
Novel Lockstep Technique with Roll-back and
Roll-forward Recovery to Mitigate

Radiation-Induced Soft Errors
Server Kasap, Eduardo Weber Wächter, Xiaojun Zhai, Shoaib Ehsan and Klaus McDonald-Maier

School of Computer Science and Electronic Engineering
University of Essex

Colchester, UK
{server.kasap, eduardo.wachter, xzhai, sehsan, kdm}@essex.ac.uk

Abstract—An attractive choice for implementing radiation
applications is to deploy All-Programmable System-on-Chips
(APSoCs) due to their high-performance computing and power
efficiency merits. Despite APSoC’s advantages, like any other
electronic computer, they are prone to radiation effects. Proces-
sors found in APSoCs must, therefore, be adequately hardened
against ionizing-radiation to become a viable alternative for
harsh environments. This paper proposes a triple-core lockstep
(TCLS) approach to secure the Xilinx Zynq-7000 APSoC dual-
core ARM Cortex-A9 processor against radiation-induced soft
errors by coupling it with a MicroBlaze TMR subsystem in
Zynq’s programmable logic (PL) layer. The proposed strategy
uses software-level checkpointing principles along with roll-back
and roll-forward mechanisms (i.e. software redundancy), and
hardware-level processor replication as well as checker circuits
(i.e. hardware redundancy). Results of fault injection experiments
show that the proposed solution achieved high soft error security
by mitigating about 99% of bit-flips injected into both ARM
cores’ register data.

Index Terms—Lockstep, Reliability, Fault Tolerance, Soft Er-
ror Mitigation, Zynq APSoC, ARM Cortex-A Processor, MicroB-
laze Processor

I. INTRODUCTION

Cleaning up the toxic radioactive waste is one of Eu-
rope’s most critical and complicated environmental remedi-
ation projects, which is estimated to cost £220bn over the
next 120 years [1]. Owing to the extreme adverse effects of
ionizing radiation on biological tissues, cleaning up radioactive
waste inside a nuclear power plant is very risky for humans.
Consequently, employing robots in radiation environments
such as nuclear power plants and nuclear waste disposal
sites is highly motivated and desirable. Electronic circuits in
these robots, however, are still vulnerable to radiation effects.
Henceforth, if robots are to be deployed in these situations,
the radiation effects on electronic circuits must be significantly
mitigated, particularly for operations control processors.

Energetic particles (e.g. alpha particles) or electromagnetic
waves (e.g. gamma rays) striking transistor semiconductor sub-
strates in radiation conditions cause transient error (soft errors)
errors in electronic circuits [2]. Several mission-critical appli-
cations have recently been introduced in All-Programmable

Systems-on-Chips (APSoCs), which combine a programmable
logic (PL) layer with embedded processors in the processor
subsystem (PS) layer. Unfortunately, these highly-integrated
circuits, involving a variety of processor cores, are susceptible
to transient errors. Soft errors impact processors by corrupting
values stored in their memory elements, such as registers,
cache, data and instruction memories, that may cause the
processor to run an operation inaccurately, resulting in silent
data corruptions (SDCs) or functional interruptions (FIs), i.e.
hangs and crashes, in the device. Therefore, implementing
strategies to minimize transient faults caused by radiation
is essential to the implementation of APSoCs in radiation
environments.

In this study, we have developed a fault mitigation tech-
nique, i.e. triple-core lockstep technique (TCLS), to improve
the reliability and availability of the dual-core ARM Cortex-
A9 processor embedded in the Xilinx Zynq-7000 APSoC.
The proposed TCLS method combines the two ARM cores
in the PS with one MicroBlaze core implemented in the PL
to replicate the same application execution. The technique
incorporates software-level checkpoint and roll-back / roll-
forward operations to provide reliability. During checkpoints,
fault-free copies of processor core states are stored in safe
memories, while roll-back and roll-forward operations are
fault recovery mechanisms that restore a processor core to a
previous safe state or to the current safe state of the other core
that happens to be healthy [3]. In a lockstep-based technique,
this is the first time a MicroBlaze core is coupled with hard-
core ARM processors to support roll-forward recovery along
with roll-back recovery, which improves system efficiency in
terms of Mean Workload Between Failures (MWBF).

