
ISSN 1755-5361 

  
      

        
 

 Discussion Paper Series 
 
    

   
    
 

Jackknife Estimation of Stationary Autoregressive 
Models 
 
Marcus J Chambers 
 
 
 
Note : The Discussion Papers in this series are prepared by members of the Department of 
Economics, University of Essex, for private circulation to interested readers. They often 
represent preliminary reports on work in progress and should therefore be neither quoted nor 
referred to in published work without the written consent of the author. 

                                University of Essex 
 
 
 
       Department of Economics 
 
 
 

No. 684 February 2010 



Jackknife Estimation of

Stationary Autoregressive Models

Marcus J. Chambers
University of Essex

January 2010

Abstract

This paper reports the results of an extensive investigation into the use of the jackknife as
a method of estimation in stationary autoregressive models. In addition to providing some
general theoretical results concerning jackknife methods it is shown that a method based
on the use of non-overlapping sub-intervals is found to work particularly well and is capable
of reducing bias and root mean squared error (RMSE) compared to ordinary least squares
(OLS), subject to a suitable choice of the number of sub-samples, rules-of-thumb for which
are provided. The jackknife estimators also outperform OLS when the distribution of the
disturbances departs from normality and when it is subject to autoregressive conditional
heteroskedasticity. Furthermore the jackknife estimators are much closer to being median-
unbiased than their OLS counterparts.
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1. Introduction

Jackknife techniques have a long history in statistics. The jackknife method of bias

reduction was originally proposed by Quenouille (1956) with Tukey (1958) subsequently

demonstrating how the method could also be used to construct a nonparameteric estimator

of variance. As a result it is often referred to as the Quenouille-Tukey jackknife; see, for

example, Efron (1982, p.1). According to Miller (1964, p.1594) the procedure was named

the jackknife by Tukey because “a boy scout’s jackknife is symbolic of a rough-and-ready

instrument capable of being utilized in all contingencies and emergencies.” The applicability

of the jackknife is certainly widespread but it has found fewer applications in econometrics

than rival bootstrap methods. Indeed, Efron (1979) demonstrated that the jackknife is

a linear approximation method for the bootstrap in the case of estimating the sampling

distribution of a random variable based on a sample of i.i.d. (independently and identically

distributed) data, a result that has perhaps been interpreted as favouring the bootstrap in a

wider variety of situations than that to which this result relates. Moreover, as will be shown

below, the standard formulation of the jackknife statistic is applicable only in the case of

i.i.d. data, which may also help to explain its limited application in econometrics.

Notwithstanding the above comments and the proliferation of bootstrap methods in

econometrics, there has recently been a realisation that jackknife methods can be effective

in reducing the bias of estimators in models of interest in econometrics. In models with

more instruments than endogenous variables Angrist, Imbens and Krueger (1999) proposed

the jackknife instrumental variables estimator and demonstrated its superior finite sample

properties compared to the two-stage least squares estimator and its comparability to the

limited information maximum likelihood estimator, although the performance of this estima-

tor has subsequently been criticised by Davidson and MacKinnon (2006). Hahn, Kuersteiner

and Newey (2003) considered both bootstrap and jackknife bias corrections to maximum

likelihood estimators based on an i.i.d. sample while applications to panel data models (in-

cluding nonlinear and dynamic models) have been considered by Hahn and Newey (2004),

Hahn and Moon (2006) and Dhaene, Jochmans and Thuysbaert (2006). Jackknife methods

have also been applied to maximum likelihood estimators of the parameters of continuous

time models of the short-term interest rate by Phillips and Yu (2005) who also demonstrate

the resulting gains that can be made by applying such techniques directly to the implied

bond options prices. Based on the encouraging results obtained in the above situations this

paper explores the properties of jackknife methods of estimation and inference in station-

ary autoregressive (AR) models. In the context of stationary time series Carlstein (1986)

proposed an estimator of variance based on non-overlapping blocks while Künsch (1989)

considered both jackknife and bootstrap methods of estimating standard errors by deleting

whole blocks of observations. The focus here, however, is ultimately concerned more with

issues of estimation of the parameters in AR models than it is with variance estimation.

Some general theoretical results on jackknife methods applied to a statistic of interest

(such as an estimator of a parameter or a test statistic) are given in section 2. The first

result (Theorem 1) shows how the full-sample and sub-sample statistics should be combined

in order to eliminate the first-order bias in a general setting before considering specific

sampling situations such as i.i.d. data as well as non-overlapping and moving-block sub-

samples which are of particular relevance in time series settings. A further refinement

(Theorem 2) shows how statistics from different sub-sampling methods, or from the same
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sub-sampling method with different numbers of sub-samples, can be combined to eliminate

both first- and second-order bias from the statistic of interest. Specific cases of sub-sampling

are also considered, and a further general result (Theorem 3) shows how the jackknife

weights need to be modified in cases where sub-samples of unequal lengths are encountered,

this being potentially important in empirical applications. Although primarily motivated

by the desire to achieve improved accuracy in finite samples, section 2 concludes with some

results (contained in Theorem 4 and a Corollary) exploring the asymptotic properties of the

jackknife statistic, which is particularly relevant for purposes of inference.

Section 3 explores jackknife methods of estimation in stationary autoregressive models.

The main focus is on three variants of the first-order autoregressive, or AR(1), model, the

variants corresponding to the presence or absence of intercept and trend. The motivation

for employing jackknife estimators in this context is rooted in analytical work that provides

expansions for the bias of the ordinary least squares (OLS) estimator of the AR parame-

ter. The results from an extensive simulation exercise (involving 100,000 replications) are

reported in an attempt to obtain evidence on: which sub-sampling method produces the

greatest bias reduction; the optimal number of sub-samples to employ; how the optimal

number of sub-samples varies with sample size; and the extent of additional bias reduction

that can be achieved by eliminating the second-order bias. The results cover a range of sam-

ple sizes and a range of positive values for the AR parameter that approaches the boundary

of the stationarity region, these being of greatest empirical relevance in economics and fi-

nance. The analysis of bias reduction using the jackknife when a unit root is present can be

found in Chambers and Kyriacou (2010). The simulations also enable an optimal expansion

rate for the bias-minimising number of sub-samples to be determined. Some results are also

provided for the AR(2) and AR(4) models.

Additional considerations concerning the performance of the jackknife techniques are

explored in section 4. Although designed to reduce bias other distributional aspects are im-

portant to the usefulness of an estimator, and so the mean squared error (MSE) is examined

first. As in the case of estimator bias this is motivated by theoretical results concerning

expansions of the MSE of the OLS estimator in the AR(1) model. Simulations reveal that

it is possible to obtain an MSE less than the full-sample OLS estimator by using jackknife

estimators, and optimal root MSE (RMSE) expansion rules for the number of sub-samples

are determined. A feature of these is that a larger number of sub-samples is required

to minimise RMSE than to minimise bias. Departures from normality are also explored,

in particular disturbances generated by Student’s t- and Gamma distributions, as well as

autoregressive conditional heteroskedasticity (ARCH). Jackknife estimators continue to be

characterised by a smaller bias than the OLS estimator in these scenarios. It is also shown

that the distributions of the jackknife estimators are much closer to being median-unbiased

than those of the OLS estimator, the latter being significantly negatively biased particularly

for larger values of the AR parameter. All proofs are contained in the Appendix, and section

6 concludes.
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2. Jackknife methods: some general results

The idea behind the jackknife method of bias reduction is to combine a statistic based

on a full sample of data with a set of statistics based on sub-samples in a way that eliminates

the first-order bias term from its expectation. The statistic of interest is often an estimator of

a parameter or parameter vector although functions of model parameters and test statistics,

for example, can also be considered provided they satisfy (or are assumed to satisfy) certain

properties. The following general result for the jackknife statistic will be used to deal with

specific cases of interest.

Theorem 1. Let y = (y1, . . . , yn)′ be a sample of n observations on a random variable and

let Sn = S(y) denote a statistic of interest satisfying

E(Sn) = S +
a1
n

+
a2
n2

+O
(
n−3

)
, (1)

where a1 and a2 are constants. Let Yi (i = 1, . . . ,m) denote a set of sub-samples of y,

each of which has equal length ` = O(n), and let Si = S(Yi) (i = 1, . . . ,m) denote the

corresponding sub-sample statistics. Then the jackknife statistic

SJ =

(
n

n− `

)
Sn −

(
`

n− `

)
1

m

m∑
i=1

Si (2)

satisfies E(SJ) = S +O(n−2).

Theorem 1 is a general result that holds for both i.i.d. samples as well as dependent

samples of the type arising in time series. Some specific cases will now be considered and

Theorem 1 will be employed to determine the appropriate weights to use in the construction

of SJ based on different sub-sampling methods.

2.1 The i.i.d. case

In the case of a random sample of (i.i.d.) variables the sub-samples are usually obtained

by deleting observation i from the full sample, so that the sub-samples are given by Yi =

(y1, . . . , yi−1, yi+1, . . . , yn)′ (i = 1, . . . , n). Here, m = n and the size of each sub-sample is

` = n− 1. Hence, from Theorem 1, SJ takes the form (using the fact that n− ` = 1)

SJ = nSn − (n− 1)
1

n

n∑
i=1

Si. (3)

This is sometimes known as the delete-1 jackknife because each sub-sample deletes one

observation at a time, and its extension to the delete-d case was proposed by Wu (1986)

although this extension will not be pursued here. The form of the jackknife statistic in (3) is

the one commonly found in the literature1 but, as demonstrated below, the weights involved

in forming SJ in (3) are not applicable when using different types of sub-sampling and/or

with non-i.i.d. data.

