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Abstract

The �rst chapter of this thesis, discusses the characteristics of an asset bubble

episode outlining the reasons these episodes have attracted so much interest nowa-

days and provides an overview of historical bubble episodes motivating the testing

procedures proposed in Chapters 2-4.

The second chapter proposes a right-tailed bootstrap implementation of the

covariate Augmented Dickey-Fuller (CADF) unit root test of Hansen (1995), mo-

tivated by the work of Chang, Sickles and Song (2017). We apply the right-tailed

bootstrap BCADF test in a recursive manner and provide evidence that the inclu-

sion of relevant covariates o�ers signi�cant power gains. An empirical application

of the proposed methodology is conducted, utilising the Moody's Seasoned Aaa and

Baa Corporate Bond Yields, the Ten-Year Treasury Rate and the Volatility Index

(VXO) as covariates.

The third chapter intends to examine the size and power properties of right-

tailed Dickey-Fuller unit root test processes when testing for market e�ciency in

the commodity markets by applying a wild bootstrap approach to Phillips et al.

(2015) tests. The simulations results show that the proposed wild bootstrap test

o�ers better size control and power performance in �nite samples. In the empiri-

cal exercise, our proposed test suggests periods of market ine�ciency prior to the

existence of the bubble episode as identi�ed by the conventional tests during two

periods of oil crises.

The fourth chapter studies the hypothesis of an asset bubble in a rational expec-

tations framework using a bivariate coexplosive vector autoregression as in Nielsen

(2010). Firstly, we apply a co-explosive vector autoregression to model whether

the WTI crude oil price run-up of 2007-2008 can be attributed to the existence

of a bubble as well as whether the WTI crude oil collapse of 2014-2015 exhibits

characteristics of bubble implosion.

In the �fth and �nal chapter, concluding remarks are made regarding and di-

rections for future research are proposed.
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1 Introduction

Asset price bubbles have recently attracted signi�cant interest in the �nance literature

as their collapse has a signi�cant impact on the real economy. According to economic

theory, an asset bubble can be de�ned as a prolonged period of substantial price devia-

tions from a fundamental value (see inter alia Blanchard and Watson 1982, Campbell,

Lo and MacKinlay 1997 and Homm and Breitung 2012). Price misalignments lead in-

vestors to pay a higher price (than justi�ed by fundamentals) for an asset, expecting to

sell the asset at an even greater price in the future and generate a pro�t. In a bubble

regime, there is a high volume of trading, in contrast to normal market conditions (Ofek

and Richardson 2003). Subsequently, positive feedback mechanisms result in further

in�ation of the equilibrium price.

Historical episodes of price bubbles have been well documented in literature, see

inter alia Galbraith (1997), Kindleberger and Aliber (2005), and Sornette (2003b). The

earliest known bubble episode in the �nancial history is known as Tulip Mania and

took place in the Netherlands during the 17th century. In the 18th century, the �rst

signi�cant market crash in the British stock market occurred, driven by what is known as

the South Sea Bubble; a result of excessive speculation by the South Sea Company that

had monopolistic rights to shipping and trading activities with South America (Sornette

2003b). A similar bubble episode occurred in France over the exact same period. In this

case, banks excessively issued bank notes which were not equivalent to their gold and

silver reserves. In 1720, the market crashed and this event is known historically as the

Mississippi Bubble (Kindleberger and Aliber 2005).

Moving into the twentieth century, during the Roaring 20s the U.S. economy was

thriving mainly as a result of new technological innovations and industrialisation. In

1929, the Federal Reserve of the U.S. attempted to calm down the market through

implementing tight monetary policy. Panic resulted in a massive liquidation of shares,

margin investors went bankrupt and major banks were driven into default since they had

invested depositors' money, leading to a recession that lasted almost four years, known

as Great Depression. At the beginning of the Great Moderation there is the market crash

of October 1987, referred to as Black Monday, came after a period of euphoria in capital

markets as a result of low interest rates, mergers and acquisitions, hostile takeovers and
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leverage buyouts. The Federal Reserve of the U.S. increased interest rates and made

access to funding extremely una�ordable. Computer trading (sell orders after losses),

derivative securities, liquidity problems, huge trade and budget de�cits and overvaluation

combined with austere monetary policy led two of the largest capitalisation indexes in

the U.S. (S&P 500 and Dow Jones) to a decline of more than 20% of their value (Sornette

2003b).

The term "dot-com" bubble or "tech" bubble is widely used to describe the last few

years of the 1990s, a decade when the stock prices of internet �rms escalated to extremely

high levels. In a short period of time, hundreds of thousands of small-medium sized �rms

raised capital through IPOs despite cash �ow issues, taking advantage of the enthusiasm

of capital markets participants to fund internet �rms. During the early 2000s, investors

realised that the price of many internet stocks was well above their fundamental value,

with the price of these stocks subsequently crashing, resulting in a mild recession for the

U.S economy, despite the e�ort of the Federal Reserve of the U.S. to decrease interest

rates (Ofek and Richardson 2003, and Kindleberger and Aliber 2005).

More recently, the global �nancial crisis of 2007-2008 has been triggered by the sub-

prime mortgage market crash (Akerlof and Shiller 2009). Due to the deep integration

of the capital and money markets nowadays, the exuberance was transmitted from the

�nancial markets (commodities, exchange rates, stock exchanges etc.) to the real econ-

omy. At the end of 2006, the mortgage backed security market reached extremely high

levels of volume and at the same time, the majority of debtholders were unable to pay-

back their debt leading to delinquencies and foreclosures. Investors lost trust, liquidity

sank and the �nancial system, especially investment and commercial banks, collapsed.

The contagion propagated to commodities, real exchange, �xed income and oil markets

as investors selectively transferred their assets to other investments. This global �nancial

crisis drove the majority of the developed countries into recession (Phillips & Yu, 2011).

Akerlof and Shiller (2009) attribute the recent global �nancial crash to the breakdown

of the �nancial system and especially of structured �nancial products, the high leverage

and capital loss of the �nancial institutions and the already-agreed credit lines between

the banks and their clients.

The main focus this thesis is on identifying explosive episodes in �nancial time series.

Our approach is twofold. At �rst, we concentrate on improving the size and power
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performance of the Phillips et al. (2015) tests by including covariates (Chapter 2) and

by applying a wild bootstrap procedure (Chapter 3) to the standard Phillips et al. (2015)

tests. Then, we emphasize on long-term relationships between assets and we study the

existence of an explosive root in a cointegrating relationship between two �nancial series

(Chapter 4).

In particular, putting emphasis on the early detection of asset price bubbles in Chap-

ter 2, we investigate whether the power of right-tailed Dickey-Fuller unit root test pro-

cedures can be improved by the inclusion of relevant covariates. Choosing to test for a

bubble in a univariate framework can lead to potential power reductions since ignoring

any correlation with other time series could possibly have a negative impact on the ex-

planatory power of standard unit root tests leading to signi�cant power losses (Hansen,

1995). Applying sub-sample techniques may result in imprecise estimation of the nui-

sance parameter introducing additional variability and causing severe size distortions

(Chang, Sickles and Song 2017). Dealing with a nuisance dependency problem, we ap-

ply a bootstrap procedure ensuring the asymptotic validity of the critical values from the

distribution of the test statistics that lead to improved size and power performance in

�nite samples. In our empirical exercise, we manage to detect earlier two major explosive

episodes: the Black Monday of October 1987 and the dot-com bubble.

On the same framework, examining the size and power properties of right-tailed

Dickey-Fuller unit root test processes when testing for market e�ciency in the commod-

ity markets in Chapter 3, we apply a wild bootstrap approach to Phillips et al. (2015)

tests to account for potential heteroskedasticity that resembles the pattern of structural

breaks, regime changes or volatility breaks o�ering robust critical values. In fact, the

wild bootstrap test appears to control for size better than the non-bootstrap test while

the power performance is signi�cantly improved as we model the series of interest as a

moving average process rather than a unit root process since under the null hypothesis

of market e�ciency the expected future spot price should equal the price of the futures

contract. Applying the test empirically, we identify the 2007-2008 oil price run-up and

the 2014-2015 oil price collapse while the conventional test of Phillips et al. (2015) does

either not identify any episode at all or identi�es the episode with delay, re�ecting the

superior power of our proposed wild bootstrap test to e�ectively identify such episodes.

Following a VAR approach in Chapter 4, we allow for explosive roots as suggested by
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Nielsen (2010) while testing for cointegration o�ering the advantage of performing the

cointegration analysis of Johansen (1991) even in the presence of explosive behaviour in

the related series. Looking into the WTI crude oil market, we �nd that both oil prices

of spot and futures contracts are I(1, x) processes and the two variables cointegrate such

that their linear combination is an I(0) process for the period July 2007-July 2008. Our

empirical �ndings are in accordance to Pavlidis et al. (2017) since there is no statistical

evidence of explosive behaviour on the di�erences between the future spot price and the

futures contract price for that period and therefore the linear relationship is stationary.1

Chapter 5 concludes and discusses some avenues for future research.

1The notation I(1, x) stands for variables with both explosive and random walk components and
I(x) for variables with just explosive common trends as in Nielsen (2010).
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1.1 Bootstrap Unit Root Testing for Explosive Behaviour using Co-

variates

The identi�cation of asset price bubbles is clearly of great interest for both theorists

and empirical researchers. Recently, many econometric techniques have been developed

for bubble detection in the context of time series analysis. Cointegration analysis, for

instance, has been applied as one of the main testing approaches assessing price devia-

tions from equilibrium (see inter alia Campbell and Shiller 1987, Campbell and Shiller

1988a and Campbell and Shiller 1988b). In a rational bubble regime, the equilibrium

condition between the asset price and its market fundamental is violated. Therefore,

non-stationary deviations from the general equilibrium in the long term provide evi-

dence in favour of a bubble. Non-stationary behaviour is examined in the logarithmic

transformation of the price dividend ratio through unit root testing as well; if the divi-

dend yield is integrated of order one, then this could be considered as a strong evidence

of a rational bubble (Campbell and Shiller 1987). The rational expectations theory per-

ceives (rational) bubbles as anticipated phenomena where their expected value of next

period depends on the compounded value of the bubble at time zero. In other words,

the value of a bubble today equals the discounted value of future bubble episodes.

With the need for early detection of asset price bubbles apparent, this chapter intends

to investigate whether the power of right-tailed Dickey-Fuller unit root test procedures

can be enhanced by the inclusion of relevant covariates. If choosing to test for a bubble

in a univariate framework, examining a variable in isolation can be rather costly in terms

of power since ignoring any correlation with other time series could possibly weaken the

explanatory power of standard unit root tests leading to signi�cant power losses (Hansen,

1995).

Our proposed Covariate Augmented Dickey Fuller unit root test is applied in a

backward supremum sequence as suggested by Phillips et al. (2015) to detect explosive

episodes that occur at the end of the sample. Applying sub-sample techniques can,

however, lead to imprecise estimation of the nuisance parameter introducing additional

variability and causing severe size distortions (Chang, Sickles and Song 2017). To deal

with the nuisance dependency problem we apply a bootstrap procedure, ensuring the

asymptotic validity of the critical values drawn from the bootstrap distribution of the

test statistics. We concentrate on the case where the explosive episode takes place at the
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end of the sample to date-stamp bubbles in real time. The simulations show that the

proposed bootstrap tests o�er impressive size and power performance in �nite samples.

In particular, the bootstrap tests appear to be less size distorted compared to the non-

bootstrap conventional unit root tests and the inclusion of covariates in the standard

Augmented Dickey Fuller regression model o�ers signi�cant power gains.

We conduct empirical work to investigate the e�ectiveness of the proposed tests

on the early identi�cation of bubble episodes. Speci�cally, we examine whether our

proposed tests would have detected known past bubbles in the S&P 500 price dividend

series before the tests of Phillips et al. (2015) when used as an early warning mechanism,

utilising the Moody's Seasoned Aaa and Baa Corporate Bond Yields, the Ten-Year

Treasury Rate and the Volatility Index (VXO) as covariates. The superiority of our

proposed test is re�ected on the earlier detection of two major explosive episodes: Black

Monday of October 1987 and the dot-com bubble.
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1.2 Wild Bootstrap Testing for Speculative Bubbles Using Spot and

Futures Prices

A large number of studies has recently focused on studying asset bubbles as their col-

lapses can have signi�cant impact on the real economy whereas the identi�cation and

dating of the bubble episodes is of particular importance for investors, policy makers and

central banks. One aspect of asset bubbles that is particularly interesting for academics

and researchers are asset bubbles that hold in a rational expectations framework. In

this framework, real asset prices should be equal to the present value of the future cash

�ows, the fundamentals, that the asset generates, augmented by a bubble component

that grows with the real interest rate in the presence of rational bubbles.

Interestingly, Diba and Grossman (1988) tested for the presence of rational bubbles

in stock prices, suggesting that persistent explosive behaviour that cannot be di�erenced

to stationary might indicate the existence of rational bubbles. Their approach has been

subject to criticism by Evans (1991) on the grounds of the poor power performance of

traditional unit root tests to identify explosive episodes that collapse periodically in the

sample. More recently, literature has concentrated on applying right-tailed unit root

tests to the level of a series with Phillips et al. (2011) introducing a forward recursive

right-tailed supremum ADF test that has good power properties and is fairly simple to

use. Since then, the weight of interest has been shifted to identifying bubble episodes on a

real time basis rather than historical episodes. Phillips et al. (2015) propose a backward

recursive right-tailed supremum ADF test that is rather useful on date-stamping past

bubble episodes and a generalised double-recursive right-tailed supremum ADF test

that has better size and power performance in identifying multiple bubble episodes in

the sample.

Stressing out the importance of early identi�cation of asset bubble episodes, this

chapter intends to examine the size and power properties of right-tailed Dickey-Fuller

unit root test processes when testing for market e�ciency in the commodity markets by

applying a wild bootstrap approach to Phillips et al. (2015) tests to account for poten-

tial heteroskedasticity that might be attributed to structural breaks, regime changes or

volatility breaks as the wild bootstrap procedure can resemble the behaviour of a time

series that has heteroskedastic innovation terms while o�ering robust critical values. For

this reason, we model the series of interest as a moving average process rather than a unit
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root process since under the null hypothesis of market e�ciency the di�erence between

the future spot price and the futures contract price will be a moving average process of

order determined by the length of the futures contract.

We concentrate on the case where the explosive episode occurs at the end of the

sample to identify these episodes in real time. The simulations results show that the

proposed wild bootstrap test o�ers better size control and power performance in �nite

samples since the standard backward recursive right-tailed supremum ADF test considers

that the series is a unit root process under the null hypothesis when the series is in fact

stationary, whereas the wild bootstrap implementation of the backward recursive right-

tailed supremum ADF test simulates critical values under the null hypothesis that the

series is a moving average process with the order of that process depending on the length

of the futures contract.

Particularly, the wild bootstrap test appears to be less size distorted compared to

the non-bootstrap test while the power gains are signi�cantly higher. In the empirical

exercise, testing for market e�ciency in the commodity markets we apply the proposed

and extant tests on the di�erence between the WTI crude oil future price and the price

of nine futures contracts across di�erent maturities over the period September 1995

to July 2019. Focusing mainly on the 2007-2008 oil price run-up and the 2014-2015

oil price collapse, our proposed test identi�es the two episodes while the conventional

test of Phillips et al. (2015) does either not identify an episode at all, or identify the

origination day of the episode with delay re�ecting the superior power of our proposed

wild bootstrap test to e�ectively identify episodes of non-stationarity that occur at the

end of the sample. The proposed test suggests periods of market ine�ciency prior to

the existence of the bubble episode as identi�ed by the conventional tests.
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1.3 Testing for Bubbles in Commodity Spot and Futures Using a Co-

explosive Autoregression

Recent unprecedented imbalances in the �nancial markets have attracted signi�cant in-

terest from professionals, regulators and a growing number of academics as they might

exhibit asset bubble characteristics. In contrast to the consensus that in time-series

econometrics, variables are either stationary or second order integrated, speculative bub-

bles in prices result in an explosive root in addition to a unit root making testing for

cointegration and statistical inference rather inconclusive.

In the econometrics literature, it is commonly argued that the existence of speculative

bubbles imply no cointegration between prices and fundamentals (see inter alia Diba

and Grossman 1988b). In contrast, in the presence of speculative bubbles, prices and

fundamentals can be cointegrated so their linear combination does not contain a unit

root while at the time there is an explosive root in the system (Nielsen 2010).

In a cointegration framework, both the explosive and unit root need to be tested.