Furthermore, fault injection experiments that non-intrusively
simulate bit-flips in ARM register files were conducted to
evaluate the fault mitigation effectiveness and performance
of our proposed TCLS technique. Experiments indicate that
the TCLS approach applied to the dual-core ARM Cortex-A9
processor will mitigate about 99% of the bit-flips injected,
while maintaining a timing overhead of as low as 25% under
fault-free conditions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/

Section II summarizes the effects of radiation on processors
in particular, and briefs on an existing fault-mitigation tech-
nique, i.e. the lockstep technique. Section III elaborates on the
proposed TCLS approach, while Section IV describes the fault
injection mechanism employed during validation experiments.
Experimental results are subsequently evaluated in section V,
while conclusions and future plans are drawn in section VI.

II. BACKGROUND

This section motivates the need for soft error protection
by addressing soft error effects in processors. The lockstep
technique is then introduced and clarified as a highly effective
strategy for fault tolerance.

A. Effects of Soft Errors in Processors

Single-Event Upsets (SEUs) [4] can easily influence a pro-
cessor’s data-flow and control-flow, which is a major concern
for security-critical applications. Upsets in values stored in
memory elements can result in data-flow errors caused by
incorrect operations or data manipulation. The execution of an
incorrect operation occurs when the program code is corrupted
by a bit-flip, leading to an incorrect instruction. Furthermore, if
the bit-flip affects data used as a process input, outputs of that
process will most likely be incorrect. For both types of data
flow faults, the application’s final outputs will be unreliable,
known as SDC.

If the SEU affects the control-flow, the processor may
execute the program incorrectly, causing either an application
crash or a processor to hang that is classified as FIs. Control-
flow upheavals can lead to branch errors, such as incorrect
branch creation or deletion and incorrect branch decisions.
The wrong creation is due to a bit-flip that sets a non-branch
instruction to a branch, which leads the program flow to a
wrong address, whereas the wrong deletion occurs when the
branch instruction is converted to another instruction, so the
proper branch can not be taken. A bit-flip in a conditional
branch may also result in an incorrect decision on whether or
not to take a branch. Besides, if the program counter (PC) is
affected by a soft error, the program flow will be disrupted.

B. Lockstep Technique

Hybrid fault-tolerance techniques are those that use
the software-implemented hardware fault tolerance (SIHFT)
method combined with a hardware Intellectual Property (IP)
that performs consistency checks in the processor, making
them effective against both SDCs and FIs. For example,
lockstep is a hybrid fault-tolerance technique based on soft-
ware and hardware redundancy. It uses software-level concepts
of checkpointing and recovery mechanisms (e.g. roll-back
recovery, roll-forward recovery) and hardware-level replication
and checker circuits.

Typically, lockstep technique works by running the same
application simultaneously and symmetrically in identical pro-
cessors that are initialized to the same state, with identical
code and data inputs, during system start-up. As mentioned
above, there is an IP, i.e. a checker module, which monitors

the processors and compares their status periodically to check
for inconsistencies within the lockstep system. To facilitate the
comparison process, the verification points are inserted into
the application program to indicate when the execution of the
application must be locked and the state must be compared. If
there is no discrepancy between processor states, processors
are assumed to be fault-free and a checkpoint operation is per-
formed; otherwise, the lockstep system restores the processors
to a healthy state through a recovery mechanism, e.g. roll-back
operation. At the end of the roll-back operation, processors
would be recovered to a safe, error-free state and then restart
the execution of their application from that point, potentially
wasting valuable run-time. The most significant advantage
of the lockstep technique is its ability to detect and correct
both SDCs and FIs, as opposed to many other fault-tolerance
techniques.

Several researchers have designed and implemented their
version of the lockstep technique, such as those in [5]–[9],
as reported in [10]. As a remarkable piece of work, Oliveira
et al. proposed a dual-core lockstep (DCLS) fault-tolerance
technique to mitigate radiation-induced faults in ARM-A9
processors embedded in Zynq-7000 APSoC using roll-back
recovery [9]. The DCLS system consisted of a dual-core ARM
processor, two BRAM memory, an external SDRAM memory,
and a checker module. The proposed DCLS carried out the
same application in both ARM cores at the same time as
the application was divided into blocks with a verification
point (VP) added between each. Our work has been developed
to expand on the work referred to above by adding a third
processor core, thus transforming it into a triple-core lockstep
approach with support for the roll-forward operation.

