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Abstract

Different methods are proposed to learn phrase embedding, which can be mainly di-

vided into two strands. The first strand is based on the distributional hypothesis to treat

a phrase as one non-divisible unit and to learn phrase embedding based on its exter-

nal context similar to learn word embedding. However, distributional methods cannot

make use of the information embedded in component words and they also face data

spareness problem. The second strand is based on the principle of compositionality

to infer phrase embedding based on the embedding of its component words. Com-

positional methods would give erroneous result if a phrase is non-compositional. In

this paper, we propose a hybrid method by a linear combination of the distributional

component and the compositional component with an individualized phrase composi-

tionality constraint. The phrase compositionality is automatically computed based on

the distributional embedding of the phrase and its component words. Evaluation on

five phrase level semantic tasks and experiments show that our proposed method has

overall best performance. Most importantly, our method is more robust as it is less

sensitive to datasets.
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1. Introduction

Phrases, as one kind of language units, play an important role in many NLP applica-

tions such as machine translation, web searching and sentiment analysis [1]. Generally

speaking, phrases can be categorized as either compositional or non-compositional.

For compositional phrases, such as traffic light, swimming pool, their semantics are5

composed from the semantics of its component words. We define component words as

the internal context of a phrase. For non-compositional phrases, such as multiword

expressions couch potato and kick the bucket, their semantics are generally not directly

related to the semantics of their component words. According to [2], in a corpus with

a collection of web pages, about 15% of word tokens belong to multiword expressions,10

57% of sentences and 88% documents contain at least one multiword expression.

With the success of word embedding as a latent low dimensional vector [3] to

represent words, embedding representation has been proposed for other areas, such

as network embedding [4] and user embedding [5], etc. Different models are also

proposed to learn phrase embedding. Phrase embedding uses two main approaches.15

The first one is called the distributional approach which is developed based on the

distributional hypothesis that words occurring in similar contexts tend to have similar

meanings [6]. This kind of context is referred to as external contexts, which indi-

cates the surrounding words of a phrase. We use the term distributional embedding

to refer to embedding obtained by the distributional approach. Methods based on the20

distributional approach treat a phrase as one single unit and learn embeddings the same

way as learning word embedding [7, 8, 9]. However, distributional embedding suffers

from data sparseness problem. This is because distributional methods are based on the

contexts of a target word. For words with lower frequency of occurrences, there are

insufficient number of word-context pairs. Data sparseness problem is more serious at25

phrase level compared to that of word level. For phrases that are indeed compositional,

the semantic information contained in component words are totally ignored. For ex-

ample, both traffic and light are frequently used words and their embeddings can be

very useful in forming the meaning of the phrase traffic light. But, non-compositional

methods do not make use of such information.30
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The second approach, referred to as the compositional approach, is based on the

principle of compositionality [10] that the meaning of an expression is composed from

the meanings of its constituents and the internal structure. We use compositional em-

bedding to refer to embeddings obtained by the compositional approach. This kind

of methods compute phrase embedding from the embeddings of the component words35

based on some composition function [11, 12, 13, 14]. One problem with this approach

is that the embedding learned for non-compositional phrases are incorrect, and thus

this approach fails for non-compositional phrases. For example, the meaning of the

phrase monkey business is not related to the meanings of monkey and business. Thus

any composition function based on the embeddings of the component words will lead40

to erroneous results.

We argue that both the internal contexts and external contexts are useful for infer-

ring phrase embedding. The usefulness of internal contexts depends on the composi-

tionality of the phrases. If a phrase is compositional, both the internal contexts and

external contexts should be used to take advantage of the all the information available45

for its representation. If a phrase is non-compositional, the representations of compo-

nent words will not be useful and the phrase representation should be inferred from

its external contexts only. The issue is that the choice of which approach to use is de-

pendent on the proportion of compositional phrases in the dataset. This information,

however, is not priori knowledge known to applications.50

Based on the above analysis, we propose a hybrid model by a linear combination of

both a distributional component and a compositional component with an individualized

compositionality constraint. Compositionality is a value to indicate to what extent the

semantics of a phrase can be inferred from that of its component words. The more com-

positional a phrase is, the larger is its compositionality value. For a non-compositional55

phrase, its compositionality should be low. Thus, in the hybrid model, its semantics

should mainly be determined by its external contexts through the distributional com-

ponent only. For a compositional phrase, its compositionality should be high. Both

distributional component and compositional component can be used together. The hy-

brid model is designed to overcome the drawbacks of both distributional approach and60

compositional approach. The key for the hybrid model to work is how to learn an ap-
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propriate compositionality for each phrase. A constant value to all phrases obviously

should not do the trick. In this work, we use two methods to learn the compositionality

for each phrase using measures between distributional embeddings of a phrase and its

component words.65

To evaluate the performance of our proposed model, we applied our phrase embed-

ding results in different down stream tasks using five datasets. Evaluations show that

our model has a overall best performance. More importantly, our model is the most

robust as it is less sensitive to datasets than the baseline methods.

The rest of the paper is organized as follows. Section 2 introduces related works.70

Section 3 presents our proposed hybrid model. Section 4 gives performance evaluation,

and Section 5 concludes this paper.

