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Abstract
Visual place recognition (VPR) is the process of recognising a previously visited place using visual information, often under
varying appearance conditions and viewpoint changes and with computational constraints. VPR is related to the concepts
of localisation, loop closure, image retrieval and is a critical component of many autonomous navigation systems ranging
from autonomous vehicles to drones and computer vision systems. While the concept of place recognition has been around
for many years, VPR research has grown rapidly as a field over the past decade due to improving camera hardware and its
potential for deep learning-based techniques, and has become a widely studied topic in both the computer vision and robotics
communities. This growth however has led to fragmentation and a lack of standardisation in the field, especially concerning
performance evaluation. Moreover, the notion of viewpoint and illumination invariance of VPR techniques has largely been
assessed qualitatively and hence ambiguously in the past. In this paper, we address these gaps through a new comprehensive
open-source framework for assessing the performance of VPR techniques, dubbed “VPR-Bench”. VPR-Bench (Open-sourced
at: https://github.com/MubarizZaffar/VPR-Bench) introduces two much-needed capabilities for VPR researchers: firstly, it
contains a benchmark of 12 fully-integrated datasets and 10 VPR techniques, and secondly, it integrates a comprehensive
variation-quantified dataset for quantifying viewpoint and illumination invariance. We apply and analyse popular evaluation
metrics for VPR fromboth the computer vision and robotics communities, and discuss how these differentmetrics complement
and/or replace each other, depending upon the underlying applications and system requirements. Our analysis reveals that
no universal SOTA VPR technique exists, since: (a) state-of-the-art (SOTA) performance is achieved by 8 out of the 10
techniques on at least one dataset, (b) SOTA technique in one community does not necessarily yield SOTA performance
in the other given the differences in datasets and metrics. Furthermore, we identify key open challenges since: (c) all 10
techniques suffer greatly in perceptually-aliased and less-structured environments, (d) all techniques suffer from viewpoint
variance where lateral change has less effect than 3D change, and (e) directional illumination change has more adverse effects
on matching confidence than uniform illumination change. We also present detailed meta-analyses regarding the roles of
varying ground-truths, platforms, application requirements and technique parameters. Finally, VPR-Bench provides a unified
implementation to deploy these VPR techniques, metrics and datasets, and is extensible through templates.
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1 Introduction

Visual place recognition (VPR) is a challenging and widely
investigated problem within the computer vision community
(Lowry et al. 2015). It identifies the ability of a system to
match a previously visited place using on-board computer
vision prowess, with resilience to perceptual aliasing and
seasonal-, illumination- and viewpoint-variations. This abil-
ity to correctly and efficiently recall previously seen places
using only visual input has many important applications,
such as loop-closure inSLAM(simultaneous localisation and
mapping) pipelines (Cadena et al. 2016) to correct for local-
ization drifts, image search based on visual content (Tolias
et al. 2016a), location-refinement given human–machine
interfaces (Robertson and Cipolla 2004), query-expansion
(Johns and Yang 2011), improved representations (Tolias
et al. 2013), vehicular navigation (Fraundorfer et al. 2007),
asset-management using aerial imagery (Odo et al. 2020) and
3D-model creation (Agarwal et al. 2011).

Consequently, VPR researchers come from various back-
grounds, as witnessed by the many workshops organised in
top-tier conferences, e.g. ‘Long-Term Visual Localisation
Workshop Series’ in Computer Vision and Pattern Recog-
nition Conference (CVPR), ‘Visual Place Recognition in
Changing Environments Workshop Series’ in IEEE Inter-
national Conference on Robotics and Automation (ICRA),
‘Large-Scale Visual Place Recognition and Image-Based
Localization Workshop’ in IEEE International Conference
on Computer Vision (ICCV 2019) and ‘Visual Localisation:
Features-based vs Learning Approaches’ in European Con-
ference on Computer Vision (ECCV 2018). Thus, VPR has
drawn huge interest from the computer vision and robotics
research communities, leading to a large number of VPR
techniques proposed over the past many years, but the com-
munities remain separated and the state-of-the-art is not
temporally consistent (see Fig. 1).

This divide is primarily due to the application require-
ments for both the domains: robotics researchers usually
focus on having highly confident estimates predicting a revis-
ited place to perform loop-closure, while the computer vision
community prefers to retrieve as many prospective matches
of a query image as possible for 3D-model creation, for
example. The number of correct reference matches for the
former are usually limited to a few (1–5), associated with
repeated traversals under varied conditions, and thus robotics
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uses smaller datasets, e.g. Gardens Point dataset (Glover
2014), ESSEX3IN1 (Zaffar et al. 2018) dataset, Campus
Loop dataset (Merrill and Huang 2018) and others. For the
latter, the number of correct matches (reference images) are
larger (> 10), corresponding to a broad collection of photos
of a landmark, and thus uses substantially sized datasets, e.g.
the Pittsburgh dataset (Torii et al. 2013), Oxford Buildings
dataset (Philbin et al. 2007), Paris dataset (Philbin et al. 2008)
and their revisited versions with increased 1M distractors by
Radenović et al. (2018).1 In addition, roboticsmostly focuses
on high precision, usually requiring a single correct match
for localisation estimates. It therefore employs evaluation
metrics such as AUC-PR and F1-Score, while the com-
puter vision community has predominantly used Recall@N,
mean-Average Precision (mAP) and/or Recall@Reduced
Precision. The divergence in datasets and metrics has lim-
ited the comparison of the techniques across the two domains
to intra-domain-type evaluations, hence the state-of-the-art
remains ambiguous. Therefore, one of the key contributions
of our work is attempting to reduce this gap by integrat-
ing datasets, metrics and techniques from both the domains
into a novel framework calledVPR-Bench, which is carefully
designed to add convenience and value for both communities.

Moreover, a significant body of VPR research has focused
on proposing techniques that are invariant to viewpoint, illu-
mination and seasonal variations, all of which are major
challenges in VPR. However, these techniques have usu-
ally been assessed qualitatively in the past using a rough
categorisation of invariance such as ‘mild’, ‘moderate’,
‘high’ and ‘extreme’, etc., which are subjective and ambigu-
ous. Although seasonal variations are difficult to quantify,
viewpoint and illumination variations can be modelled by
quantitative metrics. Therefore, another key focus of this
research is to quantify the invariance of VPR techniques to
viewpoint and illumination changes. We utilise the detailed
variation-quantifiedPoint Feature dataset (Aanæs et al. 2012)
and integrate it into our framework to numerically and visu-
ally interpret the invariance of techniques. This quantified
variation is obtained by taking images of a fixed scene from
various angles and distances, under different illumination
conditions, as explained later in Sect. 3.5. Since the Point
Features dataset is a synthetically-created dataset, we also
include the QUT multi-lane dataset (Skinner et al. 2016)
and MIT multi-illumination dataset (Murmann et al. 2019),
which each respectively represent quantified variations in
viewpoint and illumination in a real-world setting.

1 These remarks are only depicting the evident trends and are not abso-
lute. Large-scale datasets (e.g. the Nordland dataset by Skrede 2013
and Oxford robot-car dataset by Maddern et al. 2017) for the robotics
community, and small-scale datasets (e.g. the INRIA Holidays dataset
by Jegou et al. 2008) for the computer vision community do exist.
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Fig. 1 Precision at 100% Recall (equivalent to RecallRate@1) of
10 VPR techniques on Gardens Point dataset (Chen et al. 2014b),
SPEDTest dataset (Chen et al. 2018) and ESSEX3IN1 dataset (Zaf-
far et al. 2018) is shown here in a chronological order. The trends show
irregularities in between techniques and datasets, while the increase

in precision is also not temporally consistent. These datasets and tech-
niques have been discussed later in our paper. Please note that this graph
is not intended to reflect the utility of these techniques, as some less-
precise techniques have significantly lower computational requirements
and can process more place-recognition (loop-closure) candidates

Furthermore, we take the opportunity to present a detailed
meta-analysis enabled by VPR-Bench. We have integrated
receiver-operating-characteristic (ROC) curves into VPR-
Bench to analyse the ability of VPR techniques to find ‘new
places’, i.e. true-negatives, which are generally not available
in Precision-Recall type metrics. We perform experiments
and present analysis on the distribution of true-positives
within a sequence in our work, which helps to understand
the utility of VPR techniques based on spatial gaps between
consecutive true-positives. In addition to the metric-based
performance evaluations, we also discuss case-studies on
ground-truth manipulation that can lead to varying state-of-
the-art, and theCPUversusGPUperformance differences for
deep-learning-based VPR techniques. The descriptor size of
VPR techniques also affects VPR performance and we anal-
yse these effects in our work. The retrieval time of VPR
techniques is compared with platform dynamics to yield
insights into the relation between map-size, encoding-times,
matching times and platform velocity. A sub-section is ded-
icated to discussing the impacts and usage of viewpoint
variance instead of invariance for VPR techniques in chang-
ing application scenarios. Finally, the source-code for our
comprehensive framework will be made fully public, and
all datasets with their associated ground-truths will be re-
released. An overview of our framework is shown in Fig. 2.

In summary, our main contributions are:

Fig. 2 A block-diagram overview of the developed VPR-Bench frame-
work is shown here. All modules can be inter-linked within the
framework and can also be independently modified for graceful updates
in the future

1. Wepresent a systematic analysis ofVPRbyemploying the
largest collection of techniques, datasets and evaluation
metrics to date from the computer vision and the robotics
VPR communities, such that we accommodate a large
number of scenarios, including very-small scale datasets
to large-scale datasets, indoor to outdoor and natural envi-
ronments, moderate to extreme viewpoint and conditional
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variations and several evaluationmetrics that complement
each other.

2. We present an open-source, fully-integrated, extensive
framework for evaluating VPR performance. We re-
implement a number of VPR techniques based on our
unified templates and re-structure datasets and their
ground-truths into consistent and compatible formats,
which we will be re-releasing, thus providing a pre-
established go-to strategy for employing a variety of
metrics, datasets and popular VPR techniques for all new
evaluations on a common-ground.

3. We quantify the notion of viewpoint and illumination
invariance of VPR techniques by employing a detailed
variation-quantified Point Features dataset. We then fur-
ther extend our findings to 2 real-world, variation-
quantified datasets, namely QUT multi-lane dataset and
MIT multi-illumination dataset.

4. We present a number of different analyses within the VPR
performance evaluation landscape, including the effects
of acceptable ground-truth manipulation on rankings, the
trade-offs between viewpoint variance versus invariance,
the effects of descriptor size on the performance of
a technique, the CPU versus GPU computational perfor-
mance rankings and the trends of image retrieval times’
variation with changingmap-size on par with a platform’s
dynamics.

The remainder of the paper is organized as follows. In
Sect. 2, a comprehensive literature review regarding VPR
state-of-the-art is presented. Section 3 presents the details
of the evaluation setup employed in this work. Section 4
puts forth the results and analysis obtained by evaluating
the contemporary VPR techniques on public VPR datasets,
along with insights into invariance quantification. Finally,
conclusions and future directions are presented in Sect. 5.

2 Literature Review

The detailed theory behind visual place recognition (VPR),
its challenges, applications, proposed techniques, datasets
and evaluation metrics have been thoroughly reviewed by
Lowry et al. (2015), and more recently by Garg et al. (2021),
Zhang et al. (2021) and Masone and Caputo (2021).

Before diving deep into the core VPR literature review,
it is important to co-relate and distinguish VPR research
from closely related topics including visual-SLAM, visual-
localisation and image matching (or correspondence prob-
lem), to set the scope of our research. A huge body of
robotics research in the past few decades has been dedicated
to the problem of simultaneously localising and mapping
an environment, as thoroughly reviewed by Cadena et al.
(2016). Performing SLAM with only visual information is

called visual-SLAM, and Davison et al. (2007) were the
first to fully demonstrate this. The localisation part of visual-
SLAM can be broadly divided into two tasks: (1) Computing
change in camera/robot pose while performing a particular
motion, using inter-frame(s) co-observed information, (2)
Recognising a previously seen place to perform loop-closure.
The former is usually referred to as visual-localisation and
Nardi et al. (2015) developed an open-source framework
in this context for evaluating visual-SLAM algorithms. The
latter is essentially an image-retrieval problem in the com-
puter vision community, and within the context of robotics
has been referred to as Visual Place Recognition (Lowry
et al. 2015). Image matching (also referred to as keypoint
matching or correspondence problem in some literature) con-
sists of finding repeatable, distinct and static features in
images, describing them using condition-invariant descrip-
tors and then trying to locate co-observed features in various
images of the same scene. It is primarily targeted for visual-
localisation, 3D-model creation, Structure-from-Motion and
geometric-verification, but can also be utilised for VPR. Jin
et al. (2020) developed an evaluation framework along these
lines for matching images across wide baselines. It is impor-
tant to note here that image matching can also be included
as a sub-module of a VPR system. Torii et al. (2019) demon-
strated that such a system can achieve accurate localisation
without the need for large-scale 3D-models.

VPR has therefore generally been approached as a
retrieval problem that focuses on retrieving a correct match
(either as the best-match or among the Top-N matches) from
a reference database given a query image, under varying
viewpoint and conditions. However, VPR may also be com-
bined with local-feature matching (geometric verification) to
perform highly accurate localisation at increased computa-
tional cost, as shown by Sattler et al. (2016), Camara et al.
(2019) and Sarlin et al. (2019). The existing literature in VPR
can largely be broken down into: (1) Handcrafted feature
descriptors-based VPR techniques, (2) Deep-learning-based
VPR techniques, (3) Regions-of-Interest-based VPR tech-
niques. All of these major classes have their trade-offs
betweenmatching performance, computational requirements
and approach salience.

Local Feature Descriptors-based: VPR Handcrafted fea-
ture descriptors can be further sub-divided into two major
classes: local feature descriptors and global feature descrip-
tors. The most popular local feature descriptors developed in
the vision community include Scale Invariant Feature Trans-
form (SIFT Lowe 2004) and Speeded Up Robust Features
(SURFBay et al. 2006). These descriptors have been used for
the VPR problem by Se et al. (2002), Andreasson and Duck-
ett (2004), Stumm et al. (2013), Košecká et al. (2005) and
Murillo et al. (2007). A probabilistic visual-SLAMalgorithm
was presented by Cummins and Newman (2011)), namely
FrequentAppearance-basedMapping (FAB-MAP), that used
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SURF as the feature detector/descriptor and represented
places as visual words. Odometry informationwas integrated
into FAB-MAP by Maddern et al. (2012) to achieve Con-
tinuous Appearance Trajectory-based SLAM (CAT-SLAM)
using a Rao–Blackwellised particle filter. CenSurE (Cen-
ter Surround Extremas by Agrawal et al. (2008)) is another
popular local feature descriptor and which has been used
for VPR by Konolige and Agrawal (2008). FAST (Ros-
ten and Drummond 2006) is a popular high speed corner
detector that has been used in combination with the SIFT
descriptor for SLAM by Mei et al. (2009). Matching of
local feature descriptors is a computationally intense pro-
cess which has been addressed by the Bag of visual Words
(BoW Sivic and Zisserman 2003) approach. BoW collects
visually similar features in dedicated bins (pre-defined or
learned by training a visual-dictionary) without topological
consideration, enabling direct matching of BoW descrip-
tors. Some of the techniques using BoW for VPR include
the works of Angeli et al. (2008), Ho and Newman (2007),
Wang et al. (2005) and Filliat (2007). Arandjelović and Zis-
serman (2014a) present a new methodology to estimate the
distinctiveness of local feature descriptors in a query image
from closely related matches in reference descriptor space,
thereby utilising salient features within the image. While the
hand-crafted local features like SIFT and SURF had been
widely used for VPR, recent advances include learnt local
features, for example, LIFT (Yi et al. 2016), R2D2 Revaud
et al. (2019b), SuperPoint (DeTone et al. 2018) and D2-net
(Dusmanu et al. 2019). Noh et al. (2017) designed a deep-
learning-based local feature extractor and descriptor, namely
DELF, that is used with geometric verification for large-scale
image retrieval.