III. PROPOSED TRIPLE-CORE LOCKSTEP TECHNIQUE

The proposed TCLS technique is applied to the dual-
core ARM processor along with the MicroBlaze processor
in the Xilinx Zynq-7000 APSoC [11]. This device combines
a 28 nm programmable logic (PL) layer with an integrated
ARM processor on its programmable subsystem (PS) layer.
This paper uses a TUL PYNQ-Z2 design and development
board [12] featuring a wired Zynq XC7Z020-1CLG400C chip,
i.e. the device under test (DUT), for implementation purposes.
Furthermore, the PYNQ-Z2 board incorporates an external 512
MB Double Date Rate 3 (DDR3) SDRAM.

A. Architecture

The proposed system architecture of TCLS consists of two
ARM cores (CPU0 and CPU1), a MicroBlaze core (CPU2),
a module Checker-Injector, three dual-port BRAM memory
blocks, an additional DDR SDRAM memory and other mis-
cellaneous blocks (see Fig. 1). The MicroBlaze core was
implemented in the PL side and is tripled at module level using
the TMR scheme where each input/output port was linked
to a majority vote. This scheme was introduced to protect
the MicroBlaze core from soft errors that may occur in the
configuration memory. This scheme also protects internal core
memories from bit-flips. Besides, all cache levels available

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

D
D

R
3

SD
R

AM
M

em
or

y

SWDT

ARM Core0
(CPU0)

ARM Core1
(CPU1)

GIC

PSUART

AX
I I

nt
er

co
nn

ec
t

AXI BRAM
Controller0

AXI BRAM
Controller1

ECC
AXI BRAM
Controller2

TMR BRAM
Memory0

TMR BRAM
Memory1

BRAM
Memory2

TMR
Checker-Injector

Module

TMR
MicroBlaze

(CPU2)

Concat

Inj0 Inj1

PL

Zynq

AXI
SmartConnect

Fig. 1. Block diagram of the proposed triple-core lockstep technique (TCLS)

for both ARM and MicroBlaze processor were disabled to
improve device reliability [13].

As illustrated in Fig. 1, each ARM and MicroBlaze core
is linked to its own private dual-port BRAM memory used to
store the corresponding core application data and processor
context. Processor cores, however, share external SDRAM
memory that stores program instructions for each core at
different locations. These three BRAM memory blocks are
located in the PL portion of Zynq APSoC and are accessed
by an individual AXI BRAM controller through an Advanced
eXtensible Interface (AXI) interconnect block by both ARM
cores. However, the MicroBlaze core can only access its
own allocated BRAM memory through a private AXI BRAM
controller (not shown in Fig. 1). Notice that BRAM Memory0
and BRAM Memory1 were secured against soft errors using
TMR, while Error-Correcting Code (ECC) circuitry [14] was
applied to both BRAM controllers associated with BRAM
Memory2 for the same reason.

As shown in Fig. 1, the Checker-Injector module is attached
to the second ports of BRAM Memory0 and BRAM Memory1
and has to objectives: firstly, to monitor the execution of
the lockstep and verify the accuracy of CPU0 and CPU1
at each step; secondly, to inject faults into the system for
testing purposes. This module is a custom-built IP which is
implemented in Zynq APSoC’s PL side; it is also protected
against soft errors using TMR. Finally, though all of our
system’s PL components are clocked at ≈ 91 MHz, the PS
dual-core ARM processor operates at 650 MHz.

B. Methodology

The proposed lockstep technique operates by running the
same application concurrently in all three cores, where the
application is partitioned into code execute blocks, i.e. por-
tions of the original program code combined with redundant
software code, i.e. consistency check, checkpoint and recovery
routines. There is a verification point (VP) located between
each code block. Also, a VP is positioned at the beginning

of the program code such that the number of VPs equals the
number of execution blocks plus one.

