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Abstract—Wireless Sensor Network (WSN) consists of a large
number of sensor nodes distributed over a certain target area.
The WSN plays a vital role in surveillance, advanced healthcare,
and commercialized industrial automation. Enhancing energy-
efficiency of the WSN is a prime concern because higher
energy consumption restricts the Lifetime (LT) of the network.
Clustering is a powerful technique widely adopted to increase LT
of the network and reduce the transmission energy consumption.
In this paper we develop a novel ARSH-FATI based Cluster
Head Selection (ARSH-FATI-CHS) algorithm integrated with
a heuristic called Novel Ranked based Clustering (NRC) to
reduce the communication energy consumption of the sensor
nodes while efficiently enhancing LT of the network. Unlike
other population based algorithms ARSH-FATI-CHS dynami-
cally switches between exploration and exploitation of the search
process during run-time to achieve higher performance trade-off
and significantly increase LT of the network. ARSH-FATI-CHS
considers the residual energy, communication distance param-
eters, and workload during Cluster Heads (CHs) selection. We
simulate our proposed ARSH-FATI-CHS and generate various
results to determine the performance of the WSN in terms of
LT. We compare our results with state-of-the-art Particle Swarm
Optimization (PSO) and prove that ARSH-FATI-CHS approach
improves the LT of the network by ∼ 25%.

Index Terms—ARSH-FATI, Wireless Sensor Network, Sensor
Nodes, Cluster Head, Clustering, Lifetime.

I. INTRODUCTION

INTERNET-of-Things (IoT) is a 21st century technologi-
cal revolution and its potential applications have already

exceeded the expectations. According to Cisco, it is expected
that there will be 50 billion devices connected to the Internet
by 2020 [1], [2]. The basic concept of this idea is the pervasive
presence of a variety of objects or things around us. In
other words IoT paradigm interconnects computers, machines,
people, actuators, and digital devices on a large-scale for
applications including surveillance, advanced healthcare, smart
agriculture, industrial automation, industrial manufacturing,
and intelligent transportation [3], [4]. Unquestionably IoT
has its impact on several aspects of the everyday life and
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behavior of the users [4], [5]. Wireless Sensor Network (WSN)
is an integrated part of the IoT and provides the collected
information to the cloud about the physical world collected
by dedicated digital edge devices called sensor nodes [6],
[7], [8], [9]. WSN is responsible for efficiently gathering the
information in several IoT based applications for example
in traffic monitoring wireless senors nodes are embedded on
intersections and roadways to collect the traffic data for traffic
signal adjustment, avoiding congestion, and and road accident
severity. In the video streaming the multimedia data content
is streamed over the network in an encoded form while the
video is displayed to the end user and/or professional either
in a recorded or pre-recorded manner [10].

The design of sustainable WSNs is a challenging issue
and the energy-constrained sensors nodes are expected to effi-
ciently run autonomously for a long period of time. However,
it is cost-prohibitive to replace the batteries with no residual
energy often it is impossible in the hostile environments [7],
[11], [12]. Thus, one of the major constraints in WSNs is
that sensor nodes have limited power source and replacement
of the battery is mostly impossible. Energy-efficiency in IoT
has attracted a lot of attention from the researchers over
the last few years, paving the way for initiating an area
called green IoT. The energy consumption can be reduced at
different aspects of IoT such as applications, services, and
communications where energy-efficient utilization is needed
to enable a green IoT environment [13]. Therefore, energy
consumption reduction of the sensor nodes is challenging
facet in the development of large scale WSNs to reduce the
transmission energy consumption [14], [15]. A sensor node in
WSNs is typically consisted of four fundamental components
demonstrated in Fig. (1). Each component of the sensor node
is briefly explained as follows [16]:

1) Sensing Unit (SU): It is used for acquiring analogue
data from a certain Field-of-View (FoV). The informa-
tion detected in analogue form is converted into digital
format by using Analogue-to-Digital (ADC) converts.

2) Processing Unit (PU): It intelligently process the
collected data from the target area through electro-
mechanical sensors. It is a microprocessor and/or mi-
crocontroller with integrated memory.

3) Wireless Communication Unit (WCU): It is deployed
for communicating the data and/or information com-
monly. It is a short-range transceiver system com-
monly based on standards such as IEEE 802.14.3, IEEE
802.15.4 or ZigBeeTM.
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4) Power Source: It is mostly a DC battery with limited
residual energy. Regulated supply for the data collection,
processing, and transmission subsystems.
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Fig. (1) Wireless sensor network architecture

The communication unit of the sensor node consumes
higher energy compared to the sensing and processing units
[17], [16]. Therefore, sensor nodes clustering is an effective
technique deployed to increase the energy-efficiency of the
WSN. In clustering process, the non-cluster nodes basically
join a neighboring Cluster Head (CH) to form a cluster. This
process of cluster formation plays a significant role to decrease
the energy consumption of a network [12]. Clustering in WSN
not only provides data aggregation, scalability, bandwidth con-
servation but also prolongs LT of the network by decreasing
the communication energy consumption of the sensor nodes.
In clustering process, the sensor nodes are partitioned into
groups called clusters. Where each cluster has its own leader
known as CH. The CH collects the data within the cluster from
its member sensor nodes, aggregates the collected data and
transmits it to the Base Station (BS). Data collected by the CH
is either transmitted directly to the BS or through intermediate
CHs and/or sensor nodes i.e. using multi hop communication.
Information from the BS is transmitted to the Cloud for
further processing and visualization purposes as demonstrated
in Fig. 1 [14], [12]. The CH selection is a well known
NP-hard problem [18]. Subsequently, various searching based
heuristics have been developed using Genetic Algorithm (GA)
[19], Ant Colony Optimization (ACO) [20], Particle Swarm
Optimization (PSO) [18], Differential Evolution (DE) [21],
and Simulated Annealing (SA) [22]. Among these algorithms,
PSO is widely used for cluster formation to enhance LT of the
network.

A. Contributions and Innovations

In this section we present our innovations and contributions.
First we define our problem given as follows:

Problem Statement: Performing an energy-efficient sensor
nodes clustering to reduce transmission energy consumption
and increase the overall LT of a network using evolutionary

algorithm by considering various parameters in the fitness
fiction. Concisely, in this paper we investigate to reduce the
transmission energy consumption of the sensor nodes in WSN
and present ARSH-FATI [23] based Cluster Head Selection
(ARSH-FATI-CHS) meta-heuristic integrated with Ranked
based Clustering (NRC) heuristic. The major innovations and
contributions of this paper are given as follows:

1) We develop a novel meta-heuristic, ARSH-FATI-CHS
that dynamically switches between exploration and ex-
ploitation search modes during run-time of the CHs
selection process for better performance trade-off.

2) We present an algorithm NRC that estimate the LT of
the sensor nodes and guides the ARSH-FATI-CHS to a
better and energy-efficient clustering to enhance the LT
of the network.

3) We propose a fitness function that considers various
parameters such as residual energy, communications
distance of the sensor nodes, and workload on the
selected CHs.