Global Feature Descriptors-based: VPR Global feature
descriptors create a holistic signature for an entire image
and Gist (Oliva and Torralba 2006) is one of the most popu-
lar global feature descriptor. Working on panoramic images,
Murillo andKosecka (2009), Singh andKosecka (2010) used
Gist for VPR. Sünderhauf and Protzel (2011) combined Gist
with BRIEF (Calonder et al. 2011) to perform large scale
visual-SLAM.Badino et al. (2012) usedWhole-ImageSURF
(WI-SURF), which is a global variant of SURF to perform
place recognition. Operating on sequences of raw RGB-
images, Seq-SLAM (Milford and Wyeth 2012) uses normal-
ized pixel-intensity matching in a global fashion to perform
VPR in challenging conditionally-variant environments. The
original Seq-SLAM algorithm assumes constant speed of the
robotic platform, thus, Pepperell et al. (2014) extended Seq-
SLAM to consider variable speed instead. McManus et al.
(2014) extract scene signatures from an image by utilising
some a priori environment information and describe them
using HOG-descriptors. DenseVLAD presented by Torii
et al. (2015) is a Vector-of-Locally-Aggregated-Descriptors-
based approach using densely sampled SIFT keypoints,

which has been shown to perform similar to deep-learning-
based techniques in Sattler et al. (2018) and Torii et al.
(2019). A more recent usage of traditional handcrafted fea-
ture descriptors for VPR was presented in CoHOG (Zaffar
et al. 2020)which focuses on entropy-rich regions in an image
and uses HOG as the regional descriptor for convolutional-
regional matching.

Deep Learning-based: VPR Similar to other domains of
computer vision, deep-learning andespeciallyConvolutional-
Neural-Networks (CNNs) are a game-changer for the VPR
problem by achieving unprecedented invariance to condi-
tional changes.By employingoff-the-shelf pre-trainedneural
nets, Chen et al. (2014b) used features from theOverfeat Net-
work (Sermanet et al. 2014) and combined it with the spatial
filtering scheme of Seq-SLAM. This work was followed up
by Chen et al. (2017b), where two neural networks (namely
AMOSNet and HybridNet) were trained specifically for
VPR on the Specific Places Dataset (SPED). AMOSNet was
trained from scratch on SPED, while the weights for Hybrid-
Net were initialised from the top-5 convolutional layers of
Caffe-Net (Krizhevsky et al. 2012). An end-to-end neural-
network-based holistic descriptor NetVLAD is introduced
by Arandjelovic et al. (2016), where a new VLAD (Vector-
of-Locally-Aggregated-Descriptors Jégou et al. 2010) layer
is integrated into the CNN architecture achieving excellent
place recognition results. A convolutional auto-encoder net-
work is trained in an unsupervised fashion by Merrill and
Huang (2018), utilizing HOG-descriptors of images and syn-
thetic viewpoint variations for training. The work of Noh
et al. (2017) was extended to DELG (DEep Local and Global
Features by Cao et al. (2020)) combining generalized mean
pooling for global descriptors and attention mechanism for
local features. Recently, Siméoni et al. (2019) presented that
state-of-the-art image-retrieval performance can be achieved
by mining local features from CNN activation tensors and by
performing spatial verification on these channel-wise local
features, which can be then converted into global image
signatures by using Bag-of-Words description. The work
of Radenović et al. (2018) (GeM) introduces a new train-
able ‘Generalised Mean’ layer into the deep image-retrieval
architecture which has been shown to provide a performance
boost. Chancán et al. (2020) draw their inspiration from
brain architectures of fruit flies, train a sparse two-layer
neural-network and combined it with Continuous-Attractor-
Networks to summarise temporal information.

Regions-of-Interest-focused: VPR Researchers have used
Regions-of-Interest (ROIs) to introduce the concept of
salience into VPR, and to ensure that static, informative and
distinct regions are used for place recognition. Regions of
Maximum Activated Convolutions (R-MAC) are used by
Tolias et al. (2016b), where max-pooling across cropped
areas in CNN layers’ features define/extract ROIs. This work
on R-MAC is further advanced by Gordo et al. (2017), where
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a Siamese Network is trained with a Triplet loss on the Land-
marks dataset (Babenko et al. 2014). However, Revaud et al.
(2019a) argue that ranking-based loss functions (image-pairs,
triplet-loss, n-tuples, etc.) are not optimal for the final task of
achieving higher mAP and therefore propose a new ranking-
loss that directly optimizes mAP. This mAP-based ranking
loss functionwhich in combinationwith GeM achieves state-
of-the-art retrieval performance.High-level features encoded
in earlier neural-network layers are used for region-extraction
and the following low-level features in later layers are used
for describing these regions in theworkofChenet al. (2017a).
This work is then followed-up with a flexible attention-based
model for region extractionbyChen et al. (2018).Khaliq et al.
(2019) draw their inspiration from NetVLAD and R-MAC,
thereby combining VLAD description with ROI-extraction
to show significant robustness to appearance- and viewpoint-
variation. Photometric-normalisation using both handcrafted
and learning-based methodology is investigated by Jenicek
and Chum (2019) to achieve illumination-invariance for
place recognition.

Other Interesting Approaches to VPR: Other interesting
approaches to place recognition include semantic-
segmentation-based VPR (as in Arandjelović and Zisser-
man 2014b; Mousavian et al. 2015; Stenborg et al. 2018;
Schönberger et al. 2018; Naseer et al. 2017) and object-
proposals-based VPR (Hou et al. 2018), as recently reviewed
by Garg et al. (2020). For images containing repetitive struc-
tures, Torii et al. (2013) proposed a robust mechanism for
collecting visual words into descriptors. Synthetic views are
utilized for enhanced illumination-invariant VPR in Torii
et al. (2015), which shows that highly condition-variant
images can still be matched, if they are from the same view-
point. In addition to image retrieval, significant research
has been performed in semantic mapping to select images
for insertion into a metric, topological or topometric map
as nodes/places. Semantic mapping techniques are usually
annexed with VPR image retrieval techniques for real-world
Visual-SLAM, see the survey by Kostavelis and Gaster-
atos (2015). Most of these semantic mapping techniques
are based on Bayesian-surprise (Ranganathan 2013; Gird-
har and Dudek 2010), coresets (Paul et al. 2014), region
proposals (Demir and Bozma 2018), change-point detec-
tion (Topp and Christensen 2008; Ranganathan 2013) and
salience-computation (Zaffar et al. 2018).

While the VPR literature consists of a large number of
VPR techniques, we have currently implemented 8 state-of-
the-art techniques into the VPR-Bench framework. We have
also added the provision to integrate results (image descrip-
tors) from other techniques, which has been demonstrated
by integrating DenseVLAD and GeM into the benchmark.
We plan to increase this number over time due to the mod-
ular nature of our framework with the help of the VPR
community.

Benchmarks for Visual-localisation: Within the perfor-
mance evaluation landscape, if we broaden our scope, it
is evident that ours is not the first attempt at benchmark-
ing visual-localisation at scale and previous attempts exist,
which have led to the rapid development in this domain.
From the computer vision perspective, the well-established
visual-localisation benchmark2 has been hosted for the past
few years as workshops in top computer vision conferences.
This benchmark was initially focused on 6-DOF pose esti-
mates, but has recently also included VPR (image-retrieval)
benchmarking by combining with theMapillary Street Level
Sequences (MSLS) dataset (Warburg et al. 2020) in ECCV
2020, although MSLS is mainly focused on sequences.
The benchmarks have usually been organised as challenges
(which have their own dedicated utility), where relevant
evaluation papers also exist, e.g. the recent detailed works
from Torii et al. (2019) and Sattler et al. (2018). Google
also proposed the Landmarks dataset with focus on both
place/instance-level recognition and retrieval: Google Land-
mark V1 dataset (Noh et al. 2017) and Google Landmark V2
dataset (Weyand et al. 2020). These benchmark datasets (and
other similar datasets like Oxford Buildings, Paris Buildings
etc.) and their associated evaluation metrics serve great value
to the landmark recognition/retrieval problem, but focus
on a particular category of datasets containing distinctive
architectures, which may not be the primary focus of the
robotics-centered VPR community requiring localisation-
estimates throughout a continuous traversal that may be
indoor, outdoor, natural and any/all others. Here, another
divide is that of direct versus indirect evaluation of image
retrieval, where the former directly quantifies the perfor-
mance of a VPR system’s output, while the latter assesses
the performance of a larger system using end-task metrics
such that VPR is only a module of this system’s pipeline.
The scope of VPR-Bench is limited to the direct evaluation
of VPR.

Direct and Indirect Evaluation Metrics for VPR: With
the extensive applications of VPR and therefore the corre-
spondingly large number of relevant evaluation metrics, a
higher-level breakdown can consist of two categories: direct
and indirect evaluation metrics. Direct evaluation metrics are
those metrics that directly measure the performance of a
VPR system based on the images retrieved by the system
from a given reference database for a set of query images.
This direct evaluation of VPR systems is the scope of our
work and discussed at length in the following paragraph.
On the other hand, indirect evaluation metrics for VPR are
those metrics where VPR is only a part of the particular
system’s pipeline. In such cases, the evaluation metric is
measuring the performance of the complete pipeline, where
indirectly a good performing VPR module contributes to but

2 www.visuallocalization.net.
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is not the only determinant of achieving higher overall system
performance. Some key examples of such indirect metrics
within the Visual-SLAM paradigm are absolute-trajectory-
error (ATE) and relative-pose-error (RPE), as presented in the
RGB-D Visual-SLAM benchmark by Sturm et al. (2012).
Another commonly observed pipeline for 6-DOF camera-
pose estimationwith respect to a given scene isVPR followed
by local feature matching, where the VPR module provides
the initial coarse location estimate, which is then refined by
local feature matching to yield 6-DOF camera pose. In such
a case, the overall pipeline evaluation indirectly estimates
VPR performance, as done by Sattler et al. (2018).

Within direct performance evaluation, the most domi-
nant VPR evaluation metric in robotics literature (Lowry
et al. 2015) has beenArea-under-the-Precision-Recall curves
(denoted usually as AUC-PR or simply AUC), which tries to
summarise the Precision-Recall curves in a single quanti-
fied value. AUC-PR favours techniques that can retrieve the
correct match as the top ranked image, thus favouring appli-
cations that require highly precise localisation estimates.
The reasons for more common use of PR-curves instead
of Receiver Operating Characteristics curves (ROC-curves)
in VPR are the imbalanced nature of the datasets and the
usual lack of true-negatives in datasets/evaluations. There is
extensive VPR literature employing AUC-PR, for example,
Lategahn et al. (2013), Cieslewski and Scaramuzza (2017),
Ye et al. (2017), Camara and Přeučil (2019), Khaliq et al.
(2019) and Tomită et al. (2021). Other than AUC-PR, F1-
score has also been used in VPR evaluations predominantly
by the robotics-focused VPR community, for example by
Mishkin et al. (2015), Sünderhauf et al. (2015), Talbot et al.
(2018), Garg et al. (2018b) and Hausler et al. (2019), to list
a few. However, metrics like AUC-PR and F1-score quantify
the performance of a VPR technique without considering the
geometric distribution of true-positives within the trajectory.
But since robotics is mostly concerned with achieving local-
isation every few meters, Porav et al. (2018) present a new
metric/analysis to compute the VPR performance, using the
maximum distance traversed by a robot without achieving
a true-positive/localisation/loop-closure. Recently, Ferrarini
et al. (2020) presented a new metric Extended Precision
(EP) for VPR evaluation that is based on Precision@100%
Recall and Recall@100% Precision. In our previous work
(Zaffar et al. 2020), we had presented PCU (Performance-
per-Compute-Unit) as an evaluation metric for VPR, which
combines place recognition precision with feature encoding
time.

Recall@N (or RecallRate@N) is a dominant evaluation
metric in the computer vision VPR community, which con-
siders a retrieval to be true-positive for a given query, if
the correct ground-truth image is within the Top-N retrieved
images. Recall@N has been used by e.g. Perronnin et al.
(2010), Torii et al. (2013), Arandjelović and Zisserman

(2014a), Torii et al. (2015), Arandjelovic et al. (2016) andUy
and Lee (2018). For multiple correct matches in the database,
Recall@N does not consider how many of the correct
matches for a given query were retrieved by a VPR tech-
nique, therefore mean-Average-Precision (mAP) has also
been extensively used by the computer vision VPR/image-
retrieval community. Someof the literature that has employed
mAP as an evaluation metric for VPR includes Jegou et al.
(2008), Gordo et al. (2016), Sattler et al. (2016), Gordo et al.
(2017), Revaud et al. (2019a) andWeyand et al. (2020). Other
than these metrics, Recall@Reduced Precision has also been
used as an evaluation metric (Tipaldi et al. 2013) for place
recognition. For computational analysis, feature encoding
time, descriptor matching time and descriptor size have been
the key metrics for both the communities.

It is evident that a large number of evaluation metrics
can be employed for assessing the performance a VPR
system and the selection is usually dependent upon the
underlying application. However, it is also possible for
the metrics from one community to be of value to the
other community, such that the the above discussed dis-
tribution of metrics is not depicting absoluteness but only
dominant trends/applications. For example, Recall@N and
Recall@Reduced Precision are also useful for robotic sys-
tems that can discard a small number of false-positives, e.g.
by using outlier rejection in SLAM, false-positive predic-
tion, ensemble-based approaches and geometric verification.
Similarly, mAP-based evaluations can support the creation
of additional constraints for map optimisation in SLAM. The
discussion and analysis on evaluation metrics scales quickly
in the dimension of the number of metrics discussed. To
limit the scope of this work, we have only used AUC-PR,
RecallRate@N, true-positive trajectory distribution, feature
encoding time, descriptor matching time and feature descrip-
tor size as our evaluation metrics in this work. We discuss
these metrics systematically and at length later in Sect. 3.4.

Invariance Evaluation of VPR: The effect of viewpoint
and appearance variations on visual place recognition has
been well studied in the past, aiming to understand the
limitations of different approaches. Chen et al. (2014b)
and Sünderhauf et al. (2015) evaluated different convolu-
tional layers of off-the-shelf CNNs for their performance on
VPR and concluded that mid-level and higher-level layers
were respectively more robust to appearance and view-
point variations. Garg et al. (2018a) validated this trend
on a more challenging scenario of opposing viewpoints
while also showcasing catastrophic failure of viewpoint-
dependent representations due to 180 degrees shift in camera
viewpoint. In a subsequent work, Garg et al. (2018b) pre-
sented an empirical study on the amount of translational
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offset needed to match places from opposing viewpoints in
city-like environments. Pepperell et al. (2015) studied the
effect of scale on VPR performance when using side-view
imagery and travelling in different lanes within city suburbs
and on a highway. Chéron (2018) evaluated the perfor-
mance of local features for recognition using ‘free viewpoint
videos’ and concluded that traditional hand-crafted features
demonstrated more viewpoint-robustness than their learnt
counterparts. Kopitkov and Indelman (2018) characterized
the viewpoint-dependency of CNN feature descriptors and
used it to improve probabilistic inference of a robot’s loca-
tion. In this work, we present a more formal treatment to
the effect of viewpoint and appearance variations on VPR
by utilizing the Points Features dataset (Aanæs et al. 2012)
for performance quantification. We then extend this anal-
ysis to real-world scenarios using the QUT Multi-Lane
dataset (Skinner et al. 2016) and MIT Multi-Illumination
dataset (Murmann et al. 2019).

3 VPR-Bench Framework

This section introduces the details of our novel VPR-Bench
framework, including the task formulation, datasets, tech-
niques, evaluation metrics and the invariance quantification
module, respectively.

3.1 VPR Task Formulation

Here, we formally define what a VPR system represents
throughout this paper.

