Abstract

This systematic review aims to analyze the state-of-the-art regarding interaction modalities used on serious games for upper limb rehabilitation. A systematic search was performed in IEEE Xplore and Web of Science databases. PRISMA and QualSyst protocols were used to filter and assess the articles. Articles must meet the following inclusion criteria: they must be written in English; be at least four pages in length; use or develop serious games; focus on upper limb rehabilitation; and be published between 2007 and 2017. Of 121 articles initially retrieved, 33 articles met the inclusion criteria. Three interaction modalities were found: vision systems (42.4%), complementary vision systems (30.3%), and no-vision systems (27.2%). Vision systems and no-vision systems obtained a similar mean QualSyst (86%) followed by complementary vision systems (85.7%). Almost half of the studies used vision systems as the interaction modality (42.4%) and used the Kinect sensor to collect the body movements (48.48%). The shoulder was the most treated body part in the studies (19%). A key limitation of vision systems and complementary vision systems is that their device performances might be affected by lighting conditions. A main limitation of the no-vision systems is that the range-of-motion in angles of the body movement might not be measured accurately. Due to a limited number of studies, fruitful areas for further research could be the following: serious games focused on finger rehabilitation and trauma injuries, game difficulty adaptation based on user’s muscle strength and posture, and multisensor data fusion on interaction modalities.

Keywords: Interaction modality, Serious game, Upper limb rehabilitation

Introduction

Accidents and medical conditions could affect the mobility in certain body parts; therefore, patients should perform rehabilitation exercises to recover the mobility. However, these exercises are executed in a repetitive manner without motivating the patient. Serious games have been developed to assist people in the rehabilitation process. A serious game could be defined as “an experience that allows to the player to archive a specific purpose using the entertainment and engagement component provided by the game.” As a result, patients could execute their rehabilitation exercises by playing a serious game.

Moreover, there are sensors capable of recognizing body movements in the market. Consequently, these sensors have been used to interact with videogames (interaction modalities). Specifically, this systematic review found three interaction modalities used on serious games for upper limb rehabilitation: vision systems, complementary vision systems, and no-vision systems.

Contribution

The main contribution of this systematic review is to analyze the state-of-the-art regarding the interaction modalities used on serious games for upper limb rehabilitation. These interaction modalities were proposed based on the device(s) used to control the game in the studies. Furthermore, key details regarding rehabilitation were obtained per article (e.g., target disease, body parts to be rehabilitated, and metric used to assess the participant’s performance).

1Research Center for Artificial Intelligence, Universidad Veracruzana, Xalapa, Mexico.
2School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom.
Method

Evidence acquisition

This systematic review was performed following the guidelines of the PRISMA protocol. First, our question of research was defined as follows: What is the state-of-the-art regarding serious games and interaction devices? Second, the searching parameter was defined based on the question of research. This was composed of the sentence: “serious games rehabilitation.” This sentence was searched in IEEE Xplore and Web of Science (WoS) databases. Third, the articles were filtered using the following criteria: they must be written in English, be at least four pages in length, use or develop serious games, focus on upper limb rehabilitation, and be published between 2007 and 2017.

Quality of reporting

This review includes a quantitative analysis per article, which is performed using the QualSyst standard. This standard is composed of 14 assessing points. Our review uses 13 points, which are related to research design, robust measurement, and conclusions supported by the results.

According to the QualSyst standard, each assessing point can be assigned to the following values depending on the degree of meeting the criterion: two points (fully met), one point (partially met), or zero points (not met). The total score is divided by the number of assessing points. Finally, this score is expressed in terms of percentage, that is, it ranges from 0% to 100%.

