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Abstract—Three relay selection techniques, aiming at
achieving secure non-orthogonal multiple access in cooperative
energy-harvesting (EH) communications, are proposed and
compared. In the cooperative relaying system, the source
node communicates with multiple users through amplify-and-
forward EH relays in the presence of a passive eavesdropper.
The relay selection is a two-stage strategy, where the first stage
aims at achieving the users’ target data rate, and the second
aims at optimizing the secrecy outage probability. New explicit
analytical expressions for the secrecy outage probability are
derived for three operating scenarios: i) when the channel
state information (CSI) of the eavesdropper is unknown, and
a two-stage conventional relay selection scheme is considered,
ii) when CSI of the eavesdropper is known, and a two-
stage optimal relay selection scheme is used, and iii) when
multiple relays participate in forwarding the signal to the end
users. Monte-Carlo simulations are provided to confirm the
derivations, and the effects of the main system parameters on
its secrecy are investigated. In particular, it is shown that the
optimal relay selection scheme outperforms the conventional
and the multiple-relays schemes in terms of secrecy outage
probability, and that this superiority becomes more obvious
when the number of the relays increases.

Index Terms—NOMA, cooperative communications, energy
harvesting, secrecy outage probability, physical-layer security.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is a promising

technology to enhance the efficiency of wireless commu-

nication systems [1]. The main idea of NOMA is to serve

multiple users with different power levels. More specifically,

the source superimposes the signals of the users in the

same frequency, time and code domains, but with different

power levels. In this way, NOMA opportunistically explores

the multi-user diversity, e.g., users with poor channel con-

ditions are served with higher transmission power levels.
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These users can detect their signals by treating the other

users’ signals as noise. On the other hand, the users with

strong channel conditions can apply successive interference

cancellation (SIC) technique, in which they detect their

own signals by removing the weaker users’ signals [1].1

The impact of NOMA technique on the performance of

communication systems has been investigated in several

works. For instance, [2] demonstrated that NOMA can

achieve better sum-rate and outage performance than the

traditional orthogonal multiple access (OMA) when the

power coefficients and users’ rates are carefully chosen.

A power allocation strategy to maximize the sum-rate in

NOMA systems with quality-of-service (QoS) constraints

was investigated in [3]. The impact of the availability of

the channel state information (CSI) at the source on the

performance of NOMA systems was also studied in [4].

In addition, different forms of cooperative NOMA systems

have been studied in the literature. In [5], it was shown

that NOMA in coordinated direct and relayed transmission

can enhance the system performance compared to NOMA

in non-coordinated transmission. The achievable average

rate of cooperative NOMA systems is analyzed in [6]

for independent Rayleigh fading channels. In the same

context, the outage performance of cooperative NOMA

networks is evaluated in [7], where a simultaneous wire-

less information and power transfer (SWIPT) technique is

adopted at the near users to forward the far user’s signals.

Further work in [8] considered NOMA in multi-antenna

relaying systems, where the relay’s antenna that optimizes

the signal-to-interference-plus-noise ratio (SINR) is selected

to forward the signal; the results in this work demonstrate

the superiority of NOMA over OMA. In [9], the authors

consider a cooperative NOMA system, in which the source

communicates with the users through an energy harvesting

(EH) relay node, and the impact of power allocation on the

considered SWIPT system is investigated. In this direction,

a cooperative SWIPT-NOMA protocol where users near

the source work as EH relays to help the farther users is

proposed in [10].

Moreover, due to the vulnerability of wireless channels,

1Hereafter, a user with stronger channel condition is referred to as
stronger user. Also, a user with poorer channel condition is referred to
as weaker user.
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attention to the issue of security in wireless communica-

tion systems has increased rapidly. Physical-layer security,

which is based on the physical characteristics of the chan-

nels, has been extensively considered to enhance the secu-

rity performance of wireless communication networks. This

concept was introduced in [11], which shows that a secure

communication can be achieved if the eavesdropper/wire-

tap channel is noisier than a legitimate destination/main

channel. Very recently, physical-layer security has been

studied to perform secure transmission in NOMA systems.

In this trend, physical-layer security in NOMA systems was

studied in [12], with the aim to maximize the NOMA se-

crecy rate subject to QoS requirements. In [13], the security

of NOMA in large-scale networks was considered, and new

analytical expressions for the secrecy outage probability

were derived. The security in a downlink NOMA trans-

mission system, in which the users are grouped in clusters

was studied in [14]. The secrecy rate optimization problem

for a downlink NOMA system subject to SIC constraints

has been studied in [15]. Application of NOMA to a multi-

user system with both multi- and uni-cast messages was

investigated in [16]. Since the uni-cast message can be

received by all users, secure NOMA transmission to prevent

multi-cast destinations from decoding the uni-cast signal

has also been considered in [16]. Also, an optimal NOMA

design subject to QoS and secrecy outage constraints was

considered in [17]. In this direction, the secrecy outage

probability of a NOMA system with different transmit

antenna selection schemes was studied in [18].

In this paper, different relay selection schemes are inves-

tigated to enhance the secrecy performance of cooperative

SWIPT-NOMA against any passive eavesdropping attack.

In the considered system, the source and the users have

fixed power supplies. The relays, on the other hand, are

EH nodes that harvest energy from the received source

signal and then amplify-and-forward (AF) this signal to the

users. Three relay selection schemes are considered in this

work. The first is based on scenarios where the CSI of the

eavesdropper channel is unknown at the legitimate nodes,

in which case we study conventional relay selection. The

second relay selection scheme is based on full knowledge

of the main and the eavesdropper’s CSI. Here, an optimal

relay selection scheme is proposed. Thirdly, we consider the

case when multiple relays are used to amplify-and-forward

the source signal to the users.2

Therefore, the major contributions of this work are

twofold. Firstly, novel relay selection schemes are pro-

posed to enhance the secrecy performance of cooperative

SWIPT-NOMA systems for the three aforementioned cases.

Secondly, although the performance analysis of such co-

2It is important to mention that these three cases/schemes are inves-
tigated in order to explain the effect of the channel knowledge on the
system performance, and not simply for comparison purpose. A two-stage
selection strategy is considered in each relay selection scheme. The goal
of the first stage is to realize the users’ target data rate, and the second
stage aims at optimizing the secrecy outage probability at the strongest
user.

operative systems is hard and challenging, in this paper,

new explicit analytical expressions for the secrecy outage

probability are derived for the three relay selection schemes.

Furthermore, the impact of the main system parameters on

the secrecy performance of the proposed relay selection

schemes are examined. Results show that optimal relay

selection outperforms the conventional and the multiple-

relay schemes. It is also shown that increasing the SNR

and the number of relaying nodes enhances the secrecy

performance, whereas an increase of the total number of

users and their target data rates results in a deterioration of

the system security in terms of secrecy outage probability.

Next, Section II describes the system under consideration.

Sections III and IV derive the analytical expressions for the

secrecy outage probability when CSI of the eavesdropper is

unknown or fully known, respectively. Section V, derives

the secrecy outage probability when multiple relays are used

to forward the source message. Numerical and simulation

results are presented and discussed in Section VI. Finally,

the main conclusions of this work are stated in Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a downlink relaying system consisting of a

source transmitter, N EH-AF relays and M legitimate users,

operating in the presence of a passive eavesdropper. Each

node in the system is equipped with a single antenna

and operates in half-duplex mode. The source and users’

equipments have fixed power supplies, while the relays

are EH nodes solely relying on their harvested energy.

Each relay implements a power-splitting EH protocol, as

described in [19], to harvest energy and process information

from the received observations. The channel coefficient

between the source and a relay n is denoted by hsrn , and

the channel coefficients between a relay n and user i and

the eavesdropper are denoted hrnui and hrne, respectively.

The channels are asumed to be independent and identically

distributed (i.i.d.) Rayleigh fading channels.3 The distances

between the nodes are denoted by dsrn (source to relay n),

drnui (relay n to user i), and drne (relay n to eavesdropper).

Due to deep shadowing, the communication in the system is

achieved through the EH-relay node(s), and the direct links

(source to legitimate users, and source to eavesdropper) are

assumed not available, e.g., the users and the eavesdropper

are not in the coverage area of the source. This assumption

has been widely adopted in the literature pertaining to

cooperative systems [22]–[24].

Therefore, the source and the users communicate with

each other over two phases. During Phase-I, following the

principle of NOMA, the source node transmits a superim-

posed signal to the users, which is received firstly by all the

relays. Part of the received signal energy will be harvested

by the relays to charge their batteries using the power

splitting technique, while the other part of the received

3The Rayleigh fading model has been widely considered in the literature
of EH systems, see e.g. [1], [7], [9], [10], [19]–[22].
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signal energy will be allocated for information processing.

The second phase (Phase-II), consists in the forwarding of

signals through AF relaying.

A. First Transmission Phase

In Phase-I, the source transmits the signal using super-

position coding, s =
M∑

i=1

√
αiPsxi, where Ps is the source

power, xi is the signal for user i, and αi is the power

allocation coefficient for user i, with
M∑

i=1

αi = 1. The users

are ordered based on their average channel gains, which in

the considered scenario is the same as path loss. The path

loss does not vary fast compared to the small-scale fading.