2.2 Non-overlapping sub-samples

In time series settings the above jackknife method of deleting observations from the sam-

ple affects the correlation structure but the jackknife principle can still be applied subject to

an appropriate sub-sampling scheme. The key requirement in constructing the sub-samples

1See, for example, Quenouille (1956, p.354) or equation (2.8) of Efron (1982).
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is that the dependence structure of the series is maintained. Phillips and Yu (2005) utilise

non-overlapping sub-samples in applying the jackknife in an AR(1) model with intercept,

the method working as follows.

Consider a set of m non-overlapping sub-samples, each of equal length `, chosen so that

n = m× `. The number of sub-samples, m, will be treated as fixed and independent of n, so

that the length of each sub-sample grows with n at the same rate; the assumption of fixed

m will be relaxed later. Sub-sample i therefore contains the following observations:

Yi = (y(i−1)`+1, . . . , yi`)
′, i = 1, . . . ,m.

In this set-up we have ` = n/m and n − ` = (n/m)(m − 1) and it follows that the weights

in (2) become

n

n− `
=

m

m− 1
and

`

n− `
=

1

m− 1
,

resulting in the following jackknife statistic:

SJ =

(
m

m− 1

)
Sn −

(
1

m− 1

)
1

m

m∑
i=1

Si. (4)

This expression corresponds to the form of jackknife estimator used by Phillips and Yu

(2005).

2.3 Moving-block sub-samples

An alternative to non-overlapping sub-samples is to use a moving block of length `. If

each block is incremented by one observation the result is a set of m = n−`+1 sub-samples

of the form

Yi = (yi, . . . , yi+`−1)′, i = 1, . . . ,m.

In this case n− ` = m− 1 and the jackknife statistic is easily seen to be

SJ =

(
n

m− 1

)
Sn −

(
`

m− 1

)
1

m

m∑
i=1

Si. (5)

Note that in constructing the moving-block sub-samples it is the case that (some) observa-

tions are used more than once which is not the case with the non-overlapping blocks.

Another type of moving-block sub-sampling scheme is obtained by shifting the (non-

overlapping) block of length ` = n/m by `/2 observations (assuming ` is even) rather than

just one observation each time so that each block overlaps with just two others (except for

the first and last blocks which overlap with just one other block). The result is a set of

2m− 1 moving blocks, each sub-sample being

Yi = (y1+[(i−1)`/2], . . . , y`+[(i−1)`/2])
′, i = 1, . . . , 2m− 1,

where [x] denotes the integer part of x. In this case n− ` = (n/m)(m− 1) and hence

SJ =

(
m

m− 1

)
Sn −

(
1

m− 1

)
1

2m− 1

2m−1∑
i=1

Si. (6)

Other types of moving-block sub-sampling can, of course, also be considered.
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2.4 Higher-order bias reduction

The idea of re-applying the jackknife method in an attempt to reduce higher-order bias

terms goes back to Quenouille (1956) and was further developed by Schucany, Gray and

Owen (1971). As shown below it is not actually necessary to re-apply the jackknife itself

because the ability to use different sub-sampling methods, or indeed to use statistics based

on different numbers of a given type of sub-sample, enables higher-order bias corrections to

be carried out directly. The result is presented in Theorem 2 below.

Theorem 2. Let y and Sn be defined as in Theorem 1, and let Y1,i (i = 1, . . . ,m1) and Y2,i
(i = 1, . . . ,m2) denote two differing sets of sub-samples of lengths `1 and `2 respectively,

where `i = O(n) (i = 1, 2). Let S1,i (i = 1, . . . ,m1) and S2,i (i = 1, . . . ,m2) denote the

corresponding sub-sample statistics. Then the jackknife statistic

SJ = wnSn + w1n
1

m1

m1∑
i=1

S1,i + w2n
1

m2

m2∑
i=1

S2,i (7)

with weights given by

wn =
n2

(n− `1)(n− `2)
, w1n = − `21

(n− `1)(`1 − `2)
, w2n =

`22
(n− `2)(`1 − `2)

,

satisfies E(SJ) = S +O(n−3).

The sub-samples in Theorem 2 can be obtained either using different sub-sampling

methods or using different numbers of sub-samples for a given method. As an example of

the first type, consider the case where the S1,i statistics are obtained from non-overlapping

sub-samples and the S2,i statistics are computed using moving blocks. In this case `1 = n/m1

and `2 = n−m2 + 1 so that n− `1 = (n/m1)(m1− 1) and n− `2 = m2− 1, resulting in the

weights

wn =
nm1

(m1 − 1)(m2 − 1)
, w1n = − n

m1(m1 − 1)(`1 − `2)
, w2n =

`22
(m2 − 1)(`1 − `2)

.

An example of the second type is where non-overlapping sub-samples are used for both

methods, provided that m1 6= m2. Then `1 = n/m1 and `2 = n/m2 so that n − `1 =

(n/m1)(m1 − 1), n− `2 = (n/m2)(m2 − 1) and `1 − `2 = (n/(m1m2))(m2 −m1), yielding

wn =
m1m2

(m1 − 1)(m2 − 1)
, w1n = − m2

m1(m1 − 1)(m2 −m1)
, w2n =

m1

(m2 − 1)(m2 −m1)
.

Other combinations of sub-sampling methods can, of course, be utilised.

2.5 Unequal sub-sample lengths

So far it has been assumed that the m sub-samples each have equal length `, but in

practical circumstances it is desirable to allow for situations in which this is not the case.

For example, in the case of non-overlapping sub-samples, taking m = 4 with a sample of

size n = 50 means that at least one sub-sample is of a different size to the others. In this

example it would be possible to have three sub-samples of length ` = 12 and one of length

` = 14 or two of length ` = 12 and two of length ` = 13. Once different sub-sample lengths

are employed the appropriate weights to use in constructing the jackknife estimator change

from those presented previously. The following result extends Theorem 1 to deal with this

situation.
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Theorem 3. Let y and Sn be defined as in Theorem 1, and let Y1,i (i = 1, . . . ,m1) and

Y2,i (i = m1 + 1, . . . ,m1 +m2) denote two differing sets of sub-samples of lengths `1 and `2
respectively, where `i = O(n) (i = 1, 2) and m1 +m2 = m. Let Si (i = 1, . . . ,m) denote the

corresponding sub-sample statistics. Then the jackknife statistic

SJ = knSn + k1n
1

m

m∑
i=1

Si, (8)

with weights given by

kn =
m1n(`1 − `2)−mn`1

m1n(`1 − `2)−m`1(n− `2)
, k1n = − m`1`2

m1n(`1 − `2)−m`1(n− `2)
,

satisfies E(SJ) = S +O(n−2).

The result in Theorem 3 assumes that there are two different sub-sample lengths in

use which should be sufficient for most applications, although extending the result to more

than two sub-sample lengths is straightforward. Alternatively, if m` < n, it would be

possible to simply ignore the first n−m` observations, although in relatively small samples

such discarding of data may not be particularly desirable. Asymptotically, however, such

discarding of data may be less important, as pointed out by Hall, Horowitz and Jing (1995)

in the context of bootstrap blocking rules with dependent data.

2.6 Asymptotic properties

Although the jackknife methods are intended to provide bias reduction in small finite

samples it is nevertheless important also to examine their asymptotic properties, not least

because inferential methods are often based on such properties. In many cases of interest

the asymptotic properties of the statistic Sn will already be known, and so it is natural to

relate the limiting properties of SJ to those of Sn. The main result for the generic jackknife

statistic SJ is given in Theorem 4.

Theorem 4. (a) Under the conditions of Theorem 1, if Sn
p→ S as n → ∞ then SJ

p→ S

as n→∞ if:

(i) m is fixed as n→∞; or

(ii) m, `→∞ and Si satisfies a (weak) law of large numbers such that

1

m

m∑
i=1

(Si − E(Si))
p→ 0 as n→∞.

(b) If, in addition to the conditions of Theorem 1,
√
n(Sn − S)

d→ Z as n → ∞, where

Z = Op(1), then

√
n(SJ − S)

d→
{
Z +Op(1) if m is fixed and `→∞ as n→∞;

Z if m→∞ and (1/`) + (`/n)→ 0 as n→∞.

Theorem 4(a) establishes the consistency of the jackknife estimator. In addition to

the fairly minimal conditions of Theorem 1, when m is fixed it is also assumed that the

statistic Sn (and hence the S1, . . . , Sm also) is a consistent estimator of S. Many statistics

of interest will converge to a finite limit (at least) and such conditions are satisfied by the

cases of interest in the context of stationary autoregressions. When m is allowed to grow

with the sample size then it is also assumed that Si satisfies a (weak) law of large numbers.
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Although this is a high-level assumption it can usually be verified under certain conditions for

the relevent application of interest. For example, in the cases of stationary autoregressions

considered here one can appeal to the ergodic theorem to verify this requirement. Part (b)

of Theorem 4 relates the asymptotic distribution of SJ to that of Sn and shows that the

difference of the appropriately normalised and centered statistics is Op(1) when ` = O(n).

In order for SJ to have the same limiting distribution as Sn requires, in addition, that

` increases more slowly than n. In the case of non-overlapping sub-samples this requires

(recall that ` = n/m) that

1

m
+
m

n
→ 0 as n→∞,

and hence the number of sub-samples, m, must also grow with n but at a slower rate in

order for SJ to share the same limiting distribution as Sn.