Evidence synthesis

The following features were obtained per article meeting the inclusion criteria and having a QualSyst score $\geq 70\%$:
- QualSyst score: this is obtained using the QualSyst standard to assess the quality of the article.
- Device: this provides information regarding the sensors or devices used to control the game or to obtain the position of the player.
- Target disease: this corresponds to the diseases faced in the articles.
- Body parts: this refers to the body parts requiring rehabilitation. This feature involves diseases that affect the body’s functions and lead to a rehabilitation process. These diseases might be classified into neurological, neurodegenerative, autoimmune, and trauma. Neurological diseases involve the following medical conditions: apoplexy, cerebral palsy, dysplasia, hand impairment, hemineglect, hemiparesis, hemiplegia, motor disabilities as a result of neurological disease, motor function impairments, and musculoskeletal and neuromuscular disorders. Chronic pain, mild stroke, natural maturation declines of motor control, Parkinson’s disease, stroke, and subacromial impingement syndrome correspond to neurodegenerative diseases. Guillain-Barré syndrome can be classified as an autoimmune condition, whereas wrist injuries can be categorized as a trauma.
- Commercial game/Game engine: authors use a commercial game or specify the game engine used to develop the game.
- Users: users participating in the experiments, which can be healthy users or users suffering a medical condition.
- Metrics: parameters used to assess the user’s progress (e.g., specialist evaluation, medical scale evaluation, range-of-motion comparison at the beginning and at the end of the treatment, and game score).
- Classification algorithm: this is related to the algorithms used to recognize user’s movements (e.g., kinematic analysis, device’s Software Development Kits [SDK], and computer vision).
- User’s motivation: authors included the user’s motivation on the serious game design or they found a relationship between the use of serious games and the user’s motivation during rehabilitation.
- Remote rehabilitation: the serious game can be played online; therefore, rehabilitation can be performed remotely.
- Assistance: this implies that the serious game aims to assist the physiotherapist during the rehabilitation of the user.
- Replacement: this implies that the serious game aims to replace the physiotherapist in the future.

Results

It can be seen from Figure 1 that our initial search retrieved 121 articles (37 from IEEE Xplore and 84 from WoS). After removing duplicates, 80 articles were obtained. Only 41 articles met the criteria explained earlier. Conversely, 80 articles did not meet the criteria because they (i) focus on rehabilitation on body parts different to upper limbs or focus on other types of rehabilitation; (ii) have purposes different to rehabilitation (e.g., measurement of personal performance and development of musical skills); (iii) are editorial notes, reviews, and guidelines to develop serious games; (iv) are incomplete articles; (v) are up to three pages in length; (vi) are not written in English; and (vii) are out of the scope of this review.

This review includes articles with QualSyst percentages $\geq 70\%$. This percentage was obtained calculating the mean score of the 41 articles meeting the inclusion criteria. Then, standard deviation was subtracted resulting in 66.48% and rounded to 70%. As a result, 33 articles were included in this review for further analysis, whereas the remaining 8 articles were excluded because their percentages were below 70% (i.e., between 37% and 66%). The QualSyst score was low in some studies because the assessing points were below 70% and (ii) have purposes different to rehabilitation (e.g., measurement of personal performance and development of musical skills).
the data, for example, Myo Armband, Wii Balance Board, and Leap Motion.

(c) No-vision systems: this category involves studies using devices different to a camera to control the game or to measure users’ movements. These devices could be biosignal sensors, robotic systems, haptic interfaces, game consoles, and PC components.

Vision systems

This category represents 42.4% of the articles meeting the QualSyst score criterion (i.e., 14 of 33 articles). The mean QualSyst score is 86.42 ± 7.65%. Furthermore, 2017 reported the highest number of published articles (seven articles[^91-97]).

Moreover, Kinect is the most widely used device in this category for controlling the serious games or measuring the user’s positions (i.e., 78% of the articles). The remaining studies use other devices, for example, Leap Motion[^98], PrimseSense[^99], and web cameras[^100].

In addition, 50% of the diseases treated in the articles belong to neurological diseases[^91,94,97,98,100-102], whereas 42% belong to neurodegenerative diseases[^92,93,95,99,103,104]. Conversely, 7% of the articles do not report the medical condition that could be treated with the serious game[^96].

Regarding the body parts treated in the articles, the majority of studies focus on the shoulders[^91,92,95-97,101,104], arms[^91,93,97,99,102], and elbows[^91,92,96,100,101]. Conversely, few studies focus on finger[^98] and wrist[^92,98] rehabilitation.

Unity 3D is used as the game engine in 35% of the studies[^93,97-99,102]. Other studies use Blender Game Engine[^97], XNA Game Studio[^94], commercial games[^91,103], and Secondlife[^101] as the game engine. These represent 35%, whereas 28% of the studies do not report the game engine used to develop the serious game[^95,96,100,104].

The studies analyzed in this review use several methods to measure the patient’s progress during rehabilitation through serious games. Some of these methods are as follows: game score[^94,95,97,100]; comparison of the range-of-motion[^96,98,99,101] and medical scales[^91,100,103]; evaluation from a physiotherapist[^92,94,102]; and continuity and proper execution of the movement, as well as speed and time in performing the movement[^104]. Only one study does not report the method used to assess the patient’s progress[^93].

