracy and speed. As illustrated by the flow diagram in Figure 2, for

each set of synchrostates, all synchrostates are represented as a S × v

matrix, where S is the number of observed states and v the feature

vectors transformed from FCGs. According to the fixed connection

density pden (~0.665) of a 151-node network, the number of connec-

tions retained in a FCG is about 753. Using the binary FCGs as the

topographic features, the AHC procedure groups these synchrostates

into a small number of classes (clusters). Each cluster has a representa-

tive connectivity pattern, that is, a prototypical network, which is

constructed from the FCG of the averaged association matrix from

the synchrostates assigned into the cluster.

Considering individual variability in functional network topology,

the clustering procedure was first performed on the basis of an indi-

vidual's synchrostates. While using a spatial clustering method to

identify prototypical topologies of states, the crucial problem is to

determine the number of clusters, which is necessary for both captur-

ing the informative features of the data and avoiding over- or under-

fitting (Jamal et al., 2013; Michel & Koenig, 2017). Here, the initial

number of clusters was set to 15 possible functional connectivity pat-

terns, which were supposed to cover primary large-scale brain net-

works and cognition-related local subnetworks revealed by previous

neuroscience research (Bressler & Menon, 2010). Thus, the AHC pro-

cedure grouped the synchrostates for each subject under a condition

into 15 clusters, which produced 15 subject-specific prototypical net-

works. Then, for all subjects, we collected these individual prototypi-

cal networks to form a common set, which were then reclassified by

the AHC method according to their FCGs. As a result, 15 general pro-

totypes across subjects were obtained. According to the cosine simi-

larity between the nodal degree maps of every two general

prototypical networks, the synchrostates from different clusters with

high similarity (higher than 0.9) were merged into one larger cluster,

and the clusters with too few synchrostates were removed (Figure 2).

2.2.4 | Cosine similarity tests for reallocating
synchrostates into optimal clusters

After preliminarily determining the clusters and prototypical network

topologies, the classes of synchrostates were iteratively updated by

reassigning every synchrostate back to a cluster. As illustrated in the

flow diagram of Figure 3, cosine similarity tests were performed

between the FCGs of every synchrostate and the prototypical

F IGURE 3 Flow diagram of
the nested iterative cosine
similarity tests for reallocating
synchrostates

6 ZHANG ET AL.



network of each cluster. According to the maximal cosine similarity

with a certain prototype, each synchrostate was reassigned to its

corresponding cluster. After that, for the clusters with synchrostates

updated, the intra-cluster similarity (i.e., consistency of node central-

ity) between pairwise nodal degree maps of synchrostates was statis-

tically compared with that of original clusters. If intra-cluster similarity

could be significantly improved after the reallocation (p < .05 in statis-

tical test), the prototype of the cluster got updated as the result of the

mean topology of its reassigned synchrostates. These steps were iter-

atively executed until there was no further significant improvement of

the intra-cluster similarity of node centrality.

After the reallocation procedure, the coefficient of variation

(CV) (relative standard deviation) of inter-node PLVs in the functional

networks within each cluster was computed to test the topological

consistency of the synchrostates labeled with a same class. CV refers

to the ratio of the SD of data to the mean value, which is a standard-

ized measure characterizing dispersion degree of a distribution. By

measuring the extent of variability in relation to the mean of PLVs, CV

used here can quantify the variability of internodal phase synchroniza-

tions in synchrostates finally assigned into a same cluster.

2.3 | Markov chain modeling for synchrostate
transitions

The temporal sequence of mental activity can be described as a Markov

process, which predicts the probabilities of a number of discrete states

recurring or switching among themselves at different time points

(Gärtner, Brodbeck, Laufs, & Schneider, 2015; van de Ville, Britz, &

Michel, 2010). Several studies have investigated transition probabilities

between phase-synchronized states on a sub-second temporal scale,

clearly demonstrating the Markovian property and pseudorandom

switching relationship between finite network-level brain states (Baker

et al., 2014; Daly et al., 2013; Dimitriadis et al., 2015, 2019).