Corollary to Theorem 4. (a) Assume that, as n→∞, ` = O(n),

√
n (Sn − S)

d→ Z and
√
` (Si − S)

d→ Zi, i = 1, . . . ,m,

where Z and the Zi (i = 1, . . . ,m) are Op(1) random variables. Furthermore, let

K = lim
n→∞

(
n

n− `

)
, λ = lim

n→∞

(√
n√
`

)
.

Then

√
n (SJ − S)

d→ KZ − λ(K − 1)

m

m∑
i=1

Zi

as n→∞.

(b) Furthermore, in the case where Z ∼ N(0, σ2) and Zi ∼ N(0, σ2) (i = 1, . . . ,m), let

σij = cov (Zi, Zj) (i, j = 1, . . . ,m) and σi = cov (Zi, Z) (i = 1, . . . ,m). Then, as n→∞,

√
n (SJ − S)

d→ N(0, σ2
J)

where

σ2
J = σ2

[
K2 +

λ2(K − 1)2

m

]
+ 2λ

(
K − 1

m

)λ(K − 1

m

)m−1∑
i=1

m∑
j=i+1

σij −K
m∑
i=1

σin

 .
The first part of the Corollary defines the limiting distribution of SJ in terms of the

limits of the sub-sample estimators Si and Sn when ` = O(n). In general the limiting

distribution of SJ will be different to that of Sn. The second part of the Corollary deals with

the case where the individual limits are Gaussian which results in the limiting distribution of

SJ also being Gaussian albeit with a potentially different variance to Sn. The assumption

of asymptotic normality for Si (i = 1, . . . ,m) is certainly consistent with the assumed

expansion for E(Si) used in Theorems 1 and 2. Of course, if the limiting distributions of the

sub-sample statistics were different from the limiting distribution of the full sample statistic

Sn then the assumed expansions might also differ, in which case the jackknife statistic as

defined would not succeed in eliminating the first-order finite sample bias. Such a situation

arises when a unit root is present in an AR process; see Chambers and Kyriacou (2010) for

details. Theorem 4 and its Corollary suggest that, in general, the limiting distribution of SJ
will not necessarily be the same as the uncorrected statistic Sn unless the rate of increase

of ` with n is suitably controlled. This issue is important if the limiting distribution of Sn,
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denoted Z, is used to conduct inference with SJ .

3. Bias reduction in stationary autoregressions

This section will be concerned with (special cases of) the general AR process of order

p, or AR(p) process, given by

yt = φ′dt + β1yt−1 + . . .+ βpyt−p + εt, t = 1, . . . , n, (9)

where dt denotes a vector of deterministic terms, for example an intercept and powers of t,

εt is an i.i.d. disturbance, and the polynomial β(z) = 1− β1z − . . .− βpzp has all its roots

lying outside the unit circle. For convenience it will be assumed that y−p+1, . . . , y−1, y0 are

observed. The unknown parameter vector of interest is θ = (β1, . . . , βp, φ
′)′ enabling the

regression model to be written in standard matrix form y = Xθ+ ε, where y = (y1, . . . , yn)′

and X is the matrix with typical row (yt−1, . . . , yt−p, d
′
t). The OLS estimator of θ is given by

θ̂ = (X ′X)−1X ′y but θ̂ is not an unbiased estimator of θ in this model. Analytic expressions

for the first-order bias term are provided by Shaman and Stine (1988) and Stine and Shaman

(1989), and it is this term that the jackknife estimator aims to remove. From (2) the general

form of the jackknife estimator of θ is given by

θ̂J =

(
n

n− `

)
θ̂ −

(
`

n− `

)
1

m

m∑
i=1

θ̂i, (10)

where θ̂i (i = 1, . . . ,m) are the sub-sample OLS estimators and each sub-sample is of length

l. Although θ̂ = θ +O(n−1) the jackknife estimator satisfies θ̂J = θ +O(n−2).

The main initial focus in this section is the application of jackknife methods to OLS

estimation of the autoregressive parameter in the AR(1) model before moving on to more

general AR(2)and AR(4) models. It is convenient to treat the pure AR(1) model, without

intercept or trend, separately from the model containing deterministic terms.

3.1 The pure AR(1) model

The stationary pure AR(1) model is obtained from (9) by setting p = 1 and dt = 0,

resulting in

Model A: yt = βyt−1 + εt, |β| < 1, t = 1, . . . , n, (11)

where εt ∼ i.i.d. (0, σ2) and y0 will be assumed to be observed by the econometrician. The

OLS estimator of β, given by

β̂ =

(
n∑
t=1

y2t−1

)−1 n∑
t=1

ytyt−1 = β +

(
n∑
t=1

y2t−1

)−1 n∑
t=1

εtyt−1, (12)

is biased but consistent in this model and the objective is to establish the extent to which

jackknife techniques can produce an estimator with smaller bias. Shenton and Johnson

(1965) demonstrated that, when y0 is fixed and εt ∼ i.i.d. N(0, 1), then

E
(
β̂ − β

)
= −2β

n
+

4β

n2
+O

(
n−3

)
. (13)

More recently Bao (2007) relaxed the normality assumption underlying this expansion and

demonstrated how the initial condition y0 affects the O(n−2) term. Concentrating on the
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effect of y0 while maintaining normality, the results in Bao (2007) yield

E
(
β̂ − β

)
= −2β

n
+

1

n2

[
4β +

2βy20
σ2

]
+O

(
n−3

)
. (14)

The simulations reported below take y0 = 0 to correspond with the unconditional mean of

the yt process.

The simulations are based on a range of autoregressive parameter values that would

appear to be most relevant in practice, so that β ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}, and

the sample sizes are n ∈ {24, 48, 96, 192}. These particular sample sizes enable a range of

values of m, the number of non-overlapping sub-samples used in constructing the jackknife

estimator, to be applied, so that m ∈ {2, 3, 4, 6, 8, 12, 16, 24, 48}, although not all of these

choices are possible for each sample size. The random shocks satisfy εt ∼ i.i.d. N(0, 1), the

estimator β̂ being invariant to the standard error of εt when y0 = 0.2 The results reported

below are based on a total of 100,000 replications of each combination of parameters and

sample sizes.

Table 1 presents the bias of the OLS estimator and the jackknife estimator based on

non-overlapping sub-samples for m ∈ {2, 3, 4, 6, 8}, the latter being defined by

β̂J,m =

(
m

m− 1

)
β̂ −

(
1

m− 1

)
1

m

m∑
i=1

β̂i,

where β̂i (i = 1, . . . ,m) denotes the OLS estimator based on sub-sample i. From (13) and

(14) (with y0 = 0) β̂J,m satisfies

E
(
β̂J,m − β

)
=

4β

n2
+O

(
n−3

)
. (15)

It is clear from Table 1 that the jackknife estimators can achieve substantial bias reduction,

compared to OLS, for all values of m, with the greatest reduction being obtained with

m = 2 in all cases. For example, when β = 0.5 the jackknife achieves a 73% bias reduction

for a sample size as small as n = 24 rising to 89% when n = 192. Although the percentage

reduction falls as β increases the jackknife estimator with m = 2 still achieves a 50%

reduction in bias for n = 24 when β = 0.99 which rises to 71% for n = 192.

Three further jackknife estimators were also considered, these being two moving-blocks

jackknife estimators as well as the jackknife estimator that eliminates both first- and second-

order biases. For the first moving-blocks-based estimator, in order to provide a point of

reference with the results in Table 1, the sub-sample sizes, `, are chosen to be the same size

as for the non-overlapping case, and so ` = n/m. The corresponding number of sub-samples

is then n− (n/m) + 1 and so, using (5), the estimator is given by

β̂MB

J,m =

(
n

n− `

)
β̂ −

(
`

n− `

)
1

n− `+ 1

n−`+1∑
i=1

β̂i.

For example, when n = 24 and m = 2, the sub-samples are of length ` = 12, but the

moving-blocks estimator uses 13 sub-samples compared to m = 2 in the non-overlapping

case. The second moving-blocks jackknife estimator utilises a reduced number of 2m − 1

2It can be seen from (14) that the ratio y0/σ affects the O(n−2) term in the expansion of bias.
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moving blocks in which each block of length ` = n/m is shifted by `/2 observations, so that

the estimator is of the form

β̂MB2

J,m =

(
m

m− 1

)
β̂ −

(
1

m− 1

)
1

2m− 1

2m−1∑
i=1

β̂i;

see (6). The last jackknife estimator aims to eliminate both first- and second-order bias terms

and is based upon combining estimators from two sets of non-overlapping sub-samples. From

(7) and the ensuing discussion the estimator is

β̂J,M =

(
m1m2

(m1 − 1)(m2 − 1)

)
β̂ −

(
m2

m1(m1 − 1)(m2 −m1)

)
1

m1

m1∑
i=1

β̂1,i

+

(
m1

(m2 − 1)(m2 −m1)

)
1

m2

m2∑
i=1

β̂2,i,

where m1 and m2 denote the numbers of sub-samples, M = (m1,m2), and β̂1,i and β̂2,i
denote the sub-sample estimators. Both moving-blocks jackknife estimators have bias of

O(n−2), in accordance with the bias expansion of β̂J,m in (15), while the bias of β̂J,M is

O(n−3).