The majority of the studies of this category (85%) find a relationship between the use of serious games and the user’s

[^91]: Reference 1
[^92]: Reference 2
[^93]: Reference 3
[^94]: Reference 4
[^95]: Reference 5
[^96]: Reference 6
[^97]: Reference 7
[^98]: Reference 8
[^99]: Reference 9
[^100]: Reference 10
[^101]: Reference 11
[^102]: Reference 12
[^103]: Reference 13
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>QualSyst score</th>
<th>Device</th>
<th>Target population</th>
<th>Commercial game/game engine</th>
<th>Users</th>
<th>Metrics</th>
<th>Classification techniques</th>
<th>User’s motivation</th>
<th>Remote rehabilitation</th>
<th>Assistance to the physiotherapist</th>
<th>Replacement of the physiotherapist</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Trombetta et al.</td>
<td>92</td>
<td>Kinect</td>
<td>Mild stroke</td>
<td>Shoulder Unity 3D</td>
<td>10 Healthy users</td>
<td>Physiotherapist evaluation</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2017</td>
<td>Eckert et al.</td>
<td>95</td>
<td>Kinect</td>
<td>Motor function impairments</td>
<td>Shoulder Blender Game Engine</td>
<td>8 Affected children</td>
<td>Game score</td>
<td>Kinect SDK</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2017</td>
<td>Türkbeý et al.</td>
<td>92</td>
<td>Kinect</td>
<td>Apoplexy</td>
<td>Shoulder Commercial game</td>
<td>20 Affected users</td>
<td>Medical scale evaluations</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2017</td>
<td>Bonnechère et al.</td>
<td>91</td>
<td>Kinect</td>
<td>Natural maturation declines of motor control</td>
<td>Shoulder Hips Trunk</td>
<td>81 Healthy users</td>
<td>Game score</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2017</td>
<td>Idriss et al.</td>
<td>90</td>
<td>Kinect</td>
<td>Musculoskeletal disorders</td>
<td>Balance XNA Game Studio</td>
<td>10 Healthy users</td>
<td>Game score</td>
<td>Physiotherapist evaluation</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2017</td>
<td>Bonnechère et al.</td>
<td>90</td>
<td>Kinect</td>
<td>—</td>
<td>Shoulder Elbow Hips Knee Arm</td>
<td>10 Healthy adults</td>
<td>Range-of-motion comparison</td>
<td>Model-based approach</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2017</td>
<td>Shiratuddín et al.</td>
<td>77</td>
<td>Kinect</td>
<td>Stroke</td>
<td>Elbow Wrist Knee Arm</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2016</td>
<td>Elnaggar and Reichard</td>
<td>85</td>
<td>Leap motion</td>
<td>Hand motion disorders</td>
<td>Fingers Wrist Arm</td>
<td>3 Healthy users</td>
<td>Range-of-motion comparison</td>
<td>Law of sines</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2015</td>
<td>Bower et al.</td>
<td>90</td>
<td>Prime-Sense</td>
<td>Stroke</td>
<td>Trunk Arm</td>
<td>40 Affected users</td>
<td>Range-of-motion comparison</td>
<td>PrimeSense SDK</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2014</td>
<td>d’Ornellas et al.</td>
<td>91</td>
<td>Kinect</td>
<td>Hemiplegia</td>
<td>Trunk Shoulder Elbow</td>
<td>—</td>
<td>—</td>
<td>Computer vision–continuously adaptive mean shift</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2014</td>
<td>Jaume-I-Capó et al.</td>
<td>86</td>
<td>Webcam</td>
<td>Cerebral palsy</td>
<td>Shoulder Trunk Arm</td>
<td>10 Affected users</td>
<td>Game score</td>
<td>Medical scale evaluations</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2014</td>
<td>Pompeu et al.</td>
<td>83</td>
<td>Kinect</td>
<td>Parkinson</td>
<td>Upper limbs Commercial games</td>
<td>7 Affected users</td>
<td>Medical scale evaluations</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2015</td>
<td>Rahman</td>
<td>70</td>
<td>Kinect</td>
<td>Hemiplegia</td>
<td>Shoulder Elbow Hips Ankle Shoulder</td>
<td>8 Healthy users</td>
<td>Range-of-motion comparison</td>
<td>Kinematic analysis</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2013</td>
<td>Fikar et al.</td>
<td>75</td>
<td>Kinect</td>
<td>Subacromial impingement syndrome</td>
<td>—</td>
<td>—</td>
<td>Continuity of the movement Performed speed and timing of the movement Proper execution of the movement</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
</tbody>
</table>