Fig. 2 displays functional block diagram for the proposed
TCLS technique operating under fault-free conditions. When
the program execution hits a VP on an ARM core, the status
of that specific core, which is a signature reflecting the actual
CPU state, is written on its corresponding BRAM memory
and then the execution is locked on the core. During this lock,
the Checker-Injector module, also called ChkInj IP, creates
an interrupt for each core, i.e. CPU0 and CPU1, through the
General Interrupt Controller (GIC) in Fig. 1, to allow access
to both ARM core registers. Subsequently, first output results
and then the register files of CPU0 and CPU1 are checked
and compared by the Checker-Injector module as indicated in
Fig. 2. If no difference is detected between the outputs and the
register values of CPU0 and CPU1, the device is deemed to
be in a safe state, and a new interrupt is created individually
by the Checker-Injector module for CPU0 and CPU1 to start a
checkpoint operation and save the context of the ARM cores,
which is further explained in the subsection III-C.

Init VP0 Block1 VP1 Block2 VP2

Init CKR Wait CKR Wait CKR

Init VP0 Block1 VP1 Block2 VP2

Init Block1 O/P Block2 O/P

CPU0

ChkInj
IP

CPU1

CPU2

BlockN VPN End

Wait

BlockN

BlockN

VPN

O/P

CKR End

End

End

time

Fig. 2. Functional block diagram for the proposed TCLS technique (Init =
Initialization, CKR = Checker)

However, if a mismatch is found in the output results of
CPU0 and CPU1, the MicroBlaze core outputs, i.e. CPU2,
are accessed for the current VP in their respective BRAM
memory for comparison with the corresponding outputs of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

Reset Recovery
counter

Read BRAM
Memories

CPU0 VS CPU1
Status Match? no

yes

CPU0 VS CPU1
Outputs Match?

CPU0 VS CPU1
Registers Match?

yes

Generate INT
for Recovery

no

no

Generate INT
for Checkpoint

Reset Recovery
counter

Increment
Recovery counter

write Flag
to BRAMS

Reset Watchdog
Timer

Watchdog Timer
Over? yes

no

Start

yes

Fig. 3. Process flowchart for the Checker-Injector module

the two ARM cores. If CPU2 outputs match the output of
one of the ARM cores, then the core with matching outputs
will be considered safe and the other faulty. In that case, the
Checker-Injector module must produce an interrupt to retrieve
the defective ARM core using the roll-forward mechanism
discussed in subsection III-D. However, if the output results
of neither CPU0 nor CPU1 match those of CPU2, both ARM
cores will be recovered using the roll-back method (see subsec-
tion III-D) following an interruption by the Checker-Injector
module. While the MicroBlaze core operates synchronously
with CPU0 and CPU1 in a lock-step fashion, no checkpoint
or recovery operation is performed particularly for it.

Note that when a processor core is interrupted, the following
steps are performed in the specified sequence: I) the actual
thread being executed is paused; II) the processor core register
file, i.e. context, is saved in the corresponding stack memory;
III) the assigned interrupt routine is executed to handle the
interrupt; IV) the saved context is restored by the stack at the
end of the interrupt routine; V) the previous thread begins its
execution from the stage it left off. When executing interrupt
routines, both ARM cores are switched from IRQ mode to the
privileged System mode that uses the same registers as User
mode [15]. This is a critical step in enabling access to the
same register data used during normal program execution.

C. Consistency Check and Checkpoint Implementations

The Checker-Injector module is a special-purpose IP de-
signed to snoop the two ARM cores by interrupting them
and accessing their respective BRAM memories. This module
exhibits two operating modes: In the first mode, it checks and
compares the execution of CPU0 and CPU1, and takes one of
the remedial measures if any discrepancy is found between the
cores, as shown in Fig. 3, depending on the current value of
Recovery Counter (see Table I); the second mode of operation

relates to the fault injection described in section IV. Note that
it can be configured to operate in the first mode alone, or both
modes simultaneously.

TABLE I
RECOVERY METHOD OPTIONS

Recovery Counter Value Recovery Method

0 Roll-Forward or Roll-Back
1 Roll-Back First
2 Application Reset
3 Soft System Reset

a) Consistency check operation: As stated earlier, con-
sistency checking is required when processor cores enter a
VP to ensure they are in the right state. To facilitate the
register consistency test process, ARM cores are independently
interrupted during which both ARM cores’ register files are
stored in their respective stack memories (see step II in
subsection III-B). Following this step, the interrupt routine spe-
cialized for checkpoint operation is performed independently
on CPU0 and CPU1, at stage III, which accesses the processor
core’s stack memory and duplicates the values stored on the
stack to a specific location within the core-associated BRAM
memory. Then, the Checker-Injector module accesses these
positions on BRAM memories allocated to CPU0 and CPU1
to compare and detect any inconsistencies. On the other hand,
comparisons for processor core outputs are readily applicable,
as results provided by an ARM core are always stored at
known locations on its corresponding BRAM memory.