2.3.1 | Markov process of time-sequential
synchrostates

Markov model describes the underlying dynamical nature of a system

that follows a chain of linked states, where what happens at any time

instant depends only on the preceding one (Gagniuc, 2017). In the

Markov chain modeling for synchrostate transitions during the deduc-

tive reasoning and the task-free processes, the first-order transition

matrices were estimated in a probabilistic framework. According to

discrete-time Markov chain theory (Jarvis & Shier, 1999), a finite num-

ber (m) of inferred states, {S1, S2, …, Sm}, that evolve in discrete time

with a time-homogeneous transition structure can be mathematically

represented by either its m-by-m transition probability matrix P or its

directed graph (digraph) D. Here, the inferred states represent the

prototypical synchrostates from all clusters. A feasible transition is the

one whose occurrence probability is greater than zero. The probability

of transition from the node (state) a to node b is defined as

pab =Nab=
X
b

Nab

 !
,a= 1,2,…,m,b= 1,2,…,m ð3Þ

where Nab is the number of transitions from node a to node b. Obvi-

ously, the sum of the transition probabilities along each row of the

transition matrix p equals one. The complete digraph of a finite-state

Markov process has edges with transition probabilities between every

node a and every other node b. Here, nodes refer to prototypical syn-

chrostates in the Markov chain. In the digraphs created in this study,

if pab is less than a threshold of 0.1, the edge connecting syn-

chrostates a and b is removed in order to clearly show strongly con-

nected components of a digraph. In addition, the digraphs include

self-loops with nonzero probability paa of transition from synchrostate

a back to itself (Häggström, 2002).

2.3.2 | Temporal measurements and statistical
tests

For further quantitatively assessing inter-synchrostate transition pat-

terns, relevant temporal measurements were extracted from the Mar-

kov chain structures of all single-trial synchrostate sequences,

including (a) fractional occupancy (occurrence rate) for each class of

synchrostates (i.e., the ratio of the number of distinct synchrostates of

a given class to the total 180 time windows of a trial), (b) mean dura-

tion (i.e., averaged length of time windows lasted for a given network

topology during a trial, and (c) transition probabilities of a given syn-

chrostate to any other functional connectivity states. The three mea-

surements were statistically compared by the analysis of variance

(AVOVA) between task conditions and between subject groups. Spe-

cifically, transition probabilities were tested by the bootstrapped

ANOVAs with 1,000 repeated times of random resampling, for

assessing the extent to which the differences identified from the Mar-

kov process were robust. A false discovery rate (FDR) correction was

executed for multiple hypothesis tests in comparing every entry of

the transition probability matrices. Besides, between-subjects behav-

ioral data were tested by the ANOVA. The null hypothesis is that

there is no difference between conditions or groups, with a signifi-

cance level being .05.

3 | RESULTS AND DISCUSSION

3.1 | Behavioral performances

A significant group difference was first found in the RAPM test. The

math-gifted group exhibited an exceptional level in the testing score,

whereas that of the control group was in a normal range (math-gifted

vs. non-gifted: 33.5 ± 0.7 vs. 23.7 ± 4.3; ANOVA: p < .0001). While

performing the reasoning task, the math-gifted adolescents out-

performed the control subjects in terms of average response accuracy

(math-gifted vs. non-gifted: 75.32 ± 12.50% vs. 65.20 ± 15.32%) and
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reaction time of correct responses (math-gifted vs. non-gifted:

837 ± 525 ms vs. 949 ± 610 ms; ANOVA: p = .0465).

3.2 | Prototypical networks representing
synchrostates within different clusters

The time-segmented source signals resulted in 107,460 synchrostates

during the reasoning process and 89,820 synchrostates in the non-

task idle period. Through the clustering procedure and the iterative

similarity tests, these short-time phase-synchronized networks were

finally separated into different sets of connectivity patterns. Figure 4

shows the changes of intra-cluster similarity of node centrality of syn-

chrostates, which ended up with the 19th iteration for non-task con-

dition and the 12th iteration in reasoning condition.

3.2.1 | General and specific prototypes of
synchrostates

The synchrostates assigned into different clusters can be represented

by eight prototypical networks. Particularly, seven prototypes are

common to non-task idle state and reasoning process, with hub nodes

corresponding to the key cortical regions of several well-known fun-

damental neurocognitive networks, as shown in Figure 5:(a) Syn-

chrostate A: default mode network (DMN). Its hub nodes are primarily

distributed at the posterior cingulate cortex, medial PFC, and angular

gyrus, with relatively uniform distribution of degree centrality and

intensive long-distance synchronizations between medial PFC and

PPC (Figure 5a); (b) Synchrostate B: central executive network (CEN).