2. Related Work

2.1. Embedding Representation

Representing objects in a latent space has a long history, such as Latent Semantic75

Analysis which represents a document as a latent vector [15]. Word embedding, as one

kind of latent representation, represents a word as a low-dimensional and dense vector

to encode semantic information. Methods for learning word embedding can either be

count-based or prediction-based [16]. Count-based methods first build word-context as

a statistic matrix where each entry in the matrix can be co-occurrence frequency, mu-80

tual information (MI), point-wise mutual information (PMI), and positive point-wise

mutual information (PPMI), etc. Then the embedding representation of words can be

obtained by matrix factorization. Different matrix factorization methods can be used,

such as Singular Value Decomposition (SVD), QR factorization, etc [17]. Prediction-

based methods use neural networks to predict a context word for a given target word or85

vice versa by maximizing the co-occurrence probability of the target word and its con-

text. As proven in [18], one of the prediction-based methods, namely the Skip-Gram

model which will be introduced in Section 3.1, is equivalent to a count-based method

with each matrix entry as the PPMI by a constant shift. Inspired by the idea of model-

ing the relationships between a word and its context, other kinds of contexts are further90
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studied, including context words under a specific syntactic dependency [19], context

of words from different languages [20], context from a knowledge base [21], neigh-

bor context in a semantic lexicon [22], substitute context [23], contrast context [24],

path-based context [25], and morphological context [26, 22]. Further more, ensemble-

based methods are also proposed to make use of multi-view contexts [27, 28, 29, 30].95

For example, in [27], Rastogi et al. combine multi-view resources such as monolin-

gual text from Wikipedia, word aligned bi-text, dependency relations, morphology and

Frame relations through Generalized Canonical Correlation Analysis (GCCA). In [29],

word definition as an intrinsic view and context as an extrinsic view are used. Given

the current word, Chen et al. [29] maximizes the conditional probability of a context100

word and a definition word, which is similar to Wang et al. [21] that maximizes the

conditional probability of a target word given a current word, where the current word

is from a knowledge base. In [30], Speer et al. propose to combine word embedding

from Skip-Gram, word embedding from matrix factorization, and word embedding

from knowledge base ConceptNet 1 to obtain ensemble word embedding. The general105

conclusion is that more context information leads to better word embedding.

Similarly, embedding representation is also used in other areas, such as user and

item representation based on user-item co-occurrence matrix in recommendation sys-

tems [31]. Inspired by prediction based methods, neural network based models are

explored in other research areas to learn embedding representations, such as network110

embedding [4], and user embedding[5] etc.

2.2. Composition Model

One of the most important properties of a language is its compositionality. People

communicate and parse complex information by combining single concepts through

limited grammar rules. Semantic composition is studied in various disciplines such115

as psychology, linguistics, philosophy, neuroscience and computer science. Currently,

however there is no consensus on how human combine simple concepts to obtain com-

plex concepts [32]. In computer science, different mathematic composition models are

1http://conceptnet.io/
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proposed to infer the representation of phrases based on the representation of words.

For example, in [11], several basic composition models are proposed, including vector120

addition and vector multiplication of component words. Vector addition is the most

widely used composition model because of its efficiency and performance. Different

weighted addition versions are also proposed [33]. Baroni et al. [34] propose to repre-

sent an adjective as a matrix and a noun as a vector and use matrix-vector multiplica-

tion to obtain the representation of adjective-noun phrases. More complex composition125

models are proposed including recursive neural networks (RecNN) [35, 36, 37], recur-

rent neural networks (RNN) [38, 39], and convolutional neural networks (CNN) [40].

All of them are widely used deep learning models in natural language processing. Gen-

erally speaking, these complex composition models are based on the combination of

some basic composition models, such as concatenation and matrix multiplication plus130

a non-linear transformation.

2.3. Compositionality Prediction

Compositionality indicates the extent of how the meaning of a phrase can be in-

ferred from the meaning of its component words. Previous methods on compositional-

ity prediction can be divided into two categories. The first type is based on the statistics135

between a phrase and its component words. It is known that for non-compositional

phrases, their component words have stronger statistical associations. For example,

Pedersen et al. propose to used t-score and PMI as the measure of compositional-

ity [41]. However, for t-score and PMI, the generated statistic value range is hard to

control and the obtained values can be very large. Statistical information is also used140

as features in supervised learning models. For example, Hashimoto et al. propose

several syntactic features such as the word index, frequency and PMI of the phrase

and component words [42]. Then the feature vector is multiplied by a weight vec-

tor to compute the compositionality value. However, for institutionalized compounds

such as traffic light, fresh air, they also have strong statistical association, though they145

are compositional. The second type is based on semantic similarity of phrases and

component words. Based on the contexts of a phrase, co-occurrence vector represen-

tation of the phrase and its component words can be obtained by extracting its exter-
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nal context words. Semantic similarity between a phrase and its component words

can be computed by vector multiplication. For example, Baldwin et al. [43] propose150

to use semantic similarity between only one of the component words and phrase as

compositionality. Reddy et al. [44] firstly compute similarities between a phrase and

its two component words. Compositionality is then obtained from the two similarity

values based on different functions such as addition and multiplication. Another se-

mantic similarity based method first obtains the composed vector representation from155

the representations of component words based on some composition functions. Then

compositionality is computed as the similarity between the composed vector and the

co-occurrence vector [44]. Co-occurrence vectors are high-dimensional. Following the

idea of composition, Salehi et al. [45] compute compositionality using cosine similar-

ity between distributional phrase embedding and composed phrase embedding from160

component words based on composition functions. Observing that the semantic space

of a phrase or a sentence is a subspace spanned by the word vectors of all component

words, Gong et al. [46] propose to compute compositionality using cosine similarity

between distributional phrase embedding and projected distributional phrase embed-

ding on the subspace spanned by component words.165

2.4. Phrase Embedding

Inspired by the success of word embedding, different models are proposed to learn

embedding of phrases. As introduced in the Introduction part, there are mainly two

kinds of approaches for learning phrase embedding. The first one is the distributional

approach. For example, in [3, 8], Mikolov et al. and Yin et al. treat phrases as non-170

divisible units and learn phrase embedding the same way as learning word embedding.

Not only considering the external context, Sun et al. argue that internal context is also

useful and they use the same method to model internal contexts as that of external

contexts [26]. The second one is the compositional approach which computes phrase

embedding from component word embedding. Yu et al. [12] propose to obtain phrase175

representations by weighted sum of word vectors and weights are based on a list of

lexical feature templates of phrase types. Zhao et al. [47] propose a tensor-based com-

positional model to learn phrase representations by vector-tensor-vector multiplication.
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Huang et al. [48] propose to compute phrase embedding based on character and word

embedding for Chinese through composition functions. However, compositionality is180

not considered in their work.

