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networks. In recent years, agent-dependent multi-level confidence bounds have been incorporated into the 
model, which mirror the complicated physiological and psychological factors such as the disparity of people’s 
knowledge, experience, and personality; see e.g.12–15. The persuasion capacity of the mass media has also been 
found to play a role in opinion formation16. It is worth noting that most of them are based on numerical simula-
tions with only a few exceptions17–20 due to the complicated nonlinear dynamics involved.

The opinion negotiation processes studied in the above works take place on networks containing edges of the 
same type and at the same temporal and topological scale. However, the real individuals in a society are usually 
simultaneously connected in multiple ways, which can make a non-additive effect on network dynamics21,22. 
People in a society, for example, interact through diverse relationships: friendship, partnership, kinship, vicin-
ity, work-related acquaintanceship, to name just a few. Admittedly, a natural and more appropriate description 
of such systems can be given by using multiplex networks, where the networks are made up of different layers 
that contain the same nodes and a given type of edges in each layer. Some recent works have pointed out that 
multiplexity can result in intrinsically different dynamics from their equivalent single-layer counterparts. The 
irreducibility of the Ising and voter models on multiplex networks has been emphasized in23,24. Opinion compe-
tition dynamics on duplex networks has been studied in25, where coexistence of both opinions in the two layers 
has been found possible using mean-field approximation. In the context of culture dissemination, multiplexity 
is found to generate a qualitatively different dynamical behaviour for the Axelrod model, which produces a new 
stable regime of cultural diversity26. In addition to single information spreading process on multiplex networks, 
the coupling between different types of contact processes, such as opinion formation and disease spreading, has 
been investigated in the multiplex networks; see e.g.27–29. Synchronisation processes between different layers in 
multiplex networks featuring the interplay between distinctive topological structures and dynamics have been 
reported recently in30,31. An updated survey towards the spreading processes and opinion formation on multiplex 
networks can be found in32. To the best of our knowledge, little attention has been paid to the opinion evolution 
in the Deffuant model (featuring bounded confidence) in the context of multiplex networks. In33, the author first 
examined the Deffuant model in a multiplex network, which is modeled by an infinite line with multiple layers. 
The critical confidence threshold is analytically identified through probabilistic analysis and verified by numerical 
simulations.

In this paper, we aim to moving a step further in the direction of33 by considering both general initial opinion 
distributions and general multiplex networks. In the standard Deffuant model, the initial opinions are assumed 
to be independently and uniformly distributed in the interval [0, 1]. General initial distributions have been 
independently introduced in19,34. We first address the opinion formation with general initial distributions over 
1-dimensional multiplex networks after introducing our model in the Model description section. We then gener-
alise our results to higher-dimensional multiplex lattices and, to general multiplex networks satisfying some reg-
ularity conditions. We derive analytical expressions for the critical confidence bound, where both the structural 
multiplexity and the initial distribution play essential role. Interestingly, we show that multiplexity essentially 
impedes consensus formation in the situations when the initial opinion configuration is within a bounded range. 
On the other hand, if a substantial divergence exists in the initial opinions, whether it is bounded distributed or 
not, multiplexity is found to play no role in determining the critical confidence level. Extensive numerical simula-
tions are provided with both constant and degree-dependent convergence parameters, and the paper is concluded 
with some open problems in the Discussion section.

Methods
Model description. The class of models considered here are examples of interacting particle systems35 com-
bining features of multiplex networks. Given  ∈ , a multiplex network is a pair G = (V, E), made of  layers G1, 
G2, …, 



G  such that each layer is a simple graph Gi = (V, E) with node set V and edge set ⊆ ×E V Vi  for 
Ii 1, ,= … . Here, the node set V is shared by all layers and it can be either finite or infinite. The edge set of G 
consists of  types of edges: E Ei i1

∪= = . From the perspective of graph theory, each edge between two nodes u 
and v in graph G is a multiple edge consisting of at most  parallel edges, each of which belongs to a respective 
layer Gi. We assume that each layer Gi has bounded degrees. Hence, each agent in the network G has a bounded 
number of neighbours and at most  types of relationship. Without loss of generality, we may assume that the 
network G is connected since one could consider connected components separately in what follows.

In the Deffuant model8,9, two agents compromise according to the following rules: initially (at time t = 0), each 
agent ∈u V  is assigned an opinion value X u( )0 ∈  identically and independently distributed (i.i.d.) following 
some distribution  X( )0 . In the standard case, X( )0  is the uniform distribution over [0, 1]. Independently of this, 
in the ith layer, each edge ∈e Ei is independently assigned a Poisson process with rate λpi with ∈p (0,1)i  and 
λ > 0 for = …i 1, , . We assume that ∑ ==

 p 1i i1  without loss of generality. These Poisson processes defined on 
the edges in E govern the evolution of opinions. Specifically, let Xt(u) be the opinion value of agent u at time t ≥ 0, 
which remains unchanged as long as no Poisson event happens for any edge in E incident to u. Let d > 0, α1 = 1 
and α ∈ (0, 1)i  for = …i 2, , . When at some time t the Poisson event occurs at an edge = ∈e u v E{ , } i for some 
i, such that the pre-meeting opinions of the two agents are =− → −X u X u( ) : lim ( )t s t s  and =− → −X v X v( ) : lim ( )t s t s , 
we set

μ α
=






+ − | − | ≤− − − − −

−
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formation with i.i.d. uniform initial distribution in [0, 1] is d 1/2c = 17,18 and later extended to the multiplex 
1-dimensional networks in33.