SDK, Software Development Kit.
motivation during rehabilitation.91–94,97–104 Moreover, three studies offer rehabilitation through serious games remotely.93,98,104

The assistance to the physiotherapist is not a priority in the minority of these studies (35%).91,93,95,96,99 On the contrary, one study aims to replace the physiotherapist in the future.93

Further details are summarized in Table 1.

Complementary vision systems

This interaction modality represents 30.3\% of the articles meeting the QualSyst score criterion (i.e., 10 of 33 articles). Its mean QualSyst score is 85.7 ± 8.99\%. The highest number of articles was published in 2017105–107 and 2011108–110.

Similar to vision systems, the most widely used device in the complementary vision systems is the Kinect, which is used with other systems such as Leap Motion,111 Myo Armband,107 Wii Balance Controller,106 Vicon system,112 MoCap,109 iTracker,109 G.tec g.MOBI Lab,109 and TMSI Mobi.109

Other studies use the following combinations of devices: an Optitrack v120 and a haptic interface105; accelerometers, vibrotactile interfaces, and a Microsoft live cam v3113; a web camera and a thermal vision camera110; and a web camera with a robotic system.114

The medical conditions treated in the studies of this category correspond to neurological105,107,111–113 (50\%), neurodegenerative106,109,110,114 (40\%), and autoimmune113 (10\%) diseases. The most treated body part in these studies is the wrist,107,108,111 followed by the elbow,107,112,114 shoulder,107,112,114 fingers,105,111 and hand.108,110,113

It can be seen that the studies of this category use Unity 3D,107,109 3D webGL,111 ArtoolKit,113 Chai3D,113 FLARE108 ToolKit,110 NyARToolKit,110 and XNA Game Studio110 to develop the serious games. Conversely, 40\% of the studies do not report the game engine used to develop the serious game.105,106,112,114

In this category, the following methods are used to assess the patient’s progress: medical scales,105,106,109,114 evaluation from a physiotherapist,113 and time in finishing the exercise.113 Conversely, 50\% do not mention the method used to evaluate the patient’s progress.107,108,110–112

The majority of the studies of this category (80\%) find a positive relationship between the use of serious games and patient’s motivation during rehabilitation.105–107,112–114 In this interaction modality, 40\% of the studies propose remote rehabilitation systems.107–109,111 On the contrary, 70\% of the studies aim to assist the physiotherapist.105,106,110–114 Conversely, 10\% of the studies aim to replace the physiotherapist in the future.107

Table 2 summarizes these studies.

No-vision systems

This interaction modality is composed of nine articles (i.e., 27.2\%). Its mean QualSyst score is 84.66 ± 9.2\%. The years reporting the highest number of publications were 2014115–117 and 2016.118–120

These studies use a wide variety of devices, for example, Lego robot,119 Myo Armband,119 commercial joysticks,121 mouse,122 gyroscope,117 magnetometer,117 and Ninten- do123 Moreover, the most treated medical condition in the studies of this interaction modality (66.6\%) is the neurodegenerative disease.115,116,118,120,122,123 One study focuses on trauma injuries.117 Conversely, one study does not provide information regarding the medical condition that is treated.121 In addition, the body parts treated in this interaction modality are the arm,119–122 elbow,122,123 shoulder,122,123 wrist,115–117 and hand.120

Regarding the game engine, 44.4\% of the studies of this interaction modality do not report the game engine used to develop the serious game. On the contrary, 22.2\% of the studies use commercial games118,123 as serious games, whereas 11.1\% of the studies use Unity 3D115 to implement the serious game.

In this interaction modality, the following methods are used to assess the patient’s performance during the game: game score,115,122 medical scales,123 comparison of the range-of-motion,118,120 limp distance from the target,116 heart rate,119 heart jerk,116 respiratory rate,121 and energy consumption from the assistive robot.116

The majority of the studies (55.5\%) find a relationship between the patient’s motivation during rehabilitation and the use of serious games.115,117,119–123 Moreover, 33.3\% of the studies aim to provide remote rehabilitation,117,119,120 whereas 11.1\% of the studies aim to assist the physiotherapist.122

Table 3 provides details of these studies.