Thus, the distance-based users’ ranking can simplify the

design of power allocation and rate adaptation for NOMA.

The application of distance-based users’ ranking in NOMA

systems has been thoroughly discussed in [25]–[28]. With

such ordering, user M is the closest user to the source, and

is thus the strongest one. The observation at the nth relay

is hence given by

yrn = hsrn

M∑

i=1

√

αiPs

dmsrn

xi + nrn , (1)

where m is the path-loss exponent, and nrn is the additive

white Gaussian noise (AWGN) at relay n with variance

σ2
rn

, i.e., nrn ∼ CN
(
0, σ2

rn

)
. We define βrn as the fraction

of the received power allocated for the EH, and (1− βrn)
as the part allocated for the information processing. Conse-

quently, the received signal at the relay’s EH receiver is

y
EH
rn

= hsrn

M∑

i=1

√

βrnαiPs

dmsrn

xi + nrn . (2)

Neglecting the noise power, the harvested energy at relay

n can be estimated as Ern =
TηrnβrnPs|hsrn |2

2dm
srn

, where ηrn is

the EH efficiency and T is the time required to transmit the

signal from the source to the users. The received signal at

the information receiver (IR) of relay n is

y
IR
rn

= hsrn

M∑

i=1

√

(1− βrn)αiPs

dmsrn

xi + nrn . (3)

B. Second Transmission Phase

In Phase-II, the relay transmits a scaled version of the

received signal, xrn = Grn y
IR
rn

, where Grn is the relay gain.

Given that
M∑

i=1

αi = 1, the relay gain is defined by

Grn =

√
√
√
√

Prn

(1−βrn)Ps

dm
srn

|hsrn |2 + σ2
rn

. (4)

where Prn is the harvested power at relay n which is Prn =
ηrnβrnPs|hsrn |2

dm
srn

. Now substituting Prn in (4) we get

Grn =

√
√
√
√

ηrnβrnPs |hsrn |2

(1− βrn)Ps |hsrn |2 + dmsrn
σ2

rn

. (5)

Therefore, the received signals at user ui and at the eaves-

dropper via relay n are given by (6) and (7) respectively,

where nui is the AWGN at user ui with variance σ2
ui

, i.e.,

nui ∼ CN
(
0, σ2

ui

)
, and ne is the AWGN at the eavesdrop-

per with variance σ2
e , i.e., ne ∼ CN

(
0, σ2

e

)
. Similar to the

strongest user in conventional NOMA systems, user M will

carry out SIC, i.e., user M first detects all the other users’

signals and then subtracts them from its observation before

decoding its own message xM .

C. SINR Derivations

The SINR at user M to detect the kth user message, xk,

where 1 ≤ k < M , via relay n, is given by (8). After

all signals are detected successfully, user M removes these

messages and detects its own message, xM , with SINR

given by

γn,M =
(1− βrn)PsG

2
rn
αM |hsrn |2 |hrnuM

|2

G2
rn
|hrnuM |2 dmsrn

σ2
rn
+ dmsrn

dmrnui
σ2

uM

. (9)

Similar to the weak users in conventional NOMA systems,

user k detects its message, xk, by treating the other stronger

users’ messages,
M∑

i=k+1

xi, as noise. Therefore, the SINR

for detecting the messages xj at user k, where j ∈ [1 : k],
using relay n, is given by (10).

The worst-case scenario is taken into account, in which

the eavesdropper always performs SIC successfully and

targets the strong user, i.e., user M , [12]. Therefore, the

SINR at the eavesdropper to detect xM through relay n is

given by

γn,e =
(1− βrn)PsG

2
rn
αM |hsrn |2 |hrne|2

G2
rn
|hrne|2 dmsrn

σ2
rn
+ dmsrn

dmrneσ
2
e

. (11)

Similarly, the SINR at the eavesdropper to detect the kth

user’s signal is given by (12).

In the next three sections, three scenarios are considered

to optimize the secrecy performance of user M , when

only one relay is selected to forward the signal and the

eavesdropper’s CSI is unknown or fully known, or when

multiple relays are chosen to forward the signal.

III. CONVENTIONAL RELAY SELECTION

In this scenario, the CSI pertaining to the eavesdropper

is assumed to be unknown at the legitimate nodes. Conven-

tional relay selection strategy is proposed in this scenario.

The selected relay, active in the second transmission phase,

is the one that can provide the maximum SINR at the

intended user, uM , while at the same time providing the

required data rates to the other users. Hence, the aim of

this scheme is to (i) maximize the SINR at the intended
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yn,ui = Grn

hrnui
√
dmrnui

(

hsrn

M∑

k=1

√

(1− βrn)αkPs

dmsrn

xk + nrn

)

+ nui ,

=

√

(1− βrn)Ps

dmsrn
dmrnui

Grnhrnuihsrn

(
M∑

k=1

√
αkxk

)

+

√

1

dmrnui

Grnhrnuinrn + nui , (6)

yn,e =

√

(1− βrn)Ps

dmsrn
dmrne

Grnhrnehsrn

(
M∑

k=1

√
αkxk

)

+

√

1

dmrne

Grnhrnenrn + ne, (7)

γn,xk−→M =
(1− βrn)PsG

2
rn
αk |hsrn |2 |hrnuM

|2

(1− βrn)PsG2
rn
|hsrn |2 |hrnuM |2

M∑

i=k+1

αi +G2
rn
|hrnuM |2 dmsrn

σ2
rn

+ dmsrn
dmrnuM

σ2
uM

. (8)

γn,xj−→k =
(1− βrn)PsG

2
rn
αj |hsrn |2 |hrnuk |2

(1− βrn)PsG2
rn
|hsrn |2 |hrnuk |2

M∑

i=j+1

αi +G2
rn
|hrnuk |2 dmsrn

σ2
rn

+ dmsrn
dmrnuk

σ2
uk

. (10)

γn,xk−→e =
(1− βrn)PsG

2
rn
αk |hsrn |2 |hrne|2

(1− βrn)PsG2
rn
|hsrn |2 |hrne|2

M∑

i=k+1

αi +G2
rn
|hrne|2 dmsrn

σ2
rn

+ dmsrn
dmrneσ

2
e

. (12)

user, and (ii) serve the other users with their required data

rates.

Firstly, we select a sub-set of the EH-relays (Nr) that

satisfy the following conditions:

Nr =

{

n : 1 ≤ n ≤ N,
1

2
log (1 + γn,M ) > R̄M ,

1

2
log (1 + γn,k) > R̄k,

1

2
log (1 + γn,xk−→j) > R̄k

}

,

(13)

where k ∈ {1, 2, ..,M − 1}, j ∈ {k + 1, k + 2, ...,M} ,

log (.) represents logarithm of base-2, R̄M and R̄k are the

target data rates at user M and user k, respectively, and the

size of Nr is denoted by |Nr|.
From this sub-set Nr, the best relay (n∗) is selected as the

one that maximizes the SINR at user M , hence, γn∗,M =
max {γn,M , n ∈ Nr} .

A. Performance Analysis

Here, we will characterize the secrecy outage probability

for the conventional relay selection scheme. The secrecy

outage probability is the probability that the secrecy rate

is less than a target secrecy rate R0 [29]. Therefore, the

secrecy outage probability in this scheme can be calculated

by

Psop = Pr (|Nr| = 0)
︸ ︷︷ ︸

O1

∪Pr





1 + max
n∈Nr

{γn,M}
1 + γn,e

< ζ, Nr > 0





︸ ︷︷ ︸

O2

,

(14)

where O1 is the probability that all the relays cannot provide

the required data rates to the users, i.e., Nr = ∅, and O2 is

the probability that the secrecy rate at user M is less than

the threshold value Ro, in which ζ = 22Ro .

Lemma 1. From (13), O1 can be found as

O1 =

N∏

n=1

{

1− Pr
(
Rn,M > R̄M

)
M−1∏

k=1

[
Pr
(
Rn,k > R̄k

)

M∏

j=k+1

Pr
(
Rn,k→j > R̄k

)










, (15)

where

Pr
(
Rn,k > R̄k

)
=

∞̂

a3ζk
a1−a2ζk

e
−

(

z+
ζka4z+a5ζk

(z2(a1−a2ζk)−a3zζk)

)

dz,

(16)
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O2 =

N∑

Q=1

{
Q
∑

l=1

Pr (n∗ = l)Pr

(

max
n∈Q

{γn,M} < ζ + γl,eζ − 1 | |Nr| = Q, n∗ = l

)

︸ ︷︷ ︸

S1

}

Pr (|Nr| = Q)
︸ ︷︷ ︸

S2

. (22)

which can be expressed at high SNRs as [19]

Pr
(
Rn,k > R̄k

)
≈ w1J1 [w1] e

−
a3ζk

a1−a2ζk , (17)

where ζk = 22R̄k and J1 [.] is the first-order modified Bessel

function of the second kind [30], and

Pr
(
Rn,k→j > R̄k

)
=

∞̂

b3ζk
b1−b2ζk

e
−

(

z+
ζkb4z+b5ζk

(z2(b1−b2ζk)−b3zζk)

)

dz.