Different from the above methods, the work from [42] considers both external con-

text and component words with a compositionality constraint,which is similar to our

idea. However, the learning process in their work is task dependent and the proposed

model only handles verb-noun phrases. In that work, predicate of a verb-noun phrase185

is represented as a matrix and the noun is represented as a vector. The compositional

representation of verb-noun is obtained by matrix-vector multiplication. In addition,

their compositionality prediction is based on manually defined features.

3. Proposed Framework

For a given phrase, our proposed model is shown in Figure 1, which consists of190

two parts: the distributional component based on the distributional hypothesis and the

compositional component based on the principle of compositionality. The two parts are

linearly combined with a fixed weight λ and a phrase specific compositionality weight

t. λ is a hyper-parameter controlling the overall contribution of each component. The

compositionality t is a value range from 0 to 1 where 0 indicates that the phrase is non-195

compositional and 1 indicates that the phrase is compositional. t is obtained by a phrase

compositionality prediction model. The basic principle is that the more compositional

a phrase is, the more contribution should be by the compositional component, namely,

the more contribution from the component words. If a phrase is non-compositional, t

should be close to zero and the semantic information comes only from the distributional200

component, namely the external context. We denote our proposed model as D&C

(Distributional and Compositional). D&C is similar to that of [42] which works on

verb-noun phrases only. D&C extends [42] to handle general types of words.

D&C Distributional component= Compositional component+ 𝜆 ∙ 𝑡 ∙

𝑚

 𝑣𝑚
1

 𝑣𝑚
2

𝑚𝑝

Figure 1: The framework of the proposed D&C model.

First we introduce some notations. Given a corpus S with a set of words w ∈
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VW and their context c ∈ VC where VW and VC are word and context vocabularies.205

Note that the vocabularies of Vw and VC are generally identical. The distinction is

more for conceptual convenience only. The context of word wi is defined as the words

surrounding wi in a window of size 2L, namely wi−L, · · ·, wi−1, wi+1, · · ·, wi+L. Let

#(w) denote the occurrence frequency of wordw in S, and #(c) denote the occurrence

frequency of context c. Let #(w, c) denote the frequency of a word-context pair (w, c).210

Furthermore, let VM denote the set of given phrases where each phrase m ∈ VM

consists of two words. tm is used to denote the compositionality of the phrase m.

The larger tm is, the more compositional is the phrase m. Let D denote the set of

(w, c) and (m, c) pairs. The objective is to learn a vector representation ~w ∈ Rd for

each w ∈ VW , a vector representation ~c ∈ Rd for each context c ∈ VC , and a vector215

representation ~m ∈ Rd for each m ∈ VM . d is the vector dimension. The following

subsections introduce the distributional component, the compositional component, the

proposed hybrid model and compositionality prediction model in sequence.

3.1. Distributional Component

The distributional component makes use of the external contexts. The representa-

tion can be obtained from any word embedding learning model based on the distribu-

tional hypothesis. As introduced in Section 2.1, we can either use count-based methods

or prediction-based methods for learning distributional phrase embedding. Compared

to count-based methods, prediction-based methods do not need to perform a large ma-

trix factorization, which is computation power demanding. In this work, we use a

widely used prediction-based method, referred to as Skip-Gram with negative sam-

pling (SGNS) model [7]. When applying SGNS to representation learning of phrases,

mi ∈ VM is treated as a single term and representation learning is carried out the same

as word representation learning. To be specific, consider a phrase-context pair (m, c).

Let p(D = 1|m, c) be the probability that (m, c) comes from D and let p(D = 0|m, c)

be the probability that (m, c) does not comes from D. The basic assumption of SGNS

is that the conditional probability of p(D = 1|m, c) should be high if c is the context

of phrase m in corpus D and p(D = 0|m, c) should be high otherwise. p(D = 1|m, c)
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is computed as:

p(D = 1|m, c) = σ(~m · ~c) = 1

1 + e−~m·~c .

The basic idea behind this is that if phrase m and context c co-occur, their vec-

tors should have close correlation, modeled by the element-wise multiplication ~m · ~c.

The objective of negative sampling is to maximize the conditional probability p(D =

0|m, cN ) = σ(−~m · ~cN ) by randomly sampling negative context cN of m from VC .

This can be translated to maximizing σ(−~m · ~c). So the objective for a single (m, c)

pair is:

log(σ(~m · ~c)) + k · EcN∼PD
[log(σ(−~m · ~cN ))],

where k is the number of negative samples and PD is the empirical unigram distribution

PD(c) = #(c)
|D| . The final objective function for the whole phrase corpus is:

JS =
∑

m∈VM

∑
c∈VC

#(m, c)
(
log(σ(~m · ~c)) + k · EcN∼PD

[log(σ(−~m · ~cN ))]
)
. (1)

Note that for compositional phrases, the SGNS component only takes information220

from external contexts. Internal contexts of component words are not directly taken

into consideration.

3.2. Compositional Component

In the compositional component, the representation of a phrase is computed from

the representations of its component words. Without loss of generality, we assume

that phrases only have two component words, similar to discussions used in previous

studies. Given a phrasemwith two component wordsw1
m andw2

m and their embedding

representations ~w1
m and ~w2

m, the representation of m, denoted by ~m, can be computed

by a composition function f :

~m = f(~w1
m, ~w

2
m). (2)

Different composition models are proposed for f in [49]. The weighted addition com-

position model with weights α and β is defined as a linear composition:

~m = α~w1
m + β ~w2

m. (3)
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The multiplication composition model is defined by:

~m = ~w1
m · ~w2

m. (4)

Note that in the above formulas, word embeddings are obtained in advance by any

word embedding learning model. Compared to SGNS, the compositional component225

can make use of component words information. However, this model can produce

erroneous representation for non-compositional phrases. For example, for the phrase

couch potato, its meaning cannot be composed from its component words couch and

potato.