Its key nodes remarkably gather around the DLPFC of left and right

cerebral hemispheres, showing dense connections within the DLPFC

and interhemispheric interaction (Figure 5b); (c) Synchrostate C: dorsal

attention network (DAN). It comprises functionally connected brain

regions including visual motion area, frontal eye fields, superior parie-

tal lobule, intraparietal sulcus, and ventral premotor cortex (Figure 5c).

(d) Synchrostate D: cingulo-opercular network (CON). It is also

referred to as a “salience” network. The provincial hubs of CON are

mainly located at anterior insula (AI)/operculum, dorsal anterior cingu-

late cortex (dACC), and thalamus, accompanying with strengthened

phase synchronization activities among them (Figure 5d); (e) syn-

chrostate E and (f) synchrostate F: left and right ventral frontoparietal

network (lVFPN/rVFPN). Regions of the two ventral networks com-

prise dACC and AI, and extend to left and right temporoparietal junc-

tion, respectively (Figure 5e,f); (g) Synchrostate G: ventral visual

network (VVN). The ventral visual pathway originates from primary

visual cortex V1, goes through visual area V2, then through visual area

V4, and to the inferior temporal cortex, which processes visual infor-

mation input of stimulus (Figure 5g). Additionally, an extra cluster was

extracted from the synchrostates in the reasoning process, which is

(h) Synchrostate H: right frontotemporal network (rFTN). Its central

nodes are located at medial and right PFC, dACC, right precentral

gyrus, right inferior frontal gyrus, and right temporal pole, with syn-

chronization activity extending to the parietal cortex (Figure 5h).

Furthermore, Figure 6 presents the sequential cortical current

maps over the non-task and reasoning process. At the time points

of peaks and major waveforms of event-related potential (ERP)

components, the responses of sources exhibit spatial correspon-

dence with the nodal degree distribution of prototypical networks.

Provincial hubs in a brain network represent converged points for

information integration across many different vertices and systems.

The spatial correspondence between prototypes of synchrostates

and grand average ERP microstates means that the temporal

dynamics of the topology of hubs nodes can be predicted and

reflected by general neural activation patterns of oscillation ampli-

tude (power).

F IGURE 4 Boxplots of intra-cluster similarity of node centrality in iterative tests for each cluster of synchrostates under (a) non-task idle
state and (b) reasoning process. The 19th and 12th tests achieved the optimal intra-cluster similarity in the non-task and reasoning process,
respectively
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3.2.2 | Topological similarity of intra-cluster
synchrostates

For each cluster, the prototypical network was actually constructed

from the averaged PLV matrices of all intra-cluster synchrostates. By

this way, inter-synchrostates variations in phase synchronizations

among brain areas are weakened but relatively consistent intercon-

nections across synchrostates can get strengthened. The CVs of inter-

nodal phase synchronizations were mapped into the source space, in

which the synchronized activities with less variability (<0.4) were rep-

resented by the links in a topological structure, as shown in Figure 7.

It should be noted that the topological mapping of internodal CVs

shows spatial correspondence with the connections of the prototypi-

cal networks (Figure 5). The result demonstrates that our clustering

and reallocation procedures for classing synchrostates well keep the

topological consistency of synchrostates separated into different

clusters.

3.3 | Recurrent synchrostates underlying
fundamental cognitive functions

According to the matrices of interstate transition probabilities, the

digraphs of the Markov chain structures with all linked synchrostates

were constructed for non-task idle state and reasoning process,

respectively (Figure 8).

In the state transition process of the non-task period, all the types

of synchrostates exhibit the characteristic of aperiodical recurrence,

which represents the property of being accessible from all states that

are accessible. Thus, the Markov chain can be represented by the set

F IGURE 5 Prototypical functional brain networks representing synchrostates within different clusters. During the non-task idle state and
reasoning process, the topologies of the prototypical networks correspond to (a) default mode network (DMN), (b) central executive network
(CEN), (c) dorsal attention network (DAN), (d) cingulo-opercular network (CON), (e) left ventral frontoparietal network (lVFPN), (f) right ventral
frontoparietal network (rVFPN), and (g) ventral visual network (VVN). Besides, an extra (h) right frontotemporal network (rFTN) was formed in the
reasoning task course. In a prototypical network, each red ball represents a node, whose diameter is directly proportional to the nodal degree
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of {DMN, CEN, DAN, CON, lVFPN, rVFPN, VVN}. The seven syn-