Nielsen (2010) suggests that the cointegrated vector autoregression introduced by Jo-

hansen (1991) can be used in a context where some of the series are integrated of order

greater than one. Therefore, even though one of the series might be explosive, the Jo-

hansen (1991) cointegrated VAR model can still estimate the cointegrating relationship

given, of course, that the two series are cointegrated. Nielsen (2010) introduces the

idea of coexplosiveness to allow the standard cointegrated VAR models to test for the

existence of bubbles. In particular, Nielsen (2010) proposes a VAR model that allows

both unit roots and explosive characteristic roots, utilising the standard cointegration

techniques introduced by Johansen (1991). The coexplosive and cointegrated vector au-

toregressive model arises as a restriction to the standard VAR model and allows both

a random walk and an explosive stochastic component with a characteristic root larger

than one. In other words, the cointegrated VAR approach of Johansen (1991) o�ers the

advantage of testing for a unit root between two series and simultaneously testing for

an explosive root in at least the one of the two series (Nielsen 2010).

This approach contradicts Diba and Grossman (1988) on the fact that two series can

be cointegrated and yet, their linear combination might contain an explosive component

(Engsted 2006). As a result, the VAR approach developed by Johansen (1991) o�ers

the advantage of testing for stationarity while simultaneously testing whether at least
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one of the variables has an explosive characteristic root since testing for the number of

cointegrating vectors in the coexplosive case is similar to the standard Johansen (1991)

procedure. The reason for this is that the asymptotic distribution of the likelihood ratio

test when there is an explosive root is the same as in the standard Johansen cointegration

test (Nielsen 2010).

In this chapter we utilise the application of Nielsen (2010) approach to test for coin-

tegrating relationships across di�erent series while simultaneously testing whether the

series contain any explosive components, allowing to perform the cointegration analysis

of Johansen (1991) even in the presence of explosive behaviour in the related series.

Particularly, we utilise Johansen's cointegration rank test to analyse the oil price run-up

in the WTI crude oil market between July 2007 and July 2008 as this period is indicated

as explosive as well as the oil price collapse between November 2015 and February 2016,

contributing to the debate of whether the 2007-2008 oil price run-up can be attributed to

the existence of a speculative bubble as well as whether the oil price collapse of 2014-2015

exhibits any characteristics of bubble implosion.

We �nd that in the contemporaneous case crude oil spot prices and all futures con-

tracts contain both an explosive root and a unit root component from July 2007 to

July 2008, whereas when we match the futures contract prices with the actual future

spot prices then oil future prices of spot and the prices of the six month, twelve month

and eighteen month futures contracts contain both an explosive root and a unit root

component during this period.

Concerning the 2014-2015 crude oil price collapse we argue that contemporaneously,

crude oil spot prices and the one month futures contract and crude oil spot prices and the

three month futures contract contain both an explosive root and a unit root component

between November 2015 and February 2016, whereas matching the futures contract

prices with the actual future spot prices results in a single explosive root between the

future spot prices and the three month futures contract therefore the system contains

both an explosive root and a unit root component for this period.

Our empirical �ndings suggest that both oil prices of spot and futures contracts are

I(1, x) processes and the two variables cointegrate such that their linear combination is

an I(0) process for the periods July 2007 to July 2008 and November 2015 to February

2016 for some of the futures contracts, in support of the view commonly stated in the
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empirical literature that prices of spot and (short maturity) futures contracts should be

cointegrated even when there is a bubble episode in the sample (Engsted 2006).

Investigating the oil price run-up of 2007-2008 and oil price collapse of 2014-2015

further, we extend our analysis to study Pavlidis et al. (2018), according to which it

is the fundamentals that are responsible for the oil price run-up during the early 2000s

and not the existence a speculative bubble. In particular, we apply the ADF, SADF

and GSADF tests to the di�erence between the future spot prices and futures contract

prices across all di�erent maturity contracts for the sample period September 1995 to

July 2019. Our cointegration analysis seems to be in accordance to Pavlidis et al. (2017)

since applying the BSADF test when the test is applied on the di�erence between the

future spot prices and the futures contract prices provides no statistical evidence of

explosive behaviour between July 2007 and July 2008 and November 2015 to February

2016 that we identify coexplosiveness, implying that the linear relationship is stationary,

although date-stamping only identi�es the origination date of the bubble episode with

delay across futures contract with di�erent maturities.

Applying a date-stamping technique to the di�erence between the future spot prices

and the futures contract prices results in a delayed identi�cation of the origination date

of the bubble oil episode of 2007-2008 providing no statistical evidence of explosive

behaviour between July 2007 and July 2008. Furthermore, applying the same date-

stamping technique to the reverse series of the di�erence between the future spot prices

and the futures contract prices results in a delayed identi�cation of the origination date

of the oil price collapse episode of 2014-2015 providing no statistical evidence of explosive

behaviour (in the reverse series, therefore no market collapse in the original series as in

Phillips and Shi, 2018) between November 2015 and February 2016. These �ndings are

in support of our evidence that during the peak of the oil price run-up of 2007-2008

and the oil price collapse of 2014-2015, crude oil future spot prices and futures contract

prices are cointegrated, therefore their linear relationship is stationary and since the

characteristic roots of their VAR model are, in some cases, explosive we conclude that

oil prices of the spot and futures contract coexplode during these two periods.2

The results of this chapter seem to be in line with the standard present value model

2Note that coexplosiveness in the reverse series means that the two series collapse together so that
their cointegrating relationship still holds, they co-implode. During the period November 2015 and
February 2016 we �nd coexplosiveness in the reverse series of the di�erence between the future spot
prices and the futures contract prices and therefore co-implosiveness in the original (non-reversed) series.
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as augmented by a bubble component to account for a rational bubble. The linear

combination of spot and futures contract prices contains an explosive root as a result of a

speculative bubble. Examining variables in a bivariate framework might o�er signi�cant

advantages as bubble episodes emerging in the futures market might be transmitted

in the spot market causing speculative bubbles and thus cointegration and coexplosive

analysis can be proven very valuable in bubble identi�cation.
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1.4 Contribution to the extant literature

This thesis contributes to the extant literature in various ways. Firstly, the novelty

of the second chapter is the suggestion of a multivariate approach to existent tests

for bubble identi�cation by introducing covariates in a recursive framework. We deal

with, potential, imprecise estimation of the nuisance parameter that causes inaccurate

statistical inference and severe size distortions due to sub-sample testing by applying a

bootstrap technique ensuring the asymptotic validity of the critical values drawn from

the bootstrap distribution. We improve the size and power performance of the existent

tests while empirically we identify two historical episodes, namely the Black Monday of

October 1987 and the dot-com bubble earlier compared to the bubble detection tests

suggested in the econometrics literature.

In the third chapter, we consider a wild bootstrap approach to existent tests for

bubble identi�cation to account for the possibility of heteroskedastic residuals that can

be attributed to breaks in volatility in order to study market e�ciency in the commodity

markets. The simulation results suggest that the wild bootstrap test o�ers improved size

control while o�ering signi�cant power gains as the series of interest has been modelled as

a moving average process rather than a unit root process since under the null hypothesis

of market e�ciency the di�erence between the future spot price and the futures contract

price will be a moving average process of order speci�ed by the length of the futures

contract. In the empirical application, our proposed wild bootstrap test identi�es periods

of market ine�ciency prior to a bubble episode that existent bubble detection tests do

not detect, acting as an early warning mechanism of non-stationary behaviour in the

market that could, potentially, lead to a bubble episode.

In the forth chapter, we examine questions of bubble identi�cation and market e�-

ciency using a bivariate approach, in contrast to the extant literature that studies asset

price bubbles in a univariate framework. Firstly, we apply a co-explosive vector autore-

gression to test whether the WTI crude oil price run-up of 2007-2008 and the oil price of

collapse of 2014-2015 can be attributed to the existence of a bubble. We �nd that there

is an explosive root in the system and that oil spot and futures contract prices at vari-

ous maturities, are cointegrated over that period. Secondly, we apply recent univariate

bubble tests to test for market e�ciency. We conclude with an evaluation regarding the

most appropriate approach to bubble identi�cation in commodity markets.
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2 Bootstrap Unit Root Testing for Explosive Behaviour Us-

ing Covariates

2.1 Introduction

Financial bubbles have recently attracted a considerable amount of research work in

both the economics and �nancial literature. A �nancial bubble is commonly de�ned as

a sudden, continuous rise of the price of one or multiple assets. Speculators' activity

triggers further rises of the price that results in a crash due to reversals of expectations

(Kindleberger 1987).

2.1.1 Theory

Under the assumption of a rational bubble regime, the real price of an asset equals the

present value of its relevant fundamentals (Lucas 1978) e.g. dividends (i.e. expected

value of future cash �ows).3 In their seminal work, Campbell and Shiller (1987) have

meticulously studied the validity of this present value model assuming either a constant

discount rate and implying that the two series are cointegrated4, under the assumption

that the transversality condition5 holds, or a time-varying one, arguing that in this case

the logarithmic di�erence between prices and dividends is stationary.

The persistent failure of the present value models to justify deviations from fun-

damentals that lead to bubbles resulted in the development of methods for detecting

explosive episodes that mainly focus on the rational bubble assumption.

2.1.2 Early Tests on Bubbles

In that framework, Shiller (1981) suggests a methodology that takes into account the

variance bounds of stock prices to evaluate the present value model. However, this

approach can only provide point estimates of variance and therefore hypothesis testing

cannot be utilised. For this reason, LeRoy and Porter (1981) generate estimates of

variances for stock prices and dividends in a bivariate framework. Although this method

3Deviations from equilibrium due to non-fundamental determinants can as well be integrated into
the standard present value model by dropping the transversality condition.

4Therefore drifts away from fundamentals are corrected in the long-run.
5The transversality condition provides a unique solution of the present value model, thus the equity

price equals the market fundamental price whereas in case that the condition does not hold a set of
solutions are given.
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was not initially designed for bubble testing, useful implications can be derived when

in a bubble regime, the variance of the asset price exceeds the variance justi�ed by

fundamentals. However, the variance bound tests as proposed by Shiller (1981) are

subject to criticism; Flood and Hodrick (1986) argue that these particular tests are

not appropriate for bubble testing and might mislead by providing evidence for bubble

existence due to misspeci�cation errors and (or) incorrect modelling of expectations.

First to introduce bubbles in the alternative hypothesis, West (1987) presents a two-

step test which requires the speci�cation of an equilibrium model and investigates the

impact of the fundamental value on the asset price, given the Euler equation as a no-

arbitrage asset pricing model. The di�erence between the two estimates (the actual

and the constructed one) of the e�ect of dividends on the asset price can be attributed

to either model misspeci�cation or bubble. Flood et al. (1994) criticise this approach

emphasising that even after performing the misspeci�cation tests, rejections might be

justi�ed by other factors such as the inadequacy of the rational models to explain bubbles

or the invalidity of the standard asymptotic inference resulting from the non-ergodic data

generation processes.

From what stated above, it is clear that conventional univariate econometric tech-

niques su�er from a series of problems such as omitted variable biases which might lead

to the rejection of the null hypothesis of no bubble (Flood and Garber 1980), model

misspeci�cations or inconsistent statistical tests (Flood and Hodrick 1986), low power

on identifying rational bubbles, especially in a periodically collapsing framework (Evans

1991), and (or) size distortions and low power (see inter alia Stock, 1991, Campbell and

Perron 1991, Domowitz and El-Gamal 2001).

In their seminal research, Diba and Grossman (1988) highlight the signi�cance of

unit root testing into rational bubble detection. They introduce a standard left-tailed

unit root process to test for the null hypothesis of a random walk, under the assumption

of a time-invariant discount rate to argue that there is no evidence of bubble existence if

both stock prices and dividends are non-stationary in levels but stationary in di�erences.

Furthermore, Diba and Grossman (1988) apply standard unit root tests to the real S&P

500 stock price index between 1871 and 1986, �nding that stock prices and dividends are

non-stationary in levels but stationary in di�erences, concluding that a rational asset

bubble can be identi�ed when a time series cannot be di�erentiated to stationarity, due to
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the explosiveness of the dataset. In the context of longer-term relationships between two

variables, Diba and Grossman (1988) utilise the Bharghava (1986) ratios6 to conclude

that evidence of cointegration indicates no bubble, in disagreement with Evans (1991)

who argues that traditional unit root tests are non-capable of capturing complex bubble

characteristics due to the non-linear structure of the bubble models.

Hall et al. (1999) suggest a generalised version of the ADF test which incorpo-

rates the dynamic Markov regime-switching models as proposed by Hamilton (1989)

and Hamilton (1990). This approach is consistent with the argument that an explo-

sive autoregressive root indicates the existence of rational bubbles. Furthermore, Van

Norden and Vigfusson (1998) argue that size distortion has a considerable impact on

regime-switching models and suggest the utilisation of the Van Norden (1996) test in-

stead, which assess the switching probabilities depending on the size of the bubble. The

bene�ts of introducing stochastic regime-switching models into the bubble identi�ca-

tion process are pointed out by Dri�ll and Sola (1998) who advocate that deviations of

stock prices from fundamentals can be perceived as shifts in fundamentals due to regime

change and not as bubble phenomena. However, there is evidence that Markov-switching

models might infer false detection or spurious explosiveness (Shi 2013).

Several research work has focused on cointegration, long memory and persistence.

Campbell and Shiller (1987) introduce the idea of cointegration between stock prices

and dividends as an evidence of no bubble. In the case of a rational bubble, the long-

term relationship between prices and fundamentals (e.g dividends) is violated and prices

move away from equilibrium for a prolonged period of time. Mixed results in their

empirical part lead Campbell and Shiller (1987) to conclude that the drifts away from

fundamentals are quite persistent, although highly sensitive to the discount rate.

In a fractional integration framework, Cuñado et al. (2005) follow a fractionally

integrated methodology in stock prices and dividends of NASDAQ to conclude that the

sampling frequency of the data a�ects the statistical inference of bubble existence. In

particular, testing by using daily and weekly data provides evidence of fractional coin-

tegration, since the order of integration lies between zero and one whereas testing at

monthly frequency results in no rejection of the unit root hypothesis of no cointegra-

tion. The authors attribute this distortion to either bias resulting from the usage of

6von Neumann-type ratios as invariant hypotheses testing processes.
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low-frequency data, known as the temporal aggregation problem or sample size. This

bias might lead to wrong inference of slow convergence or random walk (Taylor, 2001).

Persistent trend-cyclical behaviour seems to fade out when the same data are examined

for longer periods (Mandelbrot, 1969).

In the same framework, Koustas and Serletis (2005) apply fractional integration tech-

niques in the logarithmic dividend yield of the S&P 500 �nding evidence of long memory

against rejecting the null hypothesis of a rational bubble. On the contrary, Frömmel and

Kruse (2012) criticise the methodology proposed by Koustas and Serletis (2005) argu-

ing that possible structural breaks are not taken into consideration and they suggest a

test for changing persistence under fractional integration based on Sibbertsen and Kruse

(2009) accounting for both long memory and changing persistence, combining structural

breaks and unit root testing in accordance to Demetrescu et al. (2008). Gürkaynak

(2008) emphasises that the degree of integration of the unobservable fundamentals can

be greater than one, explaining the inference of non-stationarity.

Moving from rational bubbles, Froot and Obstfeld (1991) introduce the concept

of intrinsic bubbles, de�ned as episodes of exuberance caused by exogenous economic

fundamentals to describe nonlinear �uctuations in asset prices. They empirically test

the proposed model in the US stock exchange market and attribute the existence of

bubbles to the nonlinearities between equity and stock prices, arguing that the proposed

tests utilise estimates consistent under both the null and the alternative hypothesis.

Extending Campbell and Shiller's (1987) cointegration restriction by imposing a

robust no rational bubble constraint which does require neither a constant discount factor

nor a speci�c asset pricing model, Craine (1993) provides evidence that the discount

factor for the S&P 500 can be non-stationary and therefore any inference of bubble

might be misleading.

2.1.3 Recent Tests on Bubbles

Traditional unit root tests may lead to spurious indications of explosive behaviour in the

presence of non-stationary volatility. Cavaliere and Taylor (2008) suggest a new set of

approaches to unit root testing which deal with permanent volatility shifts. Particularly,

rather than performing the ADF tests directly on the original time series, they implement

these tests on the inverted time transformation of the original time series resulting in



27

good power gain. Furthermore, Cavaliere and Taylor (2009), investigate the case of a

near-unit-root process under the assumption of non-stationary autoregressive volatility.

In particular, under weak dependence they suggest a wild bootstrap method and provide

empirical evidence in accordance to the proposed methodology which performs good

under the presence of near-integrated autoregressive stochastic volatility with leverage

e�ects.