Discussion

The search time period of this review was established from 2007 to 2017. Figure 2 shows the histogram of the number of publications per year. Note that the oldest publication meeting the inclusion criteria is from Saposnik et al.123 Furthermore, 2017 reported the highest number of publications (11 articles).

Regarding the QualSyst score, the three interaction modalities presented in this review obtained a mean QualSyst score of 85.72 ± 8.27\%. Moreover, vision systems corresponded to 42\% of the publications included in this review, followed by no-vision systems (30\%) and complementary vision systems (27\%). In terms of the devices used to collect the body movements, the most widely used device was the Kinect sensor, which was used in 16 of the 33 publications included in this review. Only two studies reported the accuracy levels of Kinect: 70\% and 89\% of recognition on gross and fine motor movements of users,95 and 91.9\% of recognition on the user’s movement.112 Only one study109 concluded that Kinect is not suitable as a medical evaluation device.

Regarding the medical conditions, neurodegenerative diseases were the most treated diseases reported in the articles (48\%). Specifically, 75\% of these studies related to neurodegenerative diseases focused on strokes. Neurological diseases were treated in 36\% of the articles. Furthermore, autoimmune and trauma conditions were addressed in 9\% of the articles. Conversely, 8\% of the articles did not report the medical condition that was addressed.

In addition, the studies presented in this review mainly focused on the rehabilitation of the following body parts: the shoulder (19\%), arm (16\%), and elbow (15\%). The percentages of the remaining body parts are presented...
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>QualSyst score</th>
<th>Device</th>
<th>Target population</th>
<th>Body parts</th>
<th>Commercial game/game engine</th>
<th>Users</th>
<th>Metrics</th>
<th>Classification techniques</th>
<th>User's motivation</th>
<th>Remote rehabilitation</th>
<th>Assistance to the physiotherapist</th>
<th>Replacement of the physiotherapist</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Bortone et al.</td>
<td>100 Optitrack V120 Wearable haptic devices</td>
<td>Cerebral palsy</td>
<td>Fingers</td>
<td>4 Healthy users 4 Affected users</td>
<td>Medical scale evaluation</td>
<td>Computer vision</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Bonnechère et al.</td>
<td>90 Wii Balance Board</td>
<td>Stroke</td>
<td>Arm</td>
<td>41 Affected users</td>
<td>Medical scale evaluation</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Esfahlani et al.</td>
<td>81 Myo Armband</td>
<td>Neuromuscular disorders</td>
<td>Hips</td>
<td>Unity 3D</td>
<td>Inverse kinematics</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Esfahlani et al.</td>
<td>85 Myo Armband</td>
<td>Stroke</td>
<td>Arm</td>
<td>1 Affected user</td>
<td>Inverse kinematics</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Omelina et al.</td>
<td>72 Kinect</td>
<td>Cerebral palsy</td>
<td>Shoulder</td>
<td>Inverse kinematics</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Prange et al.</td>
<td>100 ArmeoBoom Webcam</td>
<td>Stroke</td>
<td>Shoulder</td>
<td>Medical scale evaluation</td>
<td>Computer vision with markers</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Hossain et al.</td>
<td>81 Accelerometer</td>
<td>Stroke</td>
<td>Hand-eye coordination</td>
<td>AR toolkit</td>
<td>Computer vision with markers</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Cheng</td>
<td>87 Mouse Webcam markers</td>
<td>Hand</td>
<td>Wrist</td>
<td>NyARToolKit</td>
<td>Computer vision with markers</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Schönauser et al.</td>
<td>83 MoCap IOTTracker Kinect Gtec g.MOBIIab TMSI Mobi</td>
<td>Chronic pain</td>
<td>Upper limbs</td>
<td>Unity 3D</td>
<td>Medical scale evaluation</td>