chrostates have relatively even probabilities in occurrence during the

non-task idle process (10.2–17.5%) (Figure 8a), in which the fractional

occupancy of DMN, DAN, and VVN has achieved nearly half of the

total time windows (16.4, 17.5, and 15.7%). In the reasoning process,

the occurrence of different synchrostates has been moderately chan-

ged. The fractional occupancy of DMN, CON, lVFPN, and rVFPN is

significantly dropped to 14.3% (ANOVA: p = .0010), 8.7% (ANOVA:

p < .0001), 11.7% (ANOVA: p = .0237), and 12% (ANOVA: p = .0157),

respectively (Figure 8c). Although there is no significant change in

CEN and DAN from the non-task to the reasoning process, the inter-

state transitions occurring from other synchrostates toward CEN and

DAN become more frequent (Figure 8c,d).

As the large-scale intrinsic networks in the human brain, DMN,

CEN, DAN, VVN, and ventral attention system have been identified as

fundamental to cognitive functions of the brain (Sridharan, Levitin, &

Menon, 2008). Therefore, it is not surprising that the six networks

aperiodically recur in both the non-task and reasoning processes. As a

well-known functional network responding to high-level cognitive

functions, CEN plays a crucial role in maintaining and using the infor-

mation in working memory, problem solving, and decision making.

DMN is sometimes referred to as the task-negative network, since

the response in DMN usually proportionally and antagonistically

relates with the demands of general external cognitive tasks. By con-

trast, as the task-positive network, DAN typically responds to activa-

tion increase to attention-demanding tasks (Calhoun & Adali, 2012;

F IGURE 6 Sequential cortical current maps at major peaks and waveforms of grand average ERP during (a) non-task and (b) reasoning
processes
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Menon, 2012). The opposite relationship in response activation can

be observed in this study from the temporal measurements of syn-

chrostates. The fractional occupancy of DMN is decreased from non-

task idle state to the reasoning process, whereas increase can be found

in the averaged occurrence of DAN (Figure 9a). On the other hand,

DAN and ventral attention network constitute two sensory orienting

systems in the human brain. While DAN mediates the top-down atten-

tional control, the ventral frontoparietal network (VFPN) constitutes a

bottom-up ventral attention system that might be involved in detecting

unexpected stimuli and driving shifts of attention focus (Erel &

Levy, 2016). It should be noticed that focused attention will inhibit the

activity of VFPN to prevent reorienting to distracting events (Farrant &

Uddin, 2015). From Figure 9a, we can find that the fractional occu-

pancy of DAN is also opposite to those of lVFPN and rVFPN,

manifested as the promotion in DAN but the inhibition in lVFPN and

rVFPN from non-task to reasoning process. Besides, VVN is responsible

for processing sensory input from multiple sensory modalities (Foley &

Matlin, 2015), and it is usually described as the “what” stream related

to object recognition and form representation. The connections in VVN

are extended to the medial temporal lobe that stores long-term mem-

ory information (Schneider, 1969).

Specifically, the occurrence of CON is also dropped from non-

task to the reasoning process, when CON becomes a transient state,

as well as the reasoning-triggered rFTN with the lowest fractional

occupancy (8%). Previous studies suggest that the functional role of

CON is particularly difficult to characterize because of its pervasive

activity and frequent co-activation with other control-related net-

works. It is likely that tonic alertness (i.e., sustained attention) is a fun-

damental function of CON, which refers to a sustained and

endogenously maintained top-down controlling process (Coste &

Kleinschmidt, 2016; Sadaghiani & D'Esposito, 2014; Vossel, Geng, &

Fink, 2014).

In the non-task process of the brain, the recurrent synchrostates

DMN, CEN, DAN, CON, lVFPN, rVFPN, and VVN exhibit interactively

reachable transitions (Figure 8a), indicating the deterministic occur-

rence of these fundamental network topologies. While in the reason-

ing condition, the transient synchrostates, CON and rFTN, can also

access the recurrent functional networks via rapid topological reorga-

nization, clearly demonstrating the high predictability of the recruit-

ment of DMN, CEN, DAN, lVFPN, rVFPN, and VVN, while being

involved in the cognitive or non-task process (Figure 8a,c).