The power properties of the unit root tests are of particular interest. Leybourne

(1995) introduces a joint test which employs both a reverse and a forward ADF unit

root test, taking advantage of the fact that under the null hypothesis both tests are

marginally asymptotically distributed in an identical way, however there is no perfect

correlation due to the di�erent ending points of the time series examined (Leybourne &

Taylor 2003). The proposed methodology of Leybourne (1995) chooses the maximum

value of the forward and reverse ADF test-statistics and rejects the null hypothesis more

often compared to the standard ADF test. Furthermore, Leybourne (1995) compares this

joint max ADF test with the standard ADF test to demonstrate that it o�ers signi�cant

power gains with similar size properties. Forward and reverse estimation is of particular

usefulness in seasonal unit root testing as well. Leybourne and Taylor (2003) introduce

a combination of the Hylleberg et al. (1990) seasonal unit root testing (HEGY) for both

the forward and reverse processes. Testing on the power and �nite-size properties of

the new model through Monte Carlo simulations, they infer that the inclusion of the

Leybourne (1995) joint test into seasonal unit root testing o�ers superior size and power

gains compared to other OLS or weighted symmetric least squares (WSLS) processes.

Examining the asymptotic distribution of a random walk, Abadir and Lucas (2000)

use the unit root M-tests to derive the limit theory that depends on a nuisance pa-

rameter. Furthermore, they argue that in the random walk case the limit distribution

does not follow a standard normal distribution but a skewed one instead, highlighting

a nuisance dependency problem and they derive a normal approximation for the quan-

tiles of the test-statistics that are based on robust unit root M-estimators. Following

Elliott (1998), Magdalinos and Phillips (2009) highlight the problem of asymptotic bias

of integrated, near-integrated or explosive regressors and provide limit theory, extending

Phillips and Magdalinos (2008) theory for cointegrated systems that are fully explosive.

The relationship between the explosive regressors de�nes the asymptotic behaviour of
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the least squares estimator of the cointegrating coe�cients. Furthermore, Magdalinos

and Phillips (2009) show that in the moderately explosive case, the OLS regression pro-

cess is asymptotically median unbiased and the limit theory is mixed normal. Finally,

they highlight that in a moderately explosive framework the regressors might appear to

be explosively cointegrated due to contagion e�ects on other variables.

Recent research focuses on right-tailed unit root tests, which have the property of de-

tecting mildly explosive or sub-martingale behaviour in time series by putting emphasis

on the alternative hypothesis of explosiveness. Phillips et al. (2011) introduce the argu-

ment that explosiveness in asset prices and not in fundamentals may indicate a bubble

episode, suggesting a forward recursive right-tailed supremum Augmented Dickey-Fuller

(SADF) test, capable of detecting ongoing bubbles. Phillips et al. (2011) apply this

test on the NASDAQ stock price and dividend index, �nding evidence of the dot-com

bubble in the early 2000s. The main advantage of the Phillips et al. (2011) methodology

is that it can be successfully utilised not only in stock prices but in commodity future

prices (Gilbert 2010), commodity and house prices (Homm and Breitung 2012), the ex-

change rate market (Bettendorf and Chen 2013) and crude oil spot and future markets

(Tsvetanov et al. 2016) as well.

Homm and Breitung (2012) perform simulations and investigate the power properties

of a Chow-type Dickey-Fuller test, a modi�ed version of the locally best invariant (LBI)

test of Busetti and Taylor (2004) and the Phillips et al. (2011) test to conclude that the

Phillips et al. (2011) methodology can be a powerful tool not only in a structural break

environment but on identifying end-of-sample bubble episodes as well. Investigating the

validity of the tests empirically, they �nd strong evidence of explosiveness in the pre-2008

subprime mortgage downturn in the UK, US and Spanish house markets, in accordance

to their main argument that bubble episodes occurred in multiple markets.

In a multiple bubble environment however, bubble detection can be challenging and

the Phillips et al. (2011) unit root process may be less successful and powerful on

identifying multiple bubble phenomena. The conventional Augmented Dickey-Fuller

unit root test may infer pseudo stationarity; evidence of stationary behaviour when the

data is non-stationary. In order to overcome these weaknesses of the Phillips et al. (2011)

methodology in a multiple bubble regime, an extension of the Supremum ADF test is

introduced. Phillips et al. (2015) construct the Phillips et al. (2015) test, a consistent
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technique of identifying multiple bubbles with periodically collapsing behaviour not only

in historical prices but on a real-time basis as well. In particular, they introduce two

recursive window processes; a generalised and a backward version of the SADF test

(GSADF and BSADF respectively).

According to Harvey et al. (2017) the power of the two tests mentioned above,

depends on the location of the explosive regime and on whether there is a collapse inside

the sample as well. In multiple bubble and collapses, the GSADF test outperforms, in

terms of size and power, the conventional (Phillips et al. 2011) SADF test by recursively

changing the starting and ending points of the sample covering more subsamples of the

data. Furthermore the GSADF test is designed to detect the existence of one or more

explosive episodes in a �nancial time series that can occur anywhere in the sample. In

addition, the GSADF can only show whether there is a bubble episode in the sample

without indicating the location the episode occurs within the sample. The BSADF test

is a backward recursive right-tailed ADF test and it is a more powerful detection tool of

bubble episodes that occur at the end of the sample and has been developed by Phillips

et al. (2015) for date-stamping of the origination and termination dates of the explosive

episode.

Phillips et al. (2015) test empirically the validity of their proposed models to the

S&P 500 stock price and dividend index between January 1871 and December 2010 and

�nd evidence of explosive behaviour by applying the GSADF test. Then they utilise the

BSADF test for samples ending in each time period in order to date-stamp these events

and they successfully detect more than six historical banking crises and bubble episodes

in this time spam. However, there seems to be a delay bias in the detection of the

explosive episodes in Phillips et al. (2015); Phillips and Shi (2018) argue that there is a

delay on estimating the dates of crisis origination and market recovery dates and thus

suggest a methodology based on "reverse regression" strategies. Focusing on various

di�erent ways of bubble implosion that mainly depend on the mature of the collapse

and trying to deal with bias, Phillips and Shi (2018) incorporate a reverse sample-

regression into the recursive window process of Phillips et al. (2015). At the same time

they embody a market recovery parameter which is the date that asset prices return to

equilibrium, on the Phillips et al. (2015) methodology and following Rosser (2000) and

Huang et al. (2010), Phillips and Shi (2018) distinguish market crashes into "sudden",
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"disturbing" and "smooth" re�ecting di�erent ways of price decline. Furthermore, they

de�ne market recovery as the date when the asset prices of a particular market return

to their "normal martingale path" or alternatively to fundamentals (equilibrium). The

innovation of this approach is that it di�erentiates the date of the bubble implosion from

the market recovery date, de�ning the latter as the ending point of the mildly unit root

collapsing process. The reverse-regression strategy can o�er valuable information in a

multiple bubble framework where the number of explosive episodes and (or) collapses

are not known in advance.

A main advantage of this methodology compared to the Harvey et al. (2012) and

Harvey et al. (2015) test is that it is capable of estimating the amount of bubble

episodes and crash points at the same time whereas the Harvey et al. (2012) and

Harvey et al. (2015) approach requires the number of these episodes to be known

beforehand. Testing their model on the NASDAQ stock market index for the period

January 1973 to August 2013, Phillips and Shi (2018) uncover four di�erent stages

of the dot-com episode of explosive behaviour: the origination date (December 1996),

the implosion date (February 2000), the market correction or recovery date (December

2000) and �nally a further correction date (February to April 2004). The utilisation of

the reverse-regression implementation strategy on the right-tailed unit root testing can

o�er signi�cant information on market recovery due to the high sensitivity of the right-

tailed testing processes to deviations from equilibrium. Therefore, the reverse regression

procedure can be considered as a real-time technical analysis of explosive episodes in

�nancial markets.

Moreover, Astill et al. (2017) account for conditional and unconditional heteroskedas-

ticity and serial correlation on end-of-sample explosive episodes of �nancial time series

by introducing Andrews (2003) and Andrews and Kim (2006) end-of-sample instability

tests. Their proposed methodology can o�er signi�cant power gains compared to the

BSADF test of Phillips et al. (2015) and can be utilised as an early-detection mechanism

of end-of-sample bubble episodes.

As important as it is to detect periods of explosiveness, it is crucial as well to be

able to assess the origination and termination of a bubble regime precisely. Harvey et

al. (2012) introduce an alternative approach in right-tailed unit root testing by using

the minimum sum of squared residuals estimators (see inter alia Bai and Perron 1998
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and Kejriwal, Perron, and Zhou 2013) together with the Bayesian Information Criterion

(BIC) for the optimum lag length selection. The proposed methodology can perform

well in detecting bubbles that collapse within the sample as well as end-of-sample bubble

episodes.

Phillips (2016) relates asset bubbles with the sentiments of heterogeneous investors

who perceive fundamentals in di�erent ways and therefore overreact (exuberant), under-

react (cautious) or respond appropriately to changes in fundamentals (fundamentalists),

whereas Lee and Phillips (2016) advocate that myopic investing introduces speculative

behaviour into asset pricing and provide a �nite investor horizon study. Although the

validity of the standard present value model in the long term may be considered as given,

the low power of the unit root tests, possible non-linear relationships, structural breaks

and possible outliers may lead to rather ambiguous or mistaken inferences (Bohl and

Sicklos 2004).

From what has been stated so far, we may argue the right-tailed unit root tests can

be considered as quite powerful bubble detection mechanisms that succeed to detect not

only past bubbles but bubble episodes that grow in real time as well. Nevertheless, in

a univariate framework the convention to ignore any correlation with other time series

may be costly; the exclusion of a correlated stationary covariate from the standard

regression model could weaken the explanatory power of the unit root testing which

would lead to signi�cant power losses (Hansen, 1995). Examining a variable in isolation

is a rather simplistic approach in time series analysis and the inclusion of a highly

correlated stationary variable could o�er signi�cant reduction in error variance compared

to the standard ADF test.

In addition, Hansen (1995) argues that with the existence of covariates, the critical

values of the standard ADF test can lead to incorrect statistical inference. Additionally,

as discussed later, the form of the asymptotic distribution of the conventional ADF test

provides conservative asymptotic critical values and therefore the ADF test appears to

have low power. Therefore, Hansen (1995) suggests using the �rst di�erences of a covari-

ate before including it into the regression model in order to deal with non-stationarity and

derives the asymptotic distribution of the covariate Augmented Dickey-Fuller (CADF)

test, which is a convex combination of the standard Dickey-Fuller distribution and the

normal distribution. By using a Monte Carlo simulation process in a no-deterministic
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environment, Hansen (1995) concludes that the CADF is more powerful compared to

the standard ADF test.

Although, it is widely known that the unit root testing processes su�er from low

power, the ADF test has the lowest size-adjusted power amongst the unit root tests,

asymptotically and in �nite samples, it provides the least size distortions as well (Stock

1994).7 Caporale and Pittis (1999) advocate that Hansen's (1995) CADF test succeeds

in achieving both great power gains and small size distortions, in contrast to the con-

ventional unit root tests, resulting in less over-rejection of the alternative hypothesis of

stationarity. Moreover, they provide theoretical evidence of reduction of the standard

errors and coe�cient estimates that depends on the contemporaneous and temporal cor-

relation structure of the errors and the stationary covariate. Furthermore, Caporale and

Pittis (1999) argue that the value of the test-statistic of the CADF test will converge

to that of the standard univariate ADF test where there is neither contemporaneous

nor temporal correlation between the covariate and the error term. In addition, they

apply both the ADF and the CADF tests to the Nelson and Plosser (1982) dataset8 and

conclude that the inclusion of covariates might not only enhance the explanatory power

of the model but reverse the presumption of unit root as well. This is in accordance to

their argument that by using the CADF test, the power of the model can be improved

with relatively small size distortions.

In a vector autoregressive framework, Elliott and Jansson (2003) extend the CADF

test proposed by Hansen (1995) to account for the case where constants or time trends

are included in the unit root regression model. In addition they suggest a likelihood-

ratio-based approach in combination with a GLS demeaning/detrending process for the

dependent variable and an OLS demeaning/detrending process for the covariate. West-

erlund (2013) follows a similar GLS process combined with an ARCH to account for

heteroskedasticity.

Chang, Sickles and Song (2017) bring the literature's attention to an important

caveat; the limit distribution of the covariate ADF test depends on the correlation

between the equation error and the covariate. Therefore, the nuisance parameter de-

7Stock (1994) develops a comparative study of univariate unit root tests with similar local asymptotic
power functions but di�erent �nite-sample behaviour to infer that the DF test-statistic exhibits the least
size distortions (compared to other unit root tests), at the expense of low power.

8Nelson and Plosser (1982) perform the conventional ADF test to fourteen US macroeconomic time
series (e.g. GDP, employment) to infer that there is evidence of non-stationarity in all of them except
unemployment.
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pendency results in invalid statistical inference and large size distortions. In order to

ensure the asymptotic validity of the critical values, they suggest a parametric boot-

strap CADF test which improves the explanatory power of the model (especially in the

case where the covariate is highly correlated with the error term), with no e�ect on the

size properties of the standard ADF test.9 Moreover, Chang, Sickles and Song (2017)

apply this bootstrap method to an extension of the Nelson and Plosser (1982) dataset

and argue that the bootstrap CADF test can o�er statistical gains compared to the

sample CADF test due to the independence of bootstrapped critical values from the

nuisance parameter. The extended Nelson-Plosser (1982) dataset was �rstly introduced

by Schotman and Van Dijk (1991) and it is widely used in macroeconomic analysis.

The data series includes a variety of macroeconomic variables -the nominal and real

GNP, employment, industrial production and money stock among others- as covariates.

Additionally, Aristidou, Harvey and Leybourne (2017) consider a GLS-demean/detrend

and an OLS-demean/detrend CADF approach in the existence of asymptotically non-

negligible initial conditions in order to obtain e�cient estimates and improve the power

of the CADF test, as proposed by Elliott, Rothenberg and Stock (1996), which depends

on the local asymptotic power and the magnitude of the initial conditions.

Nowadays, the weight has partially shifted from rational to irrational bubbles with

behavioural �nance attributing bubble detection to behavioural determinants such as

mimetic and herding aspects of the investors' attitude (see inter alia Akerlof and Shiller

2009, Shiller 2015). Avery and Zemsky (1998) advocate that asset bubbles and excess

volatility can be partially explained by herd behaviour. In particular, they examine

whether herding can act as a triggering factor of a bubble crash and in contrast to the

general conviction, they conclude that models of rational trading can indeed interpret

herding and crashes. Abreu and Brunnermeier (2003) relate price bubbles to the asyn-

chronous selling strategies of rational arbitrageurs as well as the di�erent beliefs on the

timing of the bubble burst.

Overall we can argue that the time-varying present value model can provide valuable

information for the stock price behaviour in the long term (see inter alia Campbell and

Shiller 1988 and Campbell and Shiller 1989) when in the short term, deviations from

9Chang, Sickles and Song (2017) consider the time trend case as well and demonstrate that the
inclusion of trend in the unit root regression equation results in power loss for all tests except the
bootstrapped CADF test.
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fundamentals can be attributed to non-fundamental determinants; speculative bubbles

(West, 1987 and Evans, 1991), noise trading (Shleifer 2000), expansions and recessions

in business activity (Phelps and Zoega 2001) or deviations that might lead to crashes

(Charemza and Deadman 1995). The theoretical framework of behavioural characteris-

tics such as overcon�dence, enthusiasm, greed, fear and panic can trigger the develop-

ment of �nancial bubbles and deviations from general equilibrium, has been developed

by Akerlof and Shiller (2009).

In this chapter we examine whether the power and size performance of right-tailed

Dickey-Fuller unit root test procedures can be enhanced by the inclusion of relevant co-

variates. As argued by Hansen (1995), in a univariate framework examining a variable in

isolation can lead to power reduction since ignoring information in correlated series could

possibly weaken the explanatory power of the standard unit root tests. Furthermore,

we apply the proposed Covariate Augmented Dickey Fuller unit root test in a backward

supremum sequence as in Phillips et al. (2015) to identify explosive episodes that occur

at the end of the sample. Sub-sample techniques can lead to imprecise estimation of the

nuisance parameter introducing additional variability, causing severe size distortions as

discussed in Chang, Sickles and Song (2017).

As a remedy to the nuisance dependency problem we apply a bootstrap procedure

while ensuring the asymptotic validity of the critical values drawn from the bootstrap

distribution of the test statistics. We put emphasis on the case where the explosive

episode takes place at the end of the sample as date-stamping bubbles in real time can

be of great usefulness to policy makers and central banks. The simulations suggest that

the proposed bootstrap tests o�er great size and power performance in �nite samples

as the bootstrap tests appear to be less size distorted compared to the non-bootstrap

conventional unit root tests and therefore the inclusion of covariates in the standard

Augmented Dickey Fuller regression model o�ers signi�cant power gains.