Let Q be a query image and MR be a list/map of R refer-
ence images. The feature descriptor(s) of a query image Q
and referencemapMR can be denoted as FQ and FM , respec-
tively. If a techniqueusesROI-extraction, FQ will holdwithin
it all the required information in this regards, including loca-
tion of regions, their descriptors and corresponding salience.
The input Q can also be a sequence of Query images and any
other pre/post-processed form of a query candidate. For a
query image Q, given a reference map MR , let us denote the
best matched image/place by a VPR technique as P (where,
P ∈ MR) with a matching score S. The matching score S
can be defined as S ∈ [0, 1]. The confusionmatrix (matching
scores with all reference images) can be denoted asC . Based
on these notations, the following algorithm represent a VPR
system.

Algorithm A Generic VPR System
Given: Q, MR
Required: P, S,C

def compute_query_desc (Q)

Preprocessing Steps
Function Body
Postprocessing Steps
return FQ

def compute_map_ f eatures (MR)

Preprocessing Steps
Function Body
Postprocessing Steps
return FM

def per f orm_V PR (FQ , FM )

Preprocessing Steps
Function Body
Postprocessing Steps
return P, S, C

def main ()

FM = compute_map_ f eatures (MR)

FQ = compute_query_desc (Q)

P, S, C = per f orm_V PR (FQ , FM )

store P, S, C

3.2 Evaluation Datasets

In this section, we present the existing patterns and features
of datasets in VPR and then discuss each of the datasets that
have been used in this work by dividing them into outdoor
and indoor datasets categories.

3.2.1 Dataset Considerations in VPR-Bench

All the datasets that have been employed to date for VPR
evaluation comprise of multiple views of the same environ-
ment that may have been extracted under different seasonal,
viewpoint and/or illumination conditions. These views are
mostly available in the form of monocular images and are
structured as separate folders representing query and refer-
ence images. However, these views may have been extracted
from a traversal or a non-traversal-based mechanism. For the
former, consecutive images within a folder (query/reference)
usually have overlapping visual content, while for the lat-
ter, images within a folder are independent. Accompanying
these folders is usually some level of ground-truth informa-
tion, which has been represented in various ways (e.g, CSV,
numpy arrays, pickle files containing frame-level correspon-
dence, GPS, pose information etc.) for different datasets. In
some cases, the ground-truth is not explicitly provided, as
images with the same index/name represent the same place.

Formost traversal-based datasets, there is no single correct
match for a query image, because images which are geo-
graphically close-by can be considered as the same place,
leading to a range requirement for ground-truth matches
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instead of a single match/value. For such datasets and
viewpoint-invariance in general, defining a correct ground-
truth is ‘tricky’ because depending upon the acceptable level
of viewpoint invariance for a VPR technique, the underlying
ground-truth can be manipulated to change the performance
ranking, as shown later in Sect. 4.6. Another key challenge is
the relation between visual-overlap, scene-depth and phys-
ical distance. In an outdoor environment (e.g. highway),
frames that are 5m apart may have significant visual over-
lap due to high scene depth, while frames that are 5m apart
in an indoor environment may be visually very different due
to low scene-depth and therefore frame-range-based ground-
truth for most VPR datasets includes manual adjustment of
ground-truth frame-range given visual overlap sanity checks.

Generally, there is a trade-off between pose accuracy and
viewpoint invariance, where none of these can explicitly
define a hard requirement from a VPR system. If a VPR sys-
tem is being used as the primary localisation system (robotics
perspective), higher pose accuracy is desired and the sys-
tem should have viewpoint-variance, while for retrieving
maximum matches of a place from the reference database
(computer vision perspective), viewpoint-invariance is the
key requirement. For the robotics perspective, pose inac-
curacy can be reduced at increased computational cost by
using image-matching as a subsequent pose refinement stage.
Therefore, some viewpoint invariance (usually defined by a
few meters) has always been required from a VPR system
in both the communities. To address this ‘loose’ nature of
viewpoint-invariance definition of a VPR system, we have
taken the following steps:

1. We have integrated datasets that contain a large variation
in the acceptable ground-truth viewpoint variance: rang-
ing from the minimally acceptable viewpoint variation in
theCorridor dataset to the large acceptable viewpoint vari-
ations of the Tokyo 24/7 dataset, thus to cover a broader
audience.

2. We have provided an extensive analysis on the effects
of changing acceptable levels of viewpoint invariance in
Sect. 4.6.

3. As for consistency in VPR research and performance
reporting, it is essential to affix a unified template for all
of these VPR datasets, we will be re-releasing all datasets
in a VPR-Bench compatible mode with their associated
ground-truth information.

Despite the extensive collection of datasets in this work,
there are still scenarios which are not represented in these
datasets, e.g. extreme weather conditions, aerial and under-
water platforms, opposing views and motion-blur resulting
from high-speed platforms. We have designed VPR-Bench
as per unified templates to allow integration of new datasets.

Further details of the datasets template are provided in the
appendix of this paper.

3.2.2 Outdoor Environment

We have integrated multiple outdoor datasets in our frame-
work representing different types and levels of viewpoint-
, illumination- and seasonal-variations. Details of these
datasets have been summarised in Table 1 and sample images
are shown in Fig. 3. Each of these datasets has a particular
attribute to offer, that lead to its selection and they are briefly
discussed below.

The GardensPoint dataset was created by Glover (2014)
and first used for VPR by Chen et al. (2014b), where two
repeated traversals of the Gardens Point Campus of Queens-
land University of Technology, Brisbane, Australia were
performed with varying viewpoints in day and night times.
A huge body of robotics-focused VPR research has used this
dataset for reporting their VPR matching performance, as
it depicts outdoor, indoor and natural environments, collec-
tively. We have only used the day and night sequences in
our work because they contain both the viewpoint and con-
ditional change. The Tokyo 24/7 dataset was proposed by
Torii et al. (2015), which consists of 3D viewpoint-variations
and time-of-day variations. We use version 2 of the query
images, as suggested by the authors of Torii et al. (2015)
and Arandjelovic et al. (2016) to maintain comparability.
It is one of the most challenging datasets for VPR due to
the sheer amount of viewpoint- and conditional-variation,
and has been used by both the robotics and vision com-
munities. The ESSEX3IN1 dataset was proposed by Zaffar
et al. (2018) and is the only dataset designed with focus
on perceptual aliasing and confusing places/frames for VPR
techniques. The SPEDTest dataset was introduced by Chen
et al. (2018) and consists of low-quality, high scene-depth
frames extracted from CCTV cameras across the world. This
dataset has the unique attribute of covering a huge variety
of scenes from all across the world under many different
weather, seasonal and illumination conditions. The Synthia
dataset was introduced in Ros et al. (2016) and represents a
simulated city-like environment in various weather, seasonal
and time of day conditions. In this paper, we have used the
night images from Synthia Video Sequence 4 (old European
town) as query and the fog images as reference from the same
sequence. The Cross-Seasons dataset employed in our work
represents a traversal from Larsson et al. (2019), which is a
subset of the Oxford RobotCar dataset (Maddern et al. 2017).
This dataset represents a challenging real-world car traversal
from dawn and dusk conditions. One of the widely employed
datasets for VPR is the Nordland dataset, developed by
Skrede (2013) and introduced to VPR evaluation by Sünder-
hauf et al. (2013), which represents a 728km of train journey
in Norway during Summer andWinter seasons. As Nordland
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Table 1 The 12 VPR-Bench datasets integrated into VPR-Bench and used in this study are enlisted here

Dataset Environment Queries References Viewpoint change Conditional change Query Res. Ref Res.

GardensPoint University Campus 200 200 Lateral Day-Night 960 × 540 640 × 360

Tokyo 24/7 Outdoor 315 75,984 3D Day-Night 3264 × 2448 640 × 480

ESSEX3IN1 University Campus 210 210 3D Illumination 720 × 720 1080 × 1080

SPEDTest Outdoor 607 607 None Seasonal and Weather 3̃20 × 2̃40 3̃20 × 2̃40

Cross-Seasons City-like 191 191 Lateral (Occasional) Dawn-Dusk 1024 × 1024 1024 × 1024

Synthia City-like (Synthetic) 813 911 Lateral Time and Season 300 × 200 300 × 200

Nordland Train Journey 2760 27,592 None Seasonal 640 × 360 640 × 360

Corridor Indoor 111 111 Lateral None 160 × 120 160 × 120

17-Places Indoor 406 406 Lateral Day-Night 640 × 480 640 × 480

Living-room Indoor 32 32 Lateral Day-Night 1792 × 896 1792 × 896

Pittsburgh Outdoor 1000 23,000 3D None 640 × 480 640 × 480

INRIA Holidays Outdoor 300 512 Lateral/3D None 2̃50 × 1̃85 2̃50 × 1̃85

The sign ∼ for image resolutions (pixels × pixels) indicates datasets where image resolution varies in-between different images of the dataset and
we have therefore specified the common resolution observed in that dataset

dataset represents natural (non-urban), outdoor environment,
which is unexplored in any other dataset, we have integrated
it into VPR-Bench. From the computer vision community, in
addition to Tokyo 24/7, we have used the Pittsburgh dataset
(Torii et al. 2013) and the INRIA Holidays dataset (Jegou
et al. 2008) to bridge the important gap between the two com-
munities. We use only the query images of Pittsburgh dataset
because this represents the only large-scale dataset in our
framework that has 3D viewpoint-variation without any con-
ditional variation. The INRIAHolidays dataset, similar to the
SPEDTest dataset, explores a very large variety of scenes but
also includes indoor scenes as well, and uses the highly rele-
vant egocentric viewpoint unlike theCCTV-basedSPEDTest.
These datasets are still only a subset from an apparent zoo
of datasets available for VPR evaluation. Despite the large
number of outdoor datasets used in this work, there are
still scenarios that are not covered here, including extreme
weather conditions, opposing views, motion-blur, aerial and
underwater datasets.

3.2.3 Indoor Environment

A significant focus in recent research in VPR has primarily
been on evaluation on outdoor datasets, so we also incorpo-
rate indoor environments intoVPR-Bench, which are usually
a key area of study within robot autonomy. While indoor
datasets, usually do not represent the seasonal variation
challenges as outdoor datasets and the level of viewpoint-
variation is relatively lesser than outdoor datasets, they do
contain dynamic objects like humans, animals or changing
setup/environment configurations, less-informative content
and perceptual-aliasing. The details of these datasets have
been summarised in Table 1 and sample images are shown

in Fig. 3. We have briefly discussed the currently available
indoor datasets in VPR-Bench, in the following paragraph.

We have integrated the 17-Places dataset introduced by
Sahdev and Tsotsos (2016) into VPR-Bench, which con-
sists of a number of different indoor scenes, ranging from
office environment to labs, hallways, seminar rooms, bed-
rooms and many other. This dataset exhibits both viewpoint-
and conditional-variations.We also use the viewpoint-variant
Corridor dataset, introduced byMilford (2013), which repre-
sents the challenge of low-resolution and feature-less images
(160×120 pixels) for vision-based place recognition.Mount
and Milford (2016) introduced the living-room dataset for
home-service robots, which represents indoor environment
from a highly relevant and challenging viewpoint of cameras
mounted close-to-ground level. This dataset only contain 32
queries and 32 references, we deliberately use such a small-
scale dataset to see the ordering of VPR techniques on very
small-scale datasets.

3.2.4 Ground-Truth Information

Because we have utilised a variety of different datasets from
both the robotics and the computer vision communities,
which are also from both indoor and outdoor environ-
ments, the underlying ground-truth information is varying.
We have used the ground-truth information provided by the
original contributors of these datasets (or in some cases
the modified ground-truths used in recent evaluations) and
reformatted these into ground-truth compatible to the tem-
plates developed for VPR-Bench. All the datasets and their
ground-truths will be re-released and therefore we have only
briefly presented this ground-truth information in Table 2.
The ground-truth tolerance for some of the robotics-focused
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Fig. 3 Sample images from all 12 VPR datasets employed in this work are presented here. These datasets span many different environments,
including cities, natural scenery, train-lines, rooms, offices, corridors, buildings, busy-streets and such

Table 2 The ground-truth tolerance for the 12 VPR-Bench datasets
integrated into VPR-Bench is provided here

Dataset Ground-truth tolerance

GardensPoint ± 2 frames

Tokyo 24/7 ± 25m

ESSEX3IN1 Frame-to-frame

SPEDTest Frame-to-frame

Cross-seasons ± 5m

Synthia ± 7m

Nordland ± 1 frames

Corridor ± 2 frames

17-Places ± 3 frames

Living-room ± 2 frames

Pittsburgh 23 frames †

INRIA Holidays Frame-to-frame

The † next to Pittsburgh dataset indicates that 23 ground-truth images
are available for every query image, taken at different pitch and yaw
angles without any translational movement of the camera

VPR datasets is strict in comparison to the computer vision
datasets when it comes to viewpoint variance/invariance,
i.e. the reference images that are geographically far apart
but have some visual overlap are not considered as correct
matches for the robotics datasets. Instead of relaxing the
viewpoint variance for the robotics datasets and/or restricting
the viewpoint variance for the computer vision datasets, we
have used the original levels being used by their respective
communities.

3.3 VPR Techniques

In this section, we introduce the 10 VPR techniques that have
been evaluated in this work, while also providing important
implementation details of these techniques that are needed
to understand the experiments and results in the next Sect. 4.
HOG-Descriptor: Histogram-of-oriented-gradients (HOG)
is one of the most widely used handcrafted feature descrip-
tors, which actually performs very well for VPR compared
to other handcrafted feature descriptors. It is a good choice
for a traditional handcrafted feature descriptor in our frame-

work, based upon its performance as shown by McManus
et al. (2014) and the value it presents as an underlying fea-
ture descriptor for training a convolutional auto-encoder in
Merrill and Huang (2018). We use a cell size of 16 × 16
and a block size of 32 × 32 for an image-size of 512 × 512.
The total number of histogram bins are set equal to 9. We
use cosine-matching between HOG-descriptors of various
images to find the best place match.
AlexNet: The use ofAlexNet forVPRwas studied by Sünder-
hauf et al. (2015), who suggest that conv3 is the most robust
to conditional variations. Gaussian random projections are
used to encode the activation-maps from conv3 into feature
descriptors and cosine distance is used for matching. Our
implementation of AlexNet is similar to the one employed
byMerrill andHuang (2018),while the codehas been restruc-
tured as per the designed template. Note that AlexNet resizes
input image to 227 × 227 before it is input to the neural net-
work.
DenseVLAD: DenseVLAD has been proposed by Torii
et al. (2015), where they densely-sample local SIFT key-
points from images, corresponding to regional widths. These
keypoints are extracted at 4 different scales. The local key-
points are then converted into a global descriptor using a
Vector-of-Locally-Aggregated-Descriptors (VLAD) dictio-
nary consisting of 128 visual-words extracted by K-means
clustering on a dictionary of 25Mrandomly-sampled descrip-
tors. PCA-compression and whitening is performed on the
final descriptor to down-sample it into a 4096 dimensional
descriptor. In this work, we have formatted (as per our tem-
plate) and integrated the descriptor matching data computed
by the DenseVLAD code open-sourced by Torii et al. (2015)
into VPR-Bench to demonstrate the utility of our framework
for caseswhere code conversionmay not be required/desired.
All input images are resized to 640 × 480, similar to Torii
et al. (2015).
AP-GeM: GeM was originally proposed by Radenović et al.
(2018), where they presented a new generalised-mean layer
to replace the typical max-pooling and sum-pooling for fea-
ture descriptor mining from a CNN tensor. This was then
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upgraded by Revaud et al. (2019a), where they have designed
a new ranking-loss based on mean-Average-Precision. We
have used the GeM code open-sourced by Revaud et al.
(2019a) based on the ResNet101model (namely ResNet101-
AP-GeM)with an output descriptor size of 2048 dimensions.
Similar to DenseVLAD, we have used the descriptor match-
ing data computed by the original code of the respective
authors and integrated that with our framework for a seam-
lessly straightforward integration process. Revaud et al.
(2019a) used 800 × 800 resolution for training but per-
formed no resizing during testing. Thus, for a fair comparison
against other input resolution-independent methods such as
NetVLAD and DenseVLAD, we resized input images to
640 × 480.
NetVLAD: The original implementation of NetVLAD was
in MATLAB, as released by Arandjelovic et al. (2016). The
Python port of this code was open-sourced by Cieslewski
et al. (2018). The model selected for evaluation is VGG-16,
which has been trained in an end-to-endmanner onPittsburgh
30K dataset (Arandjelovic et al. 2016) with a dictionary size
of 64 while performing whitening on the final descriptors.
The code has been modified as per our template. The authors
of NetVLAD have suggested an image resolution of 640 ×
480 at inference time and we have therefore used this image
resolution for all experiments.
AMOSNet: This technique was proposed by Chen et al.
(2017b), where a CNN has been trained from scratch on the
SPEDdataset. The authors have presented results fromdiffer-
ent convolutional layers by implementing spatial-pyramidal
pooling on the respective layers. While the original imple-
mentation is not fully open-sourced, the trained model
weights have been shared by the authors. We have imple-
mented AMOSNet as per our template using conv5 of the
shared model. L1-match has been originally proposed by the
authors, which is normalised for a score between 0–1. The
default implementation of AMOSNet resizes input images to
227 × 227.
HybridNet:WhileAMOSNetwas trained from scratch, Chen
et al. (2017b) took inspiration from transfer learning for
HybridNet and re-trained the weights initialised from Top-
5 convolutional layers of CaffeNet (Krizhevsky et al. 2012)
on SPED dataset. We have implemented HybridNet as per
our template using conv5 of the HybridNet model. L1-match
has been originally proposed by the authors, which is nor-
malised for a score between 0–1. The default implementation
of HybridNet resizes input images to 227 × 227.
RegionVLAD: Region-VLAD has been introduced and open-
sourced by Khaliq et al. (2019). We have modified it as per
our template and have used AlexNet trained as Places365
dataset as the underlying CNN. The total number of ROIs has
been set to 400 and we have used ‘conv3’ for feature extrac-
tion. The dictionary size is set to 256 visual words for VLAD
retrieval. Cosine similarity is subsequently used formatching