The module Checker-Injector includes a watchdog timer to
ensure that the program execution does not hang in either of
the code blocks due to a fault occurring in either ARM cores.
At the beginning of each code block, this timer is configured
with a suitable time. If both the ARM cores, i.e. CPU0 and
CPU1, do not enter the same VP before the allocated time
expires, the Checker-Injector module will perceive this as
a system inconsistency, thus triggering one of the recovery
mechanisms available (see Fig. 3).

b) Checkpoint operation: When the consistency between
CPU0 and CPU1 is verified, the Checker-Injector module
initiates a checkpoint operation to preserve compatible states
(or contexts) of ARM processor cores using the interrupt
mechanism. In the following section, it is presumed that the
context of an ARM core contains general-purpose registers
(i.e. R0-R12), the stack pointer (i.e. SP or R13), the link
register (i.e. LR or R14) and the program counter (i.e. PC
or R15) within the processor core register file. Note that
application data stored in BRAMs are not used as part of the
processor context in the checkpointing phase, as these BRAM
blocks have already been protected against soft errors.

As mentioned above, the ARM cores are interrupted in-
dividually to facilitate the checkpoint process where these
cores’ register files are stored in stack memories. Subsequently,
checkpoint-related interrupt routines triggered on CPU0 and
CPU1 individually start accessing processor cores’ stack mem-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

ories to copy the register values to certain positions within the
respective BRAM memories where they are stored until the
next checkpoint.

D. Roll-back and Roll-forward Implementations

If the Checker-Injector module detects a mismatch during
the consistency check process, one of the available recovery
options will be activated depending on the current value of the
recovery counter in the Checker-Injector module, as shown
in Table I. The recovery counter is increased each time a
recovery operation is triggered (see Fig. 3); therefore, if an
applied recovery method does not help to achieve a secure
and consistent state among ARM cores (at which point a
new checkpointing occurs), the next recovery method will be
selected and applied in the given order. When the recovery
counter has the value of zero, either a roll-forward operation
or a roll-back operation is performed depending on the essence
of the mismatch.

a) Roll-forward operation: If a discrepancy is found in
the output results of CPU0 and CPU1, but the outputs of
CPU2 match the outputs of either ARM core, i.e. CPU0 or
CPU1, then the core with matching outputs is considered safe,
whilst the other core is deemed defective. In this case, the
Checker-Injector module initiates the roll-forward mechanism
to recover the defective ARM core. Inside roll-forward oper-
ation, the contexts of ARM cores are accessed individually
using the interrupt function, as is the case for checkpoint
operation. During the dedicated roll-forward interrupt routine,
stack memory locations of the faulty ARM core storing the
relevant register file is overwritten with the corresponding
register values, i.e. context, of the healthy ARM core after
some modifications required by the fact that ARM cores work
on different program and data memory locations. When the
defective ARM core restores the transferred context from its
stack memory to its registers at interrupt mechanism stage
IV, it will be restored to the same safe state as the healthy
processor. Thus, there is no need to return to a previous point
and re-execute any previous code block.

b) Roll-back operation: If the roll-forward operation is
not feasible, because the output results of neither CPU0 nor
CPU1 match those of CPU2, both ARM cores will be recov-
ered using the roll-back operation initiated by the Checker-
Injector module. A roll-back operation is deployed to restore
the device to a previous safe state (or context) saved in the
appropriate BRAM memory during one of the checkpoints,
where the interrupt function is used to individually access the
contexts of ARM cores. As the roll-back interrupt routine is
executed, specific stack memory locations of CPU0 and CPU1
allocated to store register files are overwritten with the corre-
sponding register values, i.e. context, stored in aforementioned
BRAM memory locations. Once an ARM core restores its
context from the appropriate stack memory at the interrupt
mechanism stage IV, it will be restored to a safe, healthy state.
In this case, the program execution in both ARM cores returns
to a previous verification point and subsequently re-executes
the appropriate code block.