3.3. The Hybrid Model230

The distributional model using SGNS can suffer from data sparseness problem for

phrases and cannot make use of component words information. The compositional

model alone does not make full use of external context and is not appropriate for non-

compositional phrases. Based on the distributional component and compositional com-

ponent, our proposed hybrid model can modeled as:235

JS =
∑

m∈VM

∑
c∈VC

#(m, c)
(
logσ(~m · ~c) +k · EcN∼PD

[log(σ(−~m · ~cN ))]

+ λtmlogσ
(
~m · f(~w1

m, ~w
2
m)
) )
.

(5)

In Formula 5, the first two parts forms the SGNS model and serve as the distributional

component. The third part is the compositional component with a constant weight λ

to balance the overall contributions of the two components. f(~w1
m, ~w

2
m) can be any

compositional model defined by Formula 2. σ
(
~m · f(~w1

m, ~w
2
m)
)

defines the correla-

tion between the learned phrase embedding ~m and the composed phrase embedding.240

The more they are correlated, the larger contribution the third part is to JS . tm is the

compositionality of m, which will be introduced in detail later.

Theoretically speaking, Formula 5 has the following properties:

1. If the compositionality tm is low (m being more non-compositional), the weight

of the correlation between the phrase representation ~m and the composed repre-245

sentation f(~w1
m, ~w

2
m) from its component words should be low. It means ~m is

learned mainly based on SGNS, namely its external contexts.
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2. If the compositionality tm is high (m being more compositional), the weight

of the correlation between ~m and f(~w1
m, ~w

2
m) should be high and the objective

function will force ~m to be similar to the composed f(~w1
m, ~w

2
m). It means ~m250

should consider both the external contexts and component words.

By setting λ to zero, the model degrades to SGNS. By setting tm to a constant, the

model changes to a fix-weighted model.

3.4. Compositionality Prediction

One of the most important elements of D&C is the compositionality value t. The255

compositionality prediction model aims to predict the compositionality of a phrase.

Phrase compositionality has the property of continuum [44]. For example, the compo-

sitionality of phrase bus driver is 1.0, which means this phrase is compositional and the

meaning of it can be composed from the component words bus and driver. The compo-

sitionality of phrase coach potato is 0, which means this phrase is non-compositional260

and the meaning of it cannot be inferred from the component words coach and potato.

The compositionality of the phrase silver screen is 0.6, which indicates that its seman-

tics cannot be totally obtained from the component words because the first word silver

loses its original meaning in the phrase while the second word screen can reflect the

phrase’ meaning. In this section, we introduce two models for predicting individual265

compositionality of phrases.

The first model is from [45], which computes the compositionality of a phrase

based on the consine similarity between the distributional embedding and the compo-

sitional embedding of the phrase defined as:

tm = cosine
(
~m, ~w1

m + ~w2
m

)
, (6)

where ~m, ~w1
m and ~w2

m are obtained by SGNS in advance. Formula 9 means that the

more similar between ~m and ~w1
m+ ~w2

m, the more compositional the phrase is. We label

this compositionality prediction model as C1.

The second model is inspired by the work from [46] which is based on the geome-

try of word embedding. They find that the semantic space of larger text units (such as

phrases and sentences) is spanned by the subspace of the consisting word vectors and
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the subspace can be obtained through dimension reduction such as Principle Compo-

nent Analysis (PCA). Inspired by this, we propose to compute phrase compositionality

by computing the cosine similarity between the distributional embedding and the pro-

jected vector on the subspace spanned by the component word embeddings. The pro-

cess is shown in Figure 2. Given a phrase m consisting of two words w1
m and w2

m, ~m

is the distributional phrase embedding and ~v1m and ~v2m are the distributional component

word embedding, obtained by distributional methods. ~mp is the projected vector of ~m

on the space spanned by ~v1m and ~v2m. Let A = [~v1Tm , ~v2Tm ]. ~mp is computed as:

~mp = A(ATA)−1AT ~m. (7)

The compositionality is computed as:

tm = cosine(~m, ~mp). (8)

D&C Distributional component= Compositional component+ 𝜆 ∙ 𝑡 ∙

𝑚

 𝑣𝑚
1

 𝑣𝑚
2

𝑚𝑝

Figure 2: The C2 model for compositionality prediction.

We label this compositionality prediction model as C2. Compared to C1, C2270

assumes that if a phrase is compositional, its phrase representation is the subspace

spanned by its component words. The more the distributional embedding is close to

the subspace, the more compositional of the phrase. If the distributional embedding is

perpendicular to the subspace, the phrase is non-compositional.
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Generally speaking, the two compositionality models C1 and C2 can be easily ex-

tended to include phrases with length K where K is the number of component words.

For a phrase m consisting of K words, C1 can be extended to compute the composi-

tionality by:

tm = cosine

(
~m,

K∑
i=1

~wi
m

)
. (9)

For C2, the distributional phrase embedding ~m is projected to the subspace spanned by

component word vectors to obtain vector ~mp. Compositionality can then be computed

as:

tm = cosine(~m, ~mp). (10)

After obtaining the compositionality value, the proposed model can be used for longer275

phrases just the same as as that of bigrams.

Theoretically speaking, any phrase compositionality model can be used in our pro-

posed framework. Note that the compositionality values of phrases are computed based

on the distributional embedding before training the model.

Details of the training procedure of the hybrid model is shown in Algorithm 1.280

Our model can be trained through stochastic gradient descent (SGD) by maximizing

Formula 5 suggested by [3]. The gradient can be directly calculated for each training

sample. Both the word embeddings and phrase embeddings are randomly initialized as

what is used by Mikolov et al [3].

4. Experiment285

In this section, we evaluate the representations by the proposed phrase embedding

learning model on five different phrase level semantic tasks including both English and

Chinese. For all experiments based on English text, Wikipedia August 2016 dump2

is used as our training corpus. In pre-processing, pure digits and punctuations are

removed and all English words are converted to lowercase. The final corpus consists290

of about 3.2 billion words. During training, only words that occur more than 100

2https://dumps.wikimedia.org/enwiki/latest/
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Algorithm 1 The procedure of training phrase embedding based on the hybrid model.

• Input:

M = [m1, · · · ,mn]: phrase list of size n.