To appreciate this, we first present the results for the case  = 2 (see Theorem 1) and then extend it to the 
general multiplex case (see Theorem 2), as illustrated in Fig. 1. To this end, we take = 2, =p p1, and 2α α= . 
With these assumptions, the main result concerning the critical confidence threshold for the 1-dimensional 
duplex model reads as follows.

Theorem 1. (1-dimensional duplex networks) Consider the above continuous opinion model ( = 2) on  with 
parameters λ >d, 0, (0, 1/2]μ ∈ , and α ∈p, (0, 1) with α > μ.

 (a) Suppose that the initial opinion follows some bounded distribution X( )0  with expected value E X( )0 , whose 
support is contained in the smallest closed interval [a, b]. Let ≥h 0 be the length of some maximal open 
interval I a b[ , ]⊂  satisfying ∈X IE( )0  and X IP( ) 00 ∈ = . Then, α= − + − −d X a p pmax {(E )( (1 ))c 0

1, 
α− + − −b X p p h( E )( (1 )) , }0

1  is the critical confidence threshold in the following sense:

•	 If d b ad min { , }c< − , then with probability 1, there will be (infinitely many) finally blocked edges, namely, 
e u u{ , 1}= +  satisfies | − + |>X u X u d( ) ( 1)t t  for all t large enough;

•	 If > −d b ad min { , }c , then with probability 1, X u X u X( ) : lim ( ) E( )t t 0= =∞ →∞  for every u ∈ .

 (b) Suppose that the initial opinion distribution X( )0  is unbounded but its expectation exists in the sense of 
XE( ) { }0 ∪∈ ±∞ . Then, for any d > 0, with probability 1, there will be (infinitely many) finally blocked 

edges, namely, e u u{ , 1}= +  satisfying | − + | >X u X u d( ) ( 1)t t  for all t large enough.

Before proceeding with the proof, we provide a couple of remarks. Firstly, when the initial distribution X( )0  is 
bounded and < −d d b amin { , }c , we will show that ∪| − + | ∈ −X u X u d b a{ ( ) ( 1) } {0} [ , ]t t  for sufficiently 
large t and all ∈u , and hence, the integers split into (infinitely many) finite clusters of neighbouring agents 
asymptotically agreeing with each other, with no global consensus achieved. Secondly, in the special case of X( )0  
being the standard uniform distribution in [0, 1], we readily reproduce Theorem 1 in33. A general  X( )0  has been 
considered both theoretically and via simulations in19,34 for simplex networks (i.e.,  = 1). Theorem 1 can be 
thought of as an extension to multiplex networks. Finally, the assumption α μ>  is required here for technical 
reasons as in33, which does not have a counterpart in the case of simplex networks where μ only influences the 
convergence time of the negotiation process.

The crucial technique adopted here is the SAD process introduced in18. The SAD process and its basic properties 
are briefly reviewed in the Method section. Another key concept from that paper is the flat-points concept. To 
accommodate the general distributions considered in the present paper, a slight extension of the definitions 
therein can be provided as follows. Given ε > 0 and the initial opinion configuration ∈X v{ ( )}v0  with finite expec-
tation, a node ∈ u  is said to be an ε-flat point to the right if for all n 0≥ ,

∑ ε ε
+

∈ − + .
=

+

n
X v X X1

1
( ) [E( ) , E( ) ]

(7)v u

u n

0 0 0

Figure 1. Schematic illustration of the theoretical results in the paper.
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Likewise, ∈u  is said to be an ε-flat point to the left if for all ≥n 0,

∑ ε ε
+

∈ − +
= −n

X v X X1
1

( ) [E( ) , E( ) ],
(8)v u n

u

0 0 0

and two-sided ε-flat point if for all ≥n m, 0,

∑ ε ε
+ +

∈ − + .
= −

+

n m
X v X X1

1
( ) [E( ) , E( ) ]

(9)v u n

u m

0 0 0

We also define that u ∈  is an ε-f lat point to the right at time t if for all n 0≥ , 
n v u

u n1
1 ∑+ =

+  ∈X v( )t
ε ε− +X X[E( ) , E( ) ]0 0 . Similar definitions for ε-flat point to the left at time t and two-sided ε-flat point at time t 

can be given.

Proof of Theorem 1. (a) Along the lines in [34, Section 2], we divide the proof of statement (a) into three steps.
Step 1. Suppose that the initial opinion distribution X( )0  is confined in [0,1] with expected value XE( ) 1/20 = . 