4) We compare our clustering scheme, ARSH-FATI-CHS
with state-of-the-art PSO based approach presented by
Rao et al. [14] and it achieves an overall LT improve-
ment of ∼ 25% when simulated for various number
of sensor nodes. Similarly, ARSH-FATI-CHS also out-
performs LEACH [24] and PSO-C [18] while attains
an average LT improvement of ∼ 40% and ∼ 60%
respectively.

We organize the rest of the paper as follows; Section
II discusses the related work performed so far. Section III
presents the preliminaries. Section IV explains our novel CHs
selection and clustering algorithms. Experimental results and
discussions are presented in Section V followed by conclusion
of this paper in Section VI.

II. RELATED WORK

Motivated by the fact that energy-efficiency plays a vital
role in the WSN to enhance LT of the network, different
algorithms for energy-aware sensor nodes clustering have been
investigated in the literature.

One of the most popular and widely used sensor nodes
clustering algorithm is Low-Energy Adaptive Clustering Hi-
erarchy (LEACH) [24]. LEACH is a probabilistic approach
that randomly selects CH in each round. Though, LEACH
attains a significant energy consumption reduction while pro-
longing LT of the network compared to Static Clustering
and Minimum Transmission Energy (MTE) algorithm how-
ever, some disadvantages are associated with it. For example,
LEACH can select a SN with least residual energy as a
CH subsequently, which adversely affects the network’s LT.
Numerous other clustering algorithms have been developed
by the researchers to improve the efficiency of LEACH.
For instance Power-Efficient GAthering in Sensor Information
Systems (PEGASIS) [25] that is a chain based approach.
PEGASIS organizes SNs into a chain while each SN com-
municates only with neighbour SNs. Each SN in the chain
takes turns in every round to transmit data to the base station.
PEGASIS saves more energy when compared to LEACH
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but it is not suitable for large-sized networks due to its
instability and high delays. Loscri et al. [26] presented a two-
level hierarchical approach called TL-LEACH. TL-LEACH
efficiently distributes the energy load among the SNs for
large-sized networks. It significantly enhances LT compared to
LEACH but causes an extra overhead for selecting secondary
CHs. Xiangning et al. [27] improved LEACH by considering
the residual energy of the SNs during CH selection process
and developed a protocol called Energy-LEACH (E-LEACH).
However, this protocols only minimizes the average distance
between CHs and the non-CH nodes while fails to consider
the distance between the BS and CHs. Yassein et al. [28]
developed a Voice-LEACH (V-LEACH) protocol. V-LEACH
also selects a voice-CH besides a CH in the cluster. The voice-
CH acts as a CH when there is no residual energy left in
the CH. Though, V-LEACH performs better than LEACH in
terms of energy-efficiency however, extra amount of energy is
utilized for selecting the voice-CHs during clustering phase.
Al-Baz et al. [29] improved the performance of LEACH and
developed an algorithm called Node Ranked-LEACH (NR-
LEACH). The NR-LEACH selects CH by considering cost and
number of links between the sensor nodes. This enhances LT
of the network and distributes energy load among the sensor
nodes. However, this approach is not suitable for large-scale
networks. LEACH-C [30], LEACH-GA [31], LEACH-C [32],
and DE-LEACH [33] integrated evolutionary algorithms with
LEACH to improve its performance. Recently, Lin et al. [34]
took an advantage of a game model to select CHs and proposed
a routing protocol called Game theory based Energy Efficient
Clustering routing protocol (GEEC). It adopts an evolutionary
game theory mechanism for achieving energy balance and
longevity. Wang et al. [35] developed an Energy-Efficient
Compressive Sensing-based clustering Routing (EECSR) pro-
tocol and combined merits of the clustering strategy and
compressive sensing based scheme.

In the analytical study presented by zungeru et al. [36], it
has been discussed that evolutionary meta-heuristic algorithms
based sensor nodes clustering offers a significant energy
savings. Since finding m-optimal clusters is NP-hard problem
[37] therefore, in the last decade numerous search based meta-
heuristics have been proposed in the literature for efficient CHs
selection. Subsequently, researchers developed meta-heuristic
based algorithms for efficient cluster formation in WSN to
enhance LT of the network. Centralized LEACH (LEACH-
C) [32] is among the earliest meta-heuristic based clustering
approach where SA is used for solving the clustering problem.
In LEACH-C, initially all sensor nodes transmit their location
and energy information to the BS where SA is applied to
determine the clusters. In terms of energy savings LEACH-
C outperforms LEACH [24]. Guru et al. [38] proposed a
cluster formation scheme using PSO using a fitness function
that includes the sink distance and intra-cluster distance. This
approach fail to consider the residual energy of the SNs. Latiff
et al. presented an algorithm called PSO-C for energy-efficient
clustering in WSN. PSO-C considers an average intra-cluster
distance and total initial energy of all SNs to the total current
energy of all CHs. However, PSO-C assigns non-CH nodes in
the cluster formation to the nearest CH which can potentially

decrease the energy-efficiency of the network. Singh et al.
[39] presented a PSO based energy-efficient CH selection
algorithm called PSO-Semi Distributed (PSO-SD) and used a
fitness function that considering residual energy, distance, and
node density. The disadvantage of PSO-SD fail to consider
cluster formation phase which consequently can reduce the
energy efficiency of the network. Rao et al. developed energy-
aware clustering approach using novel Chemical Reaction
Optimization (nCRO) heuristic. The nCRO prolongs LT of
the network but the main drawback is that the selected CHs
directly communicating to the BS, which is not desirable for
large scale network [40]. Kuila and Jana [21] used a novel
DE algorithm for SNs clustering to enhance energy-savings.
Though, this scheme efficiently prolongs SNs LT but does not
consider sink distance in the process of clustering moreover,
CHs are selected randomly. Kuila et al. [41] developed a load
balancing algorithm using DE for better energy-savings. The
demerit of this approach includes selecting the CHs randomly
while not considering energy and distance parameters. Gupta
and Jana [19] presented a GA based clustering approach while
considering the residual energy of the SNs and the distance
from their corresponding CHs. Zhang et al. [22] clustered the
SNs using SA and GA while CHs are selected by estimating
the average energy of the cluster. A CH is selected if a
SN has higher residual energy than the average energy of
the cluster. Hoang et al. [42] developed Harmony search
algorithm based clustering protocol (HSACP) to decrease the
intra-cluster distances between the cluster members and their
CHs. However energy-efficiency can decrease if the workload
on CHs is not considered. Rao et al. [14] developed a PSO
based energy-efficient CH selection (PSO-ECHS) algorithm
to increase LT of the network. The fitness function in PSO-
ECHS considers parameters including sink distance, intra-
cluster distance, and residual energy of the SNs. The clustering
algorithms in [41], [19], [22], [14] increased the LT of the
network but there are numerous number of parameters in-
volved required to tune these heuristics for achieving a balance
between exploitative and exploitative search modes to attain
higher energy-efficiency. Cisse et al. [43] developed an Energy
Aware Neighbor Oriented Clustering (EANOC) to select the
CH on the basis of Received Signal Strength Indicator (RSSI)
value. However, sensor nodes consume energy due to prop-
agating RSSI in multi-directions which consequently affects
the overall energy-efficiency of the network.