S: text corpus.

λ: overall weight hyper-parameter.

d: embedding dimension.

win: window size.

• Output:

~w, ~m: the learned word embeddings and phrase embeddings.

• Procedure:

1. Extract word-context and phrase context pairs from S based on win.

2. Using SGNS model to train distributional word and phrase embeddings, ~w, ~m.

3. Compute phrase compositionality values tm using C1 and C2 based on ~w, ~m.

4. Using D&C to obtain the final word and phrase embeddings ~w, ~m based on tm.

5. Return ~w, ~m.

times are kept, resulting in a vocabulary of 204,981 words. The list of phrases used in

the evaluation are from 5 sources: (1) the set of 2,180 phrases in the Noun-Modifier

Composition dataset [50], (2) the DISCo set of 349 phrases for the 2011 shared task in

Distributional Semantics and Compositionality [51], (3) the set of 8,105 phrases from295

the SemEval 2013 Task 5A [52], (4) the set of 1,042 phrases from [53], and (5) the set of

56,850 phrases from [8]. The consolidated phrase list has a total of 60,315 phrases after

removal of duplicates. For experiments using Chinese data, the training corpus is from

Baidu Baike3 with 1.8 billion tokens after performing word segmentation using the

HIT LTP tool.4 The Chinese phase list is from [14]. The distributional embeddings of300

the phrases and words are first learned based on SGNS for computing compositionality

using C1 and C2 models. Then the compositionality values are used in our D&C model

to obtain the final phrase embeddings.

3http://www.nlpcn.org/resource/list/2
4www.ltp-cloud.com/
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4.1. Evaluation Tasks

The proposed model is evaluated on five tasks. The first task is from the SemEval305

2013 Task 5. The dataset for this task, denoted as SemEval, is prepared to judge

whether a given bigram-unigram pair is semantically related or not [52]. For example,

the bigram newborn infant is semantically related to the unigram neonate. So, the

gold answer for this pair is (newborn infant, neonate, 1), where the label 1 indicates

their relatedness. On the other hand, the bigram stable condition is not related to the310

unigram interview, So, in the gold answer, the entry is (stable condition, interview,

0). The officially released data in SemEval contains 7,814 test samples and 11,722

training samples.5 Since only 15,973 samples are contained in Wikipedia, they are

used in our evaluation6. SemEval 2013 Task 5 is a binary classification problem. The

cosine similarity between a learned bigram embedding and a unigram embedding is315

used as the feature. Support Vector Machine (SVM) is used to as the classifier to

perform 5-fold cross-validation classification. Accuracy, precision, recall and F-score

are used as the evaluation metrics.

The second task is called Phrase Similarity [11]. Since this is an English dataset,

we denote it is as PS-En. This task provides a phrase pair similarity dataset with 324320

samples7 constructed using manually rated scores from 1 to 7 with 7 being the most

similar. For example, the phrase pair (hot weather, cold air) has a similarity score 2.22.

The dataset contains three types of phrases: adjective-nouns, noun-nouns, and verb-

objects with 108 samples for each type. All 324 samples are used in the evaluation.

Cosine similarity is used to compare two phrase vectors and Spearmans ρ correlation325

coefficient between estimated similarities and gold similarities is used as the evaluation

metric.

The third task is on phrase similarity for Chinese, denoted as PS-Ch. The evalua-

5https://www.cs.york.ac.uk/semeval-2013/task5.html.
6Theoretically speaking, compositional models are not limited that one phrase has to occur in the training

corpus because it requires only the component words occurring in the corpus. It is an advantage of compo-

sitional models over distributional models. Removing the phrase not occurred in the corpus is beneficial for

distributional models. However, this is not our focus in this paper and our model is not limited by this.
7http://homepages.inf.ed.ac.uk/mlap/index.php?page=resources
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tion dataset is from Wang et al. [14].8 Similarity annotation ranges from 1 to 6 with

6 being most similar. The final evaluation size is 240. Note that all the phrases are330

compositional. The evaluation method is the same as that for PS-En.

The fourth task is labeled as Turney-5 [50]. The dataset in this task is a 7-choice

Noun-Modifier Question dataset built from WordNet with 2,180 question groups. For

example, in the sample (small letter, lowercase, small, letter, little, missive, ploughman,

debt), the first bigram small leter is the question and the latter 7 unigrams are the335

candidate answers. The task is to select the most similar unigram as the answer, which

should be lowercase in this example. To remove the bias towards component words by

following Yu’s suggestion [12], both two component words are removed to construct a

5 choice single word questions to form our evaluation dataset, denoted as T-5. Again,

by removing samples that are not contained in the Wikipedia training corpus, the final340

evaluation data contains 669 questions. The cosine similarity is used to measure the

semantic closeness of a bigram phrase and the unigrams. The one with the highest

similarity score is chosen as the answer. Accuracy is used as the evaluation metric.

The fifth task is to predict the sentiment score of phrases proposed by this work.

The phrase list is extracted from the Stanford Sentiment Treebank (SST) [37]. In SST,345

every sentence is syntactically parsed and every node is annotated with a sentiment

score from 0 to 1 through crowdsourcing, where 0 indicates the most negative and 1

indicates the most positive. We extract the noun-noun and adjective-noun phrases in the

parsed trees and the overlapping set of phrases in SST and our phrase list is 772. The

obtained phrase embedding is treated as latent feature representation and the target is to350

predict the sentiment score, which is a regression problem. This dataset is denoted as

SST. The evaluation metrics include Root Mean Square Error (RMSE), Mean Absolute

Error (MAE) and the Kendall rank correlation coefficient (τ ). For RMSE and MAE,

the smaller of the value, the better of the performance, and vice versa for τ . The Ridge

Regression model is used to predict the sentiment score of the phrases from the phrase355

embedding.