descriptors of query and reference images. The default imple-
mentationofRegionVLADresizes input images to 227×227.
CALC: The use of convolutional auto-encoders for VPR
was proposed by Merrill and Huang (2018), where an
auto-encoder network was trained in a weakly-supervised
manner to re-create similar HOG-descriptors for viewpoint-
variant (cropped) images of the same place. We use model
parameters from 100,000 training iteration and adapt the
open-source technique as per our template. Cosine-matching
is used for descriptor comparison. This is the only semi-
supervised learning technique in our framework and there-
fore has its own particular utility. The default implementation
of CALC resizes input images to 120 × 160.
CoHOG: CoHOG is a recently proposed (Zaffar et al. 2020)
handcrafted feature-descriptor-based technique, which uses
image-entropy for ROI extraction. The regions are subse-
quently described by dedicated HOG-descriptors and these
regional descriptors are convolutionally matched to achieve
lateral viewpoint-invariance. It is an open-source technique,
which has been modified as per our template. We have used
an image-size of 512 × 512, cell-size of 16 × 16, bin-size
of 8 and an entropy-threshold (ET) of 0.4. CoHOG also uses
cosine-matching for descriptor comparison.

3.4 EvaluationMetrics

A trend within current VPR research has shown that a sin-
gle, universal metric to evaluate VPR techniques that could
simultaneously extend to all applications, platforms and user-
requirements does not exist. For example, a technique which
has a very high-precision, but a significantly higher image-
retrieval time (few seconds), may not extend to a VPR-based,
real-time topological navigation system, as the localisation
module will be much slower (in frames-per-second pro-
cessed) than the platform dynamics. However, for situations
where real-time place matching may not be required, for
example, offline loop-closures formap correction, improved-
representations and structure-from-motion, high precision at
the cost of higher retrieval time may be acceptable. There-
fore, reporting performance on a single metric may not fully
present the utility of a VPR technique to the entire academic,
industrial and research audience, and the application-specific
communities within them. We have integrated into VPR-
Bench, a variety of different metrics that evaluate a VPR
technique on the fronts of matching performance, computa-
tional needs and storage requirements.

We have collated the taxonomy of various metrics used
in VPR by both the computer vision and the robotics com-
munities in Table 3 for the reader’s reference, which are also
discussed later in the paper. The primary usage and audi-
ence of the techniques do not represent the limitations of
the respective metrics to particular use-cases/communities,
but instead identify the best/most-suitable use-cases for the
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Table 3 A taxonomy of VPR evaluation metrics is given here

Metric Primary usage Output FP allowed? Primary audience Nature

AUC-PR PL+LC+IR Single-value Yes RC+CV MB

Extended precision PL*+LC* Single-value No RC MB

Recall@100%Precision PL*+LC* Single-value No RC MB

RecallRate@N PL+LC+IR N-values Yes RC+CV MB

Recall@ReducedPrecision PL+LC+IR Single-value Yes RC+CV MB

Mean-average-precision IR Single-value Yes CV MB

F1-Score PL+LC Multiple-values Yes RC+CV MB

Encoding time PL+LC Single-value Yes RC CB

Matching time PL+LC+IR Single-value Yes RC+CV CB

PCU PL+LC Single-value Yes RC MB+CB

RMF PL+LC Single/Multiple values Yes RC MB+CB

PL primary localisation, LC loop-closure, IR image retrieval, FP false-positives, RC robotics community, CV computer vision community, MB
matching-based, CB computational-intensity-based
*Identifies a sub-class of PL and LC, where the underlying system is not robust to false-positives. This robustness normally arises from geometric-
verification, visual-inertial odometry, re-ranking schemes, false-positive predictors, weak-prior and/or other similar modules

respective metric. We have broadly classified the usage
into 3 areas: primary-localisation, loop-closure and image-
retrieval. Each of these classes can then contain various
applications, e.g. image-retrieval (which intends to retrieve
as many correct matches for a query as possible from the
database) could be used for query-expansion, structure-from-
motion (3D-model creation), content-based search engines
and many others. Primary-localisation (a vision-only local-
isation system that uses VPR for position estimates) and
loop-closure (error drift correction in a SLAM pipeline) do
not require the retrieval of all the existing matches of a
query from the database, but instead a single (or few) correct
match(es) to have a location estimate at a high frame-rate. A
primary-localisation system may or may not have a false-
positive rejection scheme within its localisation pipeline
and therefore the respective application and the suited met-
ric would change accordingly. Loop-closure represents an
important VPR application within a visual-SLAM system.
Because, the objective of having loop-closure is to correct
the existing uncertainty of the visual-SLAMsystem, it is usu-
ally preferred that a highly precise VPR technique be used
for loop-closure. The kidnapped robot problem can also be
considered as a particular case of loop-closure. In the follow-
ing, we discuss each of the metrics that have been used for
evaluations in this work, their motivation and limitations.

3.4.1 AUC and PR-Curves

Motivation: AUC-PR is one of the most used evaluation
metrics in the robotics VPR community. It presents a good
overview of the precision and recall performance of a VPR
technique, where only a single correct match, which should
be the best matched reference image, is required for a given

query image. Therefore, it is usually suitable for applications
that require high precision, high recall, single correct match,
and that only consider the best matched image for their oper-
ation, e.g. loop-closure and topological-localisation.

Limitations: AUC-PRmay not be relevant for applications
that intend to retrieve as many correct ground-truth matches
as possible from the reference database. It is not affected if
the second-best (or third-best and so on) match is actually
a correctly retrieved image. Thus, it has two major limita-
tions: in caseswheremany correct ground-truthmatches exist
in the database and the system application (3D-modelling,
constraint-creation) requires the correct retrieval of all of
these images, AUC-PR may not present significant value,
as it only considers a single retrieved image per query in
its computations. Secondly, AUC-PR may not be relevant
in cases where false-positive rejection is possible (e.g. weak
GPS prior, geometric verification, robust optimization back-
ends) and the VPR system is mainly used to retrieve a correct
match within a list of top matching candidates.

Metric Design: AUC-PR is computed from Precision-
Recall curves which are aimed at understanding the loss of
precision with increasing recall at different confidence score
thresholds. Generally, in VPR the image similarity scores
are considered as confidence scores and are varied within the
maximum range to plot PR-curves. Precision and Recall are
computed for each threshold in a range of thresholds as

Precision = True Positives

True Positives + False Positives
, (1)

Recall = True Positives

True Positives + False Negatives
. (2)

where in terms of VPR, given a query image and a chosen
confidence score threshold, a True-Positive (TP) represents
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a correctly retrieved image of a place based on ground-truth
information. A False-Positive (FP) represents an incorrectly
retrieved image based on ground-truth information. A False-
Negative (FN) is a correctly retrieved image based on
ground-truth, the matching score for which is lower than
the chosen confidence score threshold. Please note that in
most VPR datasets, all correctly matched images that are
rejected due to the matching scores being lower than the
chosen threshold are classified as false-negatives, because
ground-truth matches exist for all images in the datasets.
There are no True-Negatives (TN) usually in the datasets,
i.e. query images that do not have a correct match in the
reference database (we also discuss this later in the paper
for ROC curves). By selecting different values of the match-
ing threshold, varying between the highest matching score
and the lowest matching score, different values of Precision
and Recall can be computed. The Precision values are plotted
against the Recall, and the area under this curve is computed,
which is termed AUC-PR. The ideal value of AUC-PR is 1
and Precision = 1 for all recall values represents an ideal
PR-curve.

3.4.2 RecallRate@N

Motivation: One of the most commonly used evaluation
metrics from the computer vision VPR community is Recall-
Rate@N (also termed as Recall@N). This metric tries to
model the fact that a correctly retrieved reference image
(as per the ground-truth) does not necessarily has to be the
top-most retrieved image, but only needs to be among the
Top-N retrieved images. The primary motivation behind this
is that subsequent filtering steps, e.g. geometric consistency
or weak GPS-prior, can be used to re-arrange the ranking of
the retrieved images and avoid false-positives. As this provi-
sion is not modelled by AUC-PR and presents an important
case study, we have included this metric into our framework.

Limitations: There may be cases where false-positive
rejection is not possible, e.g. geometric-verification may fail
in dark, unstructured environments and in extreme condi-
tions (rain, fog etc) and therefore in such cases it may be
relevant to use VPR systems (and metrics like AUC-PR)
that are highly precise and where the best matched image
should not be a false-positive. On the other hand, similar to
AUC-PR, RecallRate@N also rewards a VPR system only
for retrieving a single correct match per query from the ref-
erence database. Both themetrics neither penalize nor reward
retrieval of more than one correct match per query, which is
a particular use-case for the mean-Average-Precision (mAP)
metric.

Metric Design: The requirement for RecallRate@N is that
the correct reference image for a query only needs to be
among the Top-N retrieved images. Let the total number of
query imageswith a correctmatch among theTop-N retrieved

images be MQ , and the total number of query images be NQ ,
then the RecallRate@N can be computed as

RecallRate@N = MQ

NQ
. (3)

Please note that RecallRate@1 is actually equal to the
Precision at maximum Recall PRmax. The ideal value of
RecallRate@N is equal to 1. RecallRate@N does not con-
sider false-negatives (incorrectly discarded correct matches)
and true-negatives (newplaces) and is therefore not a replace-
ment for AUC-PR and AUC-ROC, respectively. An ideal
RecallRate@N graph should represent a straight line on y-
axis=1 (RecallRate=1) for all values of N on the x-axis.

3.4.3 ROC Curves

Motivation: AUC-PR and RecallRate@N do not consider
true-negatives within them. In VPR, true-negatives are those
query images for which the ground-truth correct reference
match does not exist. These true-negatives can also be
thought of as ‘new places’, i.e. places which haven’t been
seen before by the vision system. It is important for a VPR
system to identify these true-negatives for their usagewithin a
topological SLAM system for an exploration task. Previous
metrics like AUC-PR and RecallRate@N are designed for
tasks where a map is already available and the primary task
of the VPR system is only accurate localisation. AUC-ROC
therefore complements the analysis provided by AUC-PR
and/or RecallRate, but does not replace them.

Limitations: ROC curves are useful for balanced class
problems and therefore in datasets where true-negatives and
true-positives are not balanced, ROC curves may not present
value. ROC curves are also not useful for applications that
already have a fixed map of the environment available,
because in this case identification of new places is not a
requirement.

Metric Design: In order to assess the true-negative clas-
sification performance of a VPR system, we utilise the
well-established Receiver-Operating-Characteristic (ROC)
curve. Because VPR datasets in general do not contain any
true-negatives, they represent an imbalanced class problem,
i.e. true-positives and true-negatives classes are not balanced.
This is another reason due to which ROC curves have not
been used for VPR evaluation, as the focus has always been
on achieving very high-precision, i.e. retrieving as many
correct place matches as possible. We therefore manually
add true-negatives to the Gardens Point dataset for our ROC
evaluation, where true-negatives are images taken from the
Nordland dataset as a case-study. The modified Gardens
Point dataset contain the 200 original true-positives and the
added 200 true-negatives from Nordland dataset. The refer-
ence database remains the same, while the ground-truth is
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modified such that for the 200 true-negative query images, it
identifies that a correct match does not exist. This modified
dataset and associated ground-truth is available separately in
our framework to avoid confusion with the original datasets.
It is easily possible to extend this analysis on other datasets
and is supported by our framework.

The definitions of true-positives, false-positives and false-
negatives for ROC curves remain the same as PR curves, with
only the extra addition of true-negatives as defined above.
An ROC curve is a plot between the true-positive rate (TPR)
on the vertical axis and the false-positive rate (FPR) on the
horizontal axis. The TPR signifies how many of the total
query images that have a correct reference match have been
retrieved by a VPR technique. The FPR identifies how many
of the total query images that do not have a correct refer-
ence match were labelled as false-positives. These metrics
are computed as

TPR = True Positives

True Positives + False Negatives
, (4)

FPR = False Positives

False Positives + True Negatives
. (5)

Similar to PR-curves, the true-positive rate and the false-
positive rate are computed for a range of different matching
confidence thresholds. Area under this ROC curve (AUC-
ROC) is used to model the classification quality of a VPR
technique. A perfect AUC-ROC is equal to 1 and an ideal
ROC curve is identified by TPR=1 for all values of FPR. An
AUC-ROC of 0.5 identifies that a technique has no separa-
tion capacity between the true-class (queries with existing
matches in reference database) and the false-class (new
places). An AUC-ROC below 0.5 means that a technique
is yielding opposite labels for most of the candidates, i.e.
true-positives are classified as true-negatives and vice-versa.

3.4.4 Image Retrieval Time

Motivation: From a computational perspective, the most
important factors to consider are the feature encoding time
and the descriptor matching time of VPR techniques, which
have been usually reported by works from both the VPR
communities. These computationalmetrics only complement
the metrics related to place matching precision. In applica-
tions where the reference database is significantly large,3

descriptor matching time may be more relevant than feature
encoding time and vice-versa.

Limitations: Unlike other precision-related metrics, com-
putational performance is greatly dependent on the underly-

3 The quantified meaning of ‘large’ is usually dependent upon the com-
putational platform, system’s implementation and the ratio of feature
encoding time to descriptor matching time.

ing platform and can change significantly from one system
to another.