There is an abundant literature on energy savings for WSNs
and various methods and/or algorithms have been presented in
the last few years but there is still much ongoing research
to optimize the energy consumption of the battery-limited
wireless networks. Our proposed CHs selection integrated with
clustering technique using a novel meta-heuristic for enhanc-
ing LT of the network possesses the following advantages over
other existing approaches:

1) Unlike, these sensor nodes clustering algorithms in [24],
[25], [27], [18], [22], [42], we use a fitness function that
considers the residual energy, distance parameters, and
workload on the selected CHs to prolong the overall LT
of the network.
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2) State-of-the-art searching based algorithms in [41], [19],
[22], [14] are complex and require different parameters
tuning to attain energy-efficient solution. Our novel
meta-heuristic ARSH-FATI-CHS dynamically switches
between exploitative and exploitative modes at run-time
for better and efficient performance trade-off.

3) Heuristic based approaches such as [43], [14] develop
energy-aware sensor nodes clustering using the signal
strength values. However, it may affect the overall
network LT. Thus, we use sensor nodes positions in the
clustering process.

4) Dissimilar to the sensor nodes clustering approaches
in [25], [29], ARSH-FATI-CHS applies to large-sized
networks. Furthermore, ARSH-FATI-CHS does not pro-
duce any power overhead like the clustering approach
presented in [26].

In order to compare the the performance of ARSH-FATI-
CHS, we select three well-known clustering algorithms such
as LEACH [24]. The reason behind selecting LEACH is that
it is one of the classical clustering approach while PSO-C [18]
and PSO-ECHS [14] are selected because these algorithms are
the latest meta-heuristics for the same network scenario as we
proposed in this paper.

Briefly we investigate an efficient and energy-aware sensor
nodes clustering approach applicable to any-sized network
based on ARSH-FATI-CHS meta-heuristic which is a popu-
lation based algorithm. The ARSH-FATI-CHS is guided by
A heuristic called NRC to enhance the overall LT of the
network. Our developed fitness function considers residual
energy, different distance parameters, and workload on the
CHs during cluster formation.

III. PRELIMINARIES

In this section we briefly discuss our energy and network
model used for simulation purposes. We also define LT of a
network which is used as a performance metric.

A. Energy model

We adopt the energy model used in [14], [44], [24], [18].
In this energy model the total energy consumption (E) of a
network is due to the energy dissipated by transmitter denoted
by ETX(l, d) and receiver represented by ERX(l) given as
follows.

etotal(l, d) = ETX(l, d) + ERX(l) (1)

where ETX(l, d) is the energy consumed to run the power am-
plifier and radio electronics. Similarly, ERX(l) is the energy
consumption of running the radio electronics. For each sensor
node in the network, the energy consumed by the transmitter
for transmitting l bits is given as follows:

ETX(l, d) =

{
l × Eelec + l × efs × d2 d ≤ do
l × Eelec + l × emp × d4 d ≥ do

(2)

where Eelec is the energy consumed per bit for running the
transmitter or receiver circuit, efs and emp represent the

amplification energy for free space model and multi-path
model while do denotes the threshold transmission distance
and generally its value is do =

√
efs
emp

. The transmitter energy
consumption is dependent on the distance parameter d and the
amount of data to be sent. If the data transmission distance
is within the threshold range then transmittance energy is
proportional to d2 otherwise this relationship increases to d4.
Thus distance and workload play a significant role in the
sensor nodes clustering for network life improvement.

Now the energy dissipation for the receiver to receive l bit
of data is estimated as follows:

ERX(l) = l × Eelec (3)

where Eelec is dependent on factors such as modulation,
filtering, digital coding, and signal spreading.

B. Network Model

We consider a WSN that has n number of sensor nodes and
a BS. We adopt the wireless network model presented in [40],
[14], [45], [12] and this scenario of the WSN possesses the
following properties.

1) The sensor nodes are randomly distributed over a 2D
sensing field (that is xy plane) such that exactly one
node exist at a point.

2) Sensor nodes are energy constrained and after deploy-
ment in the target area they are left unattended, thus
battery recharge is impractical.

3) All the sensor nodes are homogeneous and possess
similar processing and communication capabilities while
consume same amount of energy for processing and
communicating a data of l bit.

4) After deploying the sensor nodes they are considered to
be stationary with respect to the BS while each sensor
node in the sensing field has the capability and equal
probability to operate as a normal node or CH.

5) Each sensor node has always a data ready to be sent to
its CH. The number of sensor nodes in the sensing field
is always higher than the number of CHs.

6) The BS is considered to be situated inside of the WSN,
while its position can be changed withing the sensing
field.

7) In the clustered based WSN architecture, we assume that
each CH aggregates the collected data and transmits this
aggregated data to the BS.

8) The communication links among the sensor nodes and
CHs are wireless and established when they are within
the communication range of each other.

9) The sensor nodes can use various transmission power
levels depending upon the distance to which the col-
lected data to be sent.

C. Node and Network Lifetime

Before we describe the LT of the sensor network we define
the LT of a sensor node and a CH. The LT of a sensor node
sni ∈ SN when it chooses chj as its CH is defined as follows:
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LT (sni, chj) =
⌊ eiresidual
etotal(l, di)

⌋
(4)

where di is the Euclidean distance between the sni and chj
and eiresidual is the residual energy of sni.

The LT of a CH, chj is defined as follows:

LT (chj) =
⌊ ejresidual
ETX(l, dj) +

∑
sni∈ψ ERX(l)

⌋
(5)

where dj is the euclidean distance between the chj and Base
Station (BS) and ψ is the set of sensor nodes whose CH is
chj .

There are are different definitions to describe the LT of a
wireless network. However, the definition of LT used in this
paper is given as follows:

LT Definition: LT of the network is the number of rounds
until the First Node Dies (FND).

We use FND as a metric to describe the LT of a network and
produce various simulations results based on this definition.

IV. ARSH-FATI BASED CLUSTER HEAD SELECTION

In this section we explain ARSH-FATI [23] algorithm and
our CHs selection approach, ARSH-FATI-CHS for improving
LT of the network and sensor nodes transmission energy
consumption reduction.

A. Terminologies

In order to easily understand the proposed algorithm we add
a list of the some important terminologies given as follows.

1) SNs: A set of sensor nodes i.e, SNs =
{sn1, sn2, . . . , snn}.

2) CHs: A set of cluster heads, CHs = {ch1, ch2 . . . chm}
while n > m.

3) DR: Dimensional rate, taking on any value between the
range 0 < DR0 ≤ 1.

4) µ: The number of candidate solutions for the current
population.

5) gBest: Member of the population with highest fitness
value.

6) πw: Member of the population with lowest fitness value
in all generation.

7) ∆f : The difference of the new and old fitness value.
8) λ: Dimensional rate adaption parameter ranging, 0 <

λ < 1.
9) r: Random number ranging between 0 and 1.