(18)

At high SNRs, (18) can be written as

Pr
(
Rn,k→j > R̄k

)
≈ w2J1 [w2] e

−
b3ζk

b1−b2ζk . (19)

Also, we have

Pr
(
Rn,M > R̄M

)
=

∞̂

c2ζM
c1

e
−
(

z+
ζMc3z+c4ζM
z2c1−c2zζM

)

dz, (20)

which, at high SNRs, can be expressed by

Pr
(
Rn,M > R̄M

)
≈ w3J1 [w3] e

−
c2ζM

c1 . (21)

Proof: The proof is provided in Appendix A.

Lemma 2. O2 in (14) can be calculated using the law of

total probability as in (22), where

Pr

(

max
n∈Q

{γn,M} < ζ + γζ − 1

)

=

∞̂

0

Q
∏

n=1
n 6=l







1−
∞̂

c2(ζ+γζ−1)

c1

e
−

(

z+
(ζ+γζ−1)c3z+c4(ζ+γζ−1)

(z2c1−c2z(ζ+γζ−1))

)

dz







×







ǫ2̂

ǫ1

{

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

}

e−θdθ

+

∞̂

ǫ2

{

1− e
−

(

(ζ+γζ−1)c3θ+c4(ζ+γζ−1)

(θ2c1−c2θ(ζ+γζ−1))

)}

×
{

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

}

e−θdθ

}

dγ.

(23)

At high SNRs, we have

Pr

(

max
n∈Q

{γn,M} < ζ + γζ − 1

)

=

n∑

i=1

Hie
γi

Q
∏

n=1
n 6=l

{

1− w4J1 [w4] e
−

c2(ζ+γiζ−1)
c1

}

×







e

−





γie3
ǫ2+ǫ1

2
+e4γi

(

( ǫ2+ǫ1
2 )

2
e1−e2

ǫ2+ǫ1
2

γi

)





×

(
γie3

ǫ2+ǫ1
2 + e4γi

)
(ǫ2 − ǫ1) e1

(
ǫ2+ǫ1

2

)2
e−

ǫ2+ǫ1
2

γi

((
ǫ2+ǫ1

2

)2
e1 − e2

ǫ2+ǫ1
2 γi

)2

+

n∑

j=1

Hj






1− e

−

(

(ζ+γiζ−1)c3θj+c4(ζ+γiζ−1)

(θ2j c1−c2θj(ζ+γiζ−1))

)




×







1

γi
e
−

(

γie3θj+e4γi

(θ2j e1−e2θjγi)

)

(γie3θj + e4γi) θ
2
je1

(
θ2je1 − e2θjγi

)2












,

(24)

where γi and Hi are the ith abscissa and weight of the nth

order Laguerre polynomial, respectively, [30, eq. (25.4.45)].

The probability that relay l is selected, Pr (n∗ = l) = pl, is

given by

pl =

n∑

i=1

Hie
xi







∞̂

c2x

c1

(c3z + c4) z
2c1

(z2c1 − c2zx)
2 e

−
(

z+
x c3z+c4x

z2c1−c2zx

)







×
Q
∏

n=1
l 6=n






1−

∞̂

c2x

c1

e
−
(

z+
x c3z+c4x

z2c1−c2zx

)

dz







, (25)

which, at high SNRs, is expressed as

pl =

n∑

i=1

Hie
xi×






4γMc3J0

[√
4γMc3

c1

]

e
−

c2x

c1

2xc1
+

c2xw5J1

[√
4γMc3

c1

]

e
−

c2x

c1

c1






×
Q
∏

n=1
l 6=n

(

1−
√

4xc3
c1

J1

[√
4xc3
c1

]

e
−

c2x

c1

)

, (26)
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where xi and Hi are the ith abscissa and weight of the nth

order Laguerre polynomial, respectively, [30, eq. (25.4.45)].

In addition, S2 in (22) can be calculated using

Pr (|Nr| = Q) =

(
N

Q

)

P
N−Q
1 (1− P1)

Q
, (27)

where P1 = Pr (|Nr| = 0).

Proof: The proof is provided in Appendix B.

Theorem 3. The secrecy outage probability achieved by

the two-stage conventional relay selection strategy can be

calculated as

Psop = O1 ∪O2, (28)

where O1 and O2 are derived in Lemma 1 and Lemma 2,

respectively.

IV. OPTIMAL RELAY SELECTION

In certain cases, where a user can play dual role as a le-

gitimate receiver for some messages and as an eavesdropper

for others, e.g., in a time-division multiple access (TDMA)

environment, the legitimate nodes can know the eavesdrop-

per’s CSI [31], [32]. In other words, the eavesdropper is

a user of the system and has an ongoing communication

with the source, i.e., the eavesdropper is not a hidden node

and is not necessarily a malicious user. Instead, it is an

active node participating in the communication exchange

with the source. When CSI of both the wiretap and the main

links is known, the relay node that maximizes the secrecy

rate is considered to be the optimal relay. Therefore, in this

scenario, we consider an optimal relay selection scheme, in

which the best selected relay is the one that can provide

the maximum secrecy rate at user M and, at the same time,

can provide the required data rates to the other users. In

this scheme, we select a sub-set, Nr, of the EH-relays that

satisfy the users data rates, as explained in the previous

section in (13). Then, from this sub-set, Nr, the best relay

n∗ that optimizes the secrecy rate at user M is selected.

Hence,

Cn∗

s,M = max
{
Cn

s,M , n ∈ Nr

}
, (29)

where Cn
s,M is the secrecy rate of user M via relay n.

Theorem 4. The secrecy outage probability achieved by the

two-stage optimal relay selection strategy can be calculated

as

Psop = O1∪
N∑

Q=1

{

Pr

(

max
n∈Q

{
Cn

s,M

}
< Ro | |Nr| = Q

)

Pr (|Nr| = Q)}
(30)

where O1 is given in Lemma 1, Pr (|Nr| = Q) is expressed

in (27), and

Pr

(

max
n∈Q

{
Cn

s,M

}
< Ro | |Nr| = Q

)

=

∞̂

0

Q
∏

n=1
n 6=l







1−
∞̂

c2(ζ+γζ−1)
c1

e
−

(

z+
(ζ+γζ−1)c3z+c4(ζ+γζ−1)

(z2c1−c2z(ζ+γζ−1))

)

dz







×







ǫ2̂

ǫ1

{

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

}

e−θdθ

+

∞̂

ǫ2

{

1− e
−

(

(ζ+γζ−1)c3θ+c4(ζ+γζ−1)

(θ2c1−c2θ(ζ+γζ−1))

)}

×

{

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

}

e−θdθ

}

dγ.

(31)

At high SNRs, the expression above can be approximated

as follows:

Pr

(

max
n∈Q

{
Cn

s,M

}
< Ro ||Nr| = Q

)

=

Q
∏

n=1

n∑

i=1

Hie
γi












e

−





γe3
ǫ2+ǫ1

2
+e4γ

(

( ǫ2+ǫ1
2 )

2
e1−e2

ǫ2+ǫ1
2

γ

)





×
(
γe3

ǫ2+ǫ1
2 + e4γ

)
(ǫ2 − ǫ1)

(
ǫ2+ǫ1

2

)2
e1

γ
((

ǫ2+ǫ1
2

)2
e1 − e2

ǫ2+ǫ1
2 γ

)2






+

n∑

j=1

Hj






1− e

−

(

(ζ+γζ−1)c3θj+c4(ζ+γζ−1)

(θ2j c1−c2θj(ζ+γζ−1))

)





×







1

γi
e
−

(

γie3θj+e4γi

(θ2j e1−e2θjγi)

)

(γie3θj + e4γi) θ
2
je1

(
θ2je1 − e2θjγi

)2












.

(32)

Proof: The proof is provided in Appendix C.

V. COMMUNICATION WITH MULTIPLE RELAYS

In this scenario, in order to avoid the imperfect SIC at

the users due to the effect of simultaneous multiple relays

transmissions, an orthogonal transmission technique, such

as TDMA, is employed in the second phase. Specifically,

each relay transmits its message in a specific time slot in

the second phase. In addition, the users apply maximum

ratio combining (MRC) technique to maximize their total

SINR. Consequently, taking into account that the CSI of
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the eavesdropper is unknown and that l relays are used to

forward the signal to the users, the rates at user M and at

the eavesdropper can be written as

RM = a log

(

1+
l∑

n=1

γn,M

)

, Re = a log

(

1+
l∑

n=1

γn,e

)

,

(33)

where a =
1

l + 1
. We can now define a set Φ which

contains all the possible subsets of the available relay

combinations that can provide the target data rates at the

users, Φ = [Φ1, .,Φn, ....,ΦC ], where Φn is the nth subset

that contains a possible combination of the available relays,

with the number of relays being |Φn| = ln and the number

of subsets being |Φ| = C.