Metric Design: Feature encoding time and descriptor
matching time can be combined together to model the image
retrieval time of a given VPR technique. Let the total number
of images in the map (reference database) be Z . Let te rep-
resent the feature encoding time and tm represents the time
required to match feature descriptors of two images. Also,
let the retrieval-time of a VPR technique be denoted as tR ,
where this tR represents the time taken (in seconds) by aVPR
technique to encode an input query image and match it with
the total number of images (Z ) in the referencemap to output
a potential place matching candidate. We model this tR as

tR = te + O(Z) × tm . (6)

Here O(Z) represents the complexity of search mechanism
for image matching and could be linear, logarithmic or
other depending upon the employed neighbourhood selection
mechanism (e.g., linear search, nearest-neighbour search,
approximate nearest neighbour search etc.). While imple-
menting this framework, we ensured that te and tm are
computed in a fashion where all subsequent dependencies,
input/output data transfer, pre-processing and preparations
of a VPR technique are included in these timings for a fair
comparison. The descriptor matching time is related to the
descriptor size, computational platform, descriptor dimen-
sions and descriptor data-type, which have all been reported
in this work for completeness.

Additional to the metrics discussed previously, we also
compute and report the feature descriptor size of all VPR
techniques to reflect the storage requirements, which are
highly relevant for large-scale maps.

3.4.5 True-Positives Distribution Analysis

Motivation: Some robotics applications may require that
a loop-closure candidate (a correct VPR match) must be
obtained at least every Y meters over a traversed trajec-
tory. For a robot localisation system (visual-inertial-based,
visual-SLAM-based, dead-reckoning-based and similar), a
VPR technique that is moderately precise but has a uniform
true-positive distribution over the robot’s trajectory has more
value than a highly-precise technique with a non-uniform
distribution.. We have therefore included true-positives dis-
tribution over trajectory analysis in our benchmark.

Limitations: This metric is application-specific and does
not provide insights for the non-traversal datasets usually
employed by the computer vision VPR community.

Metric Design: This metric was presented by Porav et al.
(2018). They analyse the distribution of loop-closure can-
didates (true-positives) by creating histograms identifying
inter-loop-closure distances, such that the height of the his-
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togram bar specifies the number of loop-closures performed
in the dataset with that particular inter-frame distance con-
straint. We use the same analysis schema in this work.

3.4.6 Other VPRMetrics

The metrics discussed previously in this paper have their
specific utilities, and in some cases these metrics comple-
ment each other (e.g. AUC-PR and RecallRate@N), and
in other cases provide dedicated value (e.g. AUC-ROC for
true-negatives, retrieval time for computational analysis).
Still, even more metrics have been used for VPR, including
mAP (Revaud et al. 2019a), Performance-per-Compute-Unit
(Zaffar et al. 2020; Tomită et al. 2020), Recall@0.95 Preci-
sion (Chen et al. 2011), Extended Precision (Ferrarini et al.
2020), F1-score (Hausler et al. 2019), error-rate (Chen et al.
2014a) and Recall@100% Precision (Chen et al. 2014b). To
limit the scope of the analysis performed in this paper, and
because there is a high corelation between some of thesemet-
rics (e.g. between RecallRate@N, Recall@100% Precision
and Recall@95% Precision), we have implemented many of
these other metrics in the implementation of VPR-Bench, but
did not include them in this paper.

3.5 Invariance Quantification Setup

In this sub-section (and its respective results/analysis in
Sect. 4.8) we propose a thorough sweep over a wide range of
quantified viewpoint and illumination variations and study
the effect on VPR techniques.

Aanæs et al. (2012) proposed a well-designed and highly-
detailed dataset, namely Point Features dataset, where a
synthetically-created scene is captured from 119 different
viewpoints, under 19different illumination conditions.While
the original dataset consists of different synthetic scenes,
some of which are irrelevant to VPR, we utilise a subset
of the dataset that represents scenes of synthetically-created
‘Places’, and we use 2 of these scenes/places in our work.
We have integrated this subset of the Point Features dataset
in our framework and Sect. 3.5.1 is dedicated to explaining
the details of this dataset.

Anobvious limitation of thePoint Features dataset is that it
depicts synthetic scenes (toy-houses, toy-cars etc) instead of
a real-world scene. This limitation is a challenge to address,
because in real-world scenes it is significantly difficult to
control the illumination of a scene. However, we do make
an effort in this paper to present the analysis of viewpoint
and illumination variation effects on VPR performance for
real-world variation-quantified (semi-quantified) datasets as
well. The level of quantification available in these datasets is
not as detailed as the Point Features dataset, but they serve to

bridge the sim-to-real gap in our evaluation to some degree.
Therefore, in this reference, we have used the QUT multi-
lane dataset (Skinner et al. 2016) for viewpoint variations and
theMITmulti-illumination dataset (Murmann et al. 2019) for
illumination variations. Details of both of these datasets are
available in their respective sub-sections below.

We have also dedicated a sub-section (Sect. 3.5.4) to
present the details of our evaluation mechanism on these 3
datasets. The evaluation mechanism in this paper (and in
the proposed framework) is kept the same for all 3 datasets
(Point-features, QUT multi-lane, MIT multi-illumination
datasets) to ensure consistency. Please note that throughout
this section the term ‘same-but-varied place’ refers to the
images of a place from different viewpoints or under differ-
ent illumination conditions, while the term ‘different place’
refers to a place that is geographically not the same as the
‘same-but-varied’ place. For each of the 3 datasets in this
section, there are only 2 actual places in total, i.e. ‘the same-
but-varied’ place and the ‘different place’.

3.5.1 Point Features Dataset

The Point Features dataset can be broadly classified to have
3 variations: (1) Viewpoint, (2) Illumination and (3) Scene.
We fully use the former two variations in our work, while
only two relevant scenes (representing two different places)
are utilised from the latter. The authors Aanæs et al. (2012)
achieve viewpoint-variation by mounting the scene facing
camera on a highly-precise robot arm, where this robot arm
is configured to move across and in-between 3 different arcs,
that amount to a total of 119 different viewpoints, as depicted
in Fig. 5. Their setup used 19 LEDs that varied from left-to-
right and front-to-back to depict a varying directional light
source. This directional illumination setup has been repro-
duced in Fig. 6, while the azimuth (φ) and elevation angle
(θ ) of each LED is listed in Table 4. Figure 4 shows various
components of the dataset, while in Fig. 7 we qualitatively
show all the 19 different illumination cases on one of the
scenes.
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Fig. 4 The schematic setup of the Point Features dataset has been
reproduced here with permission from Aanæs et al. (2012). The dataset
primarily consists of a A camera mounted on a robot-arm, b Synthetic
Scene, c LED arrays for illumination, d, e Snapshots of the actual setup

Fig. 5 The 119 different viewpoints in the Point Features dataset have
been reproducedherewith permission fromAanæs et al. (2012).Camera
is directed towards the scene from all viewpoints. Arc 1, 2 and 3 span
40, 25 and 20 degrees, respectively, while the radii are 0.5, 0.65 and
0.8m

3.5.2 QUTMulti-lane Dataset

The QUT multi-lane dataset is a small-scale dataset depict-
ing a traversal through an outdoor environment (Skinner
et al. 2016) performed at 5 different laterally-shifted view-
points under similar illumination and seasonal conditions.
This traversal has been performed at a near-constant veloc-
ity by a human from an ego-centric viewpoint. The dataset
contains 2 types of viewpoint changes: (a) Forward andBack-
ward movement, i.e. Zoom-in and Zoom-out effect similar to
the inter-arc viewpoint change of the Point Features dataset,
(b) Lateral viewpoint change, which is close to the viewpoint
change across the arcs of the Point Features dataset.

Fig. 6 The distribution of LEDs across physical space is shown as
seen from above. Each red circle represents an LED and only a single
LED is illuminated at a point in time, yielding 19 different illumination
conditions. In the original work, Aanæs et al. (2012), used artificial
linear relighting from left-to-right (blue) and front-to-back (black) based
on a Gaussian-weighting, as depicted with the green-circle, but in our
work we have only used the original 19 single-LED illuminated cases.
These 19 cases (red-circles) need to be seen in correspondence with
Table (Color figure online) 4

Table 4 The azimuth (φ) and elevation angles (θ) of each LED are
listed here (in degrees) with respect to the physical table surface that
acts as the center of coordinate system

LED number θ φ LED number θ φ

1 264 57 11 28 86

2 277 57 12 10 80

3 227 68 13 6 74

4 245 72 14 125 65

5 270 73 15 109 68

6 297 72 16 89 69

7 314 68 17 69 68

8 174 74 18 53 64

9 170 80 19 97 56

10 152 86

We use in total 2 different scenes (representing 2 different
places) from their traversal and for each scene use 15 view-
points. These 15 viewpoints represent 5 lateral viewpoint
changes for 3 consecutive (forward/backward movement)
viewpoints of each scene/place. The lateral viewpoint change
is almost 1.2m, while the forward/backward viewpoint
change is around3.5m.Examples of these viewpoint changes
have been shown in Fig. 8 for both the scenes/places.
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Fig. 7 The change in appearance of a scene for 19 different illumination levels is shown here from the Point Features dataset

Fig. 8 The 15 different
viewpoint cases in the QUT
multi-lane dataset for both the
scenes/places have been
presented here
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Fig. 9 The 25 different illumination cases for both the scenes/places from the MIT multi-illumination dataset have been presented here

3.5.3 MIT Multi-illumination Dataset

The MIT multi-illumination dataset was recently proposed
by Murmann et al. (2019). This dataset represents a variety
of indoor scenes captured under 25 different illumination
conditions. Most of the scenes represented in this dataset
may not actually be classified as ‘Places’, however because
we only require 2 scenes/places, we have manually mined
scenes that represent an indoor appearance of a place and are
feature-full.4

The dataset consists of a total of 1016 interior scenes,
each photographed under 25 predetermined lighting direc-
tions, sampled over the upper hemisphere relative to the
camera. All of these scenes depict common domestic and
office environments. The scenes are also populated with var-
ious objects, some of which represent shiny surfaces and are
therefore interesting for our evaluation. The lighting varia-
tions are achieved by directing a concentrated flash beam
towards the walls and ceiling of the room, which is similar to
the works of Mohan et al. (2007) andMurmann et al. (2016).
The bright spot of light that bounces off the wall becomes a
virtual light source that is the dominant source of illumination
for the scene in front of the camera. The approximate position

4 The authors acknowledge that even the multi-illumination dataset
may not fully represent a real-world ‘landmark’ and multiple illumina-
tion sources etc, however to the best of authors’ knowledge, this is the
most relevant real-world illumination quantified dataset for the prob-
lem at hand. Controlled illumination, especially in outdoor scenes is
notoriously difficult as identified by Murmann et al. (2019).

of the bounce light is controlled by rotating the flash head
over a standardized set of directions. The authors propose
that their camera and flash system is more portable than ded-
icated light sources, which simplifies its deployment ‘in the
wild’. Because the precise intensity, sharpness and direction
of the illumination resulting from the bounced flash depends
on the room geometry and its materials, these lighting condi-
tions have been recorded by inserting a pair of light probes,
a reflective chrome sphere and a plastic gray sphere, at the
bottom edge of every image. For further specification details,
we would refer the reader to the original paper of Murmann
et al. (2019) for avoiding textual redundancies. Examples of
the 2 different places under the varying illumination condi-
tions have been shown in Fig. 9, where Place 1 is chosen due
to its closest-possible depiction of an indoor VPR-relevant
scene, while Place 2 is chosen due to the shiny objects in that
scene. Both the scenes/places are feature-full.

3.5.4 Evaluation Mechanism

In order to utilise the densely-sampled viewpoint and illu-
mination conditions in the Point Feature dataset (and the
less-detailed QUT multi-lane dataset and the MIT multi-
illumination dataset), we had to devise an analysis scheme
where VPR performance variation could be quantified and
analysed. This quantification is not possible with the tradi-
tional place matching evaluation, where there are only two
possible outcomes for a given query image, i.e. a correct
match or a false match. This is because the mismatch cannot
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be guaranteed to have resulted from that particular variation
and may have resulted from perceptual-aliasing or a smaller
map-size. Also, even if an image is matched, it is not guar-
anteed that increasing the map-size (i.e. the no. of reference
images) would not affect the outcome, as the greater the no.
of reference images, the greater the chances of mismatch.
However, each VPR technique does yield a confidence-score
for the similarity of two images/places. Ideally, if two images
represent the same place, then the confidence-score should
remain the same, if one of the image of that place is varied
with respect to viewpoint or illumination, while keeping the
other constant. However, in practical cases, VPR techniques
are not fully-immune to such variations and a useful analysis
would be to see this effect on the confidence-score.

Therefore, our analysis on the 3 datasets in this section and
the VPR-Bench framework are developed based on the effect
of viewpoint- and illumination-variation on the confidence
score. This confidence score usually refers to the matching
score (L1-matching, L2-matching, cosine-matching etc.) in
VPR research and for two exactly similar images (i.e. two
copies of an image), this confidence/matching score is always
equal to 1. However, when the image of the same place/scene
is varied with respect to viewpoint or illumination, the con-
fidence score decreases. This decrease in matching score by
varying images of the same place/scene along the pre-known,
numerically-quantified viewpoint- and illumination-levels of
the 3 datasets presents analytically and visually the limits
of invariance of a VPR technique. However, the trends of
these variations in-between different VPR techniques can-
not be compared solely based on the decrease of confidence
scores, due to different matching methodologies. Therefore,
for each VPR technique, we draw the confidence score vari-
ation trend for the same place along with the trend for a
different place/scene. The point at which the matching score
for the same place (but viewpoint or illumination varied)
approaches near (or below) the matching score for a different
place, identifies the numeric value of viewpoint/illumination
change that a VPR technique cannot prospectively handle.

Evaluation Mechanism Point Features Dataset: There are
a total of 119 different viewpoint positions and 19 differ-
ent illumination levels. We consider the illumination case
1 in Fig. 6 and the left-most point on Arc 1 of Fig. 5 as
our keyframe(s) for viewpoint- and illumination-invariance
analysis, respectively. The 119 viewpoint positions are
numerically labelled in consecutive ascending order from
the keyframe (labelled as ‘1’) to the right-most point on
Arc 1, followed by the leftmost point on Arc 2 to the right-
most point on Arc 2, which is then followed by the left-most
point on Arc 3 and the last (labelled as ‘119’) position is the
right-most point on Arc 3. For each analysis and each VPR
technique, the key-frame is matched with itself to provide an
ideal matching score, i.e. 1. For viewpoint-variation analysis,
we keep the illumination type/level constant, move alongArc

1 in a clock-wise fashion and compute the matching scores
between the keyframe and the viewpoint-varied (quantified)
images. The same is repeated for Arcs 2 and 3, where the
keyframe remains the same i.e. the left-most point on Arc 1.
Thematching scheme yields a total of 119 different matching
scores for each of the 119 different viewpoint positions.

For the illumination invariance analysis, the 19 illu-
mination cases are identified numerically in Table 4 and
qualitatively in Fig. 7. For the illumination-invariance anal-
ysis, the viewpoint position is kept constant (left-most point
on Arc 1) and the illumination levels are varied.

Because the decline in matching score itself does not pro-
vide too much insight, we draw the matching scores for the
same-but-varied scene in the Point Features dataset, along
with the matching scores when the reference scene is a dif-
ferent place (i.e. the query/keypoint frame and reference
frame are different places). For computing the matching
scores between the keyframe and the different scene/place,
we utilise all of the 119 viewpoint positions and the 19 illu-
mination levels of the different scene/place. This gives us the
corresponding number (119/19 for both variations) of data-
points for the confidence scores between keyframe and the
different place to be drawn against the data-points for the
same-but-varied place. There are further advantages to using
all the (119 and 19) viewpoint and illumination cases for the
different place, as explained later in Sect. 4.8.