10) e: Representing energy.
11) chj : jth cluster head in m number of cluster heads.
12) sni: ith sensor node in n number of sensor nodes.
13) LT: Life time of the network
14) maxGens: Maximum generation count.

B. ARSH-FATI Algorithm Overview

ARSH-FATI [23] is a population based algorithm in which,
only the best and worst solutions of the previous population
are used to generate the µ number of candidate solutions
for the current population. Such kind of selection algorithms

in literature are commonly referred to as (1 + µ) selection
algorithms. The robustness of ARSH-FATI algorithm lies in
the notion of updating the parameter dimensional rate (DR) at
run-time during the searching process. ARSH-FATI algorithm
attains a satisfactory trade-off between the exploitation and
exploration attributes of the search process. The parameter DR
is the percentage of design variables that change to generate
a new value for the member of the population. The strength
of ARSH-FATI algorithm lies in DR and the role of it is to
adjust at run-time the exploitation and exploration features.

In this paper our objective is to maximize the minimum
LT or in simpler words maximize the LT of the network.
Therefore, the fitness function is the LT of the network:

f = min{LT (sni, chj) : ∀sni ∈ SNs} (6)

where the chj is the CH of sensor node sni.
Before we proceed with our discussion we define the

following two terms:
1) Global Best, gBest, is a member of the population that

has the highest fitness value gBestF it in all generations.
2) Generation worst πw is a member of the population

that has the lowest fitness value in a generation.

C. ARSH-FATI-CHS

The objective of ARSH-FATI-CHS described in Algorithm
1 is to find a set of CHs among the sensor nodes such that
energy consumption reduces and LT of the network maximize.
ARSH-FATI-CHS improves the network LT by maximizing
the minimum LT in the network. The steps followed by ARSH-
FATI-CHS are explained as follows:

1) Setting the initial value of DR: We set DR to and
initial value DR0 (Line 3). DR0 can take on any value
between the range 0 < DR0 ≤ 1. The higher DR
value means more explorative search that leads to large
and unconstrained step sizes. Compared to this a small
value of DR motivates a more exploitative search by
allowing small and conservative steps in the search
space. Therefore we set DR0 = 0.4.

2) Population Generation: We initially generate a matrix
Π of dimensions µ×m of zeros (Line 1), where µ is the
size of the population and m is the total number of CHs.
We use the notation Π[i, :] to access the ith member of
the population. Each member of the population has m
elements and the notation Π[i, j] is used to access the
jth element of ith member. The value of an element is
a positive integer that indicates a sensor node chosen
as a CH. For example if the value of an element is 2
this reflects that sensor node sn2 is selected as a CH.
Each member of the population reflects one possible CH
selection and the entire population reflects µ different
CH selections.
We generate and initial value of the member of the
population by randomly selecting m CHs among the
sensor nodes and its fitness value is calculated by
executing the clustering algorithm 2. We repeat this for
the other members of the population to generate an
initial population (Lines 4-7).
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3) Population Refinement: We refine the initial population
until the termination criteria satisfy (Lines 10-28). In
each generation we update each member of the popula-
tion. The jth element of the ith member is updated as
follows:

Π[i, j]←

min(abs(dΠ[i, j] + r1(gBest[i]−
Π[i, j])− r2(πw[i]− π[i])e),m) if r ≤ DR
Π[i, j] otherwise

where r1 and r2 are the random numbers. The term
r1( gBest[i] − Π[η, i]) reflects the likelihood that the
member moves closer to global best and the term
r2(πw[i] − Π[η, i]) reflects the likelihood that it moves
away from the worst member of the population.
We use an acceptance probability function P (∆f, T )
to adopt or reject the new value of the member Π[i, :]
(Lines 18-24). The parameter ∆f is the difference of the
new and old fitness value of Π[i, :], ∆f = fnew − fold.
The parameter T is referred to as temperature. We define
function P (∆f, T ) as follows:

P (∆f, T ) =

{
1 if fnew > fold

e
∆f
T otherwise

(7)

when the new CH selection increase the network LT it is
always accepted. If the new CH selection is worse than
the current selection, probability still exists that may be
accepted. We have included this feature in ARSH-FATI-
CHS to prevent it getting stuck in a local optimum.
The value of temperature T reduces in each iteration by
multiplying it with a cooling factor λ1, (0 < λ1 < 1)
(Line 27). The value of λ1 is calculated from maxGens:

λ1 =
(T1
T2

) 1
maxGens

(8)

where T2 is a very large number and T1 is a very small
number. Initially the value of temperature is set to T2
and it reduces to T1 as optimization finishes.
In each generation we update DR (Line 25):

DR =

{
min

{
DR
λ , DRmax

}
if gBest improves

max{λDR,DRmin} otherwise
(9)

where the λ is dimensional rate adaption parameter and
its value lies within the range 0 < λ < 1. In this work
λ is set to 0.98. The parameter λ sets the new value of
the DR during the optimization process.
The values of DRmin and DRmax are respectively
the upper and lower bounds on DR. The values of
DRmin and DRmax must be set subject to constraint
0 < DRmin < DRmax < 1. We avoid excessive
exploration and exploitation by setting DRmin and
DRmax to 0.2 and 0.6 respectively.

4) Termination criteria: ARSH-FATI-CHS terminates if
either the generation count reaches maximum generation
maxGens or no improvement is observed in gBest for
consecutive β generations.

Algorithm 1: ARSH-FATI-CHS
input : Set SNs = {sn1, sn2, . . . , snn} of n sensor nodes,

total number of CHs m, maximum generations
maxGens, β, T1, T2 and DR0 the initial value of
DR

output: a set CHs = {ch1, ch2 . . . chm} of m CHs
1 Generate a matrices Π of zeros having dimensions µ×m ;
2 Generate a vector f of zeros having dimension µ× 1;
3 DR← DR0;
4 for η ← 1 to µ do
5 for i← 1 to m do
6 Π[η][i]← drand(0, 1)(n− 1) + 1e;
7 f [η]← Clustering(SNs,Π[η, :]);

8 Find the generation best πb and worst πw members;
9 gBest′ ← πb;

10 T ← T2;
11 gBestF it′ ← fb; // where fb is the fitness

value of πb
12 repeat
13 for η ← 1 to µ do
14 π ← Π[η, :];
15 for i← 1 to m do
16 r ← rand(0, 1);
17 r1 ← rand(0, 1);
18 r2 ← rand(0, 1);
19 π[i]←

min(abs(dπ[i] + r1(gBest[i]− π[i])−
r2(πw[i]− π[i])e),m) if r ≤ DR
π[i] otherwise

20 f ← Clustering(SNs,Π[η, :]);
21 if f > f [η] then
22 f [η]← f ;
23 Π[η, :]← π;
24 if f > gBestF it′ then
25 gBestF it′ ← f ;
26 gBest′ ← π;

27 else
28 if e

(f−f[η])
T > rand(0, 1) then

29 f [η]← f ;
30 Π[η, :]← π;

31 DR←{
min(DR

λ
, DRmax) if gBestF it > gBestF it′

max(λDR,DRmin) otherwise
;