3.4 | Transient rFTN mediating imagination and
creative thinking

The occurrence of rFTN is less than what the other recurrent func-

tional networks occupy in the time domain (Figure 8c). Besides the

F IGURE 7 Topological mapping of internodal CVs from the synchrostates belonging to eight clusters. (a–h) refer to default mode network
(DMN), central executive network (CEN), dorsal attention network (DAN), cingulo-opercular network (CON), left ventral frontoparietal network
(lVFPN), right frontotemporal network (rVFPN), ventral visual network (VVN), and right frontotemporal network (rFTN), respectively. In each
topological map, the lines represent internodal CVs less than 0.4
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low fractional occupancy, the network has been less likely reached by

other states and there is little return from its accessing states. Therefore,

it is identified as a “transient” class in theMarkov chain. Baker et al. (2014)

suggest that the occurrence of transient states might be a representation

of temporal variability in the functional connectivity of brain network. In

a Markov chain, transient states are usually unpredictable and eventually

switch to recurrent states (Häggström, 2002).

It is noteworthy that rFTN only emerges in the reasoning process.

Although taking up the lowest proportion in the total time windows,

rFTN has special significance for high-level logical thinking activity.

While engaging in cognitive processing, the frontal lobes can be seen

as responsible for idea generation, and the temporal lobes play an

important role in idea editing and evaluation (Flaherty, 2005). There is

a common opinion that the right hemisphere is dominant for geomet-

ric and visuospatial analysis and is also highly involved in mathemati-

cal reasoning and creativity (Joseph, 1988). In a longitudinal functional

magnetic resonance imaging study, alteration of rFTN clusters includ-

ing the right DLPFC and temporal areas has been found to predict

enhanced creative ability of the brain, especially in longitudinal gains

(Chen et al., 2016). These pieces of evidence suggest that the sporadic

recruitment of rFTN in the reasoning process might be responsive for

high-order thinking activity.

3.5 | Specific Markov process of synchrostate
transitions in the math-gifted brain

In the statistical analysis of the temporal measurements in syn-

chrostate transitions, there is no significant between-conditions differ-

ence in CEN (Figure 9). However, the between-groups comparisons

reveal differential Markov process of mental activities responding to

non-task or logical reasoning, involving synchrostate transition mode

general to high intelligence or specific to the talent in mathematics.

3.5.1 | Temporal superiority in maintaining CEN
and rFTN topologies

Within 180 time windows of a cognitive process, the allocation of

brain network resources for the dominance of DMN, CEN, VVN, and

rFTN is significantly different between math-gifted and control groups

in terms of fractional occupancy and mean duration (Figure 9).

Compared to the average-ability control subjects, the math-gifted

adolescents had less occurrence and shorter duration of DMN during

non-task (ANOVA: p = .0025 for fractional occupancy; p < .0001 for

mean duration) and reasoning process (ANOVA: p < .0001 for

F IGURE 8 Digraphs and matrices of transition probabilities during (a, b) non-task idle state and (c, d) reasoning process. In the digraphs, each
synchrostate in a Markov chain is marked as a node. The number beside each state refers to fractional occupancy, and directed edges indicate
strong transitions with probabilities greater than .1. The colors of edges (a, c) and matrix elements (b, d) represent normalized transition
probabilities (i.e., the sum of each row of p equals 1), with the values indicated in the corresponding color bars
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fractional occupancy; p < .0001 for mean duration). As the task-

negative network, DMN is commonly activated in unfocused activity

on the outside world when the brain is at wakeful rest, but it is usually

deactivated in goal-oriented tasks (Anticevic et al., 2012; Broyd

et al., 2009). The less temporal occurrence and duration of DMN in

the math-gifted brain means more task-relevant network topologies

have been organized in the limited time frame of cognitive processes.