Evaluation Mechanism: QUT Multi-lane Dataset: The
evaluation mechanism is the same for QUT Multi-lane
Dataset as that for the Point Features dataset. In this case,
however, there are a total of 15 different viewpoint posi-
tions for the same-but-varied place and15different viewpoint
positions for the different place. Unlike the large number of
viewpoint variations in the Point Features dataset whichwere
difficult to qualitatively represent, the 15 different viewpoint
positions for both the scenes/places for the QUT multi-lane
dataset have been shown and labelled in Fig. 8. For both the
scenes/places, the viewpoint positions 1–5 are left-to-right
variations at the beginning of the traversal, 6–10 are left-
to-right variations a few meters ahead of 1–5, and 11–15 are
left-to-right variations a fewmeters ahead of 6–10. Image 1of
Place 1 serves as the keyframe. Thematching scores between
the keyframe and the same-but-varied place, and between the
keyframe and the 15 viewpoints of different place (place 2)
are computed/utilised in the same fashion as that for Point
Features dataset.

Evaluation Mechanism MIT Multi-illumination Dataset:
The evaluation mechanism for the MIT multi-illumination
dataset is also the same as that of the Point Features dataset.
In this case, however, there are a total of 25 different illu-
mination cases. These illumination cases for both the scenes
have been identified in Fig. 9. Image 1 of Place 1 serves as
the keyframe. The matching scores between the keyframe
and the same-but-illumination-varied place, and between the
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Fig. 10 The Precision-Recall curves for all 10 VPR techniques generated on the 12 datasets by VPR-Bench framework are presented here

keyframe and the 25 different illuminations of different place
(place 2) are computed/utilised in the same fashion as that
for the Point Features dataset.

4 Results and Analysis

In this section, we present detailed results and analysis for the
10 VPR techniques on the 12 datasets for various evaluation
metrics. We discuss the variation in performance by varying
dataset ground-truths, computational platforms (CPU ver-
sus GPU), feature descriptor sizes and the retrieval timings
versus platform speed. We provide an extensive analysis
based on our viewpoint and illumination invariance quan-
tification setup. Finally, we discuss the role of viewpoint
variance versus invariance and the subjective requirements of
these from a VPR system. The experiments were performed
on a Ubuntu 20.04.1 LTS operating system running on an
AMD(R) Ryzen(TM) 7-3700U CPU @ 2.30GHz.

4.1 Place Matching Performance

We now present the results obtained by executing the VPR-
Bench framework given the attributes presented in Sect. 3.

PR-Curves: Firstly, the precision-recall curves for all 10
VPR techniques on the 12 indoor and outdoor datasets are
presented in Fig. 10. The values of AUC-PR for all tech-
niques have been listed in Table 5. From the perspective

of place matching precision, VPR-specific deep-learning
techniques generally perform better than non-deep-learning
techniques, with the exception of CoHOG and DenseVLAD,
which always performs better than AlexNet and CALC.
While CoHOG can handle lateral viewpoint-variation, it
cannot handle 3D viewpoint-variation as present in the
Tokyo 24/7 dataset. NetVLAD and DenseVLAD can han-
dle 3D viewpoint-variation better than any other tech-
nique, because the training dataset for these contained 3D
viewpoint-variations. HybridNet and AMOSNet can handle
only moderate viewpoint-variations, but perform well under
conditional variations due to trainingonhighly conditionally-
variant SPED dataset. Please note that the SPED dataset
and SPEDTest dataset do not contain the same images,
therefore the state-of-the-art performance of HybridNet and
AMOSNet on SPEDTest dataset advocates for the utility of
deep-learning techniques in environments similar to training
environments (which in this case is the world from a CCTV’s
point-of-view).

All techniques suffer on the Nordland dataset which con-
tains significant perceptual aliasing and a large reference
database. HOG and AlexNet usually lie on the lower-end of
matching capabilities for all viewpoint-variant datasets, but
perform acceptably onmoderately condition-variant datasets
that have no viewpoint variation. A notable exception here
is the state-of-the-art performance of HOG compared to
all other techniques on the Living Room dataset, which
consists of high-quality images of places under indoor illu-
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Table 5 The values of AUC-PR are listed here for all the techniques on the 12 datasets

Dataset Name NetVLAD RegionVLAD CoHOG HOG AlexNet AMOSNet HybridNet CALC AP-GeM DenseVLAD

Gardens Point 0.70 0.56 0.42 0.28 0.47 0.57 0.59 0.38 0.67 0.77

SPEDTest 0.81 0.61 0.48 0.63 0.63 0.91 0.90 0.67 0.71 0.85

Nordland 0.08 0.12 0.02 0.02 0.20 0.30 0.17 0.12 0.06 0.13

Living Room 0.94 0.94 0.85 1.00 0.95 0.98 0.97 0.70 0.93 0.99

Synthia 0.92 0.60 0.79 0.99 0.88 0.89 0.91 0.90 0.97 0.99

17Places 0.39 0.38 0.40 0.29 0.39 0.37 0.39 0.45 0.36 0.38

Cross-Seasons 0.99 0.94 0.72 0.87 0.99 0.98 0.99 0.71 0.98 0.99

Corridor 0.83 0.66 0.69 0.68 0.80 0.95 0.93 0.78 0.85 0.89

Tokyo 24/7 0.89 0.42 0.09 0.00 0.06 0.25 0.28 0.01 0.78 0.95

ESSEX3IN1 0.71 0.55 0.80 0.09 0.16 0.30 0.32 0.16 0.72 0.98

Pittsburgh 0.94 0.73 0.97 0.01 0.05 0.08 0.08 0.02 0.86 0.95

INRIA Holidays 0.90 0.94 0.76 0.39 0.79 0.89 0.92 0.77 0.98 0.99

The bold values in each row represent the state-of-the-art technique for each dataset for the corresponding metric

mination variations. This suggests that on very small-scale
datasets (and therefore for such small-scale indoor robotics
applications), simple handcrafted techniques can yield good
matching performance even under moderate variations in
viewpoint and illumination.CALCcannot handle conditional
variations to the same level as other deep-learning-based
techniques, as the auto-encoder in CALC is only trained to
handle moderate and uniform illumination changes. Region-
VLAD also performs in the same spectrum as NetVLAD, but
cannot surpass it on most datasets. All techniques perform
poorly on the 17 Places dataset that represents a chal-
lenging indoor environment with strict viewpoint variance,
suggesting that the outdoor performance success of tech-
niques cannot be extended to an indoor environment. The
perceptual-aliasing of datasets like Cross-Seasons and Syn-
thia also presents significant challenges to VPR techniques.
The AUC-PR of HOG comes out as 1 for the Living Room
dataset, because a threshold exists abovewhich all images are
correctmatches (17 out of 32) and belowwhich (15 out of 32)
all images are incorrect matches. The results on Pittsburgh
dataset and Tokyo 24/7 dataset identify two very separable
clusters of VPR techniques: those (e.g. AMOSNet, Hybrid-
Net, CALC) that cannot handle large reference databases
which essentially have many distractors and those (e.g.
NetVLAD, DenseVLAD, CoHOG) which can handle such
large reference databases.

RecallRate@N : While for AUC-PR, the results have been
listed in Table 5, RecallRate@N is usually represented as
a trend and not as a single value. Therefore, for Recall-
Rate@N, we plot the variations in RecallRate for values of
N in the range of 1 to 20. These plots have been created
for all the 10 VPR techniques on the 12 datasets and are
shown in Fig. 11. Clearly, increasing/relaxing the value of N
leads to an increase in RecallRate for all 10 techniques and

thus systems/applications that have a subsequent verification
stage to re-rank the output of a VPR system would benefit
from the trends presented in Fig. 11. An interesting insight
is depicted by the values of N on which the ordering of tech-
niques changes, which re-affirms the utility of this metric, for
example see results on Gardens Point, ESSEX3IN1, Cross-
Seasons and Corridor datasets. CALC starts from the bottom
for RecallRate@1 on the Living Room dataset and sharply
rises for later values of N. It is important to note the changing
state-of-the-art for RecallRate in comparison to AUC-PR,
for example, DenseVLAD is the state-of-the-art on Tokyo
24/7 dataset for AUC-PR but for most values of RecallRate,
NetVLAD and AP-GeM outperform DenseVLAD. Exam-
ples of images matched/mismatched by all VPR techniques
on the 12 datasets are shown in Fig. 12 for a qualitative
insight.

Computational Performance: The values of feature encod-
ing time, descriptor matching time and descriptor size have
been listed in Table 6 for our fixed platform. For all exper-
iments in this work, we have used the default data-types of
descriptors as specified in Table 6 last row, however for the
sake of complete comparison ofmatching time tm , we affixed
data-type of all techniques to float-64 for the values of tm
in Table 6 third row. The encoding time is usually higher
for deep-learning-based techniques, while the matching time
is generally higher for larger feature descriptors. Evidently,
there are four factors affecting descriptor matching time: dis-
tance/similarity function, number of descriptor dimensions,
length of each dimension and the descriptor data-type. For the
reported 64-bit platform, cosine-distance as a similarity func-
tion and float-32 data-type, the change of size of a descriptor
dimension (e.g. NetVLAD versus HOG in Table 6 second
row) has less effect on the matching time than a change in the
total number of dimensions of a descriptor (e.g. NetVLAD
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Fig. 11 The RecallRate@N curves for all 10 VPR techniques generated on the 12 datasets by VPR-Bench framework are presented here. The range
of N used here is 1 to 20 with a step-size of 1. The values of RecallRate@1 represent the Precision@100% Recall of a VPR technique

versus CoHOG inTable 6 second row). On the other hand, for
float-64 data-type and fixed similarity function, the increase
in matching time is almost linear with increasing size of a
descriptor dimension (e.g. NetVLAD versus HOG in Table
6 third row). AMOSNet has half the descriptor size than
CoHOG, both descriptors are 2-dimensional, but the match-
ing time for CoHOG is significantly higher than AMOSNet
due to different distance functions, i.e. L1-matching for
AMOSNet and cosine-distance for CoHOG.

Some of the key findings from the analysis in this sub-
section can be summarised as follows:

1. Unlike previous evaluations (Zaffar et al. 2019a, b), where
state-of-the-art AUC-PR performance was almost always
achieved byNetVLAD, this paper shows that state-of-the-
art AUC-PR performance is widely distributed among all
the techniques across the 12 datasets.

2. The state-of-the-art technique for a particular dataset
is metric-dependent and therefore, application-specific.
A computationally-restricted application may find met-
rics like descriptor-size or retrieval-time important, while
computationally-powerful platforms may only utilise
AUC-PR and RecallRate.

3. Interestingly, hand-crafted and non-deep-learning place
recognition techniques can also achieve state-of-the-art
performance. For DenseVLAD, this had been previously
reported by Sattler et al. (2018) and Torii et al. (2019),

and we re-affirm their findings here. In our work, we also
show how HOG and CoHOG have achieved state-of-the-
art performance for all metrics on at least one dataset (see
results on Synthia Night-to-Fall dataset and Pittsburgh
dataset in Table 5).

4. Applications where the explored environment is small
(e.g, a home service robot as in the Living Room dataset)
and the variations are moderate, it is better to use a hand-
crafted computationally-efficient technique, as suggested
by results in Table 5 for Living Room dataset.

5. Learning-based techniques that are trained on feature-full
datasets do not extend well to non-salient, perceptually-
aliased and feature-less environments. See for example
thematching results on the Nordland dataset and Corridor
dataset in Fig. 11 and Table 5.

6. Because state-of-the-art performance is distributed across
the entire set of VPR techniques, an ensemble-based
approach presents more value to VPR than a single-
technique-based VPR, provided that the high computa-
tional and storage requirements of an ensemble can be
afforded.

7. A perfect AUC-PR score (i.e. equal to one) may be mis-
interpreted as a technique retrieving correct matches for
all the query images in the dataset. However, a perfect
AUC-PR in fact only means that when the query images
and their retrieved matches are collectively arranged in
a descending order based on confidence scores, all the
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Fig. 12 Exemplar images matched/mismatched by VPR techniques are
shown here for a qualitative insight. Red bounded images are incorrect
matches (false positives) and green-bounded images are correctmatches
(true positives). An image is taken from each of the 12 datasets, where
the order of datasets from left to right follows the same sequence as
top to bottom in Table 5 first column. An important insight here is that

some images are matched by all of the techniques, irrespective of the
technique’s complexities and abilities. This figure also suggests that
because almost all of the images are matched by at least 1 technique,
an ensemble-based approach can significantly improve matching per-
formance of a VPR-system (Color figure online)

true-positives lie above all the false-positives. Thus, it is
important that the RecallRate@N (for some value of N)
of VPR techniques is also reported in addition to AUC-
PR. See for example the AUC-PR and RecallRate@1 of
HOG on the Living Room dataset, where the former pro-
poses perfect VPR performance while the latter shows a
significant room for improvement.

8. The descriptor size of techniques is also a key evaluation
metric to be considered. A large descriptor size not only

translates into excessive storage needs for the respective
reference maps, but also affects the descriptor matching
time and leads to higher run-time memory (RAM) con-
sumption/needs. We further present analysis on this in
Sect. 4.4.
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Table 6 The values of feature encoding time te (sec), descriptor matching time tm (msec) are listed here for 8 VPR techniques

Metric NetVLAD RegionVLAD CoHOG HOG AlexNet AMOSNet HybridNet CALC

te 3.71 1.29 0.06 0.007 1.14 0.80 0.81 0.04

tm (default) 0.06 0.17 2.64 0.07 0.03 0.13 0.13 0.02

tm (float-64) 0.08 0.17 6.91 0.49 0.04 0.13 0.13 0.04

Desc. size (KBs) 16.38 786 123 138.38 8.51 61.4 61.4 4.25

Desc. dimensions 1 × 4096 256 × 384 32 × 961 1 × 34,596 1 × 1064 256 × 30 256 × 30 1 × 1064

Data type Float-32 Float-64 Float-32 Float-32 Float-64 Float-64 Float-64 Float-32

Encoding time is dependent upon the image resolution, however in this work we have used the recommended image resolutions by the authors
of the respective VPR techniques and therefore te is independent of the underlying dataset. The second row reports tm for the techniques’ default
data-types as given in the 6th row, while the values of tm in the third row are for fixed float-64 data-type of descriptors for all techniques. Please
see accompanying text regarding trends of the descriptor matching time. The 4th row shows feature descriptor sizes of all 8 VPR techniques in
Kilo-Bytes (KBs) for a single image, along with the descriptor dimensions and default data-types in the following rows. The bold values in each row
represent the state-of-the-art technique for the corresponding metric. Because DenseVLAD and GeM results have been computed using a different
computational platform, the values for these techniques have not been included here to keep the comparison fair

4.2 ROC Curves: Finding New Places

Next, we show the ROC curves for all techniques on a modi-
fied version of the Gardens Point dataset. We have modified
the Gardens Point dataset to contain 200 queries as true-
negatives in addition to its existing 200 true-positives. The
number of true-positives and true-negatives is kept equal,
because ROC curves work well for balanced classification
problems. These curves have been shown in Fig. 13. We
note that unlike the PR-curves for the techniques on Gar-
dens Point dataset, wheremost techniques perform verywell,
the class separation capacity (ROC performance) of these
techniques is not as good. However, among the techniques,
learning-based techniques clearly outperform handcrafted
VPR techniques. Although CALC cannot perform well
among learning-based techniques for PR curves, the ROC
curves show that it has a better class separation capacity
than most of the other learning-based techniques. The AUC-
ROC for all the techniques has also been listed in Table 7
and all techniques generally achieve a lower AUC-ROC than
ideal. The AUC-ROC of HOG is less than 0.5, because it
yields opposite labels for true-positives and true-negatives
(i.e. existing places are classified as new places and vice
versa).

4.3 Computational Performance: CPU versus GPU

While the previous sub-sections have shown the perfor-
mance of 10 VPR techniques on the fronts of place matching
precision and computational requirements, the underly-
ing hardware has been a CPU-only platform. Generally,
CPU represents the common computational hardware for
resource-constrained platforms, but learning-based tech-
niques are favored well by GPU-based platforms. Thus,
depending on the underlying platform characteristics (CPU
versus GPU), it may or may not be fair to compare hand-

Fig. 13 The ROC performance of 10 VPR techniques is shown here on
a modified (true-negative added) version of Gardens Point dataset that
contains 200 true-negatives and 200 true-positives

crafted VPR techniques with deep-learning-based VPR tech-
niques on computational front.