32 gBestF it← gBestF it′;
33 gBest← gBest′;
34 Update the generation worst πw;
35 T ← λ1T ;
36 until termination;
37 CHs← gBest;

D. Cluster Formation

In this section we describe our cluster formation technique.
Given a set of CHs the objective of our cluster formation
approach is to maximize the network LT. Algorithm 2 de-
scribes our cluster formation approach. It is based on the
ranking function Rank(sni, chj) that sensor nodes use to
choose a CH. The ranking function is based on the following
parameters:

1) sni residual energy: the larger the residual energy of
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the sensor node larger its LT. Therefore,

Rank(sni, chj) ∝ eiresidual (10)

2) sni total energy: the sensor node energy consumption
negatively impacts its LT. The sensor node should join
the CH such that its transmission energy minimizes.
Therefore,

Rank(sni, chj) ∝
1

etotal(l, di)
(11)

3) chj residual energy: the sensor node sni should join
the CH that has large residual energy. Therefore,

Rank(sni, chj) ∝ ejresidual (12)

4) chj total energy: the CH total energy consumption
negatively impacts its LT. Therefore,

Rank(sni, chj) ∝
1

etotal(l, dj)
(13)

Combining equations (10), (11), (12) and (13) we get the
following function:

Rank(sni, chj) ∝
eiresiduale

j
residual

etotal(l, di)etotal(l, dj)
(14)

Rank(sni, chj) = κ
⌊ eiresidual
etotal(l, di)

⌋⌊ ejresidual
etotal(l, dj)

⌋
(15)

Rank(sni, chj) = κLT (sni, chj)LT (chj) (16)

where κ is the constant of proportionality. We assume κ = 1
in this paper without any loss of generality.

Algorithm 2 describes our cluster formation approach. It is
a greedy heuristic algorithm that at each stage finds a set of
valid choices and makes a locally optimal choice.

The following two steps repeat until each sensor node has
chosen a CH:

1) Step 1 (Search): Each sensor node that has not joined
a CH tentatively selects one by one each CH and
calculates the rank using equation (16) (Lines 3-6). Then
find the sensor node sni and CH chj pair that has the
maximum rank value.

2) Step 2 (Choose): The sensor node sni joins CH chj

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we explain our experimental setup used
for simulation. We also generate different results considering
various scenarios. The results are compared with state-of-the-
art clustering approaches to prove the superiority of ARSH-
FATI-CHS over other existing technique.

A. Experimental Setup

We built the simulation environment in Python version
3.7.3 moreover, we conducted the experiments using hardware
platform of Intel (R) Xeon (R), i5-3570 CPU with the clock
frequency of 3.50 GHz and 16.00 GB memory, 10 MB cache.
We perform the simulation for different number of sensor
nodes various percentage of CHs at different locations of BS
in the sensing field of area 200 × 200 m2. The sensor nodes

Algorithm 2: Clustering
input : A set SNs = {sn1, sn2, . . . , snn} of n sensor

nodes and a set CHs = {ch1, ch2 . . . chm} of m
CHs

1 repeat
2 Step 1: Search
3 for each sni ∈ SNs whose CH has not been selected do
4 for each chj ∈ CHs do
5 Tentatively select chj as CH of sni;
6 Calculate the rank, Rank(sni, chj) using

equation (16);

7 Find the sensor node sni and the CH, chj pair with the
highest value of the rank;

8 Step 2: Choose
9 Choose chj as the CH of sni;

10 until each sensor node has selected a CH;
11 return min{LT (sni, chj) : ∀sni ∈ SNs};

change within a range of 100 to 400 and the number of selected
CHs vary from 15% to 30% while BS is positioned at (50,
50), (100, 100), (150, 150). We assume that each sensor node
carries equal initial residual energy of 2 J. Other constant
parameters used in this paper for simulations are enlisted in
TABLE (I) adopted from [24], [14], [18].

TABLE (I) Various parameters used in simulation

Parameter Value

Area of the Network 200× 200m2

Base Station Location (50, 50), (100, 100), (150, 150)
Number of Sensor Nodes 100 to 400
Initial Sensor Node Energy 2.0 J
Eelec 50 nJ/bit
efs 10pJ/bit/m2

emp 0.0013pJ/bit/m4

dmax 100 m
do 30 m
Packet size 4000 bits
Percentage of CHs 10% to 30%

We compare the results of our proposed CHs selection
approach, ARSH-FATI-CHS with a PSO based state-of-the-art
technique as a baseline developed by Rao et al. [14]. In their
energy-aware clustering approach they consider parameters
such as intra-cluster distance, residual energy of the sensor
node, and sink distance in the fitness function. The network
LT is increased by developing a PSO based energy-efficient
CH selection (PSO-ECHS). The PSO-ECHS determines the
optimal positions of a pre-determined numbers of CHs for a set
of sensor nodes distributed over a specific area of the sensing
fields. The non-CH sensor nodes in the field join their elected
CHs based on a derived weight function. We also compare
the performance of ARSH-FATI-CHS with the widely used
LEACH [24] and PSO-C [18]. As a performance metric we
consider LT to compare ARSH-FATI-CHS with other existing
approaches. LT is the measure of the number of rounds when
the first sensor nodes dissipates all of its energy.

B. Results and Discussions

We consider different scenarios for our simulations to gener-
ate various results. The list of abbreviations used in results are
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TABLE (II) List of abbreviations used in results

Parameter Description

TA Target Area
BS Base Station
NSNs Number of Sensor Nodes
NCHs Number of Cluster Heads
FND First Node Death
ISNE Initial Sensor Node Energy
NoR Number of Rounds
NoANs Number of Alive Nodes
IoBSL Impact of Base Station Location
NoPR Number of Packets Received
IoNCHs Impact of Number of Cluster Heads

listed in TABLE (II). The parameter such as NSNs is changed
in the sensing field/target area and results are produced. We
also empirically observe IoBSL and IoNCHs in the results.

1) Scenario 1(NoR): In this scenario we set TA = 200 ×
200 m2, NSNs = (100, 200, 300, 400), ISNE = 2.0 J,
BS = (50, 50), and NCHs = (10%, 15%, 20%, 25%) while
we compare the performance of ARSH-FATI-CHS combined
with NRC in terms of NoR after FND in the network. This
scenario basically describes the LT of the network. LT is an
important metric to evaluate the performance and efficiency of
an algorithm as discussed in detail by wang et al. [46].