A. Performance Analysis

Here, we will analyze the secrecy outage probability

achieved by using multiple relays to amplify-and-forward

the source signal to the users. The secrecy outage probabil-

ity in this scheme can be calculated as

Psop = Pr (|Φ| = 0)
︸ ︷︷ ︸

Λ1

∪ Pr (Cs,M < Ro, |Φ| 6= 0)
︸ ︷︷ ︸

Λ2

, (34)

where Λ1 is the probability that all the relay sub-sets cannot

provide the required data rates to the users, i.e., when Φ =
∅, and Λ2 is the probability that the secrecy rate at user M

is less than the threshold value.

Lemma 5. From (34), the probability Λ1 can be calculated

by

Λ1 =

C∏

n=1

{

1− Pr
(
RΦn,M > R̄M

)
M−1∏

k=1

Pr
(
RΦn,k > R̄k

)





M∏

j=k+1

Pr
(
RΦn,k→j > R̄k

)










, (35)

where RΦn,M is the rate at user M using the relays in

subset Φn, and

Pr
(
RΦn,M > R̄M

)
= 1− 2−Qe

A
2

γM

Q
∑

q=0

(
Q

q

)

N+q
∑

n=0

(−1)n

βn

R







MϕM

(
A+ 2πjn

2γM

)

A+ 2πjn

2γM







+ E(A,N,Q),

(36)

where j2 = −1, R {.} denotes the real part; A, N and Q

are positive integers used to control accuracy and satisfy

the condition that a remainder error term E(A,N,Q) is

negligible compared with the first term,

|E(A,N,Q)| = e−A

1− e−A
+

∣
∣
∣
∣
∣

2−Qe
A
2

γM

Q
∑

q=0

(−1)
N+1+q

(
Q

q

)

R







Mϕ

(
A+ 2πj (N + q + 1)

2γM

)

A+ 2πj (N + q + 1)

2γM







∣
∣
∣
∣
∣
∣
∣
∣

, (37)

βn =

{

2 n = 0

1 n = 1, 2, · · · , N + q
,

and

MϕM
(s) =

ln∏

n=1

∞̂

0

e−sγM

γM
×







∞̂

c2γM
c1

e
−

(

xn+
γMc3xn+c4γM

(x2
nc1−c2xnγM )

)

(γMc3xn + c4γM )x2c1

(x2
nc1 − c2xnγM )

2 dx







dγM .

(38)

At high SNR, we get

MϕM
(s) =

ln∏

n=1

K∑

r=1

Hr

s
×




sw2

3J0 [w3] e
−

c2γMr
sc1

2γMr

+
sc2γMr

w3J1 [w3] e
−

c2γMr
sc1

γMr
c1



 ,

(39)

where Hr and γMr
are the rth abscissa and weight, respec-

tively, of the rth order Laguerre polynomial. Similarly, the

probabilities Pr
(
RΦn,k > R̄k

)
and Pr

(
RΦn,k→j > R̄k

)

can be calculated using (36) with moment-generating func-

tions (MGFs) given, respectively, by

Mϕk
(s) =

ln∏

n=1

∞̂

0

e−sγk

γk







∞̂

a3γk
a1−a2γk

e
−

(

x+
γka4x+a5γk

(x2(a1−a2γk)−a3xγk)

)

×
(

(γka4x+ a5γk) (2x (a1 − a2γk)− a3γk)

(x2 (a1 − a2γk)− a3xγk)
2

− γka4

(x2 (a1 − a2γk)− a3xγk)
− 1

)

dx

}

dγk, (40)

which, at high SNR, becomes

Mϕk
(s) =

ln∏

n=1

K∑

r=1

Hr

s
×
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


sw2

1J0 [w1] e
−

a3γkr
a1−a2γk

2γkr

+
sa3γkr

w1J1 [w1] e
−

a3γkr
a1−a2γk

γkr
a2



 ,

(41)

and

Mϕj
(s) =

ln∏

n=1

∞̂

0

e−sγk

γk







∞̂

b3γk
b1−b2γk

e
−

(

x+
γkb4x+b5γk

(x2(b1−b2γk)−b3xγk)

)

×
(

(γkb4x+ b5γk) (2x (b1 − b2γk)− b3γk)

(x2 (b1 − b2γk)− b3xγk)
2

− γkb4

(x2 (b1 − b2γk)− b3xγk)
− 1

)

dx

}

dγk, (42)

which, at high SNR, is given by

Mϕj
(s) =

ln∏

n=1

K∑

r=1

Hr

s
×




sw2

2J0 [w2] e
−

b3γkr
b1−b2γkr

2γkr

+
sb3γkr

w2J1 [w2] e
−

b3γkr
b1−b2γkr

γkr
b2



 .

(43)

Proof: The proof is provided in Appendix D.

Alternatively, to find simpler expressions for the prob-

abilities in (35), these probabilities can be upper-bounded

using the fact that [21, (40)], Pr

(
ln∑

n=1
γn,M < γM

)

≤
ln∏

n=1
Pr (γn,M < γM ) ,

Pr

(
ln∑

n=1
γn,k < γk

)

≤
ln∏

n=1
Pr (γn,k < γk) , and

Pr

(
ln∑

n=1
γn,k→j < γk

)

≤
ln∏

n=1
Pr (γn,k→j < γk) , where

Pr (γn,M < γM ), Pr (γn,k < γk) and Pr (γn,k→j < γk) are

derived in the previous sections.

Lemma 6. Λ2 in (34) can be derived in this scenario given

that Φ = Φn, as

Λ2 =

C∑

n=1

Pr
(

CΦn

s,M < Ro

)

︸ ︷︷ ︸

PΦn

=
C∑

n=1

Pr

(
ln∑

n=1

γn,M < ζ + ζ

ln∑

n=1

γn,e − 1

)

︸ ︷︷ ︸

PΦn

, (44)

where CΦn

s,M is the secrecy rate of user M via subset Φn,

and PΦn
is the Psop using the subset Φn. Conditioning on

hsr, PΦn
is derived as

PΦn
=

∞̂

0












ǫ2,1
ˆ

ǫ1,1

.......

ǫ2,ln
ˆ

ǫ1,ln

fγe
(γ) f|hsr|

2 (θ1, ...., θln) dθ1....dθln

+

∞̂

ǫ2,1

.......

∞̂

ǫ2,ln

F ˆγM
(ζ + γζ − 1)×

fγe
(γ) f|hsr|

2 (θ1, ...., θln) dθ1....dθln

]}

dγ.

(45)

The probability in (45) requires at least ln+1-fold integrals,

which makes it hard if not impossible to find a closed-

form solution. For simplicity and to gain some insights,

we consider the cases where the relays are identical and

located at the same distance from the source, such as when

the relays are located at the boundary of the cell and the

source (base-station) is located at the center of the cell, or

in sensors network when the access point is located at the

center of the network.

Remark 7. If the relays are identical nodes, the expression

of PΦn
can be simplified to

PΦn
=

∞̂

0











ǫ2̂

ǫ1

fγe
(γ) f|hsr|

2 (θ) dθ +

∞̂

ǫ2

F ˆγM
(ζ + γζ − 1) fγe

(γ) f|hsr|
2 (θ) dθ





ln






dγ, (46)

From the derivation in Appendix D, the conditional cumula-

tive distribution function (CDF), F ˆγM
(ζ + γζ − 1) can be

written as

F ˆγM
(ς) =

2−Qe
A
2

ς

Q
∑

q=0

(
Q

q

) N+q
∑

n=0

(−1)n

βn

×R







Mϕ

(
A+ 2πjn

2ς

)

A+ 2πjn

2ς







+ E(A,N,Q) (47)

where ς = ζ + γζ − 1 and

Mϕ (s) =

ln∏

n=1

∞̂

0

e−sς

{

e
−

(

ςc3θ+c4ς

(θ2c1−c2θς)

)

(c3θ + c4) θ
2c1

(θ2c1 − c2θς)
2

}

dς

(48)

≈
ln∏

n=1

n∑

i=1

Hie
ςi(1−s)

{

e
−

(

ςic3θ+c4ςi

(θ2c1−c2θςi)

)

(c3θ + c4) θ
2c1

(θ2c1 − c2θςi)
2

}

,

(49)
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The probability density function (PDF) fγe
(γ) can be

obtained with the inverse Laplace transform as fγe
(γ) =

L
−1 (Mϕ (s)) [33], [34]. Using the formula in [34], the

PDF of the SINR at the eavesdropper can be obtained

according to

fγe
(γ) =

2−Qe
A
2

γ

Q
∑

q=0

(
Q

q

) N+q
∑

n=0

(−1)
n

βn

×R

(

Mγe

(
A+ 2πjn

2γ

))

+ E(A,N,Q), (50)

where

Mγe
(s) =

ln∏

n=1

∞̂

0

e−sγe
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(e3θ + e4) θ
2e1

(θ2e1 − e2θγ)
2 dγ

≈
ln∏

n=1

n∑

i=1

Hie
γi(1−s)e

−

(

γie3θ+e4γi

(θ2e1−e2θγi)

)

(e3θ + e4) θ
2e1

(θ2e1 − e2θγi)
2 .