The bias results for these three estimators are reported in Table 2, and relate to the

value of m found to yield the minimum bias in Table 1, namely m = 2. For β̂J,M the

choice M = (2, 3) was employed.3 The entries for these estimators in Table 2 are the bias

expressed as a ratio of the OLS bias. Also reported is the corresponding value for β̂J,2,

based on the values reported in Table 1, as well as the actual bias of the OLS estimator

from Table 1 to serve as a reference point. All of the jackknife estimators provide bias

reduction compared to the OLS estimator. Both moving-blocks estimators are inferior to

the non-overlapping sub-samples jackknife in all cases, but the jackknife estimator based

on non-overlapping sub-samples that also eliminates second-order bias provides the most

spectacular bias reductions uniformly across all parameter values and sample sizes. For

example, when β = 0.50 and n = 24 this estimator produces a 92% reduction in bias and

a 69% reduction even when β = 0.99 for the same (small) sample size. It is also evident

from Table 2 that the proportion of OLS bias that is eliminated by the jackknife estimators

is a decreasing function of the parameter β and an increasing function of sample size n for

larger values of β although it appears to be U-shaped for smaller values of β.

3.2 The AR(1) model with constant and/or trend

Extending the pure AR(1) model to contain deterministic trend components is straight-

forward and two such extensions are considered. The first incorprates a constant in the

regression; setting dt = 1 in (9) the model becomes

Model B: yt = α+ βyt−1 + εt, |β| < 1, t = 1, . . . , n, (16)

3In the overwhelming majority of cases these values of m and M did yield the smallest bias. The
exceptions are as follows: for β̂MB

J,m, when β = 0.10 bias is minimised at m = 3 for n = 96 and m = 6

for n = 192, while for β = 0.30 it is minimised at m = 3 for n = 192; for β̂MB2
J,2 , when β = 0.10 bias is

minimised at m = 6 for n = 192; and for β̂J,M , when β = 0.10 bias is minimised at M = (6, 8) for n = 96
and at M = (12, 16) for n = 192, when β = 0.30 the minimum bias occurs at M = (4, 6) for n = 96 and at
M = (6, 8) for n = 192, and when β = 0.50 it is minimised at M = (6, 8) for n = 192.
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with εt and y0 defined as before. In this model Sawa (1978) found the following moment

expansion, originally due to Kendall (1954), to work well, despite its simplicity:

E
(
β̂ − β

)
= −1 + 3β

n
+O

(
n−2

)
. (17)

Using results in Bao (2007) while maintaining normality shows how y0 affects the O(n−2)

term:

E
(
β̂ − β

)
= −1 + 3β

n
+

1

n2

[
3β − 9β2 − 1

1− β
+

1 + 3β

(1− β)2

(
g(α, β, y0)

σ

)2
]

+O
(
n−3

)
(18)

where g(α, β, y0) = α − (1 − β)y0. In the simulations the intercept was chosen to satisfy

α = (1− β)y0 so as to remove the dependence of the O(n−2) term on y0 and also to make

β̂ invariant to α and y0. It then follows that

E
(
β̂J,m − β

)
=

1

n2

(
3β − 9β2 − 1

1− β

)
+O(n−3),

which is also satisfied by the two moving-blocks jackknife estimators. The bias of β̂J,M is,

of course, O(n−3).

Incorporating a time trend into the model by setting dt = (1, t)′ in (9) yields

Model C: yt = α+ γt+ βyt−1 + εt, |β| < 1, t = 1, . . . , n. (19)

Theorem 1 of Kiviet and Phillips (1993) provides a general expression for the bias of β̂ to

O(n−1) in a model that can contain a set of regressors in addition to a constant and trend.

As an aid to simulation economy it can be shown that β̂ is invariant to the values of α, γ

and the variance of εt provided that

y0 =
1

1− β

(
α− βγ

1− β

)
,

a condition that was also imposed in the simulations. It can also be shown that γ̂ is invariant

to the values of α and the innovation variance under this initial value condition.

The simulation results for the estimators β̂J,2 and β̂J,(2,3) in Models B and C are

contained in Table 3. Results for the associated jackknife estimators of the intercept are

not reported as this parameter is typically of secondary interest and the performance of

the estimators relative to the OLS estimator was dependent on the particular parameter

values considered. The estimators γ̂J,2 and γ̂J,(2,3) of the trend parameter γ in Model C

are, however, also reported (the true value of γ = 0.1). For both Models B and C it can

be seen from Table 3 that substantial bias reduction can be obtained using these jackknife

estimators, even for β approaching the upper boundary of the stationarity region and even

for small sample sizes. In Model B the estimator β̂J,(2,3) produces the smallest absolute bias

in 20 out of the 28 combinations of β and n considered while in Model C this drops to 16

and to 13 for γ̂J,(2,3). Nevertheless both estimators can be judged to perform well in terms

of bias reduction.

Although impressive the bias results in Table 3 using m = 2 and M = (2, 3) do not

necessarily correspond to the minimum bias possible across different choices of m and M .

Theorem 4 implies that keeping these parameters fixed means that the limiting distribution

of the jackknife estimators will be different to that of β̂, in fact differing by an Op(1) random
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variable. Even if bias reduction is the sole objective it would seem possible to improve the

performance of these estimators even further if m and M are allowed to increase with n and,

indeed, this seems important if the limiting distribution of β̂ is to be used for inference with

the jackknife estimators. In the present case with stationary autoregressions the limiting

distribution of
√
n(β̂ − β) is Gaussian and in order for the jackknife estimators to share

this property it is necessary for (1/`) + (`/n) → 0 as n → 0, which, in the case of β̂J,m,

requires (1/m) + (m/n)→ 0 as n→ 0. This is certainly satisfied if m = δ0n
δ1 with δ0 > 0

and 0 < δ1 < 1 and so regressions were run using the bias-minimising values of m from the

experiments reported in Table 3 to gain some insight as to whether an approximate rule-

of-thumb can be derived that simultaneously minimises bias and satisfies the conditions in

Theorem 4(b). In fact, the regressions also allowed m to depend on β and so were of the

form

lnm = ln δ0 + δ1 lnn+ δ2 lnβ + u

where u denotes a random disturbance. The following results were obtained (where figures

in parentheses denote standard errors and σ̂ denotes the estimated standard error of u):

Model B: lnm=−0.6573 + 0.3906 lnn+ û, R̄2 = 0.41, σ̂ = 0.36.
(0.3837) (0.0884)

The marginal probability value for including lnβ in the regression was 0.46 and so this

variable was omitted. This regression implies that m ≈ 0.5182n0.3906 and the following

rule-of-thumb was used: m = 0.5n0.4. For Model C the results were:

Model C: lnm=−1.1552 + 0.6086 lnn+ 0.3217 lnβ+ û, R̄2 = 0.43, σ̂ = 0.59.
(0.6261) (0.1442) (0.1445)

This suggests that m ≈ 0.3150n0.6086β0.3217 or, roughly, m = (1/3)n0.6β1/3. Using these

bias-minimising expansion paths for m resulted in the bias properties reported in Table

4. The precise values of m were chosen as m = m̂K , where m̂K denotes the element of

the set K = {2, 3, 4, 6, 8, 12, 16, 24, 48} that is closest to the predicted value of m from the

rule-of-thumb, while the values for M were taken as M = (m,m+) where m+ denotes the

next value from the set K. The rule-of-thumb appears to work well with substantial bias

reductions for the jackknife estimators clearly evident.

3.3 Higher-order autoregression

In order to examine the performance of a jackknife estimator in higher-order autore-

gressions the following AR(p) model was considered for p = 2 and p = 4:

yt = α+ β1yt−1 + . . .+ βpyt−p + εt, t = 1, . . . , n, (20)

where α = µ(1 − η), η =
∑p
i=1 βi, µ = E(yt) and y0 = y−1 = . . . = y−p+1 = µ. The

parameter values, taken from Patterson (2000), are as follows. In the AR(2), β1 = 1.25 and

β2 = −0.35, while in the AR(4) model β1 = 1.20, β2 = −0.55, β3 = 0.40 and β4 = −0.15.

The corresponding roots are 2.3616 and 1.2098 in the AR(2) model and −0.2428±1.6834, 2

and 1.1523 in the AR(4) model. In both cases η = 0.90 and the unconditional mean of yt is

taken to be µ = 0.1. The parameters were chosen to be consistent with the high persistence

found in many macroeconomic time series. Defining β = (β1, . . . , βp)
′, Table 5 contains the

bias results for the estimator based on non-overlapping sub-samples with m = 2 i.e. β̂J,2,

expressed as a percentage of the OLS bias, the actual value of which is also reported for
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comparison. In all cases but one, which concerns the estimation of β2 in the AR(2) model

when n=24, the jackknife estimator succeeds in reducing the bias as compared to the OLS

estimator. Of particular note is the accuracy with which the jackknife estimator is capable of

estimating η, the sum of the autoregressive coefficients, even when the sample size is small.

For example, in the AR(4) model with n = 48, the bias of the jackknife estimator of η is

6% that of the OLS estimator even though the percentage of bias of the jackknife estimator

of the individual coefficients ranges (in absolute terms) from 30% to 86% that of the OLS

estimator. Accurate estimation of η is important in determining long-run multiplier effects

based on stationary autoregressions as well as in the estimation of spectral densities at the

origin; see, for example, Berk (1974). The estimation of such quantities is also important

in the construction of the modified unit root statistics of Ng and Perron (2001).

4. Other distributional considerations

4.1 Mean squared error

Although the jackknife method is designed to eliminate the first-order bias of a statistic,

MSE considerations are also of interest to explore. In the case of Model A Shenton and

Johnson (1965) provide an expansion for the mean square error (MSE) of β̂, given by

E
(
β̂ − β

)2
=

1− β2

n
− 1− 14β2

n2
+O

(
n−3

)
, (21)

while the results of Bao (2007), under normality, yield

E
(
β̂ − β

)2
=

1− β2

n
+

1

n2

[
14β2 − 1− (1− β2)y20

σ2

]
+O

(
n−3

)
. (22)

When y0 = 0 these two expressions are obviously equal. Furthermore in Model B the results

of Bao (2007) provide (under normality)

E
(
β̂ − β

)2
=

1− β2

n
+

1

n2

[
23β2 + 10β − 1 + β

1− β

(
g(α, β, y0)

σ

)2
]

+O
(
n−3

)
. (23)

When α = (1−β)y0, as in the simulations, the effect of y0 in the O(n−2) term is eliminated.