Fig. (2) demonstrates the performance improvement of
ARSH-FATI-CHS integrated with NRC over the existing ap-
proaches. A set of different sensor nodes are used for simula-
tions such as, Fig. (2)(a) deploys NSNs = 100, similarly,
Fig. (2)(b) uses NSNs = 200 while Fig (2)(c) and Fig.
(2)(d) deploy NSNs = 300 and NSNs = 400 respectively.
ARSH-FATI-CHS outperforms clustering approaches such as
LEACH, PSO-C, and PSO-ECHS. ARSH-FATI-CHS achieves
an average improvement of ∼ 60%, ∼ 40%, and ∼ 25%
over LEACH, PSO-C, and PSO-ECHS respectively in terms
of NoR after FND. This improvement of ARSH-FATI-CHS
over LEACH occurs because LEACH is a probabilistic ap-
proach and randomly selects CHs which results into uneven
distribution of clusters so, increasing the energy consumption
of the network while reducing the overall performance i.e.
LT of the network. Moreover, LEACH can select a sensor
node with least residual energy as a CH thus, it adversely
impacts the NoR after FND. Contrarily our fitness function
in ARSH-FATI-CHS considers the residual energy, different
distance parameters, and work load on the CHs during the
cluster formation. Similarly, ARSH-FATI-CHS outperforms
population based clustering approach, PSO-C. Though, PSO-C
improves the intra-cluster distance i.e. the Euclidian distance
of the sensor nodes to their selected CHs during cluster
formation but neglects the workload on them. Compared to
PSO-ECHS our proposed clustering approach ARSH-FATI-
CHS achieves higher NoR after FND. ARSH-FATI-CHS also
performs better solution space exploration during the cluster
formation. Moreover, it is stagnation controlled meta-heuristic
and determines the global optimal solution. In other words
ARSH-FATI-CHS efficiently maximizes the minimum LT of
a sensor node in the network. ARSH-FATI-CHS associates
a sensor node having the least residual energy to a CH
such that it consumes minimal possible transmission energy

for data transmission. Concisely, ARSH-FATI-CHS performs
better than LEACH, PSO-C, and PSO-ECHS in terms of NoR
after FND when different sensor nodes and CHs are deployed
in the network.

2) Scenario 2(NoANs): In this scenario 2 we set the param-
eters as TA = 200× 200 m2, NSNs = (100, 200, 300, 400),
ISNE = 2.0 J, BS = (50, 50), and NCHs = 25%. We
observe the performance of the ARSH-FATI-CHS in terms
of NoANs. Specifically this scenario describes the amount of
alive nodes after certain number of rounds.

Fig. (3) shows the performance analysis of ARSH-FATI-
CHS integrated with NRC over LEACH, PSO-C, and PSO-
ECHS in terms of NoANs. The x-axis represents NoR and
y-axis denotes the NoANs. Fig. (3)(a) and Fig. (3)(b) show
the NoANs comparison for NSNs = 100 and NSNs = 200.
Similarly Fig. (3)(c) and Fig. (3)(d) represent the simulation
results for NSNs = 300 and NSNs = 400 respectively.
ARSH-FATI-CHS significantly improves the NoANs when
compared to LEACH, PSO-C, and PSO-ECHS. ARSH-FATI-
CHS attains an average efficiency of ∼ 60%, ∼ 40%,
and ∼ 25% over LEACH, PSO-C, and PSO-ECHS re-
spectively. Unlike LEACH, ARSH-FATI-CHS performs re-
clustering when death of a CH occurs and associates the
sensor nodes to other CHs in the network. On the contrary
the biggest drawback of LEACH is that when a CH dies then
that particular cluster becomes useless and the gathered data
would never reach to the destination i.e. BS. Furthermore,
LEACH may select a CH at the boundary of the network
which potentially can lead to the improper clustering resulting
performance degradation. Moreover, ARSH-FATI-CHS also
performs uniform distribution of CHs. Furthermore, as the
NoR increases the residual energy of the sensor decreases.
Subsequently, effective CHs selection plays an important role
to increase the LT of the network. Our meta-heuristic performs
efficient CHs selection using a novel fitness function. There-
fore, our algorithm ARSH-FATI-CHS significantly improves
the NoANs compared to LEACH. Now, compared to PSO-
C our meta-heuristic produces better results because of our
fitness function not only considers the intra-cluster distance
but also the workload on the CHs. Similarly, it outperforms
PSO-ECHS by dynamically switching between an exploitative
and exploitative search modes to achieve better solution space
search. Concisely, though ARSH-FATI-CHS is a simple but
yet effective approach for CHs selection and enhancing the
overall LT of the network.

3) Scenario 3(NoPR): In this scenario we set TA =
200 × 200 m2, NSNs = (100, 200, 300, 400), ISNE = 2.0
J, BS = (0, 0), (50, 50), (100, 100), (150, 150), and NCHs
= 10% while we compare ARSH-FATI-CHS performance in
terms of NoPR at the BS.

Fig. (4) illustrates the performance comparison of ARSH-
FATI-CA with other state-of-the-art approaches in terms of
NoPR at the BS. We set different NSNs at various positions
of the BS. Fig. (4)(a) uses NSNs = 100, similarly, Fig.
(4)(b) deploys NSNs = 200 while Fig (4)(c) and Fig.
(4)(d) use NSNs = 300 and NSNs = 400 respectively.
The horizontal axis shows position of the BS and vertical
axis represents NoPR. ARSH-FATI-CA outperforms LEACH,
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(a) NoR after FND at NSNs = 100
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(b) NoR after FND at NSNs = 200

2400

2000

1600

1200

N
u

m
b

er
 o

f 
R

o
u

n
d

s

10% 15% 20% 25%
Cluster Heads

 LEACH
 PSO-C
 PSO-ECHS
 ARSH-FATI-CA

(c) NoR after FND at NSNs = 300
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(d) NoR after FND at NSNs = 400

Fig. (2) Performance analysis in terms of NoR after FND using different NSNs

PSO-C, and PSO-ECHS and achieves higher NoPR at the BS.
This improvement of ARSH-FATI-CA in terms of NoPR over
other existing clustering approaches is due performing better
energy-efficient clustering. Consequently, it enhances the LT of
the network and lower energy is consumed which increases the
NoPR at the BS. It is also worth noticing that NoPR at the BS
also depends on the position of the BS in the network. Higher
NoPR is achieved when BS is positioned at (100,100) i.e.
centre of the target area. NoPR decreases significantly when
BS is placed away from the centre. The CHs consume more
energy to transmit the aggregated data to the BS when it is
positioned at the corners of the target area thus NoPR reduces.
Concisely, the optimal position of the BS is centre of the target
area where highest NoPR can be achieved. The impact of the
BS position is further investigated in Scenario 4(IoBSL and
IoNCHs).

4) Scenario 4(IoBSL and IoNCHs): We set the parameters
as TA = 200× 200 m2, NSNs = (100, 200, 300, 400), and
ISNE = 2.0 J. In this scenario 4 we observe the impact of
the BS location and variations in CHs percentage on NoR after
FND. These two specific cases are discussed as follows:

1) First we consider NCHs = 25% and BS = (50, 50),
(100, 100), (150, 150) for observing IoBSL on NoR
after FND. Fig. (5)(a) demonstrates IoBSL on NoR after
FND. The horizontal axis shows NSNs and the vertical
axis represents NoR. The NoR depends on the position
of the BS. The NoR significantly increases when BS is
positioned at the center of the network i.e. (100, 100).
The NoR decreases when BS is moved towards positions
(50, 50) and (150, 150). This performance degradation

occurs because data packets from the selected CHs
travel longer distance when BS is positioned at the
coroner of the network. Thus, transmitting the gathered
data for a longer distance adversely affects the LT and
therefore, FND occurs at lower NoR. An average ∼ 70%
improvement in terms of NoR after FND occurs when
BS is placed at the centre compared to when BS is
positioned at the corners of the network. The bottom
line is that the ideal place of BS is the centre of the
network.