(51)

It is worth to mention that, the conditional CDF,

FγM
(ζ + γζ − 1), and the conditional PDF, fγe

(γ),
can be derived as upper-bounds using the same iden-

tity as in [21], Pr

(
ln∑

n=1
γn,M < ζ + ζγ − 1

)

≤
l∏

n=1

Pr (γn,M < ζ + ζγ − 1) and Pr

(
l∑

n=1
γn,e < γ

)

≤
l∏

n=1
Pr (γn,e < γ) .

Theorem 8. The secrecy outage probability achieved by

the two-stage conventional relay selection strategy can be

calculated as

Psop = Λ1 ∪ Λ2, (52)

where Λ1 and Λ2 can be calculated using Lemma 5 and

Lemma 6.

Remark 9. All the probabilities in this work are provided

in closed-form exact expressions, and approximated expres-

sions based on high SNRs.4 Each probability expression

describes part of the total system performance. For instance,

Pr
(
Rn,k > R̄k

)
gives insight on the performance of user k,

and the term Pr
(
Rn,M > R̄M

)
gives clear insight on the

performance of user M . In addition, from these expressions

the impact of different system parameters on the overall

system performance can be clearly observed. For instance,

from (17), (19) and (21), it is clear that, when βrn is large

the secrecy outage probability can be enhanced because

the relays can harvest higher power. A larger βrn can also

degrade the secrecy outage probability because it leaves a

smaller power fraction to process the data. Therefore, there

is an optimal value of βrn that results in optimal system

performance. This optimal value can be obtained easily

using the expressions derived in this paper. For instance, the

4The performance analysis of the case when the number of relays goes
to infinity can also give insights about the secrecy outage probability. Due
to the paper length limitation, this case will be investigated in future work.

problem can be formulated as: min
0<βrn<1

Psop. One method

to solve this problem and find the optimal value of βrn

is using line search techniques such as the golden section

method [35].

VI. NUMERICAL RESULTS

In this section, in order to examine the secrecy perfor-

mance of the proposed schemes, some numerical and sim-

ulation results corresponding to the derived expressions are

presented. The analytical results are illustrated by carrying

out Monte-Carlo simulations, which were executed over

105 independent trials. Unless stated otherwise, the noise

power at all nodes are set as σ2 = 0 dBw, the path-loss

exponent m = 2.7, η = 0.8 [35], SNR=Ps

σ2 , the power

allocation coefficients α2
i = M−i+1

µ
, with µ chosen to

satisfy
M∑

i=1

α2
i = 1, the number of users M = 3, and

the number of relays |Nr| = 4. For illustration purposes,

we consider a 2D system topology where the source, the

users and the eavesdropper are located at (xds, yds) =
(0, 0), (xdu1 , ydu1) = (0, 2), (xdu2 , ydu2) = (1.5, 0),
(xdM, ydM) = (1, 0), and (xde, yde) = (0, 1), respectively,

and the relays are located at (xdRe1, ydRe1) = (1, 0.5),
(xdRe2, ydRe2) = (1.5, 0.5), (xdRe3, ydRe3) = (1, 1.5) and

(xdRe4, ydRe4) = (1.5, 1.5). Due to the symmetry between

the strongest user and the eavesdropper paths, this topology

can explain the benefit of the relay selection schemes. Such

topology has been considered in [36], [37]. Please note that

the selected topology is used for the sake of presentation and

that the enhancements of the proposed selection schemes

hold for all possible configurations [37]. For clarity, some

results for the case when the users are randomly distributed

inside a circle area with a radius of 10m and the source

node is located at the center of this area are also presented.

A. Effect of Target Secrecy Rate and Number of Relays

To demonstrate the impact of the target secrecy rate

Ro and of the number of relays on the secrecy outage

probability, we plot Fig. 1, which represents Psop versus

Ro for different values of the number of relays in the three

selection schemes. It should be pointed out that in this

figure, Re2 and Re3 are used when two relays are assumed

in the system. In the case of multiple-relays scheme, two

scenarios are considered: when only two relays (one subset)

and when four relays subsets are used. It is evident from

these results that Psop increases as the target secrecy rate

increases, and that increasing the number of the relays

results in a degradation of Psop in the three considered

schemes. In addition, comparing the three schemes for each

value of the number of relays, one can notice that the

optimal relay selection scheme outperforms the other two

schemes.5 This improvement in performance can be clearly

5This is because in the optimal relay selection, the best relay has been
selected based on the knowledge of the CSI of the eavesdropper, which is
not the case in the other two schemes.
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seen when Ro is small and |Nr| = 4, while in the case

of |Nr| = 2 the optimal scheme has the best performance

when Ro is approximately between 0 and 1.2. After that,

the optimal and conventional schemes inclined to achieve

similar secrecy performance. On the other hand, using

multiple relays results in the worst secrecy performance

when C = 1 compared to the optimal and conventional

schemes. This is because, l relays are used to forward

the signal to the users by TDMA. In this case, l + 1
slots are needed to achieve the end-to-end communication,

which is represented by a in (33). In conventional and

optimal relay selection techniques, l = 1. Having said that,

when C = 4 the multiple relay scheme outperforms the

conventional scheme only at low values of the target secrecy

rate 0 < Ro < 0.5. It is also worth noticing that increasing

the number of relay sub-sets |Φ| = C enhances the system

security.
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Figure 1: Secrecy outage probability versus Ro for different values
of |Nr| when SNR = 30 dB.

B. Effect of Target Secrecy Rate and SNR

Fig. 2 depicts some simulated and numerical results of

Psop as a function of the target secrecy rate Ro for different

SNR values when only two relays, Re1 and Re2, are used in

the system. From the results in this figure, we can clearly

observe that increasing the SNR always enhances Psop in

the three schemes. When SNR=10 dB, the conventional

relay selection scheme performs similarly to the optimal

relay selection scheme. On the other hand, when SNR=30

dB and SNR=60 dB, the optimal relay selection scheme

outperforms the conventional scheme. The performance gap

between the three schemes increases as the SNR increases,

where the multiple-relays scheme always has the worst

secrecy performance.
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Figure 2: Secrecy outage probability versus Ro for different values
of SNR when |Nr | = 2, C = 1, and |Φ1| = 2.

C. Effect of Users’ Target Data Rate and Number of Users

In this subsection, we capture the influence of the users’

target data rate, the number of users, and the SNR, on the

system secrecy performance. Fig. 3 presents Psop versus

SNR for different combinations of M and the users’ target

data rates, for the three schemes. In general, it is seen that

increasing the SNR enhances Psop for all the studied config-

urations. In addition, comparing the studied combinations

for each scheme, it can be seen that, for a given SNR

the secrecy performance improves as the number of users

and the target rates decrease. This enhancement becomes

smaller at high SNR. In addition, it is interesting to notice

that increasing the target rates of the users, R̄1 and R̄2

in case M = 3, has almost similar impact on the system

secrecy. In contrast, when M = 2 increasing the target rate

R̄1 of the first user (weakest) impacts essentially the system

security.

To compare the secrecy performance of the three schemes

for these system features, we plot Fig. 3d and Fig. 3e. These

figures illustrate that the gap between the conventional and

optimal schemes is tight at low SNR, and becomes wider

as the SNR goes higher. This can be explained as discussed

for Fig. 1 and Fig. 2; the gain attained by the optimal relay

selection scheme increases as the number of relays and/or

the SNR increase. In addition, the multiple-relays scheme

has the worst secrecy performance for all the combinations

considered in this figure.

D. Randomness of the Users Locations

In this subsection, we present in Fig. 4 some results when

the number of users M = 8, and the users are uniformly

distributed inside a circle area with a radius of 10m and

the source node is located at the center of this area. In

addition, the number of the relays N = 4, which are

located 5m away from the source in different directions,

e.g, (xdRe1, ydRe1) = (5, 5), (xdRe2, ydRe2) = (−5, 5) ,

(xdRe3, ydRe3) = (−5,−5) and(xdRe4, ydRe4) = (5,−5).
It is clear from these results that high transmission power

is needed to achieve secure communication, due to large
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(a) Psop versus SNR of conventional relay selection
scheme.
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(b) Psop versus SNR of optimal relay selection scheme.
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(c) Psop versus SNR of multiple relays scheme.
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(d) Psop versus SNR of the three schemes when M = 3.

0 5 10 15 20 25 30 35 40 45 50

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ec

re
cy

 O
u

ta
g

e 
P

ro
b

ab
il

it
y

Optimal  

 Selection

Conventional

 Selection

Multiple

Relays

(e) Psop versus SNR of the three schemes when M = 2.