Moreover, for any ε > 0, we assume that ε ε∉ − >XP( [ ,1 ]) 00  and ε ε− ≤ ≤ + >XP(1/2 1/2 ) 00  hold. Then 
we claim that p pd [2( (1 ))]c

1α= + − −  is the critical confidence threshold in the same sense as in Theorem 1(a) 
(with a 0=  and =b 1).

To prove this claim, we need to show that the essential ingredients in the proof of Theorem 1 in33 still hold 
true. We mention here an obvious correction that the critical threshold separating the subcritical and supercritical 
regimes therein should be dmin { ,1}c  instead of dc. For the subcritical regime, note that the fact that the mass is 
around the expected value, i.e., XP(1/2 1/2 ) 00ε ε− ≤ ≤ + > , implies that ε − =uP( is flat to the right)

uP( is flat to the left)ε −  >0 for all ε > 0 and u ∈  by similarly applying the coupling trick and the strong law 
of large numbers. At time t when a Poisson event occurs, define a Boolean random variable At by At = 1 with 
probability p and At α=  with probability 1 − p so that the opinion model constitutes a marked Poisson process 
with rate λ33. We can then mimic the proof for Propositions 1 and 2 in33 verbatim, which employs the condition 

ε ε∉ − >XP( [ , 1 ]) 00  for any 0ε > .
For the supercritical regime, we need to note that the property P(u is two-sided ε-flat) > 0 for any ε > 0 and 

∈ u  can now be established by keeping in mind that ε ε− ≤ ≤ + >XP(1/2 1/2 ) 00  following the same rea-
soning as in18; see also34. Now the proof for the supercritical regime in33 can be used, which concludes the proof 
of Step 1.

Step 2. Suppose that the initial opinion distribution  X( )0  is again confined in [0,1] with expected value 
=XE( ) 1/20 . For any ε > 0, as in Step 1 we assume that XP( [ ,1 ]) 00 ε ε∉ − > . Moreover, assume that there 

exists some maximal open interval I [0, 1]⊂  of length h satisfying ∈ I1/2  and X IP( ) 00 ∈ = . Then, we claim 
that α= + − −d p p hmax {[2( (1 ))] , }c

1  is the critical confidence threshold in the same sense of Theorem 1(a) 
(with a = 0 and b = 1).

When <d h, thanks to the assumption ε ε∉ − >XP( [ ,1 ]) 00 , we have initial opinions both below and above 
1/2 with probability 1. Therefore, any edges which are blocked due to initial incident opinions lying on different 
sides of the gap I will remain blocked for all t. By ergodicity, there will be infinitely many such blocked edges, and 
thus consensus can not be reached in this case.

When d h> , we need to show that

u t u tP( is flat to the right at time ) P( is flat to the left at time ) 0 (10)ε ε− = − >

for all 0ε > , ∈ u  and for some sufficiently large t, since an arbitrary flat point at time t = 0 no longer exists due to the 
gap. Following the reasoning of [34, Section 2], one can then establish Eq. (10). The only minor change that has to be 
made in order to accommodate the multiplexity is that the involved marked Poisson processes has  
rate p p(1 )λ λ λ+ − =  instead of a unit rate, which does not affect the validity of the proof. Now, as in Step 1,  
we can mimic the proof of Propositions 1 and 2 in33 verbatim to settle the subcritical case. Accordingly, 
d p p hmax {[2( (1 ))] , }c

1α≥ + − − . Next, the two-sided ε-flatness at time t for any ε > 0 can be established similarly 
as in [34, Section 2]. Hence, the argument in the supercritical case in Step 1 leads to α= + − −d p p hmax {[2( (1 ))] , }c

1 , 
completing the proof of Step 2.

Step 3. Now, everything is in place to prove Theorem 1(a) in its full generality.
Define = − −c X a b EX: max {E , }0 0  and perform the linear transformation  − +x x X c( E )/2 1/20  to the 

dynamics of our multiplex Deffuant model. Using the result in Step 2 and the fact that the dynamics stays 
unchanged with respect to translations of the initial distribution and that parameter d can be re-scaled as per a 
scaling transformation of the initial distribution in order to recover the identical dynamics, we have

d c p p h c
X a p p b X p p h

2 max {[2( (1 ))] , /2 }
max {(E )( (1 )) , ( E )( (1 )) , } (11)

c
1

0
1

0
1

α

α α

= + −

= − + − − + − .

−

− −

One can see that the ultimate consensus value in the supercritical regime is transformed from 1/2 to EX0 in 
view of Step 2.

(b) In the case of unbounded X( )0 , we divide the proof into two cases.



www.nature.com/scientificreports/

6SCiEnTifiC REPORTS |  (2018) 8:2852 

Case 1. XE 0| | < ∞.
The strong law of large numbers implies that

P
n

X v X1
1

( ) E 1
(12)v u

u n

0 0∑



 +

=





=
=

+

for any ∈u . A simple calculation shows that node u is δ-flat to the right with positive probability for some 
δ > 0.