In our empirical application, we investigate whether our proposed tests would have

detected known past bubbles in the S&P 500 price dividend series before the tests

of Phillips et al. (2015) when used as an early warning mechanism, utilising the the

Moody's Seasoned Aaa and Baa Corporate Bond Yields, the Ten-Year Treasury Rate

and the Volatility Index (VXO) as covariates. The superiority of our proposed test is

re�ected on the earlier detection of Black Monday of October 1987 and the dot-com
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bubble.

In Section 2.1 we discuss some theory together with earlier and more recent devel-

opments in the bubble identi�cation literature. In Section 2.2 we outline the explosive

�nancial bubble model and in Sections 2.3 and 2.4 we review the extant covariate and

recursive unit root tests respectively. In Section 2.5 we present our proposed tests, some

limit theory and our bootstrap approach, whereas in Section 2.6 the �nite and sam-

ple size and power properties are examined by using Monte Carlo simulations and the

relevant discussion takes place. Section 2.7 presents an empirical application of the pro-

posed tests. Section 2.8 summarizes and concludes. Tables and Figures are presented in

sections 2.9 and 2.10 respectively. Mathematical proofs are given in the Appendix.

In what follows
p→ denotes convergence in probability,

d→ denotes convergence in

distribution and b.c denotes the integer part of its argument. We denote ‖.‖ as the

Euclidean norm as well. For a vector z = zi, ‖z‖2 := (
∑

i z
2
i )1/2 and for a matrix

A = (aij) ‖A‖2 := (
∑

i,j a
2
i,j)

1/2.

2.2 The Model and Assumptions

Consider a time series process {yt} that consists of a purely deterministic component

and a stochastic component generated according to the following data generating process

(DGP);

yt = dt + St, t = 1, ..., T, (2.1)

where dt is the deterministic component and can be either equal to 0 (neither constant,

nor trend), µ (constant but no trend) or µ+θt (constant and trend). The initial condition

y0 is assumed to be stochastically bounded and does not a�ect the subsequent analysis

in this paper. The stochastic component, {St}, is generated according to;

∆St = δSt−1 + ut. (2.2)

The innovation sequence, {ut} is generated according to

α(L)ut = b(L)′∆xt + εt (2.3)

where ∆xt is an m-vector of stationary covariates, α(L) is a lag operator polynomial of
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order p: α(z) = 1 −
∑p

k=1 αkz
k
p and b(k) =

∑q
k=−r βkz

k is a polynomial allowing for,

but not requiring, both leads and lags of ∆xt to enter the DGP.

In the context of testing the null hypothesis of a unit root against the alternative

of stationarity Hansen (1995) combines (2.2) and (2.3) and proposes estimating the

following regression by OLS

∆yt = d†t + δyt−1 +

p∑
k=1

αk∆yt−k +

q∑
k=−r

β′k∆xt−k + εt =: CADF (p, r, q). (2.4)

where

d†t =


0 if dt = 0

−δµ if dt = µ

a(1)θ − δµ− δθ if dt = µ+ θt

(2.5)

Following Chang, Sickles and Song (2017) we assume that the stationary covariates

∆xt are generated by an AR(`) process given by

Ψ(L)∆xt+r+1 = ηt, (2.6)

where Ψ(z) = Im −
∑`

k=1 Ψkz
k.

We also make the following assumptions on the innovation sequence ξt = (εt, η
′
t)
′ that

de�nes the correlation between the stationary covariates ∆xt and the series of interest

{yt}.

Assumption 2.1. (a) Let {ξt} be a martingale di�erence sequence such that E(ξtξ
′
t) =

Σ and (1/T )
∑T

t=1 ξtξ
′
t
p→ Σ with Σ > 0 and E|ξt|γ < K for some γ > 4, where K is

some constant depending only upon γ

(b) α(z), det(Φ(z)) 6= 0 for all |z| ≤ 1

Remark 2.1. As noted by Chang, Sickles and Song (2017) Assumption 2.1(a) al-

lows for conditional heteroskedasticity, including GARCH behaviour, in all equations

in the system including the covariates. By de�nition (εt) is uncorrelated with (ηt+k)

for k ≥ 1. This condition implies that (εt) is uncorrelated with the lagged di�erences
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of the dependent variable (∆yt−1, ...,∆yt−p) and the leads and lags of the covariates

(∆xt+r, ...,∆xt−q).

Remark 2.2. As noted by Chang, Sickles and Song (2017) Assumption 2.1(a) implies

the following invariance principle

1√
n

brT c∑
t=1

ξt
d→ B(r) (2.7)

holds for r ∈ [0.1] as T → ∞. The process B(r) = (Bε, B
′
η)
′ is an (1 + m)-dimensional

vector Brownian motion with covariance matrix

Σ :=

 σ2
ε σεη

σηε Ση

 . (2.8)

Let zt = (∆yt−1, ...,∆yt−p,∆xt+r, ...,∆xt−q)
′

Assumption 2.2. σ2
u > 0 and E(ztz

′
t) > 0

Remark 2.3. Assumption 2.2 ensures that the series of interest, {yt}, follows a unit

root process under the null hypothesis of δ = 0. E(ztzt)
′ > 0 ensures that the stationary

regressors in (2.4) are asymptotically linearly independent, which is required along with

Assumption 2.1(a) to ensure consistency of the least squares estimate of δ.

2.3 Extant Recursive Test Procedures

Phillips et al. (2015) initially propose a univariate approach to testing for end-of-sample

bubbles utilising the standard (non-covariate augmented) ADF regression given by;

∆yt = µ+ δyt−1 +

p∑
k=1

αk∆yt−k + et (2.9)

performed on the full sample of data, where µ is the intercept and p is the number of

lags of the dependent variable ∆yt. We denote the ADF test applied to the full sample

as ADF 1
0 (p).

Full sample tests for explosive behaviour can be shown, however, to have very poor

power to detect a short lived explosive episode in a series that otherwise follow a unit

root process. As such, Phillips et al. (2015) consider test statistics that are functions of
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a sequence of ADF statistics applied to subsamples of the data. Speci�cally, if we denote

an ADF test procedure performed on the subsample t = br1T c, ..., br2T c as ADF (p)r2r1 ,

then Phillips et al. (2015) propose the following test statistic to test for an explosive

episode;

SADF := sup
r2∈[r0,1]

{ADF (p)r20 }. (2.10)

The SADF test is the supremum of right-tailed ADF statistics performed on a window

of observations starting at t = 1 subject to a minimum sample size br0T c. This recur-

sive regression technique constitutes a powerful tool for detecting periodically collapsing

explosive behaviour and can as well be utilised for con�dence interval construction.

One drawback of the SADF test is that it lacks power to detect end-of-sample explo-

sive episodes that are arguably of most interest empirically, as more early observations

relative to end-of-sample observations are used in its construction.

Motivated by this lack of power to detect end-of-sample explosive episodes Phillips

et al. (2015) propose utilising the following test statistic to test for an end-of-sample

explosive episode;

BSADF := sup
r1∈[0,1−r0]

{ADF (p)1
r1}. (2.11)

The BSADF test is the supremum of right-tailed ADF statistics computed on all sub-

samples ending at date t = T subject to a minimum sample size br0T c. The BSADF test

is designed to detect end-of-sample explosive episodes and is as well shown by Phillips

et al. (2015) to be useful for date stamping past explosive episodes. The BSADF test

is particularly powerful when the bubble episode occurs at the end of the sample since

the BSADF test is constructed in such a way that each subsample ADF test used in

its construction will be computed using observations from the end-of-sample explosive

regime.

Finally, Phillips et al. (2015) propose the GSADF test that its test statistic con-

structed from a sequence of ADF test statistics computed over all possible start and

end dates, again, subject to a minimum sample size. The GSADF test of Phillips et al.
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(2015) thus takes the form;

GSADF := sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF (p)r2r1}. (2.12)

The GSADF test is a double-recursive unit root test, designed to test for the presence

of one or more explosive episodes in a �nancial time series that are permitted to occur

anywhere in the sample. As such, a rejection when using the GSADF test can only

signal that a sample contains at least one explosive episode, but not where in the sample

the explosive episode occurs.

2.4 Extant Covariate Augmented Unit Root Tests

Hansen(1995) proposes testing the null hypothesis of a unit root (H0 : δ = 0) in {yt}

using the test t-statistic tδ̂ = δ̂
s(δ̂)

where s(δ̂) is the standard error of δ̂ calculated from

Equation (2.4). We refer to tδ̂ as the CADF (p, r, q)1
0 (Covariate Augmented Dickey-

Fuller) test statistic where p, r, q denote the order of the lag polynomials α(L) and b(L)

speci�ed in Equation (2.3).

The asymptotic distribution of the t(δ̂) test statistic under H0 and appropriate crit-

ical values for a left-tailed test against the alternative of stationarity are provided in

Hansen (1995), who shows that the inclusion of relevant covariates in the unit root test

procedure leads to a substantial increase in power compared to a univariate approach. In

the context of testing for explosive episodes we could simply utilise a right-tailed version

of this test procedure and expect signi�cant power gains relative to using a non covariate

augmented full sample ADF test, however, it has been shown by inter alia Phillips et

al. (2015) that the power of full sample based tests for explosivity lack power relative to

newly proposed recursive test procedures. As such, we will now explore the possibility

of utilising covariate augmented test statistics performed in a recursive manner.

2.5 Proposed Tests

A potential drawback of the tests of Phillips et al. (2015) outlined in Section 2.4 is that

a univariate process is assumed. Given the complex relationships across multiple asset

prices a multivariate approach could, potentially, be of much greater use. If a practitioner

is interested in testing the null hypothesis of a unit root in {yt} against the alternative
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of explosivity for the entire sample then one could simply estimate regression (2.4) over

the entire sample and perform a right tailed t-test of the null of δ = 0 using critical

values from Hansen (1995). Given the power improvements o�ered by the supremum

ADF tests of Phillips et al. (2015) relative to the full sample ADF test in a univariate

setting, however, we consider utilising the following test statistics instead;

CSADF := sup
r2∈[r0,1]

{CADF (p, r, q)r20 }, (2.13)

that is the supremum of covariate augmented Dickey-Fuller test statistics computed over

all possible end dates for samples starting at time t = 1 (subject to a minimum sample

size r0T ),

CBSADF := sup
r1∈[0,1−r0]

{CADF (p, r, q)1
r1}, (2.14)

which is the backward supremum of covariate augmented Dickey-Fuller test statistics

computed over all possible start dates for samples ending at time t = T (subject to a

minimum sample size br0T c) and

CGSADF := sup
r2∈[r0,1]

r1∈[0,r2−r0]

{CADF (p, r, q)r2r1}. (2.15)

that is the generalised supremum of covariate augmented Dickey-Fuller test statistics

computed over all possible start dates and end dates (subject to a minimum sample size

r0T ). Such an approach will be able to exploit both the inter dependencies between the

series {yt} and any relevant covariates and the power gains associated with adopting a

recursive estimation approach found by Phillips et al. (2015).

2.5.1 Limit Theory

In this section we outline the limiting null distribution of the CGSADF test statistic,

with the limiting null distributions of the CSADF and CBSADF test statistics following

as special cases of this result.

Theorem 2.1. Let data be generated according to (2.1) - (2.3) and additionally let

Assumptions 2.1 and 2.2 hold, then under the null hypothesis of no explosivity we have

(a) If dt = 0
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CGSADF
d→ sup

r2∈[r0,1]
r1∈[0,r2−r0]

∫ r2
r1
Q(s)dP (s)(∫ r2

r1
Q(s)2ds

)1/2
(2.16)

where Q(s) = b(1)Ψ(1)Bη(s) +Bε(s) and P (s) = Bε(s)/σε.

(b) If dt = µ

CGSADF
d→ sup

r2∈[r0,1]
r1∈[0,r2−r0]

∫ r2
r1
Qµ(s)dP (s)(∫ r2

r1
Qµ(s)2ds

)1/2
(2.17)

where Qµ(s) = Q(s)− 1
(r2−r1)

∫ r2
r1
Q(t)dt and P (s) = Bε(s)/σε.

(c) If dt = µ+ θt

CGSADF
d→ sup

r2∈[r0,1]
r1∈[0,r2−r0]

∫ r2
r1
Qτ (s)dP (s)(∫ r2

r1
Qτ (s)2ds

)1/2
(2.18)

where Qτ (s) = Qµ(s)−12(r2−r1)−3
(
s− (r2−r1)

2

) ∫ r2
r1

(
t− (r2−r1)

2

)
Qµ(t)dt and P (s) =

Bε(s)/σε.

Remark 2.4. The asymptotic distribution of the CSADF test follows directly from

Theorem 5.1 by �xing r1 = 0, whereas the asymptotic distribution of the CBSADF test

obtains by �xing r2 = 1.

The proof of this result can be found in the Appendix.

2.5.2 Practical Implementation of tests

The asymptotic distribution of our proposed tests depends on the nuisance parameter %

which is the long-run correlation coe�cient between the equation error and the covariate,

with %2 measuring the relative contribution of the covariates ∆xt to the error term ut.

The coe�cient %2 can take values between 0 (when the covariates fully explain the

variability of the error term) and 1 (when the covariates have no explanatory power).

We expect that the lower the long-run correlation between εt and ut, that is for lower

values of %2, the greater the power gains from the inclusion of the covariates into our

proposed tests relative to univariate methods.

In practice the true value of %2 is unknown. We therefore propose selecting critical

values for our proposed test procedures using a consistent non-parametric estimator of

%2 given by
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%̂2 =
σ̂2
uε

σ̂2
ε σ̂

2
u

(2.19)

where

Ω̂ =

 σ̂2
u σ̂uε

σ̂uε σ̂2
ε

 =
M∑

k=−M
w(k/M)T−1

∑
t

γ̂t−kγ̂
′
t (2.20)

and γ̂t = (ût, ε̂t)
′ are least squares estimators of γt = (ut, εt)

′ from the full sample

estimation of Equations (2.1) - (2.3) The function w is the Parzen kernel function that

produces positive semide�nite covariance matrices;

w(x) =


1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 1/2,

2(1− |x|)3 for 1/2 ≤ |x| ≤ 1,

0 otherwise,

(2.21)

and M is an automatic bandwidth estimator of Andrews (1991) that grows slowly

with the sample size;

M = 2.6614(α(2)T )1/5, (2.22)

where α(2) is a function of an unknown spectral density matrix as discussed in Andrews

(1991). The number of lags of the dependent variable ∆yt as well as the number of lags,

q, and leads, r, of the covariate ∆xt are chosen using the Bayesian Information Criterion

(BIC).

The methodology described above can be shown to perform well when used as part

of a full sample testing process, but we will show that this methodology has poor size

control in a recursive sub-sample framework, mainly due to imprecise estimation of the

nuisance parameter %2. We therefore consider bootstrap implementation of our proposed

test procedures in order to better control size in a recursive estimation framework.

2.5.3 Bootstrap Unit Root Tests with Covariates

To better control size in �nite samples when performing tests in a recursive framework we

propose bootstrap implementation of our proposed covariate augmented test procedures.

Following Chang, Sickles and Song (2017) we utilise the following bootstrap algorithm.
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Algorithm 1. (Bootstrap CADF tests)

Step 1: Compute ut = ∆yt and estimate the following regression by OLS;

ut =

p∑
k=1

ãkut−k +

q∑
k=−r

β̃′k∆xt−k + ε̃t. (2.23)

with p, q and r chosen using the Bayesian Information Criterion (BIC).

Step 2: Estimate the following regression using the Yule-Walker method10;

∆xt+r+1 = Φ̃1,n∆xt+r + ...+ Φ̃l,n∆xt+r−l+1 + η̃t. (2.24)

Step 3: De�ne ξ̃t = (ε̃t, η̃t) where ε̃t and η̃t are the �tted residuals obtained from

Equations (2.23) and (2.24) and generate bootstrap samples (ξ∗t ) by resampling from the

centred distribution of ξ̃t; (
ξ̃t −

1

n

n∑
t=1

ξ̃t

)n
t=1

.

Step 4: Construct recursively the bootstrap samples of the stationary covariate (∆x∗t )

according to;

∆x∗t+r+1 = Φ̃1,n∆x∗t+r + ...+ Φ̃l,n∆x∗t+r+1−` + η̃∗t (2.25)

where the `-initial values of ∆x∗t are set equal to zero.

Step 5: Construct the bootstrap sample {v∗t } according to;

v∗t =

q∑
k=−r

β̃k
′
∆x∗t−k + ε∗t (2.26)

using the OLS estimates β̃k, −r ≤ k ≤ q from Equation (2.23).