Note that all the datasets contain only bigram phrases. As explained in Section 3.4,

8https://github.com/wangshaonan/Phrase-representation
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the proposed model is not limited to bigrams. However, multi-word phrase datasets

with longer length are not available. Similar to other works, performance evaluations

here are all based on bigram datasets used in other reported works.360

4.2. Baselines and Experiment Settings

The proposed hybrid model is compared with the following baselines:

1. SGNS: the original word representation learning model that takes a phrase as a

non-divisible unit [3, 8];

2. SEING: a modified SGNS model by treating component words as the context of365

a phrase and perform the same constraint on component words as the external

contexts [26]. This will force the phrase vector to be similar to both the vectors

of its component words regardless of compositionality of the phrase;

3. Comp-Add: the addition composition model to use the average of the vectors of

the component words to obtain the vector of a phrase.370

4. Comp-Mul: the multiplication composition model to use the multiplication of

the two components vectors to obtain the vector of a phrase.

5. Comp-W1: a composition model to use the vector of the first component word

directly as the vector of a phrase;

6. Comp-W2: a composition model to use the vector of the second component375

word directly as the vector of a phrase;

The proposed D&C model has three settings for compositionality tm. The first one

directly sets tm as a constant, tm = 1, denoted as D&C-C. This means the composi-

tionality of all phrases is set fixed as an identical and fixed number. The second one

uses automatically computed tm by model C1, denoted as D&C-C1. The third one380

uses automatically obtained tm by model C2, denoted as D&C-C2. Both D&C-C1 and

D&C-C2 estimate compositionality for each phrase individually.

The size of the context window for all the models is set to 10, negative samples

size is 5, and the embedding dimension is 300. For λ, we evaluate different values

on SemEval based on 5-fold cross validation and select the best value 8. For other385

datasets, we use the same value for λ. For the composition model in Formula 2, we
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empirically evaluate several combinations such as the addition model with α and β as

1, or the multiplication model. Experiments show that the addition model achieves the

best result. So only the results using the addition composition model are reported here.

To obtain compositionality tm, the representations of a phrase is first trained using390

SGNS and its compositionality is computed based on model C1 and C2, respectively.

Model

SemEval PS-En PS-Ch T-5 SST

(2.5%) (2.5%) (0%) (10%) (30%)

Acc Pre Rec F ρ ρ Acc rmse mae τ

SGNS .629 .728 .412 .526 .155 .075 .535 .094 .063 .218

SEING .586 .562 .773 .651 .056 .531 .576 .089 .061 .269

Comp-Add .795 .826 .748 .785 .622 .784 .603 .090 .066 .283

Comp-Mul .506 .506 .483 .494 410 .647 .227 .098 .063 .219

Comp-W1 .737 .771 .672 .718 .450 .648 .499 .092 .065 .211

Comp-W2 .759 .796 .697 .743 .500 .682 .463 .100 .071 .113

D&C-C .779 .808 .731 .767 .595 .786 .683 .089 .061 .301

D&C-C1 .764 .794 .711 .750 .580 .776 .681 .087 .060 .310

D&C-C2 .776 .841 .681 .753 .623 .765 .677 .088 .061 .293

Table 1: Performance of different phrase representation learning models. The top two performers are in bold

and the best performer is also underlined.

4.3. Performance Evaluation and Analysis

The evaluation result on the five datasets under different evaluation metrics is shown

in Table 1. In this table, the first two models are distributional methods, the middle four

models are compositional methods and the last three models are three variants of our395

proposed model. The percentage after each dataset name is the proportion of non-

compositional phrases in that dataset. The percentage is obtained by randomly sample

30 phrases in each data set and then manually verify their compositionality. We can

see that different datasets do have different proportions of non-compositional phrases

and this should have effects on the performance of different methods.400
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4.3.1. General Analysis

Comparison between distributional methods and compositional methods shows that

compositional methods achieve much better result than distributional methods. For

example, on SemEval, Comp-Add achieves a relative improvement of 49.2% under

F-score compared to SGNS. In other words, the semantics of phrase expressions are405

not fully recognized by using only external context. Treating phrases as a non-divisible

units obviously loses some semantic information carried by the component words. This

also indicates that in a real application, compositional models are a better choice com-

pared to a distributional approach for phrase embedding learning. Comparing between

distributional models, SEING performs better than SGNS on SemEval, PS-Ch, T-5410

and SST. But, SEING performs worse than SGNS on PS-En. Further analysis of SE-

ING on PS-En indicates that the cosine similarities of many phrase pairs in PS are

negative. The average frequency of PS-Ch is only 461, much smaller than the aver-

age frequency 1,297 of PS-En. That is why SGNS performs much worse on PS-Ch.

Among the four baseline compositional methods, Comp-Add performs much better415

than other compositional methods. Comp-Mul performs the worst. This means that

element-wise multiplication can introduce more noise than information. Comp-W1

and Comp-W2 have similar performance with Comp-W2 performing slightly better on

SemEval, PS-En and PS-Ch and Comp-W1 performing better on T-5 and SST. Among

all the models, Comp-Add performs the best on the SemEval dataset while our pro-420

posed model D&C performs the best on PS-En, PS-Ch, T-5 and SST. Specifically, on

T-5, the best performer D&C achieves a relative improvement of 13.3% over Comp-

Add. This indicates the effectiveness of our proposed model. Among the three variants

of D&C, no one is overall best. D&C-C performs the best on SemEval and T-5, while

D&C-C2 performs the best on PS-En, D&C-C1 performs the best on SST under rmse,425

mae and τ . Overall, our proposed model achieves the most robust result since D&C is

always the top two performer on all datasets and in fact top performer in four out of

five datasets.

Further analysis indicates that the performances of different models are dataset de-

pendent, especially dependent on the proportion of non-compositional phrases. As430
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shown in Table 1, the proportions of non-compositional phrases are 2.5%, 2.5%, 0%,

10%, and 30% in SemEval, PS-En, PS-Ch, T-5 and SST, respectively. Because com-

positional models are more suitable for compositional phrases, Comp-Add performs

much better than SGNS on SemEval. However, the gap decreases on T-5 between

SGNS and Comp-Add as the proportion of non-compositional phrases increases. Per-435

formance of Comp-Add indicates that the combined use of the vectors of two com-

ponent words is more comprehensive than using external contexts for compositional

phrases. On T-5 and SST datasets, the proportions of the non-compositional phrases

are larger than in the other two sets. So, there are more phrases which would not work

using compositional methods. That is why the performance of SGNS increases and440

D&C outperforms Comp-Add.