Fix d > 0. Following the reasoning in [33, Proposition 1] and noting that ≤A d dt , we can show that if u − 1 
and u + 1 are δ-flat to the left and right respectively and X u X d X d( ) [E , E ]0 0 0δ δ∉ − − + +  (which happens 
with positive probability), then −X u( 1)t  and X u( 1)t +  will stay in the interval δ δ− +X X[E , E ]0 0  for all t 
leaving the two edges u u{ 1, }−  and +u u{ , 1} finally blocked. Since this event happens at each ∈ u  with pos-
itive probability, it happens with probability 1 at infinitely many nodes by ergodicity.

Case 2. ∈ ±∞XE { }0 .
Without loss of generality, we assume that = ∞+XE 0  and < ∞−XE 0 , where +X0  and −X0  are the positive and 

negative parts of X0, respectively. We may further assume that ≤ >XP( 0) 00 , otherwise a translation would 
transform the problem to this case (c.f. Step 3 above).

Fix d > 0. The same argument in [34, Section 2] can be used to show that the event ε = ∑ = +
+n: {(1/ ) v u

u n
1

> ∈X v d n( ) , for all }0  for any ∈u  happens with positive probability. Similarly, along the lines of [33, 
Proposition 1], we obtain that if ε happens and X u( ) 00 ≤  (which happens with positive probability), then 

+ >X u d( 1)0  for all t. Namely, there will never be an opportunity for node u + 1 to average with u. The same 
thing holds for u − 1 by symmetry. Since the initial opinions are i.i.d., with positive probability we have ≤X u( ) 00  
and − + >X u X u d( 1), ( 1)0 0 , leaving the edges −u u{ 1, } and u u{ , 1}+  finally blocked. Since this happens at 
every u ∈  with positive probability, by ergodicity, it happens with probability 1 at infinitely many nodes. □

For a multiplex network  with  layers, Theorem 2 is within easy reach by essentially using the same argu-
ments as above.

Theorem 2. (1-dimensional multiplex networks) Consider the above continuous opinion model on  with param-
eters λ >d, 0, (0, 1/2]μ ∈ , and ∈p (0, 1)i  for = …i 1, , , α ∈ (0, 1)i  for i 2, , = …  and 11α =  with α μ>i  
for all i.

 (a) Suppose that the initial opinion follows some bounded distribution X( )0  with expected value XE( )0 , whose 
support is contained in the smallest closed interval [a, b]. Let ≥h 0 be the length of some maximal open 
interval ⊂I a b[ , ] satisfying ∈X IE( )0  and X IP( ) 00 ∈ = . Then, 

 α α= − ∑ − ∑=
−

=
−d EX a p b X p hmax {( )( ) , ( E )( ) , }c i i i i i i0 1

1
0 1

1  is the critical confidence threshold in the 
following sense:

•	 If < −d d b amin{ , }c , then with probability 1, there will be (infinitely many) finally blocked edges, namely, 
= +e u u{ , 1} satisfies X u X u d( ) ( 1)t t| − + |>  for all t large enough;

•	 If > −d d b amin { , }c , then with probability 1, = =∞ →∞X u X u X( ): lim ( ) E( )t t 0  for every u ∈ .

 (b) Suppose that the initial opinion distribution X( )0  is unbounded but its expectation exists in the sense of 
 ∪∈ ±∞XE( ) { }0 . Then, for any >d 0, with probability 1, there will be (infinitely many) finally blocked 

edges, namely, = +e u u{ , 1} satisfies X u X u d( ) ( 1)t t| − + | >  for all t large enough.

Several observations can be drawn from Theorem 2. Firstly, when the initial opinion distribution X( )0  follows 
the standard uniform distribution in [0, 1], we recover the previous result [33, Theorem 2]. Secondly, when  X( )0  
is bounded, since p 1i i1

∑ == , we always have ≥ − −d X a b X hmax {(E ), ( E ), }c 0 0 , where the equality holds if 
and only if  = 1 or α α≥ − ∑ − ∑=

−
=

−h X a p b X pmax {(E )( ) , ( E )( ) }i i i i i i0 1
1

0 1
1

  . This indicates it is more diffi-
cult to reach agreement over multiplex networks than simplex networks in general. When there is a large h, the 
critical confidence threshold dc is dominated by h and is independent from the multiplexity; on the other hand, 
for relatively small h, the threshold is determined in turn by both the multiplexity and the initial distribution. 
When the initial distribution  X( )0  is unbounded, consensus cannot be reached regardless of the multiplexity. 
Thirdly, if there exists some k satisfying p pk j

 for all ≠j k, then α α≈ − −− −d X a b X hmax {(E ) , ( E ) , }c k k0
1

0
1  

in the case of bounded  X( )0 . This suggests that the critical confidence is governed by a frequently interacted layer 
in the underlying network as one would expect.

Opinion dynamics in general multiplex networks. In this section, we deal with more general multiplex 
networks and adopt a similar strategy by first looking into a duplex model on higher-dimensional lattices, gener-
alising it to multiplex models and discussig on further extensions.