Step 6: Generate recursively the bootstrap samples of the error term {u∗t } from;

u∗t = α̃1u
∗
t−1 + ...+ α̃pu

∗
t−p + v∗t (2.27)

where we set the initial values u∗0, ..., u
∗
−(p−1) = 0 and α̃k, 1 ≤ k ≤ p are estimated from

Equation (2.23).

Step 7: Generate {y∗t } from cumulating the bootstrap values of {u∗t };
10Brockwell and Davis (1991) suggest to utilise the Yale-Walker method for estimating ARMA(p,q)

models to obtain good estimates in small samples and (or) when q = 0 to ensure stationarity.
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y∗t = y∗t−1 + u∗t = y∗0 +
t∑

k=1

u∗k (2.28)

where we set y∗0 = 0.

Step 8: A covariate Augmented Dickey-Fuller unit root test statistic calculated using

the observations {y∗t } from t = br1T c, ..., br2T c, (CADF ∗)r2r1, can then be calculated from

the following regression;

∆y∗t = αy∗t−1 +

p∑
k=−r

αk∆y
∗
t−k +

q∑
k=−r

β′k∆x
∗
t−k + ε∗t (2.29)

Remark 2.5. The algorithm above is outlined for the case where no deterministic com-

ponents are allowed for in the data. If a constant is to be allowed for in the data then

the series yt and ∆xt should be replaced by their demeaned counterparts. Likewise, if

a constant and trend are to be allowed for in the data then yt and ∆xt should �rst be

demeaned and detrended.

We propose utilising the CADF∗(p,r,q) test statistic in place of the standard CADF(p,r,q)

to deliver a test with controlled �nite sample size when estimation is performed in a re-

cursive framework. Our proposed tests are, therefore, given by;

CSADF ∗ := sup
r∈[r0,1]

{CADF ∗(p, r, q)r0} (2.30)

CBSADF ∗ := sup
r∈[0,1−r0]

{CADF ∗(p, r, q)1
r} (2.31)

CGSADF ∗ := sup
r2∈[r0,1]

r1∈[0,r2−r0]

{CADF ∗(p, r, q)r2r1} (2.32)

The bene�t of the bootstrap procedure is that the impact of %2 on the critical values

of the proposed tests is now modelled explicitly. The bootstrap CADF test deals with

the nuisance parameter dependency problem and will be shown to better control size

in �nite samples compared to the non-bootstrap version of the tests. In what follows

we will focus on the performance of the CBSADF∗ test as this test is constructed to

detect end-of-sample and ongoing explosive episodes which are arguably of most interest

to practitioners.
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2.5.4 Bootstrap Limiting Distribution

In this section we outline the bootstrap limiting null distribution of the CGSADF ∗

test statistic, with the limiting null distributions of the CSADF ∗ and CBSADF∗ test

statistics following as special cases of this result.

Theorem 2.2. Let data be generated according to (2.1) -(2.3) and additionally let As-

sumptions 2.1 and 2.2 hold, then under the null hypothesis of no explosivity we have

(a) If d∗t = 0

CGSADF ∗
d∗→ sup

r2∈[r0,1]
r1∈[0,r2−r0]

∫ r2
r1
Q(s)dP (s)(∫ r2

r1
Q(s)2ds

)1/2
(2.33)

where Q(s) = b(1)Ψ(1)Bη(s) +Bε(s) and P (s) = Bε(s)/σε.

(b) If d∗t = µ∗

CGSADF ∗
d∗→ sup

r2∈[r0,1]
r1∈[0,r2−r0]

∫ r2
r1
Qµ(s)dP (s)(∫ r2

r1
Qµ(s)2ds

)1/2
(2.34)

where Qµ(s) = Q(s)− 1
(r2−r1)

∫ r2
r1
Q(t)dt and P (s) = Bε(s)/σε.

(c) If d∗t = µ∗ + θ∗t

CGSADF ∗
d∗→ sup

r2∈[r0,1]
r1∈[0,r2−r0]

∫ r2
r1
Qτ (s)dP (s)(∫ r2

r1
Qτ (s)2ds

)1/2
(2.35)

where Qτ (s) = Qµ(s)−12(r2−r1)−3
(
s− (r2−r1)

2

) ∫ r2
r1

(
t− (r2−r1)

2

)
Qµ(t)dt and P (s) =

Bε(s)/σε.

Remark 2.6. The asymptotic distribution of the CSADF ∗ test follows directly from

Theorem 2.2 by �xing r1 = 0, whereas the asymptotic distribution of the CBSADF∗ test

obtains by �xing r2 = 1.

The proof of this result can be found in the Appendix.

2.6 Finite Sample Simulations

In this section we examine the �nite sample size and power properties of our proposed

tests relative to the extant tests of Phillips et al. (2015). In order to do so, data were



46

simulated according to the following data generating process that allows for a single

covariate;

yt = φtyt−1 + ut, t = 1, ..., T (2.36)

with

ut = α1ut−1 + vt (2.37)

vt = β∆xt + εt, (2.38)

∆xt+1 = λ∆xt + ηt, (2.39)

and where

ξt =

εt
ηt

 ∼ N

0

0

 ,
 1 σεη

σηε 1


 . (2.40)

The perfomance of all tests will depend on the correlation between the error term

vt and the stationary covariate ∆xt and therefore on λ and β as these two coe�cients

determine the degree of correlation between the series of interest yt and the covariate

∆xt.

Following Chang, Sickles and Song (2017) we examine values of λ and β between

−0.8 and 0.8 and set α1 = 0.2 and σeη = 0.4. As in Hansen (1995) we simulate series

of length T + 100 and drop the �rst 100 observations to eliminate any start-up e�ects.

The minimum window size, r0 for all recursive test procedures is chosen as;

r0 = (0.01 +
1.8√
T

) ∗ T. (2.41)

The choice of lag lengths is of particular importance and critically a�ects the �nite

sample performance of the tests. We use the Bayesian Information Criterion (BIC) to

decide on the optimal lag length of the dependent variable ∆yt as well as the optimal

lag and lead lengths of the stationary covariate ∆xt, with the maximum lag set to four

for the dependent variable ∆yt and the maximum lag and lead for the covariate ∆xt set

to two.

All simulations that follow were conducted in GAUSS 17 using 2, 000 Monte Carlo

replications and 999 bootstrap replications. All tests are performed at a nominal 5%

level of signi�cance. In the bootstrap algorithm, a constant is allowed for in the data

and therefore the series yt and ∆xt are replaced by their demeaned counterparts.
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2.6.1 Empirical Size

To assess the size properties of our proposed tests, data were generated according to

Equations (2.36)-(2.40) with φt = 1 for the full sample t = 1, ..., T after discarding the

�rst 100 observations to eliminate any start-up e�ects. We report the empirical size of

the BSADF test of Phillips et al. (2015), the CBSADF%̂2 test (i.e. the CBSADF test

based on the estimated long-run correlation coe�cient squared), the CBSADF%2 test

(i.e. the CBSADF test based on the true value of the long-run correlation coe�cient

squared), the bootstrap version of the BSADF test of Phillips et al. (2015) and our

proposed CBSADF∗ test, for a range of values of β, λ ∈ [−0.8, 0.8] along with the true

value of %2 for each parameter setting. Table 1 reports the �nite sample size of all tests

for a sample size of T ∈ [100, 250, 400].

In Table 1 the non-bootstrap BSADF test and both the non-bootstrap CBSADF

tests exhibit severe size distortions across most of the scenarios considered, with the size

of these tests exceeding or being below the nominal 5% level of signi�cance in a number

of scenarios. On the other hand, the size distortions exhibited by the CBSADF%̂2 test

in some of the scenarios can be attributed to the imprecise estimation of the nuisance

parameter %2. The limit null distribution and critical values of the CBSADF%̂2 are a

function of %̂2 and, therefore, imprecise estimation of %2 leads to incorrect critical values

being utilised, resulting in inevitable size distortions, see for instance when β = −0.8

and λ = 0.8.

To continue with, the bootstrap based BSADF∗ test displays much better size control

for most of the designs compared to the non-bootstrap BSADF test of Phillips et al.

(2015). When T = 100 the bootstrap based CBSADF∗ test displays some modest

oversize across some of the scenarios considered, exhibiting size ranging from 0.05 to

0.09. We attribute these size distortions to the small size of the sample.

Increasing the sample size to T ∈ [250, 400] in Table 1, improves the size performance

of our proposed bootstrap based CBSADF∗ test proving that the size distortions are a

small sample issue. The size performance of the bootstrap CBSADF∗ test is signi�cantly

improved for larger samples as can been seen in Table 1, when T = 250 while when

T = 400, our proposed test displays even better �nite sample size properties indicating

that the oversize exhibited by our proposed bootstrap CBSADF∗ test eliminated for

larger samples. The CBSADF∗ test displays excellent size control across all scenarios,
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with some size distortions exhibited by this test in the smaller sample size of T = 100

greatly improved in the larger sample size of T = 250 and T = 400.

Overall, it can be seen that both the bootstrap BSADF∗ and CBSADF∗ tests control

size to a similar or greater degree than the respective non-bootstrap based BSADF and

CBSADF tests, with the CBSADF∗ test displaying some modest size distortions for small

samples, that they would be of little use empirically in the scenarios considered. Whilst

the bootstrap BSADF∗ displays greater size control than its non-bootstrap counterpart,

the CBSADF∗ test, has the best overall size control, with oversize exhibited by this test

in smaller sample sizes, entirely eliminated when a larger sample size is considered.

2.6.2 Empirical Power

We now proceed to examine the power of our proposed tests relative to extant tests. To

do so, data were generated according to Equations (2.36)-(2.40) with T = 250 under

the alternative hypothesis of an end-of-sample explosive episode by setting φt = 1 for

t = 1, ..., 200, and φt = φ > 1 for t = 201, ..., 250. The series {yt} follows a unit

root process for the �rst 200 observations and is then subject to (potential) explosive

behaviour over the remaining 50 observations. Due to the severe oversize exhibited by

the BSADF test and the CBSADF test in some scenarios, we report power results for

the BSADF∗ and CBSADF∗ tests as well as the size-adjusted BSADF and CBSADF

tests.

The �nite sample power of the BSADF∗ and CBSADF∗ tests and the size-adjusted

BSADF and CBSADF tests is computed over a grid of 20 values of φ from φ = 1.00 to

φ = 1.05 for each of the eight pairings of β and λ discussed previously. Figures 1 and

2 report �nite sample power curves for the BSADF∗ and CBSADF∗ tests across each of

the scenarios considered (pairings of β and λ).

In all scenarios the power of all tests is increasing monotonically in φ. In most of the

scenarios the CBSADF∗ test displays greater power overall compared to the BSADF∗

test or the size-adjusted BSADF and CBSADF tests, although for some designs the

power of the CBSADF∗ test is lower than that of the BSADF∗ test for lower values of φ

mainly due to the oversize exhibited by the BSADF∗ test in most of the scenarios, see

for example Figure 2 (c). In general, however, the power of the CBSADF∗ test quickly

exceeds that of the BSADF∗ test and the size-adjusted BSADF and CBSADF tests as
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φ increases.

The CBSADF∗ test displays much greater power than the BSADF∗ test, with the

power di�erential between the two tests reaching almost 20% and an even greater power

di�erential between the CBSADF∗ and the size-adjusted BSADF test, for a given value

of φ as can be seen in Figure 1 (a). Finally, there is no signi�cant contribution of the

covariate in Figure 2 (d) since all four tests (i.e. size-adjusted BSADF test, size-adjusted

CBSADF test, bootstrap BSADF∗ test and CBSADF∗ test) appear to have similar power

properties.

Overall, we argue that both the bootstrap BSADF∗ and CBSADF∗ tests show bet-

ter size control than their respective non-bootstrap (BSADF and CBSADF) tests across

most of the parameter values while o�ering signi�cant power gains, with the best per-

formance given by the CBSADF∗ test. Arguably, the inclusion of covariates in the

CBSADF∗ test leads to greater power performance relative to the BSADF∗ test in �nite

samples, as well as o�ering slightly improved size control. We, therefore, recommend

utilising the CBSADF∗ test in practice as it o�ers the best overall size control and power

properties amongst the tests considered.

2.7 Empirical Application

Following Phillips et al. (2015) empirical application, we consider the real S&P 500 stock

price index and the real S&P 500 stock price index dividend over the period January

1959 to June 2018 at a monthly frequency, constituting 714 observations.11 We utilise

the same dataset with Phillips et al. (2015) as it contains multiple historical bubble

episodes and we estimate the present value of the real price-dividend ratio which is the

real S&P 500 stock price index over the real S&P 500 stock price index dividend as

outlined in Phillips et al. (2015).

According to Shiller (2015) bonds are related to asset bubbles as when long-term

interest rates decrease, bond prices increase creating enthusiasm in a similar way as in

the stock market. Vogel (2010) argues that during the end of the double recessions

of the 80s, the bond market had reached historical low levels as a consequence of the

tight monetary policy and high interest rates FED implemented to deal with double-

digit in�ation. The "bond market conundrum", the inability of the monetary policy to

11Both obtained from Robert Shiller's website: http://www.econ.yale.edu/ shiller/data.htm
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a�ect long-term bond yields has been widely acknowledged in the literature (see inter

alia Evano�, Kaufman and Malliaris 2012, Bernanke 2005). Furthermore, monetary

tightening might not be able to a�ect long-term interest rates if the FED does not

increase the federal funds rate enough prior to the bubble episode, as a great increase in

long term interest rates can mitigate the episode (Taylor 2007). As a long-term interest

rate, we choose the Ten-Year Treasury Constant Maturity Yield which is published by

the Federal Reserve Board and it is calculated based on the daily yield curve for non-

in�ation-indexed Treasury securities, all adjusted to the equivalent of a 10-year maturity

and it is based on the closing market bid yields on actively traded Treasury securities

in the over-the-counter market (Federal Reserve statistical release 2016).

The CBOE S&P 100 volatility index (initially VIX, renamed to VXO in 2003) mea-

sures market's expectation of 30-day volatility and it is constructed by using the implied

volatilities on the S&P 100 index options (OEX). OEX options were the standard index

options traded in the domestic stock market, however the trading activity on EOX op-

tions started decreasing as more and more investors started trading using S&P 500 index

options instead, contributing to the introduction of the CBOE volatility index (VIX) in

2003 when the CBOE S&P 100 volatility index had its symbol changed from VIX to

VXO. In their seminal work, Fleming, Ostdiek and Whaley (1995) provide evidence in

support of the argument that there is a tendency of the VIX (which it was renamed to

VXO in 2003) to rise after large sell-o�s and fall after large rallies. In 1998, during the

dot-com bubble episode, VIX appeared having a quite wide range as 90% of the VIX

levels were between 18.57% and 42.74% whereas after the collapse of the dot-com bubble

the range according to Whaley (2000) narrowed to 11% (20% - 31%). The VIX index is

known as fear index as it re�ects investors expectations about future volatility as well

as their willingness to pay in terms of implied volatility to hedge their stock portfolios

(Whaley 2000).

For all the above, we utilise as covariates the Moody's Seasoned Aaa Corporate Bond

Yield12 as well as the Moody's Seasoned Baa Corporate Bond Yield13 that both cover

the period between January 1959 and June 2018 (714 observations), the Chicago Board

Options Exchange Volatility Index (CBOE VXO)14 from January 1986 to June 2018

12Retrieved from: https://fred.stlouisfed.org/series/AAA
13Retrieved from: https://fred.stlouisfed.org/series/BAA
14Retrieved from: https://�nance.yahoo.com/quote/%5EVXO/
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(390 observations) and the Ten-Year Treasury Constant Maturity Yield (GS10)15 over

the period March 1970 to June 2018 (580 observations). All covariates are sampled at a

monthly frequency.

Before we include the covariates into our proposed CBSADF∗ test it is important

that we �rstly ensure the stationarity of the covariates. In Table 2 we report the full

sample ADF test statistics for all four covariates together with the �nite sample left-

tailed critical values for their corresponding sample size. We choose to include a constant

in the ADF regression for the covariates and the lags of ∆xt is set to zero as suggested

by the Bayesian Information Criterion (BIC).

Performing a unit root test on the Aaa and Baa Corporate Bond Yields, we conclude

that we cannot reject the null hypothesis of a unit root at 5% level of signi�cance and

therefore we are including �rst di�erences of the series in the CADF regression. Testing

the Ten-Year Treasury Constant Maturity Yield for a unit root we conclude that we

cannot reject the null hypothesis and therefore we utilise this covariate in di�erences as

well. Finally, although the Volatility Index (VXO) appears to be stationary, we strongly

reject the null hypothesis of a unit root at 5% level of signi�cance, it is commonly

argued in the literature that asset price volatility is shown to be fractionally integrated

as it retains long memory (see inter alia Bollerslev and Mikkelsen 1996, Parke 1999 and

Fantazzini 2011). For this reason, the Volatility Index (VXO) is used in �rst di�erences.