4.3.2. Compositionality Analysis

To further explore the effects of compositionality on different methods, the propor-

tion of non-compositional phrases are further analyzed based on the SemEval semantic

relation task. 20 non-compositional phrases are manually selected from Farahmand’s445

list which has 1,042 phrases manually annotated with compositionality values [53].

Each phrase is annotated by four annotators with 1 indicating non-compositional and 0

as compositional. Based on the 20 phrases, 20 positive (semantically related) bigram-

unigram pairs and 20 negative (not semantically related) bigram-unigram pairs are

constructed to form a balanced non-compositional sample set for the SemEval task,450

denoted as N-Sem. 60 samples from the original SemEval dataset are also taken

to form a compositional sample set, denoted as C-Sem. In the evaluation, the non-

compositional phrases from N-Sem are added to C-Sem to increase the proportion of

non-compositional phrases until all the non-compositional phrases are used up (total of

100 samples). Then the compositional portion is reduced so that the non-compositional455

proportion reaches about 70% of the total set (57 samples). The two distributional mod-

els, SGNS and SEING, are selected for evaluation. Since Comp-Add performs much

better than the other three compositional models, only Comp-Add is included for com-

parison. For comparison, we introduce another variant of D&C, D&C-M, which uses

manually annotated compositionality as tm, which is obtained as follows. We first ob-460
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tain the sum the four annotation values as a and convert a by tm = (4− a)/4 to obtain

tm as the gold compositionality value. tm is in the range of [0,1] and is consistent

with our definition of compositionality (namely 1 indicates compositional, 0 indicates

non-compositional). F-score is used as the evaluation metric. Because of the limited

data size, each model is run 10 times and the average is used.465
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Figure 3: Performance of different models when increasing the proportion of non-compositional phrases.

The result is shown in Figure 3. This figure shows that when the proportion of

non-compositional phrases is small, Comp-Add performs much better than SGNS,

consistent with the result in Table 1. As the non-compositional portion increases, the

performance of Comp-Add degrades gradually whereas in contrast, the performance of

SGNS increases gradually. This indicates that external context is indeed useful for non-470

compositional phrases and the compositional model is ill-suited for non-compositional

phrases. The performance of SEING indicates that the constraint to force a phrase’s

vector to be similar to both of its components can actually bring adverse effect for

non-compositional phrases.

Note that even though D&C-C assumes all phrases are compositional so that tm475
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is set to constant 1, the performance of D&-C in Figure 3 does not decrease like

Comp-Add and SEING. Further analysis reveals that the average frequency of the non-

compositional phrases is 1,914.7 while the average frequency of compositional phrases

is only 328.4. One possible reason is that higher frequency of non-compositional

phrases generally leads to better distributional embeddings compared to that of the480

the compositional phrases. Even though the compositional part can introduce noise,

performance can still improve when the benefits from the distributional part is larger

than the noise introduced by the compositional part. As the noise accumulates, the

performance of D&C-C begins to decrease when the proportion achieves about 0.5.

Over the whole spectrum, D&C gives a much more stable performance and is the485

overall top performer in all the automatic methods. D&C-M, which uses manually

annotated compositionality, gives the best performance. The better performance of

D&C-M over D&C-C1 and S&C-C2 indicates that there is still room for improvement

in compositionality estimation. To validate this, a selected group of phrases are eval-

uated from Farahmand’s list [53]. The overlapping of the phrase list with our phrase490

list is 408. We use the 408 phrases to evaluate the performance of the two composi-

tionality prediction models. The estimated compositionality values by model D&C-C1

and D&C-C2 are compared with the gold compositionality by calculating Spearman’s

ρ correlation between the golden compositionality and the estimated compositionality.

The result shows that ρ only achieves 0.227 and 0.200 for compositionality prediction495

model C1 and C2 respectively, which means the current method for compositional-

ity estimation still has much room for improvement. Even though inaccurate tm means

that the use of compositional component may be less accurate and may introduce noise,

but it still brings benefits compared to the baselines. The improvement of the hybrid

model results from the combination of distributional component and compositional500

component so that the model makes use of more information (both external context

and component words).

4.3.3. Hyper-parameter Analysis

To investigate the effects of the hyper-parameter λ, Figure 4 shows the performance

of D&C-C on the four datasets when varying λ. The evaluation metrics are F-score,505
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ρ, accuracy, τ for SemVal, PS-En, T-5 and SST respectively. The result indicates that

D&C-C achieves the best performance when λ equals about 8.
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Figure 4: Performance of D&C-C with different λ values.

4.3.4. Case Study

To examine the performance of each model more closely, we select four phrases

to extract the top 5 most similar words by different models. The phrases are selected510

based on the occurrence frequency in the Wikipedia corpus and the compositionality

values. They are annotated in [44] with compositionality values from 0 to 5 with 0

indicating the most non-compositional and 5 indicating the most compositional. The

statistics of the four phrases are shown in Table 2. Frequency is the occurrence fre-

quency in our Wikipedia corpus and Compositionality is the annotated value by [44].515

As shown in Table 2, the first phrase, swimming pool is highly compositional with high

frequency. The second phrase, game plan, is highly compositional but low frequency.

The third phrase, melting pot, is low in compositionality and high in frequency. The last

phrase, rat run, is low in compositionality and also low in frequency. We list the top 5

most similar words/phrases based on the cosine similarity between the phrase embed-520
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ding and the word/phrase embedding. The result of selected words/phrases based on

different models is shown in Table 3. Overall, Comp-Mul gives the worst unreasonable

results. Comp-W1 and Comp-W2 give results similar to the first component word and

the second component word, respectively. So we can put them aside in our discussions.

swimming pool game plan melting pot rat run

Frequency 17794 116 6119 4

Compositionality 4.87 3.83 0.54 0.79

Table 2: Statistics of the selected example phrases.