Particularly, we take =G V E( , ) with = V D for D 2≥  and Ei consists of all edges in the D-dimensional lat-
tice for i 1, , = … . When = 1 , G becomes a simplex network with only one type of edges; see [34, Section 3]. 
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For  = 2, we denote =p p1 and 2α α=  as in the above section. The main result in this duplex case reads as 
follows.

Theorem 3. (higher-dimensional duplex networks) Consider the above continuous opinion model ( 2 = ) on D 
with D 2≥ , 0λ > , μ ∈ (0, 1/2], and p, (0, 1)α ∈  with α μ> .

If the initial opinion is distributed on [a,b] with expected value E(X0) and d X a b b a(E 2 )1
2 0> | − − | + −  

p p( (1 )) 1α+ − − , then with probability 1, X u X vlim ( ) ( ) 0t t t| − | =→∞  for all edges u v E{ , } ∈ .
Unlike the 1-dimensional case, here we are only able to establish an upper bound for the critical confidence 

level dc. In fact, as commented in Remark 3.5 in34, the case of D 2≥  is much more complicated then the 
1-dimensional counterpart and it is even not clear if there exists a critical dc separating the supercritical and sub-
critical regimes since the ultimate consensus does not need be monotonic with respect to d. Furthermore, we note 
that the consensus result in Theorem 3 is weaker that in Theorems 1 and 2 (for the supercritical regime) in the 
sense that only the difference between the opinions of two neighbouring individuals is required to converge 
towards zero. It is to verify that this is equivalent to the convergence of each individual’s opinion in a finite net-
work. For infinite networks considered in this paper, however, the picture is quite different as one may imagine a 
situation where the opinion shows wave-like patterns on broader and broader spatial scales with non-vanishing 
amplitude as time increases.

To prove Theorem 3, we first define the energy of node u at time t as u f X u( ) ( ( ))t tε = , where 
f a b: [ , ] [0, )→ ∞  is some convex function. Given an edge e u v E{ , }= ∈ , let T be the sequence of arrival times 
of the Poisson events at e. The accumulated energy loss along e is defined as

∑
∩

ε ε ε ε ε= + − −
∈

− −
† e u v u v( ) : ( ( ) ( ) ( ) ( )),

(13)
t

s T t
s s s s

[0, ]

which is nonnegative due to Jensen’s inequality34. At time t, the total energy of node u is defined as 
ε ε+ ∑ ∼

†u e( ) ( )t e e u t
1
2 : , where e u∼  means u is an end-point of e. Following the same argument of [34, Lemma 

3.2] and noting that the number of Poisson rings on a single edge in any time period of length ε is a Poisson ran-
dom variable with parameter λε, we have the following lemma.

Lemma 3. For any ∈ u D and time t 0≥ , ( )u eE ( ) ( ) E (0)t e e u t
1
2 : 0ε ε ε+ ∑ =∼

† .
This means that the total energy at any node is conserved during the opinion exchange process.

Lemma 4. For the above duplex opinion model on D  with D 2≥ , λ > 0, μ ∈ (0,1/2], and p, (0,1)α ∈ . Suppose 
α μ> . If ∈ −d b a(0, ], then with probability 1 for every two neighbours u v, D∈  , either | − | >X u X v A d( ) ( )t t t  
for all sufficiently large t (i.e., u v{ , } is finally blocked), or | − | =→∞ X u X vlim ( ) ( ) 0t t t .

Proof. As commented in33, in the following, we will use A instead of At. Choose the energy function =f x x( ) 2 
and fix an edge e u v{ , }= . Let 0δ > . When there is a Poisson event at e at time t and u,v exchange opinions, 
energy to the amount of μ μ− −− −X u X v2 (1 )( ( ) ( ))t t

2  is lost along the edge; see33,34. Hence, if 
δ| − | ∈− −X u X v Ad( ) ( ) ( , ]t t , energy ε † e( )t  will increase by the amount of at least 2 (1 ) 2μ μ δ− . Thanks to the 

memoryless property, given X u X v Ad( ) ( ) ( , ]s s δ| − | ∈  at some time s, the first Poisson event after time s on an 
edge incident to either u or v occurs at e with probability d(4 1) 1− − .

In view of the conditional Borel-Cantelli lemma [Corollary 3.2]36, this will happen infinitely often with prob-
ability 1. If X u X v Ad( ) ( ) ( , ]t t δ| − | ∈  at some sufficiently large t, then elim ( )t t

†ε = ∞→∞ . However, this is impos-
sible since Lemma 3 yields e a bE( ( )) 2E( (0)) 2 max { , }t 0

2 2ε ε≤ ≤† . Thereby, with probability 1, for all large 
enough t, X u X v Ad b a( ) ( ) [0, ] ( , ]t t ∪δ| − | ∈ − .