In the bootstrap algorithm, a constant is allowed for in the data and therefore the

series yt and ∆xt are replaced by their demeaned counterparts. To continue, we apply the

BSADF∗ and CBSADF∗ tests as outlined earlier in sections 2.4 and 2.5. In particular,

we consider the price-dividend ratio as the dependent variable regressed on its lags and

leads and lags of the covariates, namely the Aaa corporate bond yield, Baa corporate

bond yield, ten-year treasury rate and volatility index (VXO). Furthermore, we use the

Bayesian Information Criterion (BIC) to determine the lags of the di�erenced dependent

variable. If a practitioner is interested in testing for bubbles in real time then one would

only consider lags and not leads of the potential covariates. Since we are referring to

past bubble episodes we choose to make use of leads as well, but our proposed tests can

be equally useful on a real-time basis when using leads might not be feasible.

We utilise all three covariates to identify bubble episodes in historical prices applying

15Retrieved from https://fred.stlouisfed.org/series/GS10
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our proposed CBSADF∗ test together with the bootstrap version of the BSADF test of

Phillips et al. (2015), i.e BSADF∗ test. Particularly, we use the Aaa corporate bond

yield and Baa corporate bond yield for the period January 1959 to June 2018, the ten-

year treasury yield from March 1970 to June 2018 and the volatility index (VXO) from

January 1986 to June 2018. Results are summarised in Table 3.

In addition, we compute right-tailed �nite sample critical values for both tests using

999 bootstrap replications. The minimum window size is determined as in Equation

(2.41) where T is the sample size of the observations as outlined by Phillips et al.

(2015). Both tests are performed at a 5% level of signi�cance and a constant is included

in the regression.

To investigate the accuracy of our proposed tests to detect bubble episodes in em-

pirical data series, we follow Phillips et al. (2015) who perform a (pseudo) real-time

bubble monitoring exercise on the present value of the real S&P 500 price-dividend ra-

tio and apply a date-stamping strategy to test for the presence of explosive behaviour.

Particularly, we estimate both the BSADF∗ and CBSADF∗ test statistics in a recur-

sive framework and we identify the origination date of the bubble episode as the �rst

chronological observation of which the test statistic is larger than the simulated �nite

sample critical value therefore rejecting the null hypothesis of a unit root. On the same

spectrum, the termination date of the bubble episode is de�ned as the �rst chronological

observation of which test statistic becomes less than the simulated �nite sample critical

value.

Table 3 presents three periods of bubble episodes (origination and termination dates)

as identi�ed by the BSADF∗ test and our proposed CBSADF∗ test across three covari-

ates. We focus on the performance of the BSADF∗ and CBSADF∗ tests as detecting

explosive episodes that occur at the end of the sample in real-time, can be useful to

regulators, policy makers and central banks. Both the BSADF∗ and CBSADF∗ tests

identify two periods of exuberance; namely the Black Monday of October 1987 and the

dot-com bubble of 2000-2001. We present those explosive episodes that are detected

earlier by the proposed CBSADF∗ test compared to the BSADF∗ test.

We report the origination and termination dates of two bubble episodes as identi�ed

by the BSADF∗ test and our proposed CBSADF∗ test across the four di�erent covariates

(Table 3). In particular, the BSADF∗ test identi�es February 1987 as the origination
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date of the Black Monday episode, �ve months prior to the crash, whereas when the

Aaa and Baa corporate bond yields are used as covariates independently, our proposed

CBSADF∗ test detects the bubble episode eleven months earlier (March 1983) compared

to the BSADF∗ test (February 1987). Furthermore, as it can be seen in Table 3, when

utilising both the Aaa and Baa corporate bond yields as covariates independently, the

CBSADF∗ test identi�es the origination date of the dot-com bubble episode in July

1995, two months earlier than the BSADF∗ test (September 1995).

In a similar way, when the ten-year treasury rate is utilised as a covariate the proposed

CBSADF∗ test identi�es the origination date of the Black Monday episode in June 1986,

nine months earlier compared to the BSADF∗ test (February 1987) and the origination

date of the dot-com bubble episode in July 1995, while the BSADF∗ test identi�es

the origination date of the same episode two months later (September 1995). Finally,

the BSADF∗ test proposes that the dot-com bubble episode originated in September

1995, whereas when the volatility index (VXO) is utilised as a covariate, the CBSADF∗

identi�es the origination date two months earlier, in July 1995.

To conclude, our proposed CBSADF∗ test has identi�ed the Black Monday of Octo-

ber 1987 as well as the dot-com bubble episode earlier compared to the BSADF∗ test,

re�ecting the superior power of the CBSADF∗ test to quickly detect bubble episodes.

The CBSADF∗ test seems to be able to detect the bubble episodes earlier compared to

the BSADF∗ test for all covariates. Finally, our empirical results are in accordance to

the theoretical evidence presented in section 2.6, where we argue that the CBSADF∗

test shows better size control and power performance over the BSADF∗ test and we

provide empirical evidence that the inclusion of covariates in the CBSADF∗ test leads

to greater power properties relative to the BSADF∗ test in �nite samples and therefore,

recommend utilising the CBSADF∗ test in practice.

2.8 Conclusion

This chapter provides theoretical and empirical evidence that the inclusion of relevant

covariates in the conventional Augmented Dickey Fuller test regression leads to im-

proved size control, while o�ering signi�cant power gains when an end-of-sample explo-

sive episode is present. Speci�cally, we investigate whether the size and power properties

of the tests of Phillips et al. (2015) can be enhanced by the inclusion of information in
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related time series that traditional univariate unit root tests tend to ignore.

When working only in a univariate framework, the choice to examine a variable

in isolation can be rather costly in terms of power since ignoring any correlation with

other relevant series leads to unnecessarily high standard errors when constructing the

Dickey-Fuller test statistic, leading to signi�cant power losses. Our proposed test is

applied using a recursive window sequence as suggested by Phillips et al. (2015) to

detect explosive episodes that occur at the end of the sample.

To deal with potential bias we apply a bootstrap version of the proposed test ensuring

the asymptotic validity of the critical values drawn from the bootstrap distribution of

the test. We concentrate on the case where the explosive episode takes place at the end

of the sample as the detection of ongoing bubbles is of most importance to practitioners,

with the tests being useful in terms of date stamping past bubbles as well.

Simulation results show that the proposed tests have improved size and power prop-

erties in �nite samples relative to extant tests. In particular, the CBSADF∗ test su�ers

less severe size distortions compared to conventional tests that do not utilise a boot-

strap procedure or omit relevant covariates, whilst displaying signi�cantly better power

properties.

Empirical work explores the e�ectiveness of the proposed tests as early warning

mechanisms, informing policy makers of a bubble episode that might occur, which should

provide evidence that the tests might be useful to structuring macroprudential policy.

Speci�cally, we examine whether our proposed tests would have detected known past

bubbles in the S&P 500 price dividend series before the tests of Phillips et al. (2015)

when used as an early warning mechanism, utilising the Moody's Seasoned Aaa and

Baa Corporate Bond Yields, the Ten-Year Treasury Rate and the Volatility Index as

covariates. The superiority of our proposed test is re�ected on the earlier detection of

two major explosive episodes: Black Monday of October 1987 and the dot-com bubble.
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2.9 Tables
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Table 1: Finite Sample Size

T = 100

β λ BSADF CBSADF
%̂2

CBSADF%2 BSADF ∗ CBSADF ∗ %2

0.8 0.8 0.075 0.065 0.074 0.076 0.090 0.335
0.5 0.8 0.081 0.058 0.064 0.111 0.079 0.432
-0.5 0.8 0.058 0.233 0.108 0.113 0.073 0.000
-0.8 0.8 0.075 0.296 0.227 0.097 0.075 0.026
0.8 0.5 0.029 0.043 0.048 0.055 0.061 0.556
0.5 0.5 0.029 0.040 0.041 0.064 0.055 0.700
-0.5 0.5 0.012 0.083 0.056 0.077 0.050 0.300
-0.8 0.5 0.015 0.148 0.083 0.079 0.057 0.057

T = 250

β λ BSADF CBSADF
%̂2

CBSADF%2 BSADF ∗ CBSADF ∗ %2

0.8 0.8 0.038 0.057 0.059 0.065 0.062 0.335
0.5 0.8 0.051 0.049 0.051 0.092 0.067 0.432
-0.5 0.8 0.042 0.243 0.109 0.111 0.050 0.000
-0.8 0.8 0.050 0.335 0.247 0.103 0.046 0.026
0.8 0.5 0.009 0.037 0.039 0.040 0.051 0.556
0.5 0.5 0.012 0.029 0.028 0.057 0.056 0.700
-0.5 0.5 0.005 0.086 0.054 0.061 0.044 0.300
-0.8 0.5 0.008 0.163 0.079 0.058 0.043 0.057

T = 400

β λ BSADF CBSADF
%̂2

CBSADF%2 BSADF ∗ CBSADF ∗ %2

0.8 0.8 0.033 0.052 0.056 0.081 0.047 0.335
0.5 0.8 0.049 0.045 0.048 0.103 0.054 0.432
-0.5 0.8 0.041 0.262 0.124 0.128 0.050 0.000
-0.8 0.8 0.048 0.354 0.276 0.109 0.052 0.026
0.8 0.5 0.009 0.032 0.033 0.051 0.043 0.556
0.5 0.5 0.012 0.026 0.026 0.060 0.045 0.700
-0.5 0.5 0.004 0.076 0.046 0.055 0.033 0.300
-0.8 0.5 0.008 0.170 0.084 0.063 0.048 0.057

Data generated according to yt = yt−1 + ut with ut = α1ut−1 + vt, vt = β∆xt + εt and

∆xt+1 = λ∆xt + ηt, where ξt =

[
εt
ηt

]
∼ N

([
0
0

]
,

[
1 σεη
σηε 1

])
α1 = 0.2 and σηε = σεη =

0.4 .

Note: All simulations were conducted in GAUSS 17 using 2, 000 Monte Carlo replications and 999
bootstrap replications. All tests are performed at a nominal 5% level of signi�cance.
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Table 2: Full Sample Unit Root Test

Panel A: Sample size ADF

T test statistic

Aaa Corporate Bond Yield 714 -1.090
Baa Corporate Bond Yield 714 -0.981
10-Year Treasury Rate 580 -0.916
Volatility Index (VXO) 390 -5.890

Panel B: �nite sample critical values

Sample size 1% 5% 10%

T = 714 -3.400 -2.851 -2.567
T = 580 -3.400 -2.833 -2.539
T = 390 -3.430 -2.874 -2.558

Note: Finite sample left-tailed critical values of ADF test are obtained from Monte Carlo simulations
with 10, 000 replications. A constant has been included in the ADF regression and the lags of ∆xt is
set to zero as suggested by the Bayesian Information Criterion (BIC).
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Table 3: Bubble Date Stamping

Covariate BSADF∗ CBSADF∗

Aaa Corporate Bond Yield 1987M2 - 1987M9 1986M3 - 1987M12
1995M9 - 2001M7 1995M7 - 2001M5

Baa Corporate Bond Yield 1987M2 - 1987M9 1986M6 - 1987M12
1995M9 - 2001M7 1995M7 - 2001M5

10-Year Treasury Rate 1987M2 - 1987M9 1986M6 - 19871M2
1995M9 - 2001M7 1995M7 - 2001M5

Volatility Index (VXO) 1995M9 - 2001M7 1995M7 - 2001M2

Note: Bubble date stamping application on the real S&P 500 stock price index and the real S&P
500 stock price index dividend over the period January 1959 to June 2018 at a monthly frequency,
constituting 714 observations. We utilise the same dataset with Phillips et al. (2015) as it contains
multiple historical bubble episodes and we estimate the present value of the real price-dividend ratio
which is the real S&P 500 stock price index over the real S&P 500 stock price index dividend as outlined
in Phillips et al. (2015). As covariates we utilise the Moody's Seasoned Aaa Corporate Bond Yield as
well as the Moody's Seasoned Baa Corporate Bond Yield that both cover the period between January
1959 and June 2018 (714 observations), the Ten-Year Treasury Constant Maturity Yield (GS10) over the
period March 1970 to June 2018 (580 observations) and the Chicago Board Options Exchange Volatility
Index (CBOE VXO) from January 1986 to June 2018 (390 observations). All covariates are sampled
at a monthly frequency and the present value of the real price-dividend ratio is equal to 100 at the
beginning of the sample as in Phillips et al. (2015).
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2.10 Figures
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Figure 1: Finite Sample Power
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Figure 2: Finite Sample Power
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3 Wild Bootstrap Testing for Speculative Bubbles Using

Spot and Futures Prices

3.1 Introduction

Extant literature in economics and �nance has recently expanded to include research

work on �nancial bubbles. Although traditional analysis in econometrics did not al-

low for bubble episodes until recently, econometrics tests on bubble identi�cation have

emerged under the assumption of rational expectations, and their extensions can be used

not only to identify historical episodes of explosive behaviour but real time detection of

a bubble episode as well. According to the rational expectations theory, the real price of

an asset should be equal to the present value of the future cash �ows the asset generates,

however this framework cannot explain deviations from equilibrium that are attributed

to the existence of asset bubbles. This has led to the development of novel econometric

methods that perform well under the rational expectations assumption.

3.1.1 Rational Bubble Tests

In their seminal study, Diba and Grossman (1988) put emphasis on the importance of

unit root tests on asset bubble identi�cation. Following the traditional approach of ap-

plying a standard left-tailed unit root to test the null hypothesis of a unit root to conclude

that if both real prices and fundamentals (e.g. dividends) are non-stationary in levels

but stationary in di�erences then that is indicative of non-existence of a rational bubble.

The above approach has been criticised on its validity to detect periodically collapsing

bubble episodes by Evans (1991) who argues that conventional unit root tests have low

power on identifying bubble episodes due to their non-linear characteristics, therefore

mean reversion when the asset bubble collapses may lead to such a price adjustment

that the series might appear to have no explosive behaviour at all.

Rather than applying the left-tailed tests on the di�erence between real prices and

fundamentals, recent research has put more emphasis on the use of right-tailed unit root

tests that test the null hypothesis of a unit root against the alternative hypothesis of

explosiveness. In particular, Phillips et al. (2011) propose a forward recursive right-

tailed supremum ADF (SADF) test for rational bubbles that takes the maximum of a

sequence of test statistics by changing the ending point of the subsamples while keeping
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the starting point �xed, and can identify bubble episodes that occur within the sample.

Phillips et al. (2011) �nd evidence of the dot-com bubble in the beginning of the 2000's

by applying the test on the NASDAQ stock price and dividend index. The Phillips et

al. (2011) methodology o�ers the advantage that can be applied to a series of di�erent

assets such as commodities (see inter alia Gilbert 2010 and Homm and Breitung 2012)

and exchange rates (Bettendorf and Chen 2013).

Homm and Breitung (2012) consider a modi�ed version of the Phillips et al. (2011)

SADF test together with a modi�ed version of the locally best invariant (LBI) test of

Busetti and Taylor (2004) and conclude that the SADF test has good power performance

even when there are structural breaks in the sample and (or) the bubble episode occurs at

the end of the sample. Empirically, they �nd statistical evidence of explosive behaviour

before the 2008 global �nancial crisis in a number of countries including UK, US and

Spain.

An important drawback of the SADF test of Phillips et al. (2011) is that it has low

power in identifying multiple bubble episodes within the same sample leading to wrong

statistical inference or pseudo-stationarity. For this reason, Phillips et al. (2015) suggest

two recursive processes that are modi�cations of the SADF test of Phillips et al. (2011)

that have great power on identifying periodically collapsing bubbles not only on historical

data but in real-time as well. The two tests proposed by Phillips et al. (2015) are the

the backward recursive SADF test (BSADF) that takes the maximum of a sequence

of test statistics by changing the starting point of the subsamples while keeping the

ending point �xed and a double-recursive generalised SADF test (GSADF) that takes

the maximum of a sequence of test statistics by recursively changing the starting and

ending points of the sample covering more subsamples of the data. Furthermore, the

GSADF test seems to have better size and power performance compared to the SADF

test and therefore can be utilised to identify multiple explosive episodes in a �nancial

time series that can occur anywhere in the sample.

Although the GSADF test of Phillips et al. (2015) is rather powerful on identifying

bubble episodes that occur in the sample, it cannot provide information on the origi-

nation and termination dates of the bubble episodes. For that reason, date-stamping

techniques need to be applied by utilising the BSADF test which o�ers advantage on

detecting end-of-sample bubble episodes as well. In their empirical application, Phillips
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et al. (2015) test for explosive behaviour in the S&P 500 stock price and dividend index

from January 1871 to December 2010 by utilising the GSADF test and the BSADF test

to date-stamp the bubble episodes to successfully identify historical banking crises and

bubble episodes during this period.