Analysis of the values of m that minimise the root mean square error (RMSE) for the

estimator β̂J,m in Models A, B and C reveals that m is an increasing function of sample

size n and tends to vary inversely with β. As in the case of bias-minimisation it is useful to

try to obtain a rule-of-thumb that can be used to determine m. The following results were

obtained:

Model A: lnm=−0.7499 + 0.7038 lnn− 0.4523 lnβ+ û, R̄2 = 0.71, σ̂ = 0.41;
(0.4371) (0.1007) (0.1009)

Model B: lnm=−1.0228 + 0.8345 lnn− 0.2051 lnβ+ û, R̄2 = 0.88, σ̂ = 0.25;
(0.2631) (0.0606) (0.0607)

Model C: lnm=−1.8055 + 0.9647 lnn− 0.1558 lnβ+ û, R̄2 = 0.92, σ̂ = 0.23.
(0.2458) (0.0566) (0.0567)

The following rules-of-thumb for Models A, B and C, respectively, were used based on the

above results: m = 0.5n0.7β−0.5; m = 0.36n0.8β−0.2; and m = 0.16n0.96β−0.15. The actual
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values of m and M were then derived in the same way as in the bias-minimising case.

Table 6 presents the RMSEs for the estimators β̂J,m and β̂J,M for Models A, B and C

as a ratio of the OLS RMSE using the predicted values of m and M described above. For

model C the performance of the estimators γ̂J,m and γ̂J,M is also reported. For all three

models the RMSE of the jackknife estimators is a decreasing function of n and β and the

RMSE of β̂J,M is larger than that of β̂J,m in the majority of cases. The jackknife RMSEs

tend to be larger than the OLS RMSE for the smallest values of β but for larger values

of β the ratio of the jackknife RMSE to the OLS RMSE falls to as low as 0.61 in Model

C. The ratio for the estimator β̂J,M is always larger than one for the smallest sample size

(n = 24) in all three models. The fact that the jackknife estimators can achieve a smaller

RMSE than the OLS estimator, even though they are intended mainly for bias reduction,

is an interesting finding and may prove to have an impact on the properties of hypothesis

tests using jackknife estimators. This topic warrants further exploration in future work.

4.2 Departures from normality

All results reported so far have been based on {εt}nt=1 being an i.i.d. normal sequence.

Indeed most theoretical results concerning the moments of the OLS estimator in the AR(1)

model are based on such an assumption, although Bao (1997) has derived analagous expan-

sions for bias and mean square error that allow for non-normality. Two departures from

normality are considered here; it is convenient to let µ3 and µ4 denote the skewness and

kurtosis coefficients, respectively. The first generates the εt from a Student’s t-distribution

with five degrees of freedom, in which case E(εt) = 0, var(εt) = 5/3, µ3 = 0 and µ4 = 9.

The second generates εt as a sequence of (mean-corrected) gamma variates. If x ∼ Γ(a, b)

then E(x) = ab, var(x) = ab2, µ3 = 2/
√
a and µ4 = 3 + (6/a). Setting a = 1 ensures

that the Gamma variate has the same kurtosis as the t5 variate (i.e. µ4 = 9), such a choice

yielding a skewness coefficient of µ3 = 2. It is also possible, by appropriate choice of b, to

ensure that the variance is equal to that of the t5, namely 5/3; this requires b =
√

5/3,

the resulting mean being
√

5/3. Here εt ∼ Γ(1,
√

5/3) so that (εt −
√

5/3) has zero mean,

variance and kurtosis equal to the t5 variate, but has skewness equal to 2. The t-variates

therefore introduce kurtosis relative to the normal while the gamma variates additionally

introduce skewness.

Table 7 reports the bias of the estimators β̂J,m and β̂J,M in Model B using the bias-

minimising rules-of-thumb for m and M described earlier. The actual bias of the OLS

estimator β̂ is typically smaller in absolute terms than under normality (compare the entries

in Table 3) and, although the extent of bias reduction is comparable to the normal case when

εt is a t-variate, the skewness introduced when εt is a Gamma variate typically has a small

but noticeable negative impact on the extent of bias reduction. Nevertheless the jackknife

estimators are capable of producing impressive reductions in bias, compared to OLS, even

under non-normality.

4.3 ARCH effects

It is also of interest to examine the performance of the jackknife estimators in the AR(1)

model subject to ARCH disturbances. In this case εt = htvt where vt is i.i.d. N(0, 1) and

h2t = σ2(1− φ) + φε2t−1,

where σ2 denotes the unconditional variance and φ is the ARCH parameter. Two values of
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φ are considered, φ = 0.5 and φ = 0.9 which (with σ2 = 1) produce time-varying conditional

variances of 0.5+0.5ε2t−1 and 0.1+0.9ε2t−1 respectively. In the former case the kurtosis, given

by µ4 = 3(1 − φ2)/(1 − 3φ2), is equal to 9 and matches the kurtosis of the t5 and Gamma

variates used previously, while in the second case the kurtosis is infinite. The biases of β̂J,m
and β̂J,M relative to the OLS bias in Model B with ARCH disturbances are contained in

Table 8. The OLS bias tends to be larger in magnitude than the corresponding values in

Table 3 and, although both jackknife estimators are capable of substantial bias reduction,

it is not as great as when the disturbances are i.i.d. (normal or non-normal) and tends to be

smaller for the larger value of the ARCH parameter. Nevertheless the jackknife estimators

do offer substantial improvements over OLS in terms of bias reduction.

4.3 The median

An estimator β̃ of β is said to be median-unbiased if

Pr(β̃ ≥ β) ≥ 0.5 and Pr(β̃ ≤ β) ≥ 0.5.

This concept can be of more relevance than mean-unbiasedness in situations where the

distribution of the estimator is asymmetric or skewed, as in the case of the OLS estimator

of the autoregressive parameter. Although the jackknife estimators are not designed to be

median-unbiased it is nevertheless of interest to assess whether they also provide advantages

over OLS in this regard. Table 9 reports the percentage of the distribution of the estimators

β̂, β̂J,m and β̂J,M for which the bias is negative in Model B when subject to normal and

gamma disturbances and for the values of m and M that minimise bias and RMSE using

the rules-of-thumb described earlier. The OLS estimator suffers from substantial skewness

especially for larger values of β but this is, to a large extent, eliminated by the jackknife

estimators. The improvements are particularly striking for larger values of β for which the

distribution of the OLS estimator β̂ is severely skewed. The skewness of the distributions is

also more severe when the disturbances are generated by the Gamma distribution than the

normal.

5. Conclusions

This paper, in addition to providing some general theoretical results concerning jack-

knife methods, has conducted an extensive investigation into the use of the jackknife as a

method of estimation and inference in stationary autoregressive models. A method based

on the use of non-overlapping sub-intervals is found to work particularly well and is capable

of reducing bias and RMSE compared to OLS, subject to a suitable choice of the number of

sub-samples, rules-of-thumb for which are provided. The jackknife estimators also outper-

form OLS when the distribution of the disturbances departs from normality and when it is

subject to ARCH effects, and is much closer to being median-unbiased.

Other methods of bias reduction are, of course, possible in addition to the jackknife.

An investigation of three such methods in the context of autoregressive models was car-

ried out by Patterson (2007), the three methods being first-order bias correction (FOBC),

based on the theoretical expansion of the OLS estimator, the bootstrap (BS), and recursive

mean adjustment (RMA). In simulations with the AR(1) model he finds that the bootstrap

achieves greatest bias reduction, recursive mean adjustment results in the smallest MSE,

while first-order bias correction produces the most accurate confidence intervals. Although
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based on a different set of simulated random variables it is nevertheless of some interest to

compare the results for bias and RMSE in Patterson (2007) with the results for the jack-

knife obtained here. Table 10 therefore presents the results from Patterson (2007, Table 2)

for these three estimators and for the jackknife estimator β̂J,2, denoted JK(2), for the two

common values of β, namely 0.90 and 0.99. The sample size in Patterson (2007) is n = 100,

and so the jackknife results refer to n = 96, this being the nearest sample size used here. In

terms of bias reduction the jackknife performs well, producing smaller bias then even the

bootstrap in three of the four cases. But its larger sampling variability leads to the larger

RMSE values reported in Table 10, although it must be recognised that the results refer to

m = 2 which is not necessarily the value that minimises RMSE.

The results obtained in this paper are encouraging for the use of jackknife methods

in time series models, and many further avenues present themselves for exploration. A

natural extension of potential importance is to consider jackknife methods of bias reduction

applied to AR models containing a unit root in which the OLS estimator is known to

be severely negatively biased. An analysis of bias reduction in the unit root case can be

found in Chambers and Kyriacou (2010), and further work (in progress) is examining the

performance of the bias-reduced jackknife estimators in actually testing for unit roots.
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Appendix

Proof of Theorem 1. Let SJ be of the generic form SJ = k1nSn + k2n(1/m)
∑m
i=1 Si and

note that

E(Si) = S +
a1
`

+
a2
`2

+O
(
n−3

)
, i = 1, . . . ,m.