For small enough 0δ > , | − |X u X v( ) ( )t t  cannot jump back and forth between [0, δ] and −Ad b a( , ] infinitely 
often. This is because a single Poisson event cannot increase X u X v( ) ( )t t| − | by more than μd, which for suffi-
ciently small δ, is always less than the span of the gap (δ, Ad) that needs to be crossed due to μ < α. Since there are 
only countably many edges, the proof of Lemma 4 is completed. □

Proof of Theorem 3. Fix some ≥ +d a b( )/2. If =e u v{ , } be a finally blocked edge, then the opinion of node u 
must finally be located in one of the intervals a b Ad[ , )−  or a Ad b( , ]+ . It follows from Lemma 4 that this event 
holds almost surely for any u if there are finally blocked edges. Suppose that there is an edge e such that

> .P e( is finally blocked) 0 (14)

Following a similar argument as in [34, Lemma 3.4], we obtain with probability 1 that |→∞ X uliminf ( )t t
− + | − − ≥ +a b a Ad a b( )/2 ( )/2 for all ∈ u D.

We choose the energy function f x x a b( ) ( )/2= | − + |. By Lemma 3 and Fatou’s lemma, we obtain
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∑

α ε

ε ε

ε

+ + − −
+

≤ =





−
+ 




≤ −
+

≤





+





≤ = = −
+

.

→∞ →∞

→∞

→∞ ∼

†

( )a p p d a b u E X u a b

X u a b

u e

u X a b

[ (1 )]
2

E liminf ( ) liminf ( )
2

liminfE ( )
2

liminfE ( ) 1
2

( )

E( ( )) E
2 (15)

t
t

t
t

t
t

t
t

e e u
t

:

0 0

Recall that the condition of Theorem 3 implies that α> | − − | + − + − −X a b b a p pd (E 2 )( (1 ))1
2 0

1, which 
leads to a contradiction. Hence, the assumption (14) must not be true. The proof then follows from applying 
Lemma 4.  □

Theorem 3 can be directly extended to the multiplex setting for a general  ≥ 2.

Theorem 4. (higher-dimensional multiplex networks) Consider the above continuous opinion model on D with 
≥D 2, 0λ > , (0,1/2]μ ∈ , and ∈p (0,1)i  for = …i 1, , , α ∈ (0,1)i  for = …i 2, ,  and α = 11 . Suppose iα μ>  

for all i.

If the initial opinion is distributed on [a, b] with expected value XE( )0  and d X a b b a(E 2 )1
2 0> | − − | + −

α∑ =
−p( )i i i1

1
 , then with probability 1, X u X vlim ( ) ( ) 0t t t| − | =→∞  for all edges ∈u v E{ , } .
Some remarks follow: firstly, it is easy to check that the lattice D  in Theorem 4 can be extended to any infinite, 

locally finite, transitive and amenable connected graph =G V E( , )i i  for each i 1, ,= …  by using Zygmund’s 
ergodic theorem; c.f. [34, Remark 3.6]. Recall that a graph is locally finite if every node in it has a finite degree. A 
graph G V E( , )=  is transitive if for any pair of nodes u and v in it, there is an automorphism V V:ϕ →  such that 
ϕ =v u( ) . A graph =G V E( , ) is amenable if there exists a sequence ⊆S Vn  of finite sets satisfying 
lim S S/ 0n E n n|∂ | | | =→∞ , where SE n∂  is the edge boundary of Sn. The following result can be established.

Theorem 5. (general multiplex networks) Consider the above continuous opinion model, where each layer G V E( , )i i=  
( = …i 1, , ) is an infinite, locally finite, transitive and amenable connected graph. Let 0λ > , (0, 1/2]μ ∈ , and 
p (0, 1)i ∈  for i 1, ,= … , (0, 1)iα ∈  for = …i 2, ,  and 11α =  with α μ>i  for all i.

If the initial opinion is distributed on [a,b] with expected value XE( )0  and α> | − − | + − ∑ =
−d X a b b a p(E 2 )( )i i i

1
2 0 1

1
 , 

then with probability 1, X u X vlim ( ) ( ) 0t t t| − | =→∞  for all edges u v E{ , } ∈ .
Secondly, note that | − − | + − < −X a b b a b a(E 2 )1

2 0  unless (i) X a bP( { , }) 10 ∈ =  and (ii) X0 is not con-
stant with probability 1. This indicates that the condition d X a b b a p(E 2 )( )i i i

1
2 0 1

1α> | − − | + − ∑ =
−  in 

Theorem 4 stand a good chance to be nontrivial even for multiplex networks in most meaningful situations. 
Thirdly, we have assumed throughout this paper that the initial opinions following  X( )0  are i.i.d. However, 
Theorems 4 and 5 still hold if the initial opinions are stationary and ergodic with respect to the graph automor-
phisms because no other specific features of i.i.d. variables are used in the above proof. Finally, it seems that agents 
forming a multiplex network are more difficult to reach consensus for the same reason as remarked for 
1-dimensional multiplex networks in the above section. Furthermore, as we have mentioned in the beginning of 
this section, it is generally even not clear if we can still speak of critical confidence level dc in D-dimensional 
(D > 1) multiplex networks and more general multiplex networks.