Figure 3: Secrecy outage probability versus SNR of the three schemes for different values of M, R̄1, R̄2, R̄3 when Ro = 0.2.

path-loss. Furthermore, the optimal relay selection scheme

always has the best performance, and multiple relay scheme

has better performance than the conventional scheme only

at low target secrecy rate, as it is noted in Fig. 1.

E. Impact of Eavesdropper Location

Here, we investigate the impact of the eavesdropper’s lo-

cation on the secrecy outage probability. The position of the

eavesdropper is varied on the x-axis from (0, 1) meters to

(4, 1) meters, i.e., the eavesdropper moves horizontally from

the original location (0, 1). Fig. 5 shows the secrecy outage

probability as a function of the eavesdropper location, when

SNR=30 dB and only two relays are used, i.e., Re1 and Re3.

From this figure, we observe that Psop is at its maximum

when the eavesdropper is approximately at (1, 1), i.e., when

it is located between the two relays. Also, Psop decreases

as the eavesdropper moves away. This phenomena can be

justified by the fact that, when the eavesdropper is between

the two relays, the distance between the eavesdropper and

the two relays will be short. Thus, the received information

signal at the eavesdropper will be strong, and as a result the
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Figure 4: Secrecy outage probability versus Ro for different values
of SNR when |Nr | = 4, C = 4, |Φi| = 2.

secrecy outage probability will be very high. In addition,

in case the distances between the eavesdropper and the

source and the relays are long, the received signal at the

eavesdropper will be weak due to the large path-loss, and

this results in smaller secrecy outage probability.

VII. CONCLUSION

In this paper, we investigated the secrecy performance of

different relay selection schemes in cooperative NOMA sys-

tems when a source node communicates with multiple users

via multiple energy-harvesting relay nodes in the presence

of a passive eavesdropper. We have derived new explicit

analytical expressions for the secrecy outage probability

considering three different relay selection schemes: 1) when

the CSI of the eavesdropper is unknown, 2) when the CSI of

the eavesdropper is known, and 3) when multiple relays are

used to forward the signal to the users. The results in this

work demonstrated that no matter what the values of the

system parameters are, the optimal relay selection scheme

strictly outperforms the other two selection schemes, and

that the performance gap between the proposed schemes

depends essentially on the system setup. Furthermore, it

was shown that increasing the SNR and the number of relay

nodes can enhance the secrecy performance, while as the

users’ target data rates and the number of users increase,

the system security gets degraded.

APPENDIX A

For the derivation of Lemma 1, substituting (5) into (10),

we can express γn,k as

γn,k =
a1x

2
n yn

a2x2
n yn + a3xn yn + a4xn + a5

, (53)

where xn = |hsrn |2, yn = |hrnuk |2, a1 =

βrn (1− βrn)P
2
s αkηrn , a2 = βrn (1− βrn)P

2
s ηrn

M∑

i=k+1

αi,

a3 = dmsrn
βrnPsηrnσ

2
rn

, a4 = dmsrn
dmrnuk

(1− βrn)Psσ
2
uk

, and

a5 = d2msrn
σ2

rn
dmrnuk

σ2
uk

. Therefore,

Pr
(
Rn,k > R̄k

)
= 1−

Pr

(
a1x

2
n yn

a2x2
n yn + a3xn yn + a4xn + a5

< ζk

)

,

(54)

where ζk = 22R̄k , and R̄k is the target rate for user k, which

can be written as

Pr
(
Rn,k > R̄k

)
= 1−

Pr
(
yn
(
x2
n (a1 − a2ζk)− a3xnζk

)
< ζka4xn + a5ζk

)
.

(55)

The right-hand-side (RHS) of Eq. (55) can be written as

follows:

Pr
(
yn
(
x2
n (a1 − a2ζk)− a3xnζk

)
< ζka4xn + a5ζk

)
=







Pr
(

yn > ζka4xn+a5ζk
(x2

n(a1−a2ζk)−a3xnζk)

)

= 1, xn < a3ζk
a1−a2ζk

Pr
(

yn < ζka4xn+a5ζk
(x2

n(a1−a2ζk)−a3xnζk)

)

, xn > a3ζk
a1−a2ζk

.

(56)

In this expression, if xn < a3ζk
a1−a2ζk

, then the term
ζka4xn+a5ζk

(x2
n(a1−a2ζk)−a3xnζk)

will be negative, while yn is always

positive yn > 1, so the probability in this case is 1. By

conditioning on xn, we can obtain (57), where Fyn
(.) is

the CDF of yn, and fxn
(.) is the PDF of xn. Since xn and

yn are both exponentially distributed, we get

Pr
(
Rn,k > R̄k

)
=

∞̂

a3ζk
a1−a2ζk

e
−

(

z+
ζka4z+a5ζk

(z2(a1−a2ζk)−a3zζk)

)

dz,

(58)

At high SNR, the last term in the denominator of the SINR

expression in (53) can be neglected, because it is included

the product of the two noise variance, i.e., a5 = 0. Thus,

the expression in (58) becomes

Pr
(
Rn,k > R̄k

)
=

∞̂

a3ζk
a1−a2ζk

e
−

(

z+
ζka4

(z(a1−a2ζk)−a3ζk)

)

dz.

(59)

Let Υ = z (a1 − a2ζk) − a3ζk, then we can approximate

(59) as

Pr
(
Rn,k > R̄k

)
=

e
−

a3ζk
a1−a2ζk

a1 − a2ζk

∞̂

0

e
−
(

Υ
a1−a2ζk

+
ζka4

Υ

)

dΥ,

(60)

which can be found as

Pr
(
Rn,k > R̄k

)
≈ w1J1 [w1] e

−
a3ζk

a1−a2ζk , (61)
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Figure 5: Secrecy outage probability versus xde of the three schemes, when SNR=30 dB and Ro = 0.2.

Pr
(
Rn,k > R̄k

)
= 1−







a3ζk
a1−a2ζk
ˆ

0

fxn
(z)dz+

∞̂

a3ζk
a1−a2ζk

Fyn

(
ζka4z + a5ζk

(z2 (a1 − a2ζk)− a3zζk)

)

fxn
(z)dz







, (57)

where w1 =
√

4ζka4

a1−a2ζk
, and J1 [.] is the first-order modified

Bessel function of the second kind [19], [30]. Similarly, we

can write γn,xk−→j as follows:

γn,xk−→j =
b1x

2
nyn

b2x2
nyn + b3xnyn + b4xn + b5

, (62)

where xn = |hsrn |2, yn =
∣
∣hrnuj

∣
∣
2
, b1 =

βrn (1− βrn)P
2
s αkηrn , b2 = βrn (1− βrn)P

2
s ηrn

M∑

i=k+1

αi,

b3 = dmsrn
βrnPsηrnσ

2
rn

, b4 = dmsrn
dmrnuj

(1− βrn)Psσ
2
uj
, and

b5 = dmrnuj
σ2

uj
d2msrn

σ2
rn

. Following similar steps, we can find

Pr
(
Rn,k→j > R̄k

)
=

∞̂

b3ζk
b1−b2ζk

e
−

(

z+
ζkb4z+b5ζk

(z2(b1−b2ζk)−b3zζk)

)

dz.

(63)

At high SNRs, by following similar steps as in (59), (60)

and (61), (63) can be written as

Pr
(
Rn,k→j > R̄k

)
≈ w2J1 [w2] e

−
b3ζk

b1−b2ζk , where w2 =
√

4ζkb4
b1−b2ζk

. Now, to derive Pr
(
Rn,M > R̄M

)
, we write the

SINR at user M as

γn,M =
c1x

2
n yn

c2xn yn + c3xn + c4
, (64)

where xn = |hsrn |2, yn = |hrnuM |2, c1 =
βrn (1− βrn)P

2
s αMηrn , c2 = dmsrn

βrnPsηrnσ
2
rn

,

c3 = dmsrn
dmrnuM

(1− βrn)Psσ
2
uM

, and c4 = dmrnuj
σ2

uj
d2msrn

σ2
rn

.

Therefore,

Pr
(
Rn,M > R̄M

)
= 1−Pr

(
c1x

2
n yn

c2xn yn + c3xn + c4
< ζM

)

,

(65)

where ζM = 22R̄M and R̄M is the target rate for user M .

This probability can be written as

Pr
(
Rn,M > R̄M

)
= 1−

Pr
(
yn
(
x2
nc1 − c2xnζM

)
< ζMc3xn + c4ζk

)
, (66)

and further expressed as

Pr
(
Rn,M > R̄M

)
=

∞̂

c2ζM
c1

e
−
(

z+
ζMc3z+c4ζM
z2c1−c2zζM

)

dz. (67)

At high SNRs, by following similar steps as in (59),

(60) and (61), Pr
(
Rn,M > R̄M

)
can be expressed by

Pr
(
Rn,M > R̄M

)
≈ w3J1 [w3] e

−
c2ζM

c1 , where w3 =
√

4ζMc3
c1

. Finally, substituting (58), (63) and (67) into (15),

we find O1.