We here report the feature encoding time te and the
descriptor matching time tm of the 7 deep-learning-based
techniques in our suite when implemented on a GPU-based
platform. The GPU-based evaluation was performed using
an Nvidia GeForce GTX 1080 Ti with 12GB memory using
a batch size of 1. The mechanism for computation of the tim-
ings is the same as that for CPU (i.e. averaged over the entire
dataset) and the same codes/parameters were used as those
for CPU. We have reported these timings in Table 8 for the
Gardens Point dataset.

It canbeobserved that theGPU-basedorderingofmethods
is mostly similar as their CPU-based ordering (see Table 6),
with notable exception of RegionVLAD versus NetVLAD
for te, because of the former’s compute-intensive CPU-based
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Table 7 The values of AUC-ROC achieved by 10 VPR techniques on the modified (true-negative added) version of the Gardens Point dataset have
been reported here

NetVLAD RegionVLAD CoHOG HOG AlexNet AMOSNet HybridNet CALC AP-GeM DenseVLAD

0.77 0.64 0.60 0.31 0.70 0.74 0.74 0.82 0.87 0.82

region-extraction and VLAD description. In general, the
computation times between CPU and GPU vary noticeably
for all themethods. This cross-analysis highlights the varying
utility of VPR techniques across different platforms.

4.4 Descriptor Size Analysis

In this sub-section, we further extend upon the descriptor size
analysis and show that changing the descriptor size affects
various performance-related aspects of a VPR technique, in
particular memory footprint, place matching precision and
descriptormatching time.Toperform this analysis,weuse the
Gardens Point dataset and change various descriptor-related
parameters of 5 VPR techniques, namely CoHOG, HOG,
NetVLAD, DenseVLAD and AP-GeM, that directly affect
the descriptor size.

For HOG and CoHOG, we have changed the cell-size
of the HOG-computation scheme, where the block-size
remained twice of the cell-size and all the other parame-
ters like image-size and bin-size were kept constant. For
NetVLAD,DenseVLADandAP-GeM,we changed the PCA
output dimensions while all other parameters were kept con-
stant. The effect of these descriptor size changes on the
memory footprint (descriptor size), AUC-PR and descrip-
tor matching time is reported in Table 9. The absolute and
relative variation of these different performance indicators
by changing descriptor size is dependent upon the under-
lying matching scheme and descriptor dimensions, and this
variation is therefore not constant between the different VPR
techniques. However, there is a general trend where increas-
ing the descriptor dimension leads to increased descriptor
matching time and memory footprint, while AUC-PR also
varies for VPR techniques.

The descriptor matching time usually decreases by vary-
ingparameters that lead to the decrease of descriptor size. The
change in AUC-PR by varying descriptor dimensions is sub-
ject to the intrinsics of the individual VPR techniques and the
role of their corresponding parameters. For deep-learning-
based techniques followed by PCA (see NetVLAD and AP-
GeM in Table 9), decrease of descriptor size may or may not
lead to decrease of AUC-PR, because a decreased descriptor
size can lead to either the decrease of confusing/non-salient
features (e.g. those coming from vegetation, dynamic objects
etc) or distinguishable/salient features and/or a combination
of both. The AUC-PR variation for NetVLAD and AP-GeM
generally follows a descending trend with decreasing PCA

Table 8 The values of encoding times and matching times for 7 VPR
techniques on the Gardens Point dataset for a GPU-based platform have
been reported here

VPR Technique te (s) tm (ms)

NetVLAD 0.075 0.002

RegionVLAD 0.451 0.061

AMOSNet 0.032 0.038

HybridNet 0.032 0.035

CALC 0.001 0.001

AP-GeM 0.027 0.045

AlexNet 0.203 0.001

The bold values represent the state-of-the-art

dimensions, but does remain constant for some immedi-
ate steps/levels of PCA. The learning-based DenseVLAD
(albeit not deep-learning-based) suffers significantly from
the decreased descriptor size. ForCoHOG, theAUC-PRvari-
ation is similar to the original findings in Zaffar et al. (2020),
where increasing cell-size leads to reduced viewpoint invari-
ance and lesser AUC-PR. For HOG the increased cell-size
(which reduces descriptor size) actually leads to an increase
of AUC-PR due to the optimal settings for the traditional
fully global HOG-descriptor scheme. The AUC-PR of HOG
is highest for cell-size of 64 × 64 but decreases when the
cell-size in either increased or decreased from this optimal
setting. Please note that this optimal setting of the cell-size
may differ for different datasets depending on the amount and
nature of viewpoint and conditional variations in the dataset.

4.5 True-Positives Trajectory Distribution

In addition to the image retrieval timings, it is impor-
tant to look at the distribution of true-positives (loop-
closures) within a dataset sequence. Therefore, as explained
in Sect. 3.4.5, we report in Fig. 14 the distribution of true-
positives for 6 trajectory-baseddatasets. Thedistributionhere
refers to no. of true-positives (Y-axis) for a given distance
(X-axis) between two correctly retrieved frames. For all the
datasets, we have assumed an inter-frame distance of 1m,
i.e. true-positives that are assumed to be 5m apart repre-
sent two correctly-matched query frames that are 5 frames
apart. This assumption is required because we do not have
the exact knowledge of inter-frame physical distance for all
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Table 9 The values of AUC-PR, descriptor size (Kilo-Bytes) and matching time (msec) are reported on the Gardens Point dataset by varying
descriptor size-related parameters (cell-size and PCA-dimensions) of VPR techniques

CoHOG HOG NetVLAD DenseVLAD AP-GeM

Cell-size AUC KBs tm Cell-size AUC KBs tm PCA AUC KBs tm PCA AUC KBs tm PCA AUC KBs tm

8 × 8 0.47 508 47.0 8 × 8 0.19 571 0.14 4096 0.69 16.30 0.06 4096 0.77 16.30 0.06 4096 – –

16 × 16 0.42 123 2.64 16 × 16 0.29 138 0.07 2048 0.69 8.19 0.06 2048 0.69 8.19 0.06 2048 0.67 8.19 0.06

32 × 32 0.36 28.8 0.18 32 × 32 0.29 32.4 0.06 1024 0.59 4.09 0.05 1024 0.64 4.09 0.05 1024 0.65 4.09 0.05

64 × 64 0.30 6.27 0.06 64 × 64 0.35 7.05 0.05 512 0.59 2.04 0.05 512 0.58 2.04 0.05 512 0.67 2.04 0.05

128 × 128 0.19 1.15 0.05 128 × 128 0.33 1.29 0.04 256 0.52 1.02 0.04 256 0.52 1.02 0.04 256 0.64 1.02 0.04

256 × 256 0.12 0.128 0.03 256 × 256 0.16 0.14 0.02 128 0.52 0.51 0.02 128 0.33 0.51 0.02 128 0.62 0.51 0.02

Please note that the computations for AP-GeM and DenseVLAD were done on a platform different from that of NetVLAD, HOG and CoHOG.
The maximum PCA dimensions given the AP-GeM default design are 2048

the datasets and because the X-axis can be easily scaled-up
to represent a different inter-frame distance.

Ideally, all techniques should have a single peak value
equal to the total number of query images at the vertical
axis in Fig. 14. For most techniques on all the datasets, the
loop-closures are distributed evenly i.e. curves in Fig. 14
peak at small values of X-axis. There is a ripple effect
that starts from Y-axis and dies towards larger values of
inter-frame distance. This ripple effect is more distributed
for Gardens Point and Corridor datasets than the other
datasets. Thus, for applications such as SLAM where VPR
is used in addition to a visual-localisation system, tech-
niques can mostly achieve periodic loop-closure and correct
error-drifts. However, these ripples can be catastrophic for
VPR-based topological/primary localisation systems (Cum-
mins and Newman 2011) which rely solely on location
estimated through VPR. We have not provided this analysis
for non-trajectory-type datasets (SPEDTest, INRIAHolidays
etc), because the inter-frame distance is not a valid assump-
tion for these cases.

4.6 Acceptable Ground-Truth Manipulation

An important finding from the analysis performed for
Sect. 4.1 was that the matching performance also varies
depending on the ground-truth information in a VPR dataset.
It is possible that the ground-truth is slightly modified such
that the new ground-truth is usually acceptable to the review-
ing audience, but it also leads to a change of state-of-the-art
technique on a particular dataset. For example, the matching
performance varies if the query and reference databases are
inter-changed (i.e. query folder becomes the new reference
folder and reference folder becomes the new query folder),
especially for conditionally-variant datasets. We show this
in Fig. 15 for the Nordland and Gardens Point dataset. Here
we use a small section of the Nordland traversal (as used
in Merrill and Huang 2018; Zaffar et al. 2019b) containing
1622 query and 1622 reference images such that the effects

of ground-truth manipulation are more prominent, since all
the techniques have very low precision on the full traversal.
Interestingly, this analysis reveals that for all the VPR tech-
niques the rise/decline in performance is not necessarily the
same in magnitude and direction. Changing ground-truth in
this manner is based on the constraint that reference matches
for queries are available from a particular conditional appear-
ance (weather, seasons, time etc) and that this condition is
different from that of query images. This is normally the
case for most of the robotics-focused VPR datasets and for
applications like teach-and-repeat. This analysis assumes the
non-existence of the same appearance conditions of a place
in query and reference images.

Moreover, in most of the traversal-based VPR datasets,
there is always some level of overlap in visual content in
between consecutive frames. Thus, techniques which are
viewpoint-invariantmay get benefits if the ground-truth iden-
tifies such frames as correct matches. On the other hand,
if the ground-truth only considers frame-to-frame matches
(i.e. one query frame has only one correct matching refer-
ence frame), such viewpoint-invariant techniques may not
get the samematching performance (in the form of AUC-PR,
RecallRate@N, EP etc), because their viewpoint invariance
will actually lead to false positives. Examples of these con-
secutive frames with visual overlap are shown in Fig. 16.
We report this effect of changing ground-truth range on the
AUC-PR of various VPR techniques for the Gardens Point
dataset and Nordland dataset in Fig. 17. One could argue that
a correct ground-truth must regard such viewpoint-variant
images of the same place as true positives, however, a con-
trary argument exists for applications that utilise VPR as
the primary (only) module for localisation, as discussed fur-
ther in Sect. 4.9. This sub-section demonstrates that different
state-of-the-arts (i.e. top performing techniques) can be cre-
ated on the same dataset by manipulating the ground-truth
information accordingly.
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Fig. 14 The distribution of true-positives over the trajectory of a dataset are shown here. The horizontal axis represents the distance between two
consecutive true-positives in a sequence and the vertical axis shows the number of true-positives that satisfy this distance constraint

Fig. 15 The effect on AUC-PR performance of techniques by inter-changing the query and reference traverses is shown here for the Gardens Point
dataset and Nordland dataset
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Fig. 16 The overlap between visual information among subsequent
images in traversal-based datasets is shown here. Depending on what
level of ground-truth true positive range is acceptable, benefits will be
distributed among the techniques based on their viewpoint-invariance

4.7 Retrieval Time versus Platform Speed

One of the questions that we wanted to address through this
manuscript is, ‘What is a good image-retrieval time?’. This
is important because most VPR research papers (as covered
in our literature review) that claim real-time performance
consider anything between 5–25 frames-per-second (FPS)
as real-time. However, there are 2 important caveats to such
performance. Firstly, the retrieval performance for a VPR
application depends on the size of the map. It is therefore
very important that the size of the map is addressed either
by presenting the limits for the map-size or by proposing
methodologies to affix the map-size. Secondly, the retrieval
performance is directly related to the platform speed. A
real-time VPR application may require that a place-match

(localisation) is achieved every few meters, while a dynamic
platform traverses an environment. In such a case, the utility
of a technique will depend upon the speed of the platform,
as the faster the platform moves, the lower the retrieval time
that is acceptable. We have modelled this as follows.

Let us assume that a particular application requires K
frames-per-meter (where K could be fractional) and that the
platform moves with a velocity V . Also, let the size of the
map (no. of reference images) be Z . Then, the required FPS
retrieval performance given the values of K and V is denoted
as FPSreq and computed as

FPSreq = K × V . (7)

The retrieval performance of aVPR techniquewill depend
on the number of reference images and can be denoted
as FPSVPR. This FPSVPR has been modelled previously in
Eq. (6), such that FPSVPR = 1/tR . Therefore, to understand
the limits of real-time performance of a VPR technique given
the application requirements (V , K and Z ), we draw the
retrieval performance of all techniques along the platform
speed for different values of Z in Fig. 18, assuming K = 0.5
frames-per-meter. The curves for FPSVPR are straight-lines
for constant values of Z and the range of horizontal-axis
(Speed V ) for which FPSVPR is less than or equal to FPSreq
represents the range of platform speed (for that map-size)
that a technique can handle. The VPR-Bench framework
enables the creation of these curves conveniently and there-
fore, presents value to address the subjective real-time nature
of a technique’s retrieval time for VPR.

Fig. 17 The effect on AUC-PR performance of techniques by changing the range of ground-truth true positive images is shown here for the Gardens
Point dataset and Nordland dataset
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Fig. 18 The retrieval performance of techniques is drawn for different map-sizes (Z ) across the platform speed. Depending upon the value of
frames required per meter (K ) for an application, these curves will scale linearly according to Eq. (7)

4.8 Invariance Analysis

One of the key aspects of the VPR-Bench framework as
explained in Sect. 3 is the quantification of viewpoint- and
illumination-invariance of a VPR technique. In Sect. 4.1,
we had utilised the traditional VPR analysis schema, where
datasets are usually classified based on the qualitative sever-
ity of a particular variation. However, in this section, we
utilise the Point Features dataset presented in Sect. 3.5 and
utilise the quantitative information presented in Figs. 5, 6 and
Table 4.

The change in matching score along these arcs is shown
in Fig. 19 for all the techniques. There is clear decline in
matching scores as the viewpoint is varied both along the
arcs and in-between the arcs. A key insight is that moving
along the arcs has more effect (negative) on the matching
score than jumping between the arcs (i.e. moving towards or
away from the scene). From a computer vision perspective,
this means that a change in the scale of the world (zooming-
in, zooming-out) has lesser effect on matching scores than
the change in 3D-appearance of the scene.

Ideally, the matching scores for the same scene/place
should be equal to 1 for the range of variation a technique
can handle and the matching score for a different scene/place
should be 0. However, in practice, all techniques give lower
than 1 matching scores, when two images of a scene have
a particular variation in-between them, while giving higher
than 0 scores to places that are different. The point at which
the matching score for the same-but-varied place is equal to
or lower than ‘any’ of thematching scores for different place,
represents the absolute limits for that VPR technique. Please
note, that the two curves (same-but-varied place and differ-
ent place) should not be compared point-to-point, but instead

point-to-curve, because the matching score for the same-but-
varied place should not be less than ‘any’ of the matching
scores for different place. Thus, while it may appear that the
two curves for NetVLAD do not intersect under any view-
point positions, the matching score for the same-but-varied
place for positions 110–119 is almost equal to the matching
score for different place at position 0, which will lead to false
positives. A conclusive remark from this viewpoint-variation
analysis is that none of the 8 VPR techniques in this work is
immune to all levels of viewpoint-variation.

Another benefit of having the matching scores curves for
different place in contrast with the same-but-varied place
is that it allows us to compute the Area-between-the-Curves
(ABC) for each of the techniques. These values of ABC have
been reported for all the techniques. Higher value of ABC
represents that a technique can distinguish well between the
same-but-varied place and a different place. The ideal value
of ABC is equal to the number of variations (x-axis), as the
matching score should remain 1 along the entire x-axis in
an ideal scenario. Please note that the ABC does not reflect
the absolute matching performance of a VPR technique,
and should not be compared with AUC-PR/EP/AUC-ROC,
because the analysis in only based on two places/scenes.