Numerical results. In this section, we conduct agent-based simulations on different finite multiplex net-
works, including regular ones such as D-dimensional lattices which can be viewed as a truncation of D in 
Theorem 4, and irregular ones such as small-world and scale-free networks, which obviously violate the regularity 
conditions in Theorem 5 and are prominent examples of non power-law and power-law networks, respectively. 
Interestingly, we see that for all such networks, the critical thresholds of consensus tend to agree with the pre-
dicted upper bounds in Theorems 4 and 5 in the special cases of uniform X0 and some choices of Poisson rates 
associated with the multiple layers.

Particularly, in Fig. 2, we plot the percentage of convergence of opinions for five network sizes N ranging from 
8 to 256 with  4=  layers each, Poisson rate λ = .p 0 3i  and 0 5μ = .  to maximise the convergence rate. At t = 0, we 
initialise each agent u V∈  by assigning an opinion value ∈ X u( )0  from the uniform distribution in (0, 1). To 
check for convergence of opinions, we require that X u X v u v G( ) ( ) , ,t t | − | < ∀ ∈ , where  = −10 5. For each 
curve, we have run 100 simulations to compute the percentage, each time for a different set of α values in Eqs. (1) 
and (2). Panel (a) shows the results for regular lattices, whereas panel (b) for Watts-Strogatz (small-world) and (c) 
for Barabási-Albert (scale-free) networks. In all cases, we observe that the system reaches perfect consensus (i.e. 
100% opinion convergence) or almost perfect consensus (i.e. >90% opinion convergence), independently of the 
network structure, and that this starts occurring for different d values. It is worth noting however that in all cases, 
convergence to consensus is reached for d > 0.5 denoted by the vertical dashed line in the plots. Particularly, in 
panel (a), for N = 8, the percentage of convergence starts to increase from very small d values with the tendency 
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to increase as N increases, for example for N = 8, it starts at d 0 25≈ .  whereas for N = 256 at ≈ .d 0 37. 
Surprisingly, the jump from very small (almost 0%) to very big (almost 100%) percentage of opinion convergence 
(reach of consensus) occurs at d = 0.5. Similar conclusions can be drawn for the Watts-Strogatz (small-world) 
networks in panel (b) and Barabási-Albert (scale-free) networks in panel (c). This is reminiscent of a first order 
phase-transition as a function of d (order parameter) that might exist for infinitely big network sizes (i.e. → ∞N ) 
and is an open question.

Note that the convergence parameter μ considered above is constant and independent of the node-degrees 
and thus, assumes that all agents have the same paces towards adjusting their opinions. As this is rather ideal and 
not in agreement with real-life situations, we consider in the following two archetypal variants given by

μ =+

∼

u v u v
u v

( , ) deg( )deg( )
2 max{deg( )deg( )} (16)u v

and

u v
u v

u v
( , )

min{deg( )deg( )}

2 deg( )deg( )
,

(17)
u vμ =− ∼

featuring the degree-centrality dependent scenarios, where the max and min of u vdeg( )deg( ) is computed among 
all edges u adjacent to v (i.e.  ∼u v). Namely, we replace the convergence parameter μ in Eqs (1) and (2) by 
μ+ u v( , ) indicating that higher-degree nodes are more willing to adjust their opinions (and u v( , )μ−  indicating 
the opposite way). Clearly, μ+ u v( , ) and μ− u v( , ) are within the interval (0, 0.5] for connected networks. μ+ is 
close to 0.5 for a well-connected pair of nodes, whereas μ− is close to 0.5 for a poorly-connected pair of nodes. 
Our choice of degree-related convergence parameter here naturally reflects the idea of the number of neighbors/
contacts in social networks, and models the possible mechanisms of heterogeneous psychological, habitual and 
cultural backgrounds in opinion spreading. Although degree-centrality apparently depends on the structure of 
the layers of the multiplex network, our numerical results indicate that the convergence parameters do not affect 
the ultimate opinion configuration. It is worth mentioning that there are other measures of centrality as well, such 
as eigenvector-like centralities37 and measures based on random walks38, that have been studied in the context of 
multiplex networks. However, as commented above, it is reasonable to expect similar results for other conver-
gence parameters mediated by more complicated measures.

Figure 2. Percentage of opinion-convergence versus d for constant μ and, different network sizes N  and 
topologies. Panel (a) is for regular networks, panel (b) for Watts-Strogatz (small-world) and panel (c) for 
Barabási-Albert (scale-free) networks. The vertical dashed line at d = 0.5 corresponds to the point around which 
a sudden jump occurs for increasing network sizes N . Note that in these plots we have set the number of layers  
to 4.
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The simulation results for the degree-centrality dependent parameters μ+ and μ− are presented in Fig. 3, 
where we have used the same network sizes, number of layers, Poisson rate and number of simulations as in Fig. 2 
to compute the percentage of convergence of the opinions. In particular, panels (a) and (b) are for Watts-Strogatz 
(small-world) networks with μ+(u, v) and μ−(u, v), respectively and panels (c) and (d) for Barabási-Albert 
(scale-free) networks with μ+(u, v) and μ−(u, v), respectively. It is found that these degree-dependent conver-
gence parameters (i.e. μ+(u, v) and μ−(u, v)) do not alter the ultimate opinion configurations and that the confi-
dence threshold still remains. This is in line with previous findings for Deffuant models in the case of single-layer 
networks8,19 and our results extend this finding to multiplex networks.