In other empirical applications, Tsvetanov et al. (2016) apply the BSADF test to

crude oil spot and futures contract prices over the period September 1995 to December

2013 to �nd that longer maturity contracts appear to indicate the origination date

of the oil bubble episode of 2008 earlier compared to shorter maturity contracts, to

conclude that futures contracts that have a maturity longer than six months have been

signi�cantly overpriced during that period.

More recently, Pavlidis et al. (2017) suggest that the relationship between future

spot and futures contract prices can be disrupted as a result of periodically collapsing

bubbles, market e�ciency does not hold any more and therefore, futures contract prices

are biased on predicting future spot prices with explosive degree of bias. Applying

the Phillips et al. (2015) methodology to a series of di�erent datasets, including the

"German Hyperin�ation" period (December 1921 to August 1923), the "Recent Float"

period (January 1979 to December 2013) and the U.S equity market (December 1982 to

March 2015) they argue that detecting explosivity in asset prices does not necessarily

imply the existence of an asset price bubble in the series as explosive behaviour could

also be present in fundamentals. Dealing with this inconclusive inference, Pavlidis et

al. (2018) utilise market expectations, to study the crude oil market on the argument

that market expectations are not in�uenced by the risk premium and they, once again,

apply the Phillips et al. (2015) methodology to WTI crude oil spot and futures contract

prices between January 1990 and December 2013. Finally, they conclude that the oil

price run-up from 2004 to 2008 should only be attributed to the changes in fundamentals

rather than a speculative bubble.

In this chapter we investigate whether the size and power properties of right-tailed

Dickey-Fuller unit root test processes of Phillips et al. (2015) can be improved by

applying a wild bootstrap approach that allows for potential heteroskedastic behaviour

in the innovations that might be attributed to structural breaks, regime changes or

volatility shifts to test for market e�ciency in the commodity markets. For this reason,

we model the series of interest as a moving average process rather than a unit root since
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under the null hypothesis of market e�ciency, the di�erence between the future spot

price and the futures contract price will be a stationary moving average process which

order depends on the futures contract length.

We focus on the case that the explosive episode occurs at the end of the sample

to identify these episodes in real time as this might be of importance to policy makers

and central banks. The simulations results show that the proposed wild bootstrap test

o�ers better size control and superior power performance in �nite samples as the wild

bootstrap test appears to be less size distorted compared to the non-bootstrap test whilst

o�ering signi�cant power gains. In the empirical application we apply the proposed and

extant tests to the di�erence between the WTI crude oil future price and the price of

nine futures contracts across di�erent maturities over the period September 1995 to July

2019. We concentrate mainly on the 2007-2008 oil price run-up and the 2014-2015 oil

price collapse and our proposed test identi�es the two episodes while the conventional

test of Phillips et al. (2015) does either not identify an episode at all, or identi�es the

origination date of the episode with delay re�ecting the superior power of our proposed

wild bootstrap test to e�ectively identify episodes of non-stationarity that occur at the

end of the sample. Our proposed test suggests periods of market ine�ciency prior to

the existence of the bubble episode as identi�ed by the conventional tests.

The remainder of this chapter is organised as follows. In Section 3.2 we outline

the explosive �nancial bubble model and its assumptions, in Section 3.3 we review some

extant tests whereas in Section 3.4 we present some limit theory. In Section 3.5 we intro-

duce our proposed tests. In Section 3.6 the �nite and sample size and power properties

of our proposed tests are examined using Monte Carlo simulations. Section 3.7 presents

an empirical application of our proposed tests to the WTI crude oil spot and futures

contract prices. Section 3.8 concludes. Tables and Figures are presented in sections 3.9

and 3.10 respectively.

In the following
p→ denotes convergence in probability,

d→ denotes convergence in

distribution, b.c denotes the integer part of its argument and y := x (x := y) indicates

that y is de�ned by x (x is de�ned by y).
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3.2 The Model and Assumptions

Consider a rational expectations asset pricing model that relates the log of the spot

price of oil, st to a fundamental component, vt and a periodically collapsing speculative

bubble bt (see inter alia Sarno and Taylor 2003 and Engel and West 2005), such that;

st = vt + bt (3.1)

as in Engel et al. (2007) where the fundamental price, vt of an asset is equal to the

stream of the discounted future cash �ows generated by storing the commodity. In case

of oil, this stream represents the convenience yield and refers to the process of storing

inventories to meet unexpected changes in future market conditions.

To continue with, we let the fundamental vt follow an autoregressive process of order

one;

vt = φvt−1 + θt (3.2)

where θt ∼iid N(0, σ2
θ) a white noise process and φ ∈ R. In a rational bubble framework,

following Blanchard (1979), we let bt have two regimes that occur with probability

π and 1 − π respectively. During the �rst regime, the bubble grows at a rate of (1+r)
π

exponentially, whereas in the second regime the bubble collapses to a white noise process;

bt+1 =


(

1+r
π

)
bt with probability 1− π

εt+1, with probability π
(3.3)

where r is a constant discount rate and εt ∼iid N(0, σ2
ε). Equation (3.3) is consistent

with the rational bubble framework of Diba and Grossman (1988) and therefore;

Et[bt+1] = (1 + r)bt, (3.4)

where Et is the expectation operator and again r is a constant discount rate that re�ects

the state of the economy. Under the assumption of risk neutrality, we can now de�ne

the logarithm of the price of the futures contracts of oil, ft,n with maturity n periods

ahead as;
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ft,n = Et[st+n] = Et[vt+n] + Et[bt+n]. (3.5)

From Equations (3.2) and (3.4) we can now rewrite Equation (3.5) as;

ft,n = φnvt + (1 + r)nbt (3.6)

and therefore from Equation (3.1), the future spot price n periods ahead is given by;

st+n = vt+n + bt+n. (3.7)

Let the bubble component grow with probability π as in Equation (3.3) then substi-

tuting recursively;

st+n = φnvt +

(
1 + r

π

)n
bt + ε∗t+n, (3.8)

where ε∗t+n is a sum of two moving average (MA) processes;

ε∗t+n =
n∑
i=1

φn−iθt+i +
n∑
i=1

(
1 + r

π

)n−i
εi. (3.9)

Comparing Equations (3.6) and (3.8) we can see that the future spot price is greater

than the futures contract price or expected price as rational agents assign a non-zero

probability to the bubble bursting and thus (1+r
π )n is larger than (1 + r)n. Subtracting

Equation (3.6) from Equation (3.8);

st+n−ft,n =
(
φnvt+

(
1 + r

π

)n
bt+ε

∗
t+n

)
−
(
φnvt+(1+r)nbt

)
= (1+r)n

(
1

πn
− 1

)
bt+ε

∗
t+n.

(3.10)

As can be seen in Equation (3.10), st+n − ft,n is a linear function of two moving av-

erage (MA) processes and a bubble process and therefore exhibits explosive behaviour.

From Equation (3.10), it is evident that st+n − ft,n does not depend on market funda-

mentals and thus any evidence of explosiveness can only be attributed to future spot or

futures contract prices.
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3.3 Extant Recursive Test Procedures

Due to the poor power performance of the standard univariate ADF test on detecting

short lived explosive episodes in full samples, Phillips et al. (2015) introduce a univariate

approach to testing for bubble episodes that occur at the end of the sample by utilising

the standard ADF regression;

∆yt = µ+ δyt−1 +

p∑
k=1

αk∆yt−k + et (3.11)

performed on subsamples of the data, where µ is the intercept and p is the number of

lags of the dependent variable ∆yt and the test statistics are function of a sequence of

ADF statistics of the subsamples. In particular, if we denote the ADF test applied to

the full sample as ADF 1
0 (p), then the ADF test procedure performed on the subsample

t = br1T c, ..., br2T c can be denoted as ADF (p)r2r1 . Phillips et al. (2015) propose the

following test statistic to test for an explosive episode;

SADF := sup
r2∈[r0,1]

{ADF (p)r20 }. (3.12)

Subject to a minimum sample size br0T c, the SADF test is the supremum of right-

tailed ADF statistics performed on all subsamples starting at t = 1. Although the

SADF test is powerful on detecting periodically collapsing bubble episodes and it can

be very useful in the construction of con�dence intervals, the performance of the test on

detecting end-of-sample explosive episodes, that can be of interest to policy makers and

regulators, is rather low as the test uses more observations at the beginning rather than

the end of the sample.

Focusing on explosive episodes that occur at the end of the sample and motivated

by the low power to detect these episodes Phillips et al. (2015) propose utilising the

following test statistic instead;

BSADF := sup
r1∈[0,1−r0]

{ADF (p)1
r1}. (3.13)

Subject to a minimum sample size br0T c, the BSADF test is the supremum of right-

tailed ADF statistics computed on all subsamples ending at date t = T . Using more

observations at the end of the sample, the BSADF test is designed in such a way that it
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is particularly powerful when the explosive episode occurs at the end of the sample and

can be rather useful for date stamping past bubble episodes.

Finally, Phillips et al. (2015) propose the GSADF test that is a double-recursive

unit root test as well, constructed from a sequence of ADF test statistics computed over

all possible start and end dates of the subsamples, subject to a minimum sample size

br0T c;

GSADF := sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF (p)r2r1}. (3.14)

The GSADF test is designed to test for the presence of one or multiple bubble

episodes in a �nancial time series that can occur anywhere in the sample. Therefore,

when using the GSADF test a rejection of the null in favour of explosive behaviour can

only indicate the existence of a bubble episode but not exactly where in the sample the

episode occurs. Date stamping techniques based on the BSADF test might be utilised

instead.

3.4 Limit Theory

In this section we present the limiting null distribution of the GSADF test statistic,

with the limiting null distributions of the SADF and BSADF test statistics following as

special cases of the GSADF one.

The limiting null distribution of the GSADF test statistic is outlined in the following

theorem and applies only to the case that the series is a unit root process under the null

hypothesis.

Theorem 3.3. When the regression model includes an intercept and under the null

hypothesis has a unit root then as in Phillips et al. (2015);

GSADF
d−→ sup

r2∈[r0,1]
r1∈[0,r2−r0]


1
2rw
[
W (r2)2 −W (r1)2 − rw

]
−

∫
r2

r1
W (r)dr

[
W (r2)−W (r1)

]
r

1/2
w

rw
∫

r2

r1
W (r)2dr −

[∫
r2

r1
W (r)dr

]2
1/2


(3.15)

where rw = r2 − r1 and W is a standard Brownian motion process.
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Remark 3.7. The asymptotic distribution of the BSADF test is a special case of the

above where rw = 1− r1, r1 ∈ [0, 1− r0] and r2 = 1 whereas the asymptotic distribution

of the SADF test can be found by setting rw = r2, r2 ∈ [0, 1] and r1 = 0.

3.5 Proposed Tests

The limit theory presented above only holds under the null hypothesis of a unit root,

therefore applying any of the extant recursive tests of Phillips et al. (2015) on the

di�erence between the future spot price and the futures contract price with maturity

n will be inaccurate and will lead to wrong statistical inference since under the null

hypothesis of no bubble behaviour, the series is a moving average process MA(n) where

n is the length of the futures contract.

In particular, consider a rational expectations asset pricing model that relates the

log of spot price of oil, st to a fundamental component, vt under the null hypothesis of

no bubble episode;

st = vt (3.16)

where again, the fundamental price, vt of an asset is equal to the stream of the dis-

counted future cash �ows generated by storing the commodity. As previously, we let the

fundamental vt follow an autoregressive (AR) process of order one as in Equation (3.2).

In the absence of speculative bubbles and under the assumption of risk neutrality,

the logarithm of the price of the futures contract of oil, ft,n with maturity n periods

ahead is given by;

ft,n = Et[st+n] = Et[vt+n]. (3.17)

And therefore from Equation (3.2) we can rewrite Equation (3.17) as;

ft,n = φnvt (3.18)

and then from Equation (3.16), the future spot price n periods ahead will be given by;

st+n = vt+n. (3.19)
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Substituting recursively from Equation (3.2) will give;

st+n = φnvt + ε∗t+n, (3.20)

where ε∗t+n is a sum of a moving average (MA) process as;

ε∗t+n =
n∑
i=1

φn−iθt+i. (3.21)

A comparison between Equations (3.18) and (3.20) shows that the future spot price

is greater than the futures contract price or expected price by the error term ε∗t+n.

Subtracting Equation (3.18) from Equation (3.20);

st+n − ft,n =
(
φnvt + ε∗t+n

)
−
(
φnvt

)
= ε∗t+n. (3.22)

Under the null hypothesis of no bubble, Equation (3.22) st+n − ft,n is a stationary

moving average process. As we will see in the next section, rejection of the null hypothesis

indicates the existence of explosive behaviour in the sample.

Applying any of the extant recursive tests of Phillips et al. (2015) on the di�erence

of the series generated by Equation (3.22) will, therefore, lead to downward size distor-

tions as st+n − ft,n is a stationary moving average process under the null hypothesis,

rather than a unit root process. In other words, under the null hypothesis of no bubble

behaviour, the series is a moving average process MA(n) where n is the length of the

futures contract.

Given that the critical values are computed under the null hypothesis of a unit

root, we expect that the extant recursive tests of Phillips et al. (2015) will be severely

undersized. Thus, we impose a moving average behaviour in the regression model and

we propose utilising the following wild bootstrap implementation of the Phillips et al.

(2015) tests that leads to improved size control, while o�ering signi�cant power gains.

3.5.1 Wild Bootstrap Unit Root Tests

To better control size in �nite samples we follow an approach that applies the wild

bootstrap algorithm presented below to the �rst di�erences of our series, constructing
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a wild bootstrap version of the BSADF test of Phillips et al. (2015) that can control

the size and power performance of the test. As can been seen in Equation (3.22), under

the null hypothesis of stationarity, and thus in absence of a bubble, the �rst di�erence

between future spot prices and futures contract prices is equal to {ε∗t+n} which is a

moving averageMA(n) process, where the order n is determined by the futures contract

length.

We choose to apply the wild bootstrap approach over the i.i.d. bootstrap as the

former allows for potential heteroskedastic behaviour in the innovations. Similarly to

Harvey et al. (2017) we utilise the following bootstrap algorithm.

Algorithm 2. (Wild Bootstrap GSADF test)

Step 1: Set θt = ∆st where ∆ is the �rst di�erence operator and t=1,...,T.

Step 2: Construct θ∗t = wtθt where {wt}Tt=1 and wt ∼iid N(0, 1) a random sequence.

Step 3: Construct {ε∗t } the bootstrap sample as a partial sum process;

ε∗t :=
n∑
j=1

θ∗t−j+1, for t = 1, ..., T (3.23)

where n is the periods to maturity.

Step 4: Set y∗t = ε∗t , t=1,...,T.

Step 5: Compute the bootstrap test statistic for the GSADF test;

GSADF ∗wb := sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF ∗r2r1 }. (3.24)

where ADF ∗r2r1 is the test statistic of φ̂∗r1,r2 in the �tted OLS regression;

∆y∗t = α̂∗r1,r2 φ̂
∗
r1,r2y

∗
t−1 + u∗t (3.25)

calculated in a double-recursive framework over all possible start (r1) and end (r2) points

of the sample. Therefore;

ADF ∗r2r1 =
φ̂∗r1,r2

s(φ̂∗r1,r2)
(3.26)

where the standard errors s(φ̂∗r1,r2) are de�ned by;
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s2(φ̂∗r1,r2) =
σ̂∗2r1,r2

Σ′y∗2t−1 −
(
Σ′y∗t−1

)2
/Σ′1

, (3.27)

and σ̂∗2r1,r2 =
(

1
bTrwc

)
Σ′ε̂∗t . The BSADF test is a special case of GSADF test where

rw = 1− r1, r1 ∈ [0, 1− r0] and r2 = 1 whereas the SADF test can be de�ned by setting

rw = r2, r2 ∈ [0, 1] and r1 = 0.

Remark 3.8. The algorithm is outlined for the case where no deterministic components

are allowed for in the data. If a constant is to be allowed for in the data then the series

yt should be replaced by their demeaned counterparts. Likewise, if a constant and trend

are to be allowed for in the data then yt should �rst be demeaned and detrended.