Conversely, the math-gifted adolescents show more frequent

recruitment and longer duration of CEN in both the processes, as

compared to non-gifted subjects (ANOVA: p = .0048 for fractional

occupancy and p < .0001 for the mean duration in non-task condition;

ANOVA: p < .0001 for fractional occupancy and p < .0001 for the

mean duration in reasoning condition). Previous studies have consis-

tently demonstrated higher-level cognitive control and executive

attention of the math-gifted brain (Desco et al., 2011; Zhang

et al., 2015). In line with the conclusion, the math-gifted adolescents

outnumbered the controls in the baseline-to-reasoning increase

(Figure 9a), strongly suggesting more active recruitment of the central

executive controlling system in the reasoning process. Moreover, the

superior executive functions of the math-gifted adolescents involved

in reasoning were reflected by the behavioral data, in which they

achieved higher mean response accuracy and significantly shorter

reaction time for accomplishing the reasoning task than the average-

level control subjects. Besides, there is a covariation tendency in the

feature distribution between the subject's response accuracy and frac-

tional occupancy/mean duration of CEN (Figure 10).

The math-gifted group also outperformed the non-gifted subjects

in recruiting rFTN during the reasoning process, with higher fractional

occupancy (ANOVA: p < .0001) and longer mean duration (ANOVA:

p < .0001) (Figure 9). This finding coincides with previous neuroimag-

ing studies, which have demonstrated that math-gifted adolescents

have a higher reliance on the right-lateral cognitive functions, primar-

ily involving the frontal and temporal lobes, part of the parietal lobe,

and the postcentral gyrus and premotor cortex (Desco et al., 2011;

Prescott et al., 2010). From integrated empirical evidence, the well-

developed cognitive controlling functions of the anterior neural sys-

tem including the PFC, frontal lobe, and the AC are usually viewed as

the neural feature common to high-level general intelligence, an

essential component of mathematical giftedness (Zhang et al., 2017).

In the current study, more frequent recruitment and relatively stable

topology of rFTN might be more specific to the talent in mathematics,

because the cognitive functions in the right-lateral frontal lobe can be

particularly connected to gifted thinking abilities in mathematics,

including spatial information processing, reasoning, and creative think-

ing (Prescott et al., 2010).

3.5.2 | Robust self-loops of CEN and rFTN in state
transitions during reasoning

The temporally stable CEN and rFTN in the math-gifted brain are

manifested as a higher probability in their self-transitions, particularly

in the Markov chain constructed from the reasoning process

(Bootstrapped ANOVAs with FDR correction: p < .05) (Figure 11b).

In a Markov chain, a self-loop representing the transition from

one state back to itself ensures its aperiodicity and forms the basis of

F IGURE 9 Statistical bars of
(a) fractional occupancy and (b) mean
duration in eight classes of synchrostates,
for comparisons between task conditions
and between groups [** indicates
significance level p < .01 in the analysis of
variance (ANOVA) and *p < .05]
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“lazy” chain (Häggström, 2002), which can be ascribed to the state

inertia, durability or persistence. From the perspective of brain net-

work dynamics, a self-loop state indicates the temporal duration of a

network structure being maintained over a sub-second time scale.

Denser self-transitions of CEN in the math-gifted brain are especially

important for goal-oriented persistence and high task commitment

(Navas-Sánchez et al., 2016), by maintaining ongoing information

processing for tasks that require focused efforts and attention toward

achieving the final goal. The result keeps good consistency with the

previous finding that math-gifted adolescents can recruit an enhanced

task-related global neuronal workspace with strengthened synchroni-

zation activity at anterior cortices vertices of the frontoparietal net-

work, by virtue of more effortful cognitive processing (Zhang

et al., 2015). With regard to rFTN, more self-loops in the math-gifted

brain mean high probability in staying at itself, which is beneficial for

information transfer and storage through durational information com-

munication of the transient network pattern.

3.5.3 | Adaptive network reconfiguration toward
CEN and rFTN topologies

The increased transitions from other synchrostates toward CEN and

rFTN in the Markov chain also correlate with more frequent recruit-

ment of the two connectivity patterns in the math-gifted brain. The

parieto-frontal integration theory suggests the crucial role of coordi-

nation of multiple brain regions and information communication

among association cortices in logical reasoning (Jung & Haier, 2007).