APPENDIX B

Here, we provide the proof of Lemma 2. First, O2 in (14)

can be calculated by

O2 = Pr





1 + max
n∈Nr

{γn,M}
1 + γn,e

< ζ, |Nr| > 0





= Pr

(

max
n∈Nr

{γn,M} < ζ + γn,eζ − 1, |Nr| > 0

)

. (68)

Using the law of total probability, we get (69). To find S1,

from order statistics [38] we can find (70). By conditioning

on |hsrl |2 = θ and γl,e = γ, we get (71). From (67), we

can find
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O2 =

N∑

Q=1

{

Pr

(

max
n∈Q

{γn,M} < ζ + γn,eζ − 1 | |Nr| = Q

)

︸ ︷︷ ︸

S1

}

Pr (|Nr| = Q)
︸ ︷︷ ︸

S2

=
N∑

Q=1

{
Q
∑

l=1

Pr (n∗ = l)Pr

(

max
n∈Q

{γn,M} < ζ + γl,eζ − 1 | |Nr| = Q, n∗ = l

)

︸ ︷︷ ︸

S1

}

Pr (|Nr| = Q)
︸ ︷︷ ︸

S2

. (69)

Fmax
n∈Q

{γn,M} (ζ + γl,eζ − 1) = Pr

(

max
n∈Q

{γn,M} < ζ + γl,eζ − 1 ||Nr| = Q, n∗ = l

)

=

Q
∏

n=1

Pr (γn,M < ζ + γl,eζ − 1) . (70)

Pr

(

max
n∈Q

{γn,M} < ζ + γl,eζ − 1
∣
∣
∣γl,e = γ, |hsrl |2 = θ

)

=

∞́

0

∞́

0

Fmax
n∈Q

{γn,M}

(

ζ + γζ − 1
∣
∣
∣|hsrl |2 = θ

)

fγl,e

(

γ
∣
∣
∣|hsrl |2 = θ

)

f|hsrl |2 (θ) dθdγ. (71)

Pr (γn,M < ζ + γζ − 1) = 1−

∞̂

c2(ζ+γζ−1)
c1

e
−

(

z+
(ζ+γζ−1)c3z+c4(ζ+γζ−1)

(z2c1−c2z(ζ+γζ−1))

)

dz. (72)

At high SNRs, following similar steps as in (59),

(60) and (61), we obtain F{γn,M} (ζ + γζ − 1) ≈ 1 −
w4J1 [w4] e

−
c2(ζ+γζ−1)

c1 , where w4 =
√

4(ζ+γζ−1)c3
c1

, and

Pr
(

γl,M < ζ + γζ − 1
∣
∣
∣|hsrl |2 = θ

)

= 1−

e
−

(

(ζ+γζ−1)c3θ+c4(ζ+γζ−1)

(θ2c1−c2θ(ζ+γζ−1))

)

, θ >
c2 (ζ + γζ − 1)

c1
. (73)

To find the PDF of γl,e, fγl,e
(γ), we can write the SINR

at the eavesdropper as

γl,e =
e1x

2
l yl

e2xlyl + e3xl + e4
, (74)

where xl = |hsrl |2, yl = |hrle|2, e1 =
βrl (1− βrl)P

2
s αMηrl , e2 = dmsrl

βrlPsηrlσ
2
rl

,

e3 = dmsrl
dmrle (1− βrl)Psσ

2
e , and e4 = dmsrl

σ2
rl

. Therefore,

the conditional CDF of γl,e is given by

Fγl,e
(γ |xl = θ ) = 1− e

−
(

γe3θ+e4γ

θ2e1−e2θγ

)

, θ >
e2γ

e1
. (75)

Consequently, the PDF can be found as follows:

fγl,e
(γ |xl = θ ) =

1

γ
e
−
(

γe3θ+e4γ

θ2e1−e2θγ

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2 .

(76)

Since |hsrl |2 is exponentially distributed, f|hsrl |2 (θ) = e−θ.

By conditioning on |hsrl |2 and γl,e, Eq. (71) can be

formulated as in (77), (78) and (79), where ǫ1 = e2γ
e1

and ǫ2 = c2(ζ+γζ−1)
c1

. Using Gaussian-Quadrature rules, in

which

∞̂

0

e−xf (x) dx =

n∑

i=1

Hif (xi) +R (i) (80)

where xi and Hi are the ith abscissa and weight of the nth

order Laguerre polynomial tabulated in [30, eq. (25.4.45)],

respectively, and the remainder R (i) is negligible for n >

15, then the expression in (79) can be approximated as

in (81) where γi and Hi are the ith abscissa and weight

of the nth order Laguerre polynomial, respectively [30,

eq. (25.4.45)]. The probability that relay l is selected,
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Pr

(

max
n∈Q

{γn,M} < ζ + γζ − 1

)

=

∞̂

0

Q
∏

n=1
n 6=l

Pr (γn,M < ζ + γζ − 1)

×







∞̂

0

Pr
(

γl,M < ζ + γζ − 1
∣
∣
∣|hsrl |2 = θ

)

fγl,e

(

γ
∣
∣
∣|hsrl |2 = θ

)

f|hsrl |2 (θ) dθ
}

dγ (77)

Pr

(

max
n∈Q

{γn,M} < ζ + γζ − 1

)

=

∞̂

0

Q
∏

n=1
n 6=l

Pr (γn,M < ζ + γζ − 1)×







ǫ2̂

ǫ1

fγl,e

(

γ
∣
∣
∣|hsrl |2 = θ

)

f|hsrl |2 (θ) dθ

+

∞̂

ǫ2

Pr
(

γl,M < ζ + γζ − 1
∣
∣
∣|hsrl |2 = θ

)

× fγl,e

(

γ
∣
∣
∣|hsrl |2 = θ

)

f|hsrl |2 (θ) dθ
}

dγ (78)

=

∞̂

0

Q
∏

n=1
n 6=l







1−
∞̂

c2(ζ+γζ−1)
c1

e
−

(

z+
(ζ+γζ−1)c3z+c4(ζ+γζ−1)

(z2c1−c2z(ζ+γζ−1))

)

dz







×







ǫ2̂

ǫ1

{

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

}

e−θdθ

+

∞̂

ǫ2

{

1− e
−

(

(ζ+γζ−1)c3θ+c4(ζ+γζ−1)

(θ2c1−c2θ(ζ+γζ−1))

)}

×
{

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

}

e−θdθ

}

dγ,

(79)

Pr

(

max
n∈Q

{γn,M} < ζ + γζ − 1

)

≈
n∑

i=1

Hie
γi

Q
∏

n=1
n 6=l

{

1− w4J1 [w4] e
−

c2(ζ+γiζ−1)
c1

}

×







e

−





γie3
ǫ2+ǫ1

2
+e4γi

(

( ǫ2+ǫ1
2 )

2
e1−e2

ǫ2+ǫ1
2

γi

)





(
γie3

ǫ2+ǫ1
2 + e4γi

)
(ǫ2 − ǫ1) e1

(
ǫ2+ǫ1

2

)2
e−

ǫ2+ǫ1
2

γi

((
ǫ2+ǫ1

2

)2
e1 − e2

ǫ2+ǫ1
2 γi

)2

+

n∑

j=1

Hj






1− e

−

(

(ζ+γiζ−1)c3θj+c4(ζ+γiζ−1)

(θ2j c1−c2θj(ζ+γiζ−1))

)




×







1

γi
e
−

(

γie3θj+e4γi

(θ2j e1−e2θjγi)

)

(γie3θj + e4γi) θ
2
je1

(
θ2j e1 − e2θjγi

)2












, (81)

Pr (n∗ = l) = pl, can be given by

pl =

Q
∏

n=1
l 6=n

Pr (γl,M > γn,M ) = Pr

(

γl,M > max
l 6=n

(γn,M )

)

=

∞̂

0

fγl,M
(x)

Q
∏

n=1
l 6=n

Fγn,M
(x) dx

=

n∑

i=1

Hie
xifγl,M

(xi)

Q
∏

n=1
l 6=n

Fγn,M
(xi) , (82)

where xi and Hi are the ith abscissa and weight of the nth

order Laguerre polynomial, respectively [30, eq. (25.4.45)],

and Fγn,M
(x) = 1−

∞́

c2x

c1

e
−
(

z+
x c3z+c4x

z2c1−c2zx

)

dz. At high

SNR, by following similar steps as in (59), (60) and (61),

we get Fγn,M
(x) ≈

{

1−
√

4xc3
c1

J1

[√
4xc3
c1

]

e
−

c2x

c1

}

.