2) Second to analyze the IoNCHs on network performance
we consider BS = (50, 50) and NCHs = 10%, 15%,
20%, 25%, 30% as shown in Fig. (5)(b). The x-axis
denotes NSNs while y-axis represents NoR after FND. A
significant improvement in NoR occurs when percentage
of CHs is increased. The NoR increases until reaching
CHs = 25% while starts decreasing at CHs = 30%. It
is a proven fact that CHs usually consume more energy
as compared to non-CHs because they collect data from
the sensor nodes within the cluster and transmit it to
the BS [14]. If lower percentage of CHs are used then
clusters with higher NSNs are formed. This increases
the receiving and transmission energy of the CH and
there is higher chance of dying quickly. Therefore, NoR
increases when higher number of CHs are used in
the network. In result it reduces the workload on the
CHs and prolongs the overall LT of the network. An
average ∼ 25% improvement in NoR is observed when
CHs = 15 is changed to CHs = 25 in the network. It is
also worth noticing that after certain percentage of CHs
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(a) NoAN at NSNs = 100 (b) NoAN at NSNs = 200

(c) NoAN at NSNs = 300 (d) NoAN at NSNs = 400

Fig. (3) Performance analysis in terms of NoAN using different NSNs and NCHs = 25% at BS = (50, 50)
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(c) NoPR at NSNs = 300
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Fig. (4) Performance comparison in terms of NoPR using NCHs = 10% at different NSNs and BS positions
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Fig. (5) Impact of base station and cluster heads on LT of the network

despite of improvement in NoR reduction occurs. This
decrease in NoR is due to the fact that the number of
transmissions to the BS increases which can adversely
affect the NoR. Subsequently, an optimal number of CHs
are required to maximize the overall NoR and LT.

TABLE (III) ARSH-FATI-CHS performance improvement
comparison

Clustering Technique ARSH-FATI-CHS

LEACH 60%
PSO-C 40%
PSO-ECHS 25%

Concisely we achieve an overall average LT improvement
of ∼ 25%, ∼ 40%, ∼ 60% over LEACH, PSO-C, and PSO-
ECHS when ARSH-FATI-CHS integrated with NRC heuristic
is used for cluster formation. Moreover, we also observed
that the LT of the network also depends on the position of
the BS and the percentage of CHs deployed in the network.
The LT performance of ARSH-FATI-CHS over other existing
techniques is summarized in TABLE (III).

VI. CONCLUSION

Transmission energy consumption reduction is one of the
major concerns in designing clustering algorithms for large-
sized Wireless Sensor Networks (WSNs). The existing pop-
ulation based meta-heuristics are complex and need different
parameters tuning to achieve higher energy-efficiency. Further-
more, state-of-the-art clustering approaches neglect to consider
residual energy of the nodes, different distance parameters,
and workload on the Cluster Heads (CHs) to enhance LT
of the network. In this paper we developed ARSH-FATI
based Cluster Head Selection (ARSH-FATI-CHS) integrated
with a heuristic called Novel Ranked based Clustering (NRC)
for efficient cluster formation to enhance the overall LT
of the network. ARSH-FATI-CHS is a simple yet effective
clustering algorithm that dynamically switches between the
exploitative and explorative search modes for achieving higher
performance trade-off. Our fitness function considers various
parameters such as residual energy, node distance, base station
distance location, and work load on the CHs. The experimental
results show that ARSH-FATI-CHS outperforms the existing
population based clustering algorithms in terms of network

LT enhancement. ARSH-FATI-CHS achieves an average LT
improvement of 60%, 40%, and 25% over LEACH, PSO-
C, and PSO-ECHS. Furthermore, we also investigated that
position of Base Station (BS) and percentage of CHs also play
an important role to improve the overall LT of the network.

REFERENCES

[1] D. E. Boubiche, A.-S. K. Pathan, J. Lloret, H. Zhou, S. Hong, S. O.
Amin, and M. A. Feki, “Advanced industrial wireless sensor networks
and intelligent iot,” IEEE Communications Magazine, vol. 56, no. 2, pp.
14–15, 2018.

[2] Z. Cui, Y. Cao, X. Cai, J. Cai, and J. Chen, “Optimal leach protocol
with modified bat algorithm for big data sensing systems in internet of
things,” Journal of Parallel and Distributed Computing, vol. 132, pp.
217–229, 2019.

[3] Y.-W. Lin, Y.-B. Lin, M.-T. Yang, and J.-H. Lin, “Ardutalk: An arduino
network application development platform based on iottalk,” IEEE
Systems Journal, vol. 13, no. 1, pp. 468–476, 2017.

[4] H. Ali, U. U. Tariq, Y. Zheng, X. Zhai, and L. Liu, “Contention
& energy-aware real-time task mapping on noc based heterogeneous
mpsocs,” IEEE Access, vol. 6, pp. 75 110–75 123, 2018.

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[7] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless
sensor networks: A top-down survey,” Computer Networks, vol. 67, pp.
104–122, 2014.

[8] S. S. Iyengar, H.-C. Wu, N. Balakrishnan, and S. Y. Chang, “Biologically
inspired cooperative routing for wireless mobile sensor networks,” IEEE
Systems Journal, vol. 1, no. 1, pp. 29–37, 2007.

[9] O. Bello and S. Zeadally, “Intelligent device-to-device communication
in the internet of things,” IEEE Systems Journal, vol. 10, no. 3, pp.
1172–1182, 2014.

[10] A. Aliyu, A. H. Abdullah, O. Kaiwartya, Y. Cao, J. Lloret, N. Aslam, and
U. M. Joda, “Towards video streaming in iot environments: Vehicular
communication perspective,” Computer Communications, vol. 118, pp.
93–119, 2018.

[11] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Trans-
actions on industrial electronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[12] G. P. Gupta and S. Jha, “Integrated clustering and routing protocol for
wireless sensor networks using cuckoo and harmony search based meta-
heuristic techniques,” Engineering Applications of Artificial Intelligence,
vol. 68, pp. 101–109, 2018.

[13] F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for
green internet of things,” IEEE Systems Journal, vol. 11, no. 2, pp.
983–994, 2015.

[14] P. S. Rao, P. K. Jana, and H. Banka, “A particle swarm optimization
based energy efficient cluster head selection algorithm for wireless
sensor networks,” Wireless networks, vol. 23, no. 7, pp. 2005–2020,
2017.



12

[15] G. P. Gupta, M. Misra, and K. Garg, “Energy and trust aware mobile
agent migration protocol for data aggregation in wireless sensor net-
works,” Journal of Network and Computer Applications, vol. 41, pp.
300–311, 2014.

[16] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor
networks: A comprehensive review,” Renewable and Sustainable Energy
Reviews, vol. 55, pp. 1041–1054, 2016.

[17] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–
422, 2002.