Then it follows from the above and (1) that

E(SJ) = k1n

(
S +

a1
n

)
+ k2n

(
S +

a1
`

)
+O

(
n−2

)
= (k1n + k2n)S + a1

(
k1n
n

+
k2n
`

)
+O

(
n−2

)
.

The result in the Theorem then holds if k1n + k2n = 1 and (k1n/n) + (k2n/`) = 0; these

conditions are easily solved to give k1n = n/(n− `) and k2n = −`/(n− `). 2

Proof of Theorem 2. First note that

E(Sj,i) = S +
a1
`j

+
a2
`2j

+O
(
n−3

)
, j = 1, 2.

It follows that

E(SJ) = wn

(
S +

a1
n

+
a2
n2

)
+ w1n

(
S +

a1
`1

+
a2
`21

)
+ w2n

(
S +

a1
`2

+
a2
`22

)
+ rn

= (wn + w1n + w2n)S + a1

(
wn
n

+
w1n

`1
+
w2n

`2

)
+ a2

(
wn
n2

+
w1n

`21
+
w2n

`22

)
+ rn

where rn = O(n−3). In order that E(SJ) = S + O(n−3) it is therefore necessary for the

following three conditions to be satisfied:

(i) wn + w1n + w2n = 1; (ii)
wn
n

+
w1n

`1
+
w2n

`2
= 0; and (iii)

wn
n2

+
w1n

`21
+
w2n

`22
= 0.

Solving these conditions yields the weights specified in the Theorem. 2

Proof of Theorem 3. Following the proof of Theorem 1 it is convenient to let the jackknife

estimator have the generic form SJ = k1nSn + k2n(1/m)
∑m
i=1 Si so that the objective is to

determine k1n and k2n. Under the conditions of the Theorem it follows that

E(SJ) = k1n

(
S +

a1
n

)
+ k2n

(
S +

a1m1

m`1
+
a1m2

m`2

)
+O

(
n−2

)
= (k1n + k2n)S + a1

(
k1n
n

+
k2nm1

m`1
+
k2nm2

m`2

)
+O

(
n−2

)
.

To eliminate the first-order bias and to have E(SJ) = S it is necessary that k1n + k2n = 1

and (k1n/n) + (k2nm1/m`1) + (k2nm2/m`2) = 0; solving these equations yields the values

for k1n and k2n in the Theorem. 2

Proof of Theorem 4. (a) From the definition of SJ in Theorem 1 it follows that

|SJ − S| =

∣∣∣∣∣
(

n

n− `

)
(Sn − S)−

(
`

n− `

)
1

m

m∑
i=1

(Si − S)

∣∣∣∣∣
≤

(
n

n− `

)
|Sn − S|+

(
`

n− `

) ∣∣∣∣∣ 1

m

m∑
i=1

(Si − S)

∣∣∣∣∣ . (24)
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With the assumption that ` = O(n) then

n

n− `
=

(
1− `

n

)−1
= O(1),

`

n− `
=
`

n

(
1− `

n

)−1
= O(1).

(i) When m is fixed then SJ − S = op(1) because Sn − S = op(1) and Si − S = op(1)

(i = 1, . . . ,m) so that both components in (24) are op(1).

(ii) When m increases with n then clearly the component involving Sn in (24) remains op(1)

while∣∣∣∣∣ 1

m

m∑
i=1

(Si − S)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

m

m∑
i=1

(Si − E(Si))

∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

(E(Si)− S)

∣∣∣∣∣ .
The first component converges to zero in probability by assumption while the second is

O(n−1) = op(1) because of (1) in Theorem 1 which applies to the sub-sample statistics as

well as to Sn. Hence SJ − S = op(1) as required.

(b) This follows using a result from Rao (1973, p.122, 2c.4.12) which shows that, for random

variables Xn, Yn and Y , if |Xn−Yn|
p→ 0 and Yn

d→ Y then Xn
d→ Y . Here Xn =

√
n(SJ−S)

and Yn =
√
n(Sn − S) for which it is assumed that Yn

d→ Z. The sub-sample statistics also

satisfy
√
`(Si − S) = Op(1) (i = 1, . . . ,m). Note that Xn − Yn can be written

Xn − Yn =

(
n

n− `

)
Yn − Yn −

(
`

n− `

)
1

m

m∑
i=1

√
n(Si − S)

= anYn − bn,m
m∑
i=1

√
`(Si − S). (25)

where an = `/(n− `) and

bn,m =

(
`

n− `

) √
n

m
√
`

=
1

m

(
`

n

)1/2(
1− `

n

)−1
.

When ` = O(n) it follows that an = O(1), bn,m = O(1) and Xn − Yn = Op(1) so that

Rao’s result does not apply, however the stated result holds because an → 1 as n→∞ and

the term involving the normalised sub-sample statistics is a finite sum and is Op(1). When

(1/`) + (`/n)→ 0 as n→∞ then an = o(1) and bn,m = o(m−1) so that

|Xn − Yn| ≤ an|Yn|+ bn,m

∣∣∣∣∣
m∑
i=1

√
`(Si − S)

∣∣∣∣∣ = o(1)Op(1) + o(m−1)Op(m) = op(1),

recognising that m may also increase with n. Application of Rao’s result concludes the

proof. 2

Proof of Corollary to Theorem 4. (a) First note that

√
n (SJ − S) =

(
n

n− `

)√
n (Sn − S)−

(
`

n− `

)
1

m

√
n√
`

m∑
i=1

√
` (Si − S) .

The result follows straightforwardly from this expression by taking the appropriate limits.

(b) Under normality the limit established in (a) is a linear combination of normal random

variables with zero means and hence also has a mean of zero, so it remains to determine

the variance which follows from the linear combination of random variables and the stated

covariances. 2
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Table 1

Bias of OLS and non-overlapping jackknife estimators in Model A

β n β̂ β̂J,2 β̂J,3 β̂J,4 β̂J,6 β̂J,8

0.10 24 −0.0086 −0.0029 −0.0037 −0.0042 −0.0051 −0.0060
48 −0.0045 −0.0009 −0.0011 −0.0014 −0.0018 −0.0021
96 −0.0023 −0.0004 −0.0004 −0.0005 −0.0006 −0.0007

192 −0.0014 −0.0004 −0.0004 −0.0004 −0.0004 −0.0005

0.30 24 −0.0238 −0.0064 −0.0086 −0.0104 −0.0134 −0.0160
48 −0.0124 −0.0018 −0.0025 −0.0031 −0.0042 −0.0052
96 −0.0064 −0.0006 −0.0008 −0.0010 −0.0013 −0.0016

192 −0.0035 −0.0005 −0.0005 −0.0006 −0.0007 −0.0007

0.50 24 −0.0387 −0.0104 −0.0142 −0.0173 −0.0224 −0.0266
48 −0.0202 −0.0029 −0.0041 −0.0051 −0.0070 −0.0086
96 −0.0106 −0.0010 −0.0013 −0.0017 −0.0023 −0.0028

192 −0.0056 −0.0006 −0.0007 −0.0008 −0.0009 −0.0011

0.70 24 −0.0533 −0.0159 −0.0214 −0.0260 −0.0329 −0.0384
48 −0.0280 −0.0046 −0.0063 −0.0079 −0.0107 −0.0130
96 −0.0147 −0.0015 −0.0021 −0.0026 −0.0035 −0.0043

192 −0.0076 −0.0007 −0.0008 −0.0010 −0.0012 −0.0015

0.90 24 −0.0661 −0.0271 −0.0341 −0.0391 −0.0467 −0.0523
48 −0.0353 −0.0090 −0.0119 −0.0141 −0.0177 −0.0204
96 −0.0185 −0.0029 −0.0038 −0.0047 −0.0062 −0.0074

192 −0.0095 −0.0009 −0.0012 −0.0015 −0.0020 −0.0024

0.95 24 −0.0677 −0.0313 −0.0382 −0.0430 −0.0502 −0.0554
48 −0.0365 −0.0122 −0.0151 −0.0173 −0.0209 −0.0234
96 −0.0192 −0.0042 −0.0054 −0.0065 −0.0081 −0.0093

192 −0.0098 −0.0012 −0.0017 −0.0021 −0.0028 −0.0033

0.99 24 −0.0670 −0.0338 −0.0403 −0.0447 −0.0515 −0.0563
48 −0.0358 −0.0152 −0.0179 −0.0200 −0.0231 −0.0252
96 −0.0189 −0.0068 −0.0081 −0.0091 −0.0105 −0.0116

192 −0.0098 −0.0028 −0.0035 −0.0039 −0.0046 −0.0052

Entries in bold denote the minimum absolute bias in each row.
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Table 2

Bias of jackknife estimators as ratio of OLS bias

in Model A

β n β̂ Bias β̂J,2 β̂MB

J,2 β̂MB2

J,2 β̂J,(2,3)

0.10 24 −0.0086 0.34 0.41 0.37 0.16
48 −0.0045 0.20 0.29 0.25 0.09
96 −0.0023 0.16 0.22 0.18 0.14

192 −0.0014 0.29 0.41 0.38 0.29

0.30 24 −0.0238 0.27 0.33 0.30 0.08
48 −0.0124 0.15 0.20 0.17 0.04
96 −0.0064 0.10 0.14 0.12 0.05

192 −0.0035 0.14 0.18 0.17 0.13

0.50 24 −0.0387 0.27 0.33 0.30 0.08
48 −0.0202 0.15 0.19 0.16 0.03
96 −0.0106 0.10 0.13 0.11 0.04

192 −0.0056 0.11 0.13 0.12 0.08

0.70 24 −0.0533 0.30 0.37 0.33 0.09
48 −0.0280 0.16 0.22 0.18 0.04
96 −0.0147 0.11 0.14 0.12 0.04