Moreover, cognitive functions depend on the adaptive self-

organization of large-scale neuronal assemblies, that is, rapid redistri-

bution of spatial connections in a functional network (Bassett

et al., 2006; Kitzbichler et al., 2009). During the reasoning task of this

study, the functional brain networks of the math-gifted adolescents

show significantly promoted probabilities in reconfiguring to CEN

from DMN, DAN, CON, lVFPN, rVFPN, and rFTN. Additionally, there

are also higher probabilities in switching to rFTN from the other seven

synchrostates in the math-gifted group (Figure 11b). The results indi-

cate higher predictability and certainty of CEN and rFTN organized

during the reasoning process in the math-gifted brain. For the math-

gifted adolescents, the specific Markov process of synchrostate tran-

sitions, that is, the different route of functional network

reconfigurations, indicates greater capacity in driving reorganization

of the large-scale cortical network to better adapt to central executive

controlling function and high-order thinking activity involved in

reasoning.

3.6 | Main limitations

There still may be limitations with respect to the generality of the

methods and findings. The first problem is the single-trial EEG analy-

sis. Conventional microstate functional connectivity is based on grand

average multiple-subject ERP to get stable EEG microstates (ERP com-

ponents). Although single-trial analysis takes account of trial-to-trial

variation in brain activities and provides enough samples in statistical

comparisons, it is inevitable to result in low signal to noise ratio. Sec-

ond, the determination of prototypical network topologies is crucial to

label synchrostates and construct Markov chains. In this study, we

used iterative similarity tests to repeatedly update the prototypes.

The stopping criterion is whether the topological similarity of node

centrality of intra-cluster synchrostates can be significantly improved

in statistical tests after a reallocation. The standard can make sure that

the total data distribution achieves an optimal consistency in separat-

ing synchrostates, but a single cluster may be unable to get the best

intra-cluster consistency. Besides, the AHC clustering procedure

requires the setting of the number of initial clusters, which depends

on the prior knowledge for fundamental large-scale cortical networks

and neurocognitive subnetworks. Data-driven clustering method for

F IGURE 10 Feature distribution and linear regression (a) between the subject's response accuracy and fractional occupancy, and (b) between
response accuracy and mean duration of central executive network (CEN). r refers to the correlation coefficient between two variables
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synchrostates without a prior specification of either cluster number or

network form is worthy to be systematically explored, such as orthog-

onal minimal spanning tree (Dimitriadis, Salis, Tarnanas, &

Linden, 2017). Third, in source trace analysis, we used the MNE to

solve the inverse problem and the sLORETA as the normalization

method of current density mapping. Other classical source transfor-

mation methods, such as linearly constrained minimum variance

beamformer, dipole modeling, or other surrogate analysis method,

should be further tested to cross-validate the reliability of source-

space synchrostate analysis.

4 | CONCLUSION

For the math-gifted adolescents who are of particular concern in the

field of educational neuroscience, it is the first time that transition

dynamics among a limited number of functional neurocognitive net-

works is investigated and the temporal features are extracted for

detecting differences in the brain dynamics related to cognitive ability

levels of advanced mathematical thinking. Instead of usual EEG scalp

potential microstates, large-scale brain networks of cortical sources

are treated as quasi-stable brain states to construct Markov chains of

interstate transitions.

By discretizing phase-lock patterns of ongoing brain activity, our

study has observed episodic and heterogeneous synchrostates fluctu-

ating at the millisecond time scale. The time-sequential synchrostates

contribute to the construction of probabilistic transition models of the

global neuronal networks in both condition- and subject-centered

manner. Neural correlations with mathematical giftedness can be

reflected in the interstate transition patterns during the reasoning

process. The math-gifted adolescents show higher fractional occu-

pancy and mean duration in maintaining CEN and rFTN connectivity

patterns, as well as greater transition capacity both in their self-loops

and from other synchrostates, than their average-ability peers. In the

Markov process of switching functional connectivity states of the

brain network, frequent recurrence of CEN is beneficial for

maintaining attention for task goal, effectively using the information

in working memory and making a correct decision. More occurrence

of transient rFTN promotes the predictability of implementing high-

order spatial processing, imagine and creative thinking.

The Markov chain modeling of synchrostate transition provides

new evidence and extends our knowledge about math-gifted brain

that enhanced functional connectivity in the frontoparietal network is

underpinned by temporally more stable network topology and higher

reorganization capacity from other connectivity patterns. The specific

transition dynamics of connectivity patterns in the frontoparietal net-

work facilitate central executive controlling function and high-order

thinking activity of the math-gifted adolescents while handling the

long-chain deductive reasoning.
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