<td>Computer vision with markers</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Evett et al.</td>
<td>78 Webcam Thermal camera</td>
<td>Stroke</td>
<td>Hand</td>
<td>XNA game studio</td>
<td>Computer vision-color segmentation</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Author</td>
<td>QualSyst Score</td>
<td>Device Description</td>
<td>Target population</td>
<td>Body parts</td>
<td>Commercial game/game engine</td>
<td>Users</td>
<td>Metrics</td>
<td>Classification techniques</td>
<td>User’s motivation</td>
<td>Remote rehabilitation</td>
<td>Assistance to the physiotherapist</td>
<td>Replacement of the physiotherapist</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2017</td>
<td>Darzi et al.¹²¹</td>
<td>80</td>
<td>Haptic master Standard joystick G.tec respiration airflow sensor</td>
<td>—</td>
<td>Arm</td>
<td>—</td>
<td>Healthy users</td>
<td>Respiration rate</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2016</td>
<td>Saposnik et al.¹¹⁸</td>
<td>92</td>
<td>Nintendo Wii</td>
<td>Stroke</td>
<td>Upper limbs</td>
<td>Commercial games</td>
<td>Affected users</td>
<td>Range-of-motion comparison</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2016</td>
<td>Lopez-Samaniego and Garcia-Zapirain¹³⁹</td>
<td>87</td>
<td>Microsoft band 2 Lego robot Myo armband BrightArm duo systems</td>
<td>Physical and cognitive rehabilitation</td>
<td>Arm</td>
<td>Xcode software development kit</td>
<td>Affected users</td>
<td>Heath rate</td>
<td>MicrosoftBandKit_IOS</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2016</td>
<td>House et al.¹²⁰</td>
<td>79</td>
<td>Stroke</td>
<td>Hand</td>
<td>BrightArm custom games</td>
<td>Affected users</td>
<td>Range-of-motion comparison</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Hocine et al.¹²²</td>
<td>86</td>
<td>Mouse</td>
<td>Stroke</td>
<td>Arm Stroke Elbow Wrist</td>
<td>—</td>
<td>Affected users</td>
<td>Game score</td>
<td>Digital pheromone-based algorithm</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2014</td>
<td>Andrade et al.¹³⁵</td>
<td>100</td>
<td>Rehabilitation robot</td>
<td>Stroke</td>
<td>Wrist</td>
<td>Unity 3D</td>
<td>Healthy users</td>
<td>Game Score</td>
<td>Q-learning Learning</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2014</td>
<td>Moretti et al.¹³⁶</td>
<td>75</td>
<td>Inmotion arm</td>
<td>Stroke</td>
<td>Wrist</td>
<td>—</td>
<td>Affected user</td>
<td>Distance from target Robot power motion jerk</td>
<td>Neural networks Principal components analysis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2015</td>
<td>Baranyi et al.¹¹⁷</td>
<td>71</td>
<td>Gyroscope Motion sensor Magnetometer</td>
<td>Wrist injuries</td>
<td>Wrist</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2010</td>
<td>Saposnik et al.¹²³</td>
<td>92</td>
<td>Nintendo Wii</td>
<td>Stroke</td>
<td>Arm Shoulder</td>
<td>Commercial games</td>
<td>Users</td>
<td>Medical scale evaluation</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

¹²¹ QualSyst Score: 80-Haptic master Standard joystick G.tec respiration airflow sensor
¹¹⁸ Device: Nintendo Wii
¹³⁹ Target population: Stroke
¹³⁶ Classification techniques: Range-of-motion comparison
¹³⁶ User’s motivation: Healthy users
¹³⁶ Remote rehabilitation: —
¹³⁶ Assistance to the physiotherapist: No
¹³⁶ Replacement of the physiotherapist: No
¹²² Commercial game/game engine: —
¹²² Users: Affected users
¹²² Metrics: —
¹²² Classification techniques: —
¹²² User’s motivation: —
¹²² Remote rehabilitation: —
¹²² Assistance to the physiotherapist: —
¹²² Replacement of the physiotherapist: —
¹²³ Target population: Stroke
¹²³ Commercial game/game engine: —
¹²³ Users: Users
¹²³ Metrics: Medical scale evaluation
¹²³ Classification techniques: —
¹²³ User’s motivation: —
¹²³ Remote rehabilitation: —
¹²³ Assistance to the physiotherapist: —
¹²³ Replacement of the physiotherapist: —
in Figure 3. Regarding the game engine, XNA Game Studio, Blender Game Engine, and Unity 3D were used to develop the serious games. Other studies used commercial games.