Under normal conditions, roll-back will return the device
to the immediately preceding checkpoint. Nonetheless, this
checkpoint might not be a safe state for some reason, so
recovery will be ineffective. In such a scenario, recovery
is made at the first checkpoint. This operation is called
first-recovery roll-back. When this does not work either, the
checkpoint at the very start of the program will be the next
destination for the recovery process; this procedure is called
an application reset. If due to a hang or crash in one of the
ARM cores, neither roll-forward nor roll-back operations have
succeeded in restoring the system, the only remaining option is
to apply a system-wide soft reset through the system watchdog
timer (SWDT) [11].

IV. FAULT INJECTION TECHNIQUE

To evaluate the efficiency of the soft error mitigation
provided by our TCLS approach, we have adopted a fault
injection technique that emulates hardware faults by injecting
bit-flips into the ARM core registers. These target registers
are general-purpose (i.e. R0-R12) and special-purpose registers
(i.e. SP, LR, PC) located in the register files of the ARM
cores. The fault injection strategy adopted in our work is the
same as in [16], i.e. the interrupt mechanism is used to be
minimally intrusive. Fault injection experiments are carried
out in the same environment as those presented in Fig. 1 with
the addition of a host computer connected to the PS of the
Zynq APSoC via the UART peripheral core.

At the beginning of the execution of the application, the
ARM core CPU0 configures the Checker-Injector module with
a random injection time, a random code block number, and a
random target location containing the number (0 or 1) of the
ARM core under consideration and the number (from 0 to
15) of the register in which the error is injected along with
the number (from 0 to 31). Note that the randomly evaluated
injection time is relative to the run time of the randomly
selected code block. A bit-flip can, therefore, be injected at
any time during the code block.

When the Checker-Injector module is launched after its
configuration, it waits until the selected code block is reached,
and then starts counting the clock cycles with a timer until
the specified injection time is reached. When the time is
up, the Checker-Injector module interrupts both ARM cores
individually. However, the interrupt routine customized for the
fault injection only applies the XOR mask to the target register
at the selected ARM core, thus flipping the specified bit in the
register. During our experiments, we classified errors occurring
based on the scheme provided in Table II.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section presents an analysis of the implementation
results and describes the results of timing and fault injection
performance experiments performed on TCLS-based design,
TCLS design. We selected benchmark applications performing
matrix multiplications, which are widely used in real-life
applications [17], to evaluate the timing and fault-injection
performance of the proposed TCLS approach. Within each

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

TABLE II
ERROR CLASSIFICATION FOR FAULT INJECTION EXPERIMENTS

Classification Description

UNACE Ineffective faults
SDC Output result errors
Hang System hangs/crashes

Mitigated Faults w/ RF Correction by roll-forward operation
Mitigated Faults w/ RB Correction by roll-back operation

Mitigated Faults w/ RBF Correction by roll-back first operation
Mitigated Hangs/Crashes Recovery by soft system reset

benchmark application, several matrix multiplication opera-
tions are performed, in a bare-metal environment, on different
input matrices consisting of 32-bit signed data, where each full
matrix multiplication operation corresponds to one execution
block surrounded by VPs.

In addition to the TCLS design, three other design versions
have been set up, namely Unhardened design, Unprotected de-
sign and Dual-Core Lockstep (DCLS) design (DCLS design).
The Unhardened Design version will run its applications on
CPU0 only. It has therefore no protection against soft errors. In
addition, the Unprotected design version is equivalent to TCLS
design with all protection mechanisms disabled, whereas the
DCLS design version is comparable to the design in [9].

A. Timing Performance Analysis

Fig. 4 presents timing figures in milliseconds (ms) as re-
quired by Unhardened Design and TCLS Design to perform the
above benchmarks, in a fault-free scenario, for five different
matrix sizes and three different application sizes in terms of the
number of block partitions, by providing one corresponding
plot for each application size for both designs. Note that for
TCLS design, the compiler optimization level O3 was used for
the subroutines of the benchmark programs evaluating matrix
multiplication operations to boost performance; on the other
hand, the level O0 was used for the remaining parts of the
benchmarks to disable any optimization in the source code
that might corrupt the lockstep-based execution. However,
the benchmark programs were compiled entirely with O3 for
Unhardened Design to facilitate a realistic comparison.