We have extended the analysis of viewpoint-invariance
from the synthetic Point Features dataset to the real-world
QUT Multi-lane dataset. The analysis scheme is the same
for both the datasets and the obtained curves are shown
in Fig. 20. The curves on the QUT Multi-lane dataset re-
affirm our findings from the Point Features dataset and
the trends on both the datasets are similar. More impor-
tantly, lateral viewpoint changes have been shown to have
a greater effect on the place matching confidence score than
the forward/backward movement. The scale/level of this (for
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Fig. 19 The change in matching score for quantified viewpoint and
illumination variations is shown here on the Point Features dataset. The
first two rows contain changes for all techniques with 119 viewpoint

positions, while the bottom two row show these changes for 19 different
illumination levels. Please see accompanying text for analysis

viewpoint variations on both Point Features dataset and QUT
Multi-lane dataset) is however dependent upon the scene
depth and the exact physical movement for lateral and for-
ward/backward changes. Generally, for higher scene-depth,
forward/backward movement leads to a lesser change in
visual-content than lateral variations and therefore has a
lesser effect. Very large forward/backward movement (defi-
nition of ‘very large’ is dependent upon the scene depth) may

lead to a greater reduction in confidence score than a small
change in lateral viewpoint.

A similar analysis is performed for the 19 different match-
ing scores given the 19 quantified illumination variations, as
shown in Fig. 19. While the 119 different viewpoint posi-
tions represented in Fig. 5 are intuitive for analysis, the nature
and level of illumination change in Table 4 is not obvious.
We have presented these 19 different cases qualitatively in
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Fig. 20 The change in matching score for the quantified viewpoint variations is shown here on the QUT Multi-lane dataset. The confidence score
variation is shown for all techniques against the 15 viewpoint positions, as explained in Sect. 3.5.4

Fig. 7, so that the illumination-variance curves in Fig. 19 can
be easily understood. It can be seen that uniform or close to
uniform changes do not have much effect on the matching
score. However, directional illumination changes that lead
to the partitioning of a scene between highly-illuminated
and low-illuminated portions has the most dramatic effect.
An interesting insight is that some basic handcrafted VPR
techniques (HOG-based) are able to distinguish between
the same-but-illumination-varied places and different places,
under all 19 scenarios (i.e. no point on the same-but-varied
place curve is lower than any point on the different place
curve), while contemporary deep-learning-based techniques
struggle with such illumination-variation.

We have extended our illumination-invariance analysis
from thePoint Features dataset to theMITMulti-illumination
dataset and the curves on Multi-illumination dataset are
presented in Fig. 21. There is a very sharp drop in place
matching confidence for illumination cases 3 and 4 for all
the VPR techniques, which re-affirms our finding on the
Point Features dataset regarding the significantly large effect
of directional illumination change (see Fig. 9) on the place
matching performance. The effect of illumination change on
a handcrafted technique such as HOG is lower than that on
a learning-based technique like CALC on the MIT Multi-
illumination dataset, similar to prior observations on the
Point Features dataset, however this does not generalise to
other learning-based techniques. The reported performance
decline by varying illumination cases can be potentially com-
bined with illumination-source prediction works (Gardner

et al. 2017; Hold-Geoffroy et al. 2017) to predict when a
VPR technique might fail and how different VPR techniques
could complement each other in these scenarios.

4.9 Variance versus Invariance

Ageneric perception among theVPR research community, as
evident from the recent trend in developing highly viewpoint-
invariant VPR techniques is that the more viewpoint-
invariant a technique is, the more utility it has to offer.
Through this sub-section, we take the opportunity to address
that this may not always be the case. In fact, viewpoint-
variance may actually be required in some applications,
instead of viewpoint-invariance. A key example here are
the applications where VPR techniques act as the primary
localisation module and where, there is no image-to-image,
epipolar-geometry-based motion estimation (location refine-
ment) module. For example, Zeng et al. (2019) extend the
concept of VPR for precise localisation in mining envi-
ronments. Similar extensions of VPR as the only module
for precise-localisation are possible in several applications,
where an accurate geo-tagged image database of the envi-
ronment exists, e.g, in factory/plant environments or outdoor
applications which can afford to create an a priori accurate
appearance-based metric/topometric map of the environ-
ment. For such applications, VPR techniques are required
to have viewpoint-variance, so that even if the 2 images
of the same place are viewpoint-varied, the VPR technique
can distinguish between them to perform metrically-precise
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Fig. 21 The change in matching score for the illumination variations is shown here on the MIT Multi-illumination dataset. The confidence score
variation is given for all techniques on the 25 illumination positions, as explained in Sect. 3.5.4

localisation. If a viewpoint-invariant technique is utilised in
this scenario, the inherent viewpoint-invariance will lead to
discrepancies in localisation estimates and eventually cause
a system failure.

Thus, a key area to investigatewithinVPR research should
be controlled viewpoint-variance. In Sect. 4.8, we presented
a methodology to estimate the viewpoint-invariance of a
technique, however, there is no control parameter for any
technique that could govern and tune its invariance to view-
point changes. We believe that this is an exciting research
challenge and should be a topic for VPR research in the
upcoming years. Nevertheless, our proposal is that both
viewpoint-variance and invariance are desirable properties,
depending upon the underlying application and should be
regarded/investigated accordingly.

5 Conclusions and FutureWork

In this paper, we presented a comprehensive and variation-
quantified evaluation framework for visual place recognition
performance. Our open-source framework VPR-Bench inte-
grates 12 different indoor and outdoor datasets, alongwith 10
contemporary VPR techniques and popular evaluation met-
rics from both the computer vision and robotics communities
to assess the performance of techniques on various fronts.
The framework design is modular and permits future integra-
tion of datasets, techniques and metrics in a convenient man-

ner. We utilised the variation- and illumination-quantified
Point Features dataset to evaluate and analyse the level and
nature of variations that a VPR technique can handle. We
then extended this analysis and our findings from the syn-
thetic Point Features dataset to the QUT Multi-lane dataset
and the MIT multi-illumination dataset.

Using our framework, we provide a number of useful
insights about the nature of challenges that a particular
technique can handle. We identify that no universal state-
of-the-art technique exists for place matching and discuss
the reasons behind the success/failure of these techniques
from one dataset to another. In our evaluations, Den-
seVLAD, a learning-based but non-deep-learning technique
has achieved state-of-the-art AUC-PR on 6 out of the 12
datasets, which indicates the potential for further develop-
ing the traditional specialised techniques and pipelines for
VPR. We also report that 8 out of the 10 techniques have
achieved state-of-the-art AUC-PR on at least one dataset
and therefore ensemble-based approaches can present value
towards creating a generic VPR system. Our results reveal
that the utility of VPR techniques highly depends on the
employed evaluation metric, and that the corresponding
utility is application-dependent, e.g. the state-of-the-art for
RecallRate is different from that of AUC-PR because the
former assumes the availability of a false-positive rejec-
tion scheme. Our results demonstrate the utility of ROC
curves for finding new places which is usually not dis-
cussed in existing VPR literature. The encoding times for
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deep-learning-based techniques are significantly higher than
handcrafted feature descriptors, but the availability of a
GPU-based platform reduces this gap for most techniques.
There are exceptions to this, e.g. RegionVLAD, a deep-
learning-based technique which cannot benefit much from
a GPU in terms of encoding time due to its CPU-bound
intense region-extraction scheme. We demonstrate that the
descriptor matching time is dependent upon four factors: dis-
tance/similarity function, number of descriptor dimensions,
length of each dimension, and the descriptor data-types. This
identifies the need for further investigating the trade-offs
between reduced matching time at reduced descriptor pre-
cision and size. Overall, our work found that there is no
one-for-all evaluation metric for VPR research, and that only
a combination of these metrics presents the overall utility of
a technique.

Our new analysis for viewpoint and illumination-
invariance quantification is developed around the Point Fea-
tures dataset, and integrated within the framework for ease-
of-use by other VPR researchers. Our results on this dataset
identify that 3D viewpoint change has more adverse effect
on matching confidence than lateral viewpoint change, but
deep-learning-based techniques generally suffer less from
3D change than handcrafted feature descriptors. We further
show that directional illumination change presents a big-
ger challenge for VPR than uniform illumination change,
both for deep-learning and handcrafted techniques. We
also propose that viewpoint variance instead of viewpoint
invariance can also be important for VPR systems, e.g.
for accurate localisation, sensitivity to viewpoint change
can be a feature. Because we have employed a number
of different datasets, techniques and metrics, VPR-Bench
enables many more performance comparisons, and we have
only discussed a few selected comparisons to limit the
scope.

It remains future work to further investigate the relation
between place matching performance and the bottle-necks
caused by encoding times and linear scaling of match-
ing times. The role of various parameters that determine
the descriptor matching time is briefly introduced in this
work, but also deserves more detailed future investigation.
It would also be useful to include evaluations on more
challenging environments, such as under-water or aerial,
on more extreme weather conditions, on motion-blur and
on opposing viewpoints. Further insights could be obtained
by evaluating how different metrics yield different state-
of-the-art VPR techniques on the same dataset. We hope
that this work proves useful for both the computer vision
and the robotics VPR communities to compare newly pro-
posed techniques in detail to the state-of-the-art on these
varied datasets using diverse evaluation metrics. We are
keen on integrating more VPR techniques into VPR-Bench

and encourage any feedback, collaborations and sugges-
tions.
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Appendices

A VPR-Bench Design

A.1 Code Structure

The entire framework has been designed with 2 key focuses:
(a) A holistic, fully-integrated and easy-to-use framework for
VPR performance evaluation at all fronts, (b)Modularity and
convenient templates for regular updates and future consis-
tency. In this respect, while the modularity, template design
and available content within the modules, are explained indi-
vidually for each of the modules in their respective dedicated
sub-sections; this sub-section presents the overall framework
structure and implementation details. The code structure of
our framework has been described in Fig. 22.

The entry to the framework is a convenient main file,
where the choice of evaluation datasets, VPR techniques
and evaluation mode can be specified. At present there are
2 evaluation modes: (1) VPR Performance Evaluation and
(2) Invariance Analysis. The former yields the place match-
ing performance of different VPR techniques (implemented
within the framework and/or integrated using pre-computed
matching information) on a specified dataset using different
metrics related to precision and computation. The latter tries
to present the invariance of these techniques to quantified
viewpoint- and illumination-variations. There are 12 evalu-
ation datasets available in the framework from both indoor
and outdoor environments.We have re-implemented 8 differ-
ent VPR techniques by modifying the open-source codes as
per our templates or self-implementing in cases where open-
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source codes were not available. TheVPR-Bench framework
is written fully in Python (2.7) (working on upgrading
to Python 3), which has been the most used program-
ming/scripting language for VPR research. Our framework
does not have a dedicated Graphical-User-Interface (GUI),
because the framework is targeted for developers/researchers
who are assumed to have basic knowledge of the domain.
GUIs also make future improvements much complex and
limit the flexibility of an application. The open-source code
has been tested on a Ubuntu 20.04.1 LTS system. By default,
the framework does not need a GPU (Graphical Processing
Unit) for any of the evaluations. Therefore, a huge percent-
age of VPR researchers, academics and developers, from a
broad range of application domains can conveniently use our
framework.

A.2 Integrating NewDatasets and Techniques

As we are focused on providing flexibility and ease for inte-
grating new VPR techniques and datasets into VPR-Bench
(additional to the already available 12 datasets and 8 tech-
niques), we have briefly summarised the required steps for
both of these changes below:

1. For integrating a new dataset into VPR-Bench, no change
in the framework code is required. You need to setup
the dataset as per our unified template, which has been
explained in Appendix B. and then set the directory path
for this dataset in the main file.

2. There are two possible ways to integrate a new VPR tech-
nique into VPR-Bench: (a) Re-implement the technique
as per our template within theVPR-Bench framework, (b)
Use pre-computed data through an external implementa-
tion of the technique.We encourage the former, where the
main file for this respective technique needs to implement

Fig. 22 The code structure of the VPR-Bench framework is shown here

3 functions, as per the template described in Appendix C.
Once these functions have been implemented, they only
need to be imported in our framework and all other mod-
ules will be implicitly integrated for this technique. The
benefit of re-implementing a technique as per our template
is the ease for new researchers to understand, utilize and
modify the implementation of these various VPR tech-
niques based on a fixed and compact template. Moreover,
templates also make computational analysis more fair,
by affixing the input and output pipelines (i.e. the time
taken to input and output data to a VPR techniques’ vari-
ous functions). For the latter, we maintain a provision in
our framework to re-use pre-computed data through an
external implementation and integrate it with the features
offered by our framework. The computational analysis for
techniques integrated via external implementations (non-
template) is still relevant (albeit will vary based upon the
implementation) as long as the underlying hardware is the
same. A unified template has been developed for integrat-
ing pre-computed data, that takes in the matching scores
for all the query images with all the reference images,
feature encoding time and descriptor matching time. We
have integrated DenseVLAD and GeM using this pre-
computed data in our work. The details for integrating
VPR techniques in this fashion will also be provided in
the files supporting the release of our open-source code.

B VPR-Bench Datasets Template

In order to have a fixed template for all the datasets that
are available in (or can be integrated into) VPR-Bench, we
design a simplistic, generic template that can accommodate
the variations within the dataset formats. Firstly, the query
and reference traverses for a dataset are represented by their
dedicated sub-folders. Images within each of these folders
need to be named as integers, which is motivated by a graph
structure, such that for a traversal-based dataset, increments
or decrements to integer values can represent the temporally
and/or geographically next or previous image, respectively.
The ground-truth file for each dataset is a numpy array (.npy).
This multi-dimensional numpy array of ground-truth infor-
mation has dimensions of TQ × 2, where TQ is the total
number of query images in the dataset. For all TQ rows of
query images, the first column represents the query image
index and the second column contains the list of indices of
all ground-truth matching reference images. We have used
the simplistic image indices/names as our choice of ground-
truth, because they can be parsed from a range of different
modalities, like GPS information, pose-information and/or
manual frame correspondences, as shown in this work by
restructuring all the 12 datasets to the described common
template.
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C VPR-Bench Techniques Template

Each VPR technique has a different approach to the prob-
lem,whichmay include neural-networkmodels or traditional
feature descriptors. There may be added functionality, like
ROI-extraction, image pre-processing, descriptor adaptation,
usage of sequential and/or geometric prior etc. The designed
templates for techniques have the provision to allow for such
pre- and post-processing steps. We also provide a parallel
path in our pipeline to seamlessly integrate pre-computed
place matching information from a different technique run-
ning on the same/different platform.

Let Q be a query image and MR be a list/map of R ref-
erence images. The feature descriptor(s) of a query image
Q and reference map MR can be denoted as FQ and FM ,
respectively. If a technique uses ROI-extraction, FQ will
hold within it all the required information in this regards,
including location of regions, their descriptors and corre-
sponding salience as a multi-dimensional list. The input
Q can also be a sequence of Query images and any other
pre/post-processed form of a query candidate. For a query
image Q, given a reference map MR , let us denote the
best matched image/place by a VPR technique as P (where,
P ∈ MR) with a matching score S. The matching score S
can be defined as S ∈ [0, 1]. The confusion matrix (match-
ing scores with all reference images) can be denoted as C .
Based on these notations, the following 3 functions need to
be implemented in the main file of a VPR technique. The
definitions (names) of these functions remain the same for
all VPR techniques and our framework performs technique-
aware selective re-imports of these functions to maintain
consistency and ease-of-integration.

Algorithm VPR Technique Required Template
def compute_query_desc (Q)

Preprocessing Steps
Function Body
Postprocessing Steps
return FQ

def compute_map_ f eatures (MR)

Preprocessing Steps
Function Body
Postprocessing Steps
return FM

def per f orm_V PR (FQ , FM )

Preprocessing Steps
Function Body
Postprocessing Steps
return P, S, C
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