192 −0.0076 0.09 0.11 0.10 0.06

0.90 24 −0.0661 0.41 0.49 0.45 0.20
48 −0.0353 0.26 0.34 0.29 0.09
96 −0.0185 0.15 0.22 0.18 0.05

192 −0.0095 0.09 0.14 0.11 0.02

0.95 24 −0.0677 0.46 0.54 0.50 0.26
48 −0.0365 0.33 0.42 0.38 0.17
96 −0.0192 0.22 0.30 0.25 0.09

192 −0.0098 0.13 0.19 0.16 0.03

0.99 24 −0.0670 0.51 0.58 0.54 0.31
48 −0.0358 0.42 0.51 0.47 0.27
96 −0.0189 0.36 0.46 0.41 0.23

192 −0.0098 0.29 0.39 0.33 0.17

Entries in bold denote the minimum ratio in

each row.
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Table 3

Bias of jackknife estimators as ratio of OLS bias in Models B and C

Model B Model C

n β̂ Bias β̂J,2 β̂J,(2,3) β̂ Bias β̂J,2 β̂J,(2,3) γ̂ Bias γ̂J,2 γ̂J,(2,3)

β = 0.10

24 −0.0568 0.05 0.03 −0.1045 0.03 0.01 0.0117 0.02 −0.08
48 −0.0281 0.04 0.03 −0.0514 0.01 0.00 0.0057 0.01 0.01
96 −0.0139 0.02 0.01 −0.0255 0.02 0.03 0.0028 0.01 0.01

192 −0.0072 0.06 0.07 −0.0129 0.02 0.02 0.0014 0.02 0.02

β = 0.30

24 −0.0820 0.08 0.01 −0.1401 0.05 −0.01 0.0201 0.04 −0.07
48 −0.0406 0.04 0.01 −0.0688 0.01 −0.01 0.0098 0.00 −0.01
96 −0.0202 0.02 0.00 −0.0342 0.01 0.02 0.0049 0.01 0.01

192 −0.0103 0.05 0.05 −0.0172 0.02 0.01 0.0024 0.02 0.01

β = 0.50

24 −0.1091 0.09 −0.01 −0.1801 0.06 −0.04 0.0361 0.05 −0.07
48 −0.0537 0.03 0.00 −0.0877 −0.01 −0.03 0.0175 −0.01 −0.03
96 −0.0267 0.01 0.00 −0.0433 0.00 0.01 0.0087 −0.01 0.01

192 −0.0136 0.04 0.04 −0.0216 0.00 0.01 0.0043 0.00 0.01

β = 0.70

24 −0.1409 0.11 −0.03 −0.2289 0.08 −0.05 0.0764 0.08 −0.07
48 −0.0686 0.02 −0.03 −0.1105 −0.03 −0.07 0.0368 −0.03 −0.07
96 −0.0338 0.00 −0.01 −0.0537 −0.04 −0.01 0.0179 −0.04 −0.01

192 −0.0169 0.02 0.03 −0.0263 −0.03 0.00 0.0088 −0.03 −0.01

β = 0.90

24 −0.1856 0.21 0.06 −0.2995 0.14 −0.02 0.2994 0.14 −0.03
48 −0.0913 0.06 −0.03 −0.1480 −0.01 −0.09 0.1480 −0.01 −0.09
96 −0.0435 −0.03 −0.06 −0.0704 −0.08 −0.08 0.0704 −0.08 −0.08

192 −0.0209 0.03 −0.01 −0.0329 −0.11 −0.06 0.0329 −0.11 −0.06

β = 0.95

24 −0.1976 0.23 0.10 −0.3265 0.18 0.01 0.6528 0.18 0.01
48 −0.1013 0.12 0.04 −0.1651 0.03 −0.08 0.3303 0.03 −0.08
96 −0.0487 0.00 −0.05 −0.0796 −0.06 −0.09 0.1593 −0.07 −0.09

192 −0.0229 −0.05 −0.04 −0.0369 −0.13 −0.10 0.0738 −0.13 −0.10

β = 0.99

24 −0.2002 0.21 0.07 −0.3568 0.23 0.07 3.5677 0.23 0.07
48 −0.1069 0.14 0.05 −0.1880 0.10 −0.02 1.8803 0.10 −0.01
96 −0.0554 0.09 0.05 −0.0947 0.01 −0.06 0.9466 0.01 −0.06

192 −0.0275 0.05 0.02 −0.0459 −0.06 −0.08 0.4587 −0.06 −0.08

Entries in bold denote the minimum (absolute) ratio for each pair of estimators in each row.
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Table 4

Bias of jackknife estimators as ratio of OLS bias in Models B

and C using bias-minimising expansion rates for m and M

Model B Model C

n β̂J,m β̂J,M β̂J,m β̂J,M γ̂J,m γ̂J,M

β = 0.10

24 0.05 0.03 0.03 0.01 0.02 −0.08
48 0.04 0.03 0.01 0.00 0.01 0.01
96 0.02 0.00 0.02 0.03 0.01 0.01

192 0.06 0.05 0.03 0.02 0.03 0.02

β = 0.30

24 0.08 0.01 0.05 −0.01 0.04 −0.07
48 0.04 0.01 0.01 −0.01 0.00 −0.01
96 0.03 0.00 0.01 0.02 0.00 0.01

192 0.05 0.04 0.02 0.01 0.01 0.01

β = 0.50

24 0.09 −0.01 0.06 −0.04 0.05 −0.07
48 0.03 0.00 −0.01 −0.03 −0.01 −0.03
96 0.02 −0.01 −0.01 −0.02 −0.01 −0.02

192 0.04 0.03 −0.01 0.00 −0.01 −0.01

β = 0.70

24 0.11 −0.03 0.08 −0.05 0.08 −0.07
48 0.02 −0.03 −0.01 −0.07 −0.01 −0.07
96 0.00 −0.03 −0.05 −0.07 −0.05 −0.07

192 0.01 0.01 −0.06 −0.05 −0.06 −0.05

β = 0.90

24 0.21 0.06 0.14 −0.02 0.14 −0.03
48 0.06 −0.03 0.04 −0.09 0.04 −0.09
96 −0.02 −0.08 −0.07 −0.15 −0.07 −0.15

192 −0.05 −0.07 −0.14 −0.22 −0.14 −0.22

β = 0.95

24 0.23 0.10 0.18 0.01 0.18 0.01
48 0.12 0.04 0.08 −0.05 0.08 −0.05
96 0.03 −0.05 0.02 −0.14 0.02 −0.13

192 −0.05 −0.09 −0.12 −0.22 −0.12 −0.22

β = 0.99

24 0.21 0.07 0.23 0.07 0.23 0.07
48 0.14 0.05 0.16 0.04 0.16 0.04
96 0.11 0.04 0.14 −0.02 0.14 −0.02

192 0.07 0.03 0.03 −0.09 0.03 −0.09

Entries in bold denote the minimum (absolute) ratio for each

pair of estimators in each row.
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Table 5

Bias of jackknife estimator as ratio of OLS bias

in AR(2) and AR(4) models

AR(2) AR(4)

β̂ Bias β̂J,2 β̂ Bias β̂J,2

n = 24

β1 −0.1126 −0.34 −0.1278 −0.33
β2 −0.0295 1.32 0.0101 −0.71
β3 −0.0279 −0.27
β4 −0.0520 0.42
η −0.1421 0.00 −0.1976 −0.11

n = 48

β1 −0.0482 −0.30 −0.0559 −0.30
β2 −0.0156 0.60 0.0045 −0.86
β3 −0.0116 −0.54
β4 −0.0291 0.48
η −0.0639 −0.08 −0.0921 −0.06

n = 96

β1 −0.0221 −0.19 −0.0251 −0.21
β2 −0.0075 0.19 0.0020 −0.37
β3 −0.0055 −0.24
β4 −0.0135 0.13
η −0.0295 −0.09 −0.0421 −0.10

n = 192

β1 −0.0107 −0.07 −0.0119 −0.10
β2 −0.0033 0.01 0.0012 0.09
β3 −0.0030 0.08
β4 −0.0059 −0.06
η −0.0141 −0.05 −0.0197 −0.07
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Table 6

RMSE of jackknife estimators as ratio of OLS RMSE in Models A,

B and C using RMSE-minimising expansion rates for m and M

Model A Model B Model C

n β̂J,m β̂J,M β̂J,m β̂J,M β̂J,m β̂J,M γ̂J,m γ̂J,M

β = 0.10

24 1.05 1.29 1.20 2.32 1.06 1.65 1.57 6.33
48 1.02 1.07 1.03 1.09 1.02 1.17 1.27 3.89
96 1.01 1.02 1.01 1.03 1.01 1.05 1.09 2.26

192 1.01 1.01 1.01 1.01 1.00 1.01 1.11 1.16

β = 0.30

24 1.04 1.29 1.03 1.31 1.00 1.63 1.45 5.60
48 1.02 1.05 1.01 1.09 0.98 1.16 1.18 3.33
96 1.01 1.02 1.01 1.03 0.98 1.04 1.05 1.96

192 1.00 1.01 1.00 1.01 0.99 1.00 1.05 1.10

β = 0.50

24 1.03 1.16 0.99 1.30 0.93 1.60 1.26 4.48
48 1.01 1.04 0.99 1.16 0.93 1.14 1.06 2.64
96 1.01 1.02 0.99 1.04 0.95 1.02 0.99 1.64