Timing performance overheads with TCLS design are con-
siderably higher when the matrix size (i.e. block size) is very
small, e.g. overheads are 96.4%, 122.9% and 155.9% for
applications with 12, 6 and 3 blocks, respectively when the
matrix size is 20 × 20. However, as the size of the block
increases, time overheads tend to fall significantly, as low as
25.7% for a matrix size of 60 × 60. This point leads us to
the conclusion that the timing efficiency in TCLS design is
achieved when the execution time of the useful computation
(e.g. matrix multiplication) is a high proportion within the
overall block execution time.

B. Fault-Injection Performance Analysis

An intensive fault injection campaign was carried out in
Xilinx Zynq-7000 APSoC mounted on the PYNQ-Z2 board for

three design configurations to evaluate the soft error resilience
of the proposed TCLS approach. Tables III, IV and V
present the results for unprotected design, DCLS design and
TCLS design, respectively. Over 3000 runs of 50× 50 matrix
multiplication benchmarks with an application size of 12
blocks were performed per design. The tables in question show
that the rates for SDCs and Hangs are quite high, i.e. 10.34%
and 30.85%, respectively, for Unprotected design, while DCLS
design and TCLS design were able to significantly lower SDCs
and Hangs to as low as 0.10% and 0.86%, respectively, due
to their possession of protection mechanisms.

TABLE III
FAULT INJECTION RESULTS FOR 50× 50 MATRIX MULTIPLICATION WITH

NO PROTECTION ENABLED (UNPROTECTED DESIGN)

Count Rate

UNACE 2183 58.81%

SDC 384 10.34%

Hang 1145 30.85%

Total 3712

TABLE IV
FAULT INJECTION RESULTS FOR 50× 50 MATRIX MULTIPLICATION WITH

NO ROLL-FORWARD CORRECTION ENABLED (DCLS DESIGN)

Count Rate

UNACE 816 26.05%

SDC 3 0.10%

Hang 27 0.86%

Roll-Back 1613 51.50%

Roll-Back First 16 0.51%

Soft System Reset 657 20.98%

Total 3132

TABLE V
FAULT INJECTION RESULTS FOR 50× 50 MATRIX MULTIPLICATION WITH

FULL PROTECTION ENABLED (TCLS DESIGN)

Count Rate

UNACE 811 26.73%

SDC 3 0.10%

Hang 28 0.92%

Roll-Forward 194 6.39%

Roll-Back 1303 42.95%

Roll-Back First 50 1.65%

Soft System Reset 645 21.26%

Total 3034

Note that the total application rate for roll-back and roll-
back first operations is not the same for these two designs,
which is 52.0% for DCLS design and 44.6% for TCLS design.
This drop of 7.4% is due to the provision of a roll-forward
feature in TCLS design, which is very beneficial in reducing
the overall run-up time of applications exposed to radiation-
induced faults. This reduction in execution time will result in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

20× 20 30× 30 40× 40 50× 50 60× 60
0

5

10

15

20

25

30

35

40

Matrix Size

E
xe

cu
tio

n
Ti

m
e

(m
s)

Unhardened design - 12 Blocks
TCLS design - 12 Blocks

Unhardened design - 6 Blocks
TCLS design - 6 Blocks

Unhardened design - 3 Blocks
TCLS design - 3 Blocks

Fig. 4. Matrix multiplication execution times for different application and matrix sizes

a higher MWBF [18]; more data can be processed before a
fatal error, such as a hang or crash, occurs when a recoverable
error is handled more quickly by a roll-forward operation than
by a roll-back operation.

VI. CONCLUSION

Processors found in APSoCs must be adequately hardened
against ionizing radiation to become a viable alternative for
harsh environments. This paper proposes a triple-core lockstep
(TCLS) approach to secure the Zynq’s dual-core ARM Cortex-
A9 processor in the Xilinx Zynq-7000 APSoC from radiation-
induced soft errors by coupling it with a Zynq’s programmable
logic (PL) subsystem to enable roll-forward recovery along
with roll-back recovery.

Fault injection tests indicate that the given method has
improved the reliability and efficiency of the hard-core ARM
processor with a high rate (about 99%) of corrected and
recovered faults, while the timing overhead is as low as 25%
under fault-free conditions. Moreover, implementing the roll-
forward operation enables a 7% higher MWBF. As future
research, we plan to further test our approach’s effectiveness
with other benchmark applications.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Physical
Sciences Research Council through grants EP/R02572X/1 and
EP/P017487/1.