[18] N. A. Latiff, C. C. Tsimenidis, and B. S. Sharif, “Energy-aware clus-
tering for wireless sensor networks using particle swarm optimization,”
in 2007 IEEE 18th International Symposium on Personal, Indoor and
Mobile Radio Communications. IEEE, 2007, pp. 1–5.

[19] S. K. Gupta and P. K. Jana, “Energy efficient clustering and routing
algorithms for wireless sensor networks: Ga based approach,” Wireless
Personal Communications, vol. 83, no. 3, pp. 2403–2423, 2015.

[20] A. Mohajerani and D. Gharavian, “An ant colony optimization based
routing algorithm for extending network lifetime in wireless sensor
networks,” Wireless Networks, vol. 22, no. 8, pp. 2637–2647, 2016.

[21] P. Kuila and P. K. Jana, “A novel differential evolution based clustering
algorithm for wireless sensor networks,” Applied soft computing, vol. 25,
pp. 414–425, 2014.

[22] H. Zhang, S. Zhang, and W. Bu, “A clustering routing protocol for
energy balance of wireless sensor network based on simulated annealing
and genetic algorithm,” International Journal of Hybrid Information
Technology, vol. 7, no. 2, pp. 71–82, 2014.

[23] U. Ullah Tariq, H. Ali, L. Liu, J. Panneerselvam, and X. Zhai, “Energy-
efficient static task scheduling on vfi based noc-hmpsocs for intelligent
edge devices in cyber-physical systems,” ACM Transactions on Intelli-
gent Systems and Technology, 2019.

[24] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proceedings of the 33rd annual Hawaii international conference on
system sciences. IEEE, 2000, pp. 10–pp.

[25] S. Lindsey and C. S. Raghavendra, “Pegasis: Power-efficient gathering
in sensor information systems,” in Proceedings, IEEE aerospace con-
ference, vol. 3. IEEE, 2002, pp. 3–3.

[26] V. Loscri, G. Morabito, and S. Marano, “A two-levels hierarchy for
low-energy adaptive clustering hierarchy (tl-leach),” in IEEE vehicular
technology conference, vol. 62, no. 3. IEEE; 1999, 2005, p. 1809.

[27] F. Xiangning and S. Yulin, “Improvement on leach protocol of wireless
sensor network,” in 2007 International Conference on Sensor Technolo-
gies and Applications (SENSORCOMM 2007). IEEE, 2007, pp. 260–
264.

[28] M. B. Yassein, Y. Khamayseh, and W. Mardini, “Improvement on leach
protocol of wireless sensor network (vleach,” in Int. J. Digit. Content
Technol. Appl. 2009. Citeseer, 2009.

[29] A. Al-Baz and A. El-Sayed, “A new algorithm for cluster head selection
in leach protocol for wireless sensor networks,” International journal of
communication systems, vol. 31, no. 1, p. e3407, 2018.

[30] A. Rahmanian, H. Omranpour, M. Akbari, and K. Raahemifar, “A novel
genetic algorithm in leach-c routing protocol for sensor networks,” in
2011 24th Canadian Conference on Electrical and Computer Engineer-
ing (CCECE). IEEE, 2011, pp. 001 096–001 100.

[31] J.-L. Liu and C. V. Ravishankar, “Leach-ga: Genetic algorithm-based
energy-efficient adaptive clustering protocol for wireless sensor net-
works,” International Journal of Machine Learning and Computing,
vol. 1, no. 1, p. 79, 2011.

[32] W. B. Heinzelman, A. P. Chandrakasan, H. Balakrishnan et al., “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on wireless communications, vol. 1, no. 4,
pp. 660–670, 2002.

[33] X. Li, L. Xu, H. Wang, J. Song, and S. X. Yang, “A differential
evolution-based routing algorithm for environmental monitoring wireless
sensor networks,” Sensors, vol. 10, no. 6, pp. 5425–5442, 2010.

[34] D. Lin and Q. Wang, “A game theory based energy efficient clustering
routing protocol for wsns,” Wireless Networks, vol. 23, no. 4, pp. 1101–
1111, 2017.

[35] Q. Wang, D. Lin, P. Yang, and Z. Zhang, “An energy-efficient compres-
sive sensing-based clustering routing protocol for wsns,” IEEE Sensors
Journal, vol. 19, no. 10, pp. 3950–3960, 2019.

[36] A. M. Zungeru, L.-M. Ang, and K. P. Seng, “Classical and swarm
intelligence based routing protocols for wireless sensor networks: A sur-
vey and comparison,” Journal of Network and Computer Applications,
vol. 35, no. 5, pp. 1508–1536, 2012.

[37] P. K. Agarwal and C. M. Procopiuc, “Exact and approximation algo-
rithms for clustering,” Algorithmica, vol. 33, no. 2, pp. 201–226, 2002.

[38] S. Guru, S. Halgamuge, and S. Fernando, “Particle swarm optimisers for
cluster formation in wireless sensor networks,” in 2005 International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing. IEEE, 2005, pp. 319–324.

[39] B. Singh and D. K. Lobiyal, “A novel energy-aware cluster head
selection based on particle swarm optimization for wireless sensor
networks,” Human-Centric Computing and Information Sciences, vol. 2,
no. 1, p. 13, 2012.

[40] P. S. Rao and H. Banka, “Energy efficient clustering algorithms for wire-
less sensor networks: novel chemical reaction optimization approach,”
Wireless Networks, vol. 23, no. 2, pp. 433–452, 2017.

[41] P. Kuila, S. K. Gupta, and P. K. Jana, “A novel evolutionary approach for
load balanced clustering problem for wireless sensor networks,” Swarm
and Evolutionary Computation, vol. 12, pp. 48–56, 2013.

[42] D. C. Hoang, P. Yadav, R. Kumar, and S. K. Panda, “Real-time
implementation of a harmony search algorithm-based clustering protocol
for energy-efficient wireless sensor networks,” IEEE transactions on
industrial informatics, vol. 10, no. 1, pp. 774–783, 2013.

[43] C. S. M. Cisse, K. Ahmed, C. Sarr, and M. A. Gregory, “Energy efficient
hybrid clustering algorithm for wireless sensor network,” in 2016 26th
International Telecommunication Networks and Applications Conference
(ITNAC). IEEE, 2016, pp. 38–43.

[44] S. Bhushan, R. Pal, and S. G. Antoshchuk, “Energy efficient clustering
protocol for heterogeneous wireless sensor network: A hybrid approach
using ga and k-means,” in 2018 IEEE Second International Conference
on Data Stream Mining & Processing (DSMP). IEEE, 2018, pp. 381–
385.

[45] J. Xu, W. Liu, F. Lang, Y. Zhang, and C. Wang, “Distance measurement
model based on rssi in wsn,” Wireless Sensor Network, vol. 2, no. 08,
p. 606, 2010.

[46] J. Wang, Y. Cao, B. Li, H.-j. Kim, and S. Lee, “Particle swarm
optimization based clustering algorithm with mobile sink for wsns,”
Future Generation Computer Systems, vol. 76, pp. 452–457, 2017.