Discussion
In this paper, we studied analytically and numerically opinion dynamics over multiplex networks with an arbi-
trary number of layers, where the agents interact with each other with bounded confidence. In the literature, 
agents are generally assumed to have a homogeneous confidence bound and here we sought to study analytically 
and numerically opinion evolution over multiplex networks with respective confidence thresholds and general 
initial opinion distributions. We explicitly identified the critical thresholds at which a phase transition in the 
long-term consensus behaviour occurs. We then discussed the interaction topology of the agents by using mul-
tiplex D-dimensional lattices and extended them to general multiplex networks under some regularity condi-
tions. Our results reveal the quantitative relation between the critical threshold and initial distribution. We also 
performed numerical simulations and illustrated the consensus behaviour of the agents in regular lattices and, 
small-world and scale-free networks. We found that the numerical results agree with our theoretical ones and 
in particular, the critical thresholds of consensus tend to agree with the predicted upper bounds in Theorems 4 
and 5 for all network topologies considered in the special cases of uniform X0 and some choices of Poisson rates 
associated with the multiple layers.

Moreover, we used the Deffuant opinion model represented as a stochastic process for the evolution of opin-
ions that includes heterogenous confidence bounds and features general initial distributions and, determined the 
critical threshold by employing probability methods. The main results of our work are Theorems 2 (for D = 1) and 
Theorem 4 (for D > 1) which extend previous results in33,34 by considering both multiplex structures with  > 1 
and general initial opinion distribution X( )0 . We show that both the initial distribution and multiplex structure 
play an important role in the phase transition of opinion evolution in an infinite D-dimensional regular lattice in 
the sense that the critical confidence bound in the case of Theorem 2 (or an upper bound of it in the case of 
Theorem 4) is influenced by both factors. Our results indicate that multiplexity hinders consensus formation 

Figure 3. Percentage of opinion-convergence versus d for different network sizes N and topologies using the 
degree-dependent convergence parameters μ+ u v( , ) and u v( , )μ−  in Eqs (1) and (2). Panels (a) and (b) are for 
Watts-Strogatz (small-world) networks with u v( , )μ+  and μ− u v( , ), respectively and panels (c) and (d) for 
Barabási-Albert (scale-free) networks with μ+ u v( , ) and u v( , )μ− , respectively. The vertical dashed line at 
d = 0.5 corresponds to the point around which a sudden jump occurs for increasing network sizes N . Note that 
in these plots we have set the number of layers  to 4.
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when the initial opinion configuration is within a bounded range. This is numerically found to be true in more 
general networks including small-world and scale-free networks, which are ubiquitous in the real world. Our 
results provide insight into information diffusion and social dynamics in multiplex real-life systems modeled by 
networks. However, the theoretical proof of this is beyond the scope of this paper as it would require the develop-
ment of substantially new techniques that we leave for a future publication.

It is worth mentioning that the networks considered here are static, and thus the connectivity remains fixed 
throughout opinion spreading. As a result, structural properties such as centrality, correlations, homophily, and 
assortativity, remain the same throughout opinion spreading. On the other hand, in networks of human social 
interactions, the interaction can be assorted according to, e.g., the channels used for communication such as 
face-to-face, mobile phone, and social network services39. Certain social mechanisms such as assortativity and 
homophily (namely, the tendency of individuals to align to behaviours of their friends) are popular in real social 
networks and may play a key role in opinion formation and its dynamics. For instance, it is shown in40 that the 
higher the homophily between individuals in a multiplex network, the quicker is the convergence towards coop-
eration in the social dilemma. Multiplex social ecological network analysis unravels that node heterogeneity has a 
critical effect on community robustness41. However, as far as convergence of the opinion spreading is concerned, 
our numerical results, for three different characteristic types of multiplex networks (regular, small-world and 
scale-free), indicate the same qualitative and almost similar qualitative tendency to reach consensus as a function 
of d for different network architectures. This is in agreement with our theoretical results. In fact, assortativity and 
homophily are not included in our theoretical analysis because they usually subvert the transitivity and amenabil-
ity conditions (see Theorem 5) that form the foundation of our mathematical technique. In a future work, we will 
focus on how to incorporate multiplex characterisations by means of structural measures, such as homophily and 
assortativity of the multiplex network, into analytically tractable opinion-formation models. Finally, temporal or 
co-evolving networks with random environments also seem appealing in this respect as they might lead to differ-
ences with respect to convergence to consensus.
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