Several metrics to assess the patient’s performance during the playing were proposed in the articles. The main metrics used in the studies were medical scale evaluation (24.24%), range-of-motion comparison (18.18%), game score (18.18%), and physiotherapist evaluation (12.12%). The most used algorithms to recognize user’s movement were computer vision (21.21%), device’s SDK (12.12%), and inverse kinematics (6.06%).

Moreover, one of the key objectives of a serious game is to maintain the patient’s motivation to finish the exercises. The majority of the articles (75%) included in this review reported a positive relationship between patient’s motivation and the use of serious games. These studies identified the user’s motivation as follows: using custom-designed serious game or commercial games as a motivational factor; adding competitive elements, for example, multiplayer, tournaments; or using surveys on user’s feedback.

In addition, serious games might permit the rehabilitation to be remotely. It can be seen that 30.3% of the articles considered offering rehabilitation remotely through serious games. These remote serious games provided the following data to the specialist: tracking and session IDs, date, time, start and end times, left limb angle, joint data (orientation, position, and angular velocity), muscle data (eight surface EMG channels), and range-of-motion score.

Moreover, 51.5% of the articles aimed to assist the physiotherapist by providing information regarding the patient’s progress. Three studies aimed to replace the physiotherapist in the future. Two of these studies proposed a dynamic adaptive system, in which a virtual therapist supervises and assesses the user’s performance based on parameters previously given by a specialist.

Regarding limitations per interaction modality, vision systems and complementary vision systems present two main limitations: environmental conditions might affect the device’s performance (e.g., lighting conditions and occlusion of body parts); and interaction modalities based on Kinect cannot detect finger positions using its SDK. Regarding the no-vision systems, its main limitation is that the range-of-motion in angles of the body movement might not be measured accurately.

Other limitations irrespective of the interaction modality are as follows: the games were not specifically designed for rehabilitation and some studies did not report whether...
the game was commercial or was implemented by the authors.

In addition, some trends regarding the interaction modalities are to provide remote rehabilitation, to assist the specialist during the session, and to design games focused on rehabilitation following the advice of the specialist.

Finally, due to a limited number of studies, it can be concluded that fruitful areas for further research could be serious games focused on finger rehabilitation and trauma injuries, remote rehabilitation through a serious game, game difficulty adaptation based on user’s muscle strength and posture, multisensor data fusion on interaction modalities, biosignals as interaction modality, and biosignals to measure user’s motivation.

Conclusions

In this review, interaction modalities used on serious games for upper limb rehabilitation are presented. Only 33 articles of 121 articles initially retrieved met the inclusion criteria (27.3%). Specifically, three interaction modalities were identified in the articles: vision systems (42.4%), complementary vision systems (30.3%), and no-vision systems (27.3%). Moreover, vision systems and complementary vision systems obtained a similar mean QualSyst score (i.e., ~86%) followed by no-vision systems (84.6%).

It can be seen that almost half of the studies (48.48%) used the Kinect sensor to obtain the body movements. Similarly, almost half of the studies (48.48%) focused on neurodegenerative diseases. On the contrary, Unity was the most widely used game engine (24.24%), whereas the shoulder was the most treated body part in the studies (19%) in terms of upper limb rehabilitation.

Regarding the technique used to assess the patient’s performance, the most widely used technique in the studies was a comparison of the degrees of the user’s movement obtained through medical scales before and after performing rehabilitation exercises.

Acknowledgments

The author C.A.-A.-L. thanks Consejo Nacional de Ciencia y Tecnología (CONACYT) for funding his studies under a scholarship (550372). The author E.J.-R.-R. thanks PRODEP-SEP for supporting this research under the program “Grant for incorporation of new Professors (Apoyo a la Incorporación de Nuevos Profesores de Tiempo Completo).”

Author Disclosure Statement

No competing financial interests exist.

References

98. Elnaggar A, Reichardt D. Digitizing the hand rehabilitation using the serious games methodology with a user-centered design approach. 2016 International Conference on Computational Science and Computational Intelligence (CSCI’16), Las Vegas, NV, USA; December 15–17, 2016.
115. Andrade KDO, Fernandes G, Caurin GAP, et al. Dynamic player modelling in serious games applied to rehabilita-

Address correspondence to:
Carlos Alberto Aguilar-Lazcano, MPhil
Research Center for Artificial Intelligence
Universidad Veracruzana
Sebastian Camacho 5, Centro,
Xalapa, Veracruz 91000
Mexico

E-mail: ing.carlos.aguilar@outlook.com