192 1.00 1.01 0.99 1.00 0.97 0.99 0.98 1.05

β = 0.70

24 1.00 1.15 0.94 1.26 0.84 1.53 1.01 3.00
48 1.00 1.07 0.93 1.17 0.86 1.11 0.92 1.59
96 0.99 1.01 0.95 1.03 0.89 0.98 0.91 1.16

192 1.00 1.00 0.97 0.99 0.93 0.96 0.93 1.02

β = 0.90

24 0.97 1.13 0.84 1.14 0.78 1.38 0.81 1.60
48 0.95 0.97 0.82 0.93 0.72 0.98 0.73 1.08
96 0.95 0.98 0.85 0.89 0.75 0.86 0.75 0.91

192 0.97 0.97 0.89 0.90 0.80 0.84 0.80 0.84

β = 0.95

24 0.96 1.12 0.82 1.11 0.76 1.32 0.73 1.38
48 0.93 0.95 0.78 0.87 0.68 0.91 0.68 0.93
96 0.93 0.94 0.79 0.83 0.68 0.79 0.68 0.80

192 0.95 0.94 0.83 0.84 0.72 0.75 0.72 0.75

β = 0.99

24 0.96 1.13 0.80 1.10 0.73 1.25 0.73 1.25
48 0.92 0.93 0.74 0.84 0.65 0.84 0.65 0.84
96 0.91 0.91 0.72 0.75 0.62 0.69 0.62 0.69

192 0.90 0.89 0.72 0.71 0.62 0.61 0.62 0.61

Entries in bold denote the minimum (absolute) ratio for each pair

of estimators in each row.
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Table 7

Bias of jackknife estimators as ratio of OLS bias in Model B under

non-normality

εt ∼ t5 εt ∼ Γ
(

1,
√

5/3
)

β n β̂ Bias β̂J,m β̂J,M β̂ Bias β̂J,m β̂J,M

0.10 24 −0.0546 0.01 −0.01 −0.0554 0.05 0.06
48 −0.0272 0.01 −0.01 −0.0277 0.04 −0.02
96 −0.0136 0.02 0.01 −0.0140 0.06 −0.04

192 −0.0068 0.01 0.01 −0.0070 0.05 0.03

0.30 24 −0.0790 0.05 −0.01 −0.0783 0.07 0.04
48 −0.0393 0.02 −0.01 −0.0394 0.05 0.02
96 −0.0198 0.03 0.01 −0.0201 0.07 0.04

192 −0.0098 0.01 0.00 −0.0100 0.06 0.03

0.50 24 −0.1053 0.07 −0.03 −0.1031 0.08 0.01
48 −0.0520 0.02 −0.02 −0.0516 0.05 0.01
96 −0.0260 0.02 −0.01 −0.0262 0.06 0.03

192 −0.0129 0.01 −0.01 −0.0131 0.05 0.03

0.70 24 −0.1365 0.09 −0.04 −0.1329 0.11 0.00
48 −0.0666 0.01 −0.04 −0.0656 0.04 −0.01
96 −0.0328 0.00 −0.04 −0.0327 0.03 0.01

192 −0.0162 −0.01 −0.03 −0.0163 0.03 0.02

0.90 24 −0.1816 0.20 0.06 −0.1765 0.22 0.09
48 −0.0893 0.05 −0.04 −0.0879 0.08 −0.01
96 −0.0425 −0.02 −0.08 −0.0422 0.00 −0.07

192 −0.0204 −0.05 −0.08 −0.0203 −0.03 −0.05

0.95 24 −0.1943 0.23 0.09 −0.1887 0.25 0.12
48 −0.0996 0.12 0.03 −0.0980 0.14 0.05
96 −0.0478 0.03 −0.04 −0.0474 0.05 −0.04

192 −0.0226 −0.05 −0.09 −0.0224 −0.03 −0.08

0.99 24 −0.1975 0.22 0.06 −0.1924 0.24 0.10
48 −0.1060 0.14 0.06 −0.1041 0.16 0.06
96 −0.0551 0.13 0.06 −0.0544 0.14 0.06

192 −0.0274 0.08 0.03 −0.0272 0.09 0.03

Entries in bold denote the minimum (absolute) ratio for each pair of

estimators in each row.
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Table 8

Bias of jackknife estimators as ratio of OLS bias in Model B with

ARCH(1) disturbances

φ = 0.50 φ = 0.90

β n β̂ Bias β̂J,m β̂J,M β̂ Bias β̂J,m β̂J,M

0.10 24 −0.0585 0.15 0.11 −0.0594 0.20 0.18
48 −0.0314 0.17 0.13 −0.0336 0.27 0.23
96 −0.0164 0.17 0.15 −0.0193 0.34 0.29

192 −0.0086 0.19 0.15 −0.0118 0.44 0.41

0.30 24 −0.0907 0.22 0.14 −0.0967 0.31 0.26
48 −0.0498 0.22 0.15 −0.0583 0.38 0.32
96 −0.0269 0.23 0.18 −0.0365 0.47 0.41

192 −0.0146 0.24 0.20 −0.0242 0.56 0.52

0.50 24 −0.1229 0.23 0.13 −0.1329 0.34 0.26
48 −0.0670 0.21 0.14 −0.0803 0.39 0.33
96 −0.0362 0.22 0.15 −0.0509 0.48 0.43

192 −0.0198 0.24 0.17 −0.0342 0.58 0.53

0.70 24 −0.1567 0.22 0.09 −0.1690 0.32 0.21
48 −0.0827 0.17 0.09 −0.0981 0.34 0.29
96 −0.0435 0.18 0.11 −0.0602 0.44 0.39

192 −0.0234 0.20 0.14 −0.0397 0.54 0.50

0.90 24 −0.2008 0.27 0.11 −0.2168 0.35 0.20
48 −0.1014 0.12 0.02 −0.1148 0.25 0.15
96 −0.0494 0.06 −0.01 −0.0621 0.27 0.20

192 −0.0246 0.05 0.01 −0.0363 0.36 0.32

0.95 24 −0.2130 0.28 0.13 −0.2338 0.37 0.23
48 −0.1100 0.15 0.05 −0.1234 0.25 0.14
96 −0.0529 0.06 −0.03 −0.0631 0.21 0.12

192 −0.0253 −0.01 −0.06 −0.0336 0.24 0.18

0.99 24 −0.2149 0.24 0.08 −0.2393 0.34 0.20
48 −0.1144 0.13 0.03 −0.1308 0.24 0.12
96 −0.0583 0.10 0.03 −0.0676 0.20 0.11

192 −0.0288 0.05 0.00 −0.0340 0.16 0.08

Entries in bold denote the minimum (absolute) ratio for each pair of

estimators in each row.
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Table 9

Percentage of negative bias in Model B

εt ∼ N(0, 1) εt ∼ Γ(0.25, 2)

n β̂ β̂J,mb
β̂J,mr

β̂J,Mb
β̂J,Mr

β̂ β̂J,mb
β̂J,mr

β̂J,Mb
β̂J,Mr

β = 0.10

24 60 51 51 54 51 68 59 50 57 55
48 57 50 50 52 50 65 59 54 58 56
96 55 50 50 50 50 61 58 53 57 56

192 54 50 50 50 50 59 56 53 56 57

β = 0.30

24 64 51 51 55 51 71 57 53 57 56
48 60 50 51 52 49 66 57 53 58 56
96 57 49 50 49 49 63 56 55 56 56

192 55 49 50 49 49 60 55 53 55 56

β = 0.50

24 69 51 52 55 50 74 56 53 57 54
48 63 49 50 53 49 68 56 54 57 53
96 59 48 49 49 48 64 54 54 54 54

192 57 49 49 49 49 61 54 54 54 54

β = 0.70

24 76 52 52 55 50 79 55 54 56 53
48 69 49 50 54 48 72 53 52 56 51
96 64 47 49 48 46 66 52 52 52 51

192 60 48 49 48 47 63 52 52 52 51

β = 0.90

24 90 58 58 56 52 90 59 60 56 55
48 83 52 53 55 48 84 54 56 55 51
96 75 46 50 48 45 76 49 53 49 50

192 68 45 47 47 44 69 47 51 48 48

β = 0.95

24 93 58 60 56 53 92 59 62 56 55
48 91 55 57 56 50 91 57 61 56 53
96 83 47 53 48 46 84 50 57 49 52

192 76 44 48 46 43 76 46 52 47 48

β = 0.99

24 95 56 60 55 52 92 57 62 56 55
48 95 55 60 55 51 94 56 65 55 54
96 94 51 57 50 51 94 53 62 52 58

192 92 47 54 49 47 92 49 60 50 54

mb and Mb denote the bias-minimising values of m and M , respectively; mr and Mr

denote the RMSE-minimising values of m and M , respectively.

29



Table 10

Comparison of jackknife with other estimators in Patterson (2007) in

Models B and C

Patterson (2007) Jackknife

β OLS FOBC BS RMA OLS JK(2)

Bias

Model B

0.90 −0.039 −0.002 0.000 −0.006 −0.044 0.001
0.99 −0.050 −0.010 −0.013 −0.017 −0.055 −0.005

Model C

0.90 −0.066 −0.010 −0.007 0.018 −0.070 0.006
0.99 −0.091 −0.032 −0.037 −0.013 −0.095 −0.001

RMSE

Model B

0.90 0.0685 0.0578 0.0592 0.0543 0.0738 0.0779
0.99 0.0668 0.0471 0.0502 0.0435 0.0725 0.0718

Model C

0.90 0.0913 0.0667 0.0690 0.0633 0.0966 0.0961
0.99 0.1072 0.0674 0.0748 0.0525 0.1112 0.1026

Source: Patterson (2007, Table 2); Table 3; Table 6.
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