Also, fγl,M
(x) =

∞́

c2x

c1

(c3z+c4)z
2c1

(z2c1−c2zx)
2 e

−
(

z+
x c3z+c4x

z2c1−c2zx

)

dz,

which becomes fγl,M
(x) ≈

(

4γMc3J0

[√

4γMc3
c1

]

e
−

c2x
c1

2xc1
+

c2xw5J1

[√

4γMc3
c1

]

e
−

c2x
c1

c1

)

at high SNR. Finally, S2 in (69) which is the probability

of having Q relays in a sub-set Nr of the EH-relays

of size |Nr|, can be obtained using the expression

Pr (|Nr| = Q) =

(
N

Q

)

P
N−Q
1 (1− P1)

Q
, where

P1 = Pr (|Nr| = 0).
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Pr

(

max
n∈Q

{
1 + γn,M

1 + γn,e

}

< ζ
∣
∣
∣ |hsrn |2 = θ

)

=

Q
∏

n=1

∞̂

0

∞̂

0

Fγn,M

(

ζ + γζ − 1
∣
∣
∣|hsrn |2 = θ

)

fγn,e

(

γ
∣
∣
∣ |hsrn |2 = θ

)

f|hsrn |2 (θ) dθdγ

︸ ︷︷ ︸

sop of user M using relay n

, (85)

APPENDIX C

In this appendix, we present the proof of Theorem 4. The

secrecy outage probability in this scheme can be calculated

as

Psop = Pr (|Nr| = 0)
︸ ︷︷ ︸

O1

∪Pr

(

max
n∈Nr

{
Cn

s,M

}
< Ro, |Nr| > 0

)

︸ ︷︷ ︸

O3

,

(83)

where Ro is the target secrecy rate. The term O1 =
Pr (|Nr| = 0) was derived in the previous section as per

(15). Now, we derive the term O3 of (83) as

O3 =

N∑

Q=1

Pr

(

max
n∈Q

{
Cn

s,M

}
< Ro | |Nr| = Q

)

︸ ︷︷ ︸

∆1

×Pr (|Nr| = Q)
︸ ︷︷ ︸

∆2

. (84)

Firstly, ∆2 is given by (27). Now, we can find ∆1 condi-

tionally on |hsrn |2 according to (85) where ζ = 22Ro , and

the conditional CDF of the SINR at user M , and the PDF

of the SINR at the eavesdropper, are respectively given by

Pr
(

γn,M < ζ + γζ − 1
∣
∣
∣|hsrn |2 = θ

)

=

1−e
−

(

(ζ+γζ−1)c3θ+c4(ζ+γζ−1)

(θ2c1−c2θ(ζ+γζ−1))

)

, θ >
c2 (ζ + γζ − 1)

c1
. (86)

fγn,e

(

γ
∣
∣
∣|hsrn |2 = θ

)

=

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2 . (87)

Therefore, Pr

(

max
n∈Q

{
1+γn,M

1+γn,e

}

< ζ
∣
∣
∣|hsrn |2 = θ

)

can be

found as in (88) and (89). where ǫ1 = e2γ
e1

and ǫ2 =
c2(ζ+γζ−1)

c1
. The expression (89) can be approximated using

Gaussian Quadrature rules as in (90) where γi, θj and

Hi,Hi are the ith, jth abscissas and weights of the nth order

Laguerre polynomial, respectively [30, eq. (25.4.45)].

APPENDIX D

Here we provide the proof of Lemma 5. Firstly,

Pr
(
RΦn,M > R̄M

)
= 1− Pr

(
ln∑

n=1

γn,M < γM

)

, (91)

where γM = 2aR̄M −1. As we can see from (91) the overall

SINR in this scenario is the summation of multiple random

variables. Therefore, derivation of the PDF and CDF of the

overall SINR is typically more complicated and a closed-

form expression is tedious to obtain, if not infeasible. On the

other hand, the MGF-based approach has been recognized

as an efficient and effective way for the outage analysis.

The MGF of ϕ =
ln∑

n=1

γn,M can be found as [39]

Mϕ (s) =

ln∏

n=1

Mγn,M
(s) , (92)

where Mγn,M
(s) is given by (93), and fγl,M

(x) =
∞́

c2x

c1

(c3z+c4)z
2c1

(z2c1−c2zx)
2 e

−
(

z+
x c3z+c4x

z2c1−c2zx

)

dz. At high SNR, by

ignoring the last term in the denominator of the

γn,M expression, and following similar steps as in

(59), (60) and (61), the PDF becomes fγl,M
(x) ≈

(

4γMc3J0

[√

4γMc3
c1

]

e
−

c2x
c1

2xc1
+

c2xw5J1

[√

4γMc3
c1

]

e
−

c2x
c1

c1

)

.

Thus, the MGF in (93) at high SNR is

Mγn,M
(s) =

∞̂

0

e−sγM

×
(

w2
5J0 [w5] e

−
c2γM

c1

2γM
+

c2γMw5J1 [w5] e
−

c2γM
c1

γMc1

)

dγM ,

(94)

where w5 =
√

4γMc3
c1

. Equation (94) can be expressed in

terms of the weights and abscissas of a Laguerre polynomial

as

Mγn,M
(s) =

K∑

r=1

Hr

s
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Pr

(

max
n∈Q

{
1 + γn,M

1 + γn,e

}

< ζ
∣
∣
∣|hsrn |2 = θ

)

=

Q
∏

n=1

∞̂

0







ǫ2̂

ǫ1

fγn,e

(

γ
∣
∣
∣ |hsrn |2 = θ

)

f|hsrn |2 (θ) dθ

+

∞̂

ǫ2

Fγn,M

(

ζ + γζ − 1
∣
∣
∣ |hsrn |2 = θ

)

× fγn,e

(

γ
∣
∣
∣ |hsrn |2 = θ

)

f|hsrn |2 (θ) dθ
}

dγ, (88)

Pr

(

max
n∈Q

{
1 + γn,M

1 + γn,e

}

< ζ
∣
∣
∣|hsrn |2 = θ

)

=

Q
∏

n=1

∞̂

0







ǫ2̂

ǫ1

(

e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

γ (θ2e1 − e2θγ)
2

)

e−θdθ

+

∞̂

ǫ2

(

1− e
−

(

(ζ+γζ−1)c3θ+c4(ζ+γζ−1)

(θ2c1−c2θ(ζ+γζ−1))

))

×
(

1

γ
e
−

(

γe3θ+e4γ

(θ2e1−e2θγ)

)

(γe3θ + e4γ) θ
2e1

(θ2e1 − e2θγ)
2

)

e−θdθ

}

dγ, (89)

Pr

(

max
n∈Q

{
1 + γn,M

1 + γn,e

}

< ζ
∣
∣
∣ |hsrn |2 = θ

)

≈

Q
∏

n=1

n∑

i=1

Hie
γi












e

−





γie3
ǫ2+ǫ1

2
+e4γi

(

( ǫ2+ǫ1
2 )

2
e1−e2

ǫ2+ǫ1
2

γi

)





(
γie3

ǫ2+ǫ1
2 + e4γi

)
(ǫ2 − ǫ1)

(
ǫ2+ǫ1

2

)2
e1

γi

((
ǫ2+ǫ1

2

)2
e1 − e2

ǫ2+ǫ1
2 γi

)2







+

n∑

j=1

Hj






1− e

−

(

(ζ+γζ−1)c3θj+c4(ζ+γζ−1)

(θ2j c1−c2θj(ζ+γζ−1))

)




×







1

γi
e
−

(

γie3θj+e4γi

(θ2j e1−e2θjγi)

)

(γie3θj + e4γi) θ
2
j e1

(
θ2j e1 − e2θjγi

)2












. (90)

Mγn,M
(s) =

∞̂

0

e−sγn,M fγn,M
(γM ) dγM ,

=

∞̂

0

e−sγM

γM







∞̂

c2γM
c1

e
−xn−

γMc3xn+c4γM

(x2
nc1−c2xnγM )

(γMc3xn + c4γM )x2c1

(x2
nc1 − c2xnγM )

2 dx







dγM . (93)

×




sw2

5r J0 [w5r ] e
−

c2γMr
sc1

2γMr

+
sc2γMr

w5r J1 [w5r ] e
−

c2γMr
sc1

γMr
c1



 ,

(95)

where Hr and γMr
are the rth abscissa and weight, re-

spectively, of the Kth order Laguerre polynomial, and

w5r =
√

4γMr c3
c1

. Subsequently, the exact probability

Pr

(
ln∑

n=1
γn,M < γM

)

can be obtained with the inverse

Laplace transform as

Pr

(
ln∑

n=1

γn,M < γM

)

= L
−1

(Mϕ (s)

s

)

=
1

2πj

̺+j∞
ˆ

̺−j∞

Mϕ (s)

s
esγMds, (96)

where L
−1 denotes the inverse Laplace transform, and ̺

is chosen in the region of convergence of the integral in

the complex s plane. The integral in (96) can be evaluated

numerically efficiently using the available mathematical

softwares or by applying numerical techniques. Several

methods for evaluating the inverse Laplace transform have

been introduced in the literature. A valuable summary of

these methods is provided in [33], [34]. Using (11) in [34],

the CDF of the summation of SINRs can be mapped directly

from the MGF using (97).
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Pr

(
l∑

n=1

γn,M < γM

)

=
2−Qe

A
2

γM

Q
∑

q=0

(
Q

q

) N+q
∑

n=0

(−1)n

βn

R







Mϕ

(
A+ 2πjn

2γM

)

A+ 2πjn

2γM







+ E(A,N,Q). (97)
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