REFERENCES

[1] “NDA,” https://www.gov.uk/government/publications/nuclear-provision-
explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-
provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy.

[2] R. Baumann, “Soft Errors in Advanced Computer Systems,” IEEE
Design Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.

[3] J. Arm, Z. Bradac, and R. Štohl, “Increasing Safety and Reliability of
Roll-back and Roll-forward Lockstep Technique for Use in Real-Time
Systems,” IFAC-PapersOnLine, vol. 49, pp. 413–418, 12 2016.

[4] S. Kasap, E. Weber Wächter, X. Zhai, S. Ehsan, and K. Mcdonald-
Maier, “Survey of Soft Error Mitigation Techniques Applied to LEON3
Soft Processors on SRAM-Based FPGAs,” IEEE Access, vol. 8, pp.
28 646–28 658, 2020.

[5] H. H. Ng, “PPC405 Lockstep System on ML310,” Xilinx Inc., San Jose,
CA, USA, XAPP564 Application Note, 2007.

[6] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New
Techniques for Improving the Performance of the Lockstep Architecture
for SEEs Mitigation in FPGA Embedded Processors,” IEEE Transac-
tions on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug 2009.

[7] M. Violante, C. Meinhardt, R. Reis, and M. Sonza Reorda, “A Low-Cost
Solution for Deploying Processor Cores in Harsh Environments,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2617–2626,
July 2011.

[8] H. Pham, S. Pillement, and S. J. Piestrak, “Low-Overhead Fault-
Tolerance Technique for a Dynamically Reconfigurable Softcore Proces-
sor,” IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179–1192,
June 2013.

[9] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A.
Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira,
“Lockstep Dual-Core ARM A9: Implementation and Resilience Analysis
Under Heavy Ion-Induced Soft Errors,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1783–1790, Aug 2018.

[10] E. W. Wächter, S. Kasap, X. Zhai, S. Ehsan, and K. McDonald-
Maier, “Survey of lockstep based mitigation techniques for soft errors in
embedded systems,” in Computer Science and Electronic Engineering
Conference (CEEC 2019), 2019, pp. 124–127.

[11] “Zynq-7000 SoC,” Xilinx Inc., San Jose, CA, USA, UG585 Technical
Reference Manual, 2018.

[12] “TUL PYNQ-Z2 board,” http://www.tul.com.tw/ProductsPYNQ-
Z2.html.

[13] L. A. Tambara, P. Rech, E. Chielle, J. Tonfat, and F. L. Kastensmidt,
“Analyzing the Impact of Radiation-Induced Failures in Programmable
SoCs,” IEEE Transactions on Nuclear Science, vol. 63, no. 4, pp. 2217–
2224, Aug 2016.

[14] G. C. Clark and J. B. Cain, Error-Correction Coding for Digital
Communications, 1st ed. New York, NY, USA: Springer Publishing
Company Inc., 1981.

[15] “ARM Cortex-A Series Programmer’s Guide v4.0,” ARM Inc., Cam-
bridge, UK, 2013.

[16] Á. B. de Oliveira, L. A. Tambara, and F. L. Kastensmidt, “Exploring
Performance Overhead Versus Soft Error Detection in Lockstep Dual-
Core ARM Cortex-A9 Processor Embedded into Xilinx Zynq APSoC,”
in International Symposium on Applied Reconfigurable Computing (ARC
2017), April 2017, pp. 189–201.

[17] H. Quinn, W. H. Robinson, P. Rech, M. Aguirre, A. Barnard, M. Des-
ogus, L. Entrena, M. Garcia-Valderas, S. M. Guertin, D. Kaeli, F. L.
Kastensmidt, B. T. Kiddie, A. Sanchez-Clemente, M. S. Reorda, L. Ster-
pone, and M. Wirthlin, “Using Benchmarks for Radiation Testing of
Microprocessors and FPGAs,” IEEE Transactions on Nuclear Science,
vol. 62, no. 6, pp. 2547–2554, 2015.

[18] J. Lienig and H. Bruemmer, Fundamentals of Electronic Systems Design.
Cham: Springer International Publishing, 2017, ch. Reliability Analysis,
pp. 45–73.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020