Firstly, for the high compositionality and high frequency phrase, swimming pool,525

all the models give reasonable results that are semantically similar to swimming pool.

Secondly, for the high compositionality and low frequency phrase, game plan, the re-

sults from SGNS are not reasonable. For example, all the given phrases of fool up, run

book, make book luck out, and times sign are not closely related to game plan. This val-

idates the claim that SGNS can not perform well when the occurrence frequency is low.530

SEING gives reasonable results because it constrains a phrase to be semantically re-

lated to its component words. Comp-Add also gives semantically related words/phrases

and most of the them are related to the word of game. The three variants of the pro-

posed D&C model all give similar results, including the most reasonable phrase game

plans. Thirdly, for the low compositionality and high frequency phrase, melting pot,535

SGNS gives reasonable and similar results, which are all related to politics. On the

contrary, both SEING and Comp-Add gives unreasonable cases, which are all related

to either component word pot or melting but not related to melting pot. Again, the

three variants of our proposed D&C model give reasonable results, which are all re-

lated to melting pot. Fourthly, for the low compositionality and low frequency phrase,540

rat run, all the results given by all the models are unreasonable. This is because all

distributional models fail under low frequency whereas compositional models fail be-

cause of non-compositionality. However, our proposed models still give a semantically

related phrase rat running. In conclusion, this case study validates that distributional

models will fail when the occurrence frequency of a phrase is low and compositional545
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models will fail when a phrase is non-compositional. Our proposed model gives the

most robust answers. However, none of the models perform well when a phrase is

non-compositional with low occurrence frequency.

To conclude, the distributional model performs better than compositional model

when the proportion of non-compositional phrase is large and the compositional model550

performs better than distributional model when the proportion of non-compositional

phrase is small. However, in practice, we do not have prior knowledge on the propor-

tion of non-compositional phrases. This is why our proposed method has advantage

over both models individually as our method learns compositionality for individual

phrases. Thus, D&C is less sensitive to datasets, especially the proportion of non-555

compositional phrases. Becasue of this, it gives an overall better and more robust per-

formance no mater what proportion of non-compositional phrases are. In addition, the

fact that D&C-M gives the best performance highlights the need for a more accurate

estimation of compositionality.

Models swimming pool game plan melting pot rat run

SGNS

swimming

pools, squash

courts, tennis

courts,

climbing

wall,

basketball

courts

fool up, run

book, make

book, luck

out, times

sign

diasporic,

middle

eastern,

mestizaje,

caribbeans,

ethnicities

holds true,

faster

computers,

improve un-

derstanding,

fuzzy set,

molecular

entity

SEING

swimming

pools, pool

hall, pool

halls, tennis

courts,

wading pool

strategy

game, arcade

game, saved

game,

strategy

games, game

board

cooking pot,

pot luck, pot

roast, coffee

pot, pot shots

hog line,

hoosier state,

blade roast, w

byrd, running

dog
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Comp-Add

swimming,

swimming

pool, squash

courts, pools,

swimming

pools

game, the

game, plans,

a game,

strategy game

pot, melt,

cooking pot,

saucepan,

boiling

rat, brown

rat, roof rat,

black rat,

giant

kangaroo

Comp-Mul

weberian,

individuation,

apparatuses,

cope, inter-

nalization

negatives,

barb, stag,

andersons,

smallville

pot, cooking

pot, talgai,

pocket knife,

pinfold

controversially,

sion,

furthered,

controversy,

tahiti

Comp-W1

swimming

pool,

aquatics,

swim,

synchronized

swimming,

squash courts

the game,

games, card

game, video

game,

wiiware

melt, melts,

melted,

melting point,

eutectic

rats, rodent,

rattus, mole

rat, muridae

Comp-W2

pools,

swimming

pool, squash

courts,

wading pool,

swimming

pools

plans,

planning,

master plan,

planned,

proposal

pots, cooking

pot,

saucepan,

pourri, ladle

running, runs,

ran, run in,

run on
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D&C-C

swimming

pools, tennis

courts,

squash

courts,

basketball

courts, fitness

center

game plans, a

game, saved

game, end

game, waiting

game

diasporic,

mestizaje,

caribbeans,

middle

eastern, folk

culture

rat running,

rat through,

rat on, rat

trap, young

rat

D&C-C1

swimming

pools, squash

courts, tennis

courts,

basketball

courts, fitness

center

game plans,

end game,

waiting game,

saved game,

game board

diasporic,

mestizaje,

caribbeans,

diasporas,

folk culture

rat running,

rat through,

rat on, rat

race, rat trap

D&C-C2

swimming

pools, tennis

courts,

squash

courts,

basketball

courts, indoor

pool

game plans,

the game, a

game,

strategy

game, board

game

diasporic,

mestizaje,

caribbeans,

ethnicities,

diasporas

rat running,

rat through,

rat on, rat, rat

trap

Table 3: The top 5 similar words of four kinds of phrases.

5. Conclusion and Future Work560

In this paper, a hybrid model, D&C, is proposed to learn the representation of

phrases from both their external contexts and internal contexts through a weighted lin-

ear combination with a phrase specific constraint. Instead of a simple combination of

the two kinds of information, the individualized compositionality measures from lexi-

cal semantics are used to serve as the constraint. Evaluations on five phrase semantic565
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analysis tasks show that the proposed hybrid model performs better than other models

in four out of five datasets. Our model is the most robust on both compositional and

non-compositional phrases without any knowledge of the dataset in terms of proportion

of non-compositional phrases. This also indicates that incorporating more semantic in-

formation properly brings benefits for representation learning.570

Even though the model gives a theoretically sound solution, the compositionality

estimation method still has room for improvement. Firstly, more study on appropriate

compositionality estimation model can be investigated as future work. Secondly, ac-

quisition of longer phrase datasets should be conducted to see how different models

work on longer phrases and which method can deal with data sparseness issue more575

effectively.
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