The bootstrap errors {ε∗t } can, potentially, replicate the pattern of heteroskedasticity

as ε∗t ∼iid N(0, (∆yt)
2) conditional on ∆yt. We suggest utilising the ADF ∗ test statistic

in place of the standard ADF test statistic to deliver a test with controlled �nite sample

size when estimation is performed in a recursive framework. The wild bootstrap BSADF

test is a special case of the wild bootstrap GSADF test as de�ned in Equation (3.24)

where rw = 1− r1, r1 ∈ [0, 1− r0] and r2 = 1 whereas the SADF test can be de�ned by

setting rw = r2, r2 ∈ [0, 1] and r1 = 0. The wild bootstrap BSADF and SADF tests are

de�ned as;

BSADF ∗wb := sup
r1∈[0,1−r0]

{ADF 1
r1} (3.28)

SADF ∗wb := sup
r2∈[r0,1]

{ADF r20 }. (3.29)

The bene�t of the wild bootstrap procedure is that the critical values of the recursive

bootstrap ADF tests, rather than assuming a unit root process under the null hypothesis

like the conventional recursive ADF tests do, are obtained by imposing aMA(n) process

for our series under the null of the absence of speculative bubbles in the sample. The

wild bootstrap ADF tesst will be shown to better control size in �nite samples compared

to the non-bootstrap version of the tests.

In what follows we will focus on the performance of the BSADF∗wb test as it is

constructed to detect end-of-sample and ongoing explosive episodes which are arguably

of most interest empirically.
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3.6 Finite Sample Simulations

In this section we will examine the �nite sample size and power performance of our

proposed test relative to the extant tests of Phillips et al. (2015). In order to do so,

data were simulated according to the following data generating process;

yt+n = st+n − ft,n for t = 1, ..., T . (3.30)

From Equation (3.10) we know that;

st+n − ft,n = bt + ε∗t+n for t = 1, ..., T (3.31)

and therefore;

yt+n = bt + ε∗t+n for t = 1, ..., T (3.32)

where;

ε∗t+n =

n∑
i=1

φn−iθt+i (3.33)

and where θt ∼iid N(0, σ2
θ) a white noise process, n is the length of the futures contract

and;

bt =

 0, for t = 1, ..., tb

φtbt−1 + εt, for t = tb + 1, ..., T
(3.34)

an end-of-sample bubble process where εt ∼iid N(0, σ2
ε).

Under the null hypothesis of no speculative bubble, the series of interest {yt+n} is a

moving average MA(n) process where n is the length of the futures contract;

yt+n = ε∗t+n for t = 1, ..., T (3.35)

whereas, under the alternative hypothesis of an end-of-sample bubble the series of in-

terest {yt+n} is a linear function of a moving average (MA) process just as in Equation
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(3.35) for t = 1, ..., tb where tb is the origination point of the speculative bubble, whereas

for t = tb + 1, ..., T the series yt+n is sum of two moving average (MA) processes plus a

bubble component;

yt+n =

 ε∗t+n for t = 1, ..., tb

bt + εt+n + ε∗t+n, for t = tb + 1, ..., T .
(3.36)

We use a �xed lag order of zero for the dependent variable ∆yt as in Harvey et al.

(2017) as the wild bootstrap resampling introduced in Step 2 of Algorithm 2 wipes out

any weak dependence present in ∆yt. This implies that there is no certain requirement

to augment the sub-sample regressions underlying the wild bootstrap procedure of the

BSADF test with lagged-di�erence regressors. In fact, as Harvey et al. (2017) point out,

the wild bootstrap BSADF test is both asymptotically consistent and consistent against

�xed magnitude bubble alternatives for any lag length of ∆yt.

The minimum window size, r0 for all recursive test procedures is chosen as;

r0 = (0.01 +
1.8√
T

) ∗ T. (3.37)

All simulations that follow were conducted in GAUSS 17 using 10, 000 Monte Carlo

replications and 399 bootstrap replications. All tests are performed at a nominal 5%

level of signi�cance. The sample size is set equal to T = 200, 400 and 800 and σε = 0.3,

σε∗ =
√

0.1574 and σθ = 1 as in Pavlidis et al.(2017).

3.6.1 Empirical Size

To assess the size performance of our proposed test, data were generated according to

Equation (3.35) for the full sample t = 1, ..., T . We report the empirical size of both

our proposed BSADF∗wb test and the BSADF test of Phillips et al. (2015) for a range of

di�erent lengths of the futures contracts, n.

Table 4 reports the �nite sample size of all tests for sample sizes of T = 200, 400 and

800. When T = 200, the non-bootstrap BSADF test exhibits severe size distortions, with

the size of this test far below the nominal 5% level of signi�cance across all contracts.

The poor size control of the BSADF test should be attributed to the stationary behaviour
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of the series of interest yt+n under the null hypothesis since that series, in the absence of

a bubble, is equal to a moving average process MA(n) where the order n is determined

by the futures contract length. The limit null distribution and critical values of the

BSADF test are a generated under the assumption of a unit root and, therefore, these

incorrect critical values result in severe size distortions.

The wild bootstrap based BSADF∗wb test displays much better size control overall.

In particular, the BSADF∗wb statistic appears to be slightly oversized across di�erent

contract lengths exhibiting size ranging from 0.054 to 0.075, while in most cases the

BSADF∗wb statistic has reasonably controlled size across most of the contract lengths.

Some modest oversize that is exhibited for the three month and six month futures con-

tract could just be considered a small sample issue that we can easily account for by

increasing the sample size.

As can been seen in Table 4, when we increase the sample size to 400 and 800,

results for the non-bootstrap based BSADF test are broadly similar to those reported

for T = 200, with these tests still displaying even more undersizing across all futures

contracts, indicating that the size distortions exhibited by this test is not simply a small

sample issue. The BSADF∗wb statistic appears to be less oversized across all contracts

and the size of the BSADF∗wb test is still reasonably well controlled overall, although this

test still exhibits some modest oversize for the three month futures contract similarly

to sample size of T = 200, when the sample size is T = 400 whereas no signi�cant

over-sizing is observed when the sample size increases to T = 800. The BSADF∗wb tests

displays good size control across all di�erent contract lengths, with the �nite size values

greatly improved in the larger sample size of T = 400.

Overall, it can be seen that the bootstrap BSADF∗wb test controls size to a much

greater degree than the respective non-bootstrap BSADF test, with the latter display-

ing such severe undersize that it would be of little use empirically in the scenarios

considered. Whilst the wild bootstrap BSADF∗wb test displays better size control than

its non-bootstrap counterpart, it still displays some modest oversize across a number of

contracts with di�erent length. Overall, the BSADF∗wb test, has the best overall size

control, with the modest oversize exhibited by this test in smaller sample sizes almost

entirely eliminated when a larger sample size is considered.
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3.6.2 Empirical Power

We now proceed to examine the power performance of our proposed tests relative to

extant tests. To do so, data were generated according to Equations (3.34) and (3.36)

with T = 200 under the alternative hypothesis of and end-of-sample bubble episode by

setting bt = 0 for t=1,...,180, and φt = φ > 1 for t=181,...,200. The series {yt} follows

a stationary process for the �rst 180 observations and is then subject to (potential)

explosive behaviour over the remaining 20 observations. In what follows we will focus

on the power performance of the BSADF and BSADF∗wb tests as they are constructed to

detect end-of-sample and ongoing explosive episodes which are arguably of most interest

empirically.

The �nite sample power of the BSADF and BSADF∗wb tests was computed for a grid

of 50 values of φ from φ = 1.00 to φ = 1.30 for each of the nine di�erent futures contract

lengths previously considered. Figures 3, 4 and 5 report �nite sample power curves

for the BSADF and BSADF∗wb tests across each of the contract lengths considered. In

all di�erent contract lengths the power of both tests is increasing monotonically in φ,

although for short-mid length futures contracts [Figure 3, (a) to (d)] the power of the

BSADF∗wb test surges for lower values of φ while the BSADF test appears to have zero

power due to the undersize exhibited by the BSADF test across all contract lengths. In

general, the power of the BSADF∗wb test exceeds that of the BSADF test for di�erent

values of φ and contract lengths.

The BSADF∗wb test displays much greater power than the BSADF test, with the

power di�erential between the two tests reaching almost 70% for low values of φ as can

be seen in Figure 3 (a). In Figures 4 (c), (d) and 5 (a) the BSADF∗wb test o�ers relatively

little additional power compared to the BSADF test, however we may argue that this

could be reasonably attributed to the fact that for long length futures contracts, the

series of interest yt+n becomes more persistent under the null hypothesis as the contract

length increases and, therefore, the wild bootstrap simulated critical values are closer to

the critical values simulated under the null hypothesis of a unit root. Both the BSADF

test and the BSADF∗wb appear to have similar power performance for very large values

of φ for mid and long length contracts [Figures 4 (a)-(d) and 5 (a)].

Overall, we argue that the bootstrap BSADF∗wb test shows better size control than

its respective non-bootstrap BSADF test across all futures contract lengths. Arguably,
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applying the wild bootstrap procedure on the BSADF test leads to greater power per-

formance relative to the non-bootstrap BSADF test in �nite samples as well as o�ering

improved size control.

The bene�t of the wild bootstrap procedure is that the critical values of the recursive

bootstrap ADF tests do not consider a unit root process under the null hypothesis but

resemble the behaviour of a moving average process MA(n) instead, where the order n

is determined by the length of the futures contract as in Equation (3.22), in the absence

of speculative bubbles in the sample. In fact, the wild bootstrap ADF test is shown to

better control size in �nite samples compared to the non-bootstrap version of the tests.

We, therefore, recommend utilising the BSADF∗wb test in practice as it o�ers the best

overall size control and power properties between the tests considered.

3.7 Empirical Application

To demonstrate the usefulness of our proposed test we consider the following empirical

application. We download WTI crude oil spot and futures contract prices from Eikon

for the period September 1995 to July 2019 at weekly and monthly frequency. The

futures contract maturity ranges from one month to three, six, nine, twelve, �fteen,

eighteen, twenty one and twenty four months as in Tsvetanov et al. (2016) and the

futures contracts expire on the third business day prior to the twenty �fth calendar day

of the month prior to the delivery month.

Next, we apply the BSADF and BSADF∗wb tests as de�ned by Equations (3.13) and

(3.29) respectively. Furthermore, in computing the tests-statistics and following Harvey

et al. (2017) for the standard BSADF test we allow for a maximum six lags of the

di�erenced dependent variable to account for serial correlation and we let the Bayesian

Information Criterion (BIC) decide on the optimal lag structure whereas for simulating

the critical values for the wild bootstrap BSADF∗wb test we include no lagged di�erence

augmentation since as explained earlier, the wild bootstrap resampling introduced in

Step 2 of Algorithm 2 annihilates any weak dependence present in ∆yt and therefore

there is no certain requirement to augment the sub-sample regressions underlying the

wild bootstrap procedure of the BSADF test with lagged-di�erence regressors.

To continue with, we compute right-tailed �nite sample critical values for both tests

using 10, 000 Monte Carlo replications for the BSADF test and 9, 999 bootstrap repli-
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cations for the BSADF∗wb test respectively. The minimum window size is determined as

in Equation (3.37) where T is the sample size of the observations as outlined by Phillips

et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is

included in the regression.

Following Phillips et al. (2015), who perform a (pseudo) real-time bubble monitoring

exercise on the present value of the real S&P 500 price-dividend ratio and apply a date-

stamping strategy to test for the presence of explosive behaviour, we investigate the

power of our proposed tests to detect bubble episodes in commodity price series. In

particular, we estimate both the BSADF and BSADF∗wb test statistics in a recursive

framework on the di�erence between future spot and futures contract prices, st+n− ft,n

where n represents the length of the contract (n = 1, 3, 6, 9, 12, 15, 18, 21 and 24), for

all nine contracts. We de�ne the origination date of the bubble episode as the �rst

chronological observation of which the test statistic is larger than the simulated �nite

sample critical value therefore rejecting the null hypothesis of stationarity. Similarly, the

termination date of the bubble episode is de�ned as the �rst chronological observation of

which the test-statistic becomes smaller than the simulated �nite sample critical value

following the commencement of a bubble episode.

The proposed wild bootstrap test identi�es periods of market ine�ciency, that exis-

tent bubble tests do not detect, due to the imprecise estimation of the critical values as

well as bubble episodes since under the alternative hypothesis, market ine�ciency can

be either attributed to a unit root or an explosive episode in the series and therefore

can be used in practise as an early warning mechanism of market ine�ciency that could,

potentially, result in a bubble episode.

Interested in examining explosive episodes that occur at the end of the sample, we fo-

cus on the performance of the BSADF and BSADF∗wb tests as identifying bubble episodes

in real-time can be useful to regulators, policy makers and central banks. Figures 6 to 10

and 11 to 15 plot the WTI crude oil future spot and futures contract logarithmic prices

together with their di�erence across di�erent contract lengths as well as the recursive

BSADF test statistic against the corresponding 95% simulated Monte Carlo and wild

bootstrap critical value sequences across all di�erent lengths of the futures contracts

both at weekly and monthly frequency respectively.

Tables 5 and 6 present the origination and termination dates of two explosive episodes,
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namely the 2007-2008 oil price run-up and the 2014-2015 oil price collapse, at weekly

and monthly frequency respectively, as identi�ed by the Phillips et al. (2015) BSADF

test and our proposed BSADF∗wb test across di�erent futures contract lengths.

When data is used at weekly frequency, the BSADF test does not detect non-

stationary behaviour for short maturity futures contracts up to three months whereas the

BSADF∗wb test suggests large periods of non-stationarity for short and mid maturity (up

to six months) futures contracts. The proposed test seems to not be able to make a sta-

tistical inference on which part of this large period of non-stationarity can be attributed

to a unit root and which to a, potential, bubble episode resulting in market ine�ciency

(see Table 5). However, for longer maturity futures contracts up to eighteen months, the

BSADF test identi�es two main explosive episodes, one that starts between April 2008,

for the �fteen month contract and December 2008 for the twelve month contract and

one that starts in November-December 2014, as can been seen in Table 5. For the same

maturity futures contracts, our proposed BSADF∗wb test identi�es a period of market

ine�ciency prior to the 2007-2008 oil price run-up which starts between September 2006

for the eighteen month contract and December 2007 for the �fteen month contract.

In Table 6 we do the date stamping using data at monthly frequency and we see that

for most of maturities of the futures contracts the BSADF test does not identify any

bubble episodes at all except for the six month and twenty one month futures contract as

in Figures 6 a) and 14 b) respectively. In particular, the proposed BSADF∗wb test seems

to be able to identify multiple episodes on non-stationarity that can be attributed to

either market ine�ciency or a bubble episode across all nine futures contracts with the

proposed BSADF∗wb test identifying both the WTI crude oil price run-up of 2007-2008

and the crude oil price collapse of 2014-2015.

Looking at the di�erence between the one month crude oil future spot price and

the one month futures contract price at monthly frequency, st+1 − ft,1 presented in

Table 6, we can see that for short-period maturity contracts the BSADF∗wb test identi-

�es large periods of non-stationarity without being able to distinguish between a unit

root and an explosive episode that results in market ine�ciency. For mid and longer

maturity contracts, namely for the six month futures contract the BSADF∗wb test iden-

ti�es the origination episode of the 2014-2015 oil price collapse two months earlier than

the BSADF test whereas for the twenty one month contract the proposed BSADF∗wb
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test identi�es the origination date of the 2007-2008 episode in June 2007 similar to the

BSADF test.

Utilising our proposed BSADF∗wb test, on the di�erence between the three month

crude oil future spot price and the three month futures contract price, st+3 − ft,3, we

identify two episodes that suggest market ine�ciency that can be either attributed to a

unit root or an explosive episode, as seen in Table 6. The �rst episode occurs during the

period March 2007 to January 2009 and the second one between January 2015 and July

2015. On the di�erence between the six month crude oil future spot price and the six

month futures contract price, st+6−ft,6, Phillips et al. (2015) BSADF test identi�es the

origination date of 2014-2015 episode as June 2015 whereas the wild bootstrap BSADF∗wb

test identi�es the origination date two months earlier in April 2015 (Table 6).

The origination dates of the 2007-2008 and 2014-2015 episodes are consistent across

mid and long maturity contracts as estimated by the BSADF∗wb test at monthly fre-

quency. Particularly, for the twelve month, �fteen month and eighteen month futures

contract, the oil price episode of 2007-2008 is originated in June/July 2007 whereas the

2014-2015 collapse episode is originated in September/November 2015. When applied on

the di�erence between the twenty one month crude oil future spot price and the twenty

one month futures contract price, st+21 − ft,21, the BSADF test suggests June 2007 as

the origination date of the 2007-2008 episode the same as the BSADF∗wb test as can be

seen in Table 6.

Figures 6 to 10 and 11 to 15 plot the series of interest together with the test-statistics

and critical values at weekly and monthly frequency. On the left-hand side we can see the

WTI crude oil future spot and futures contract prices in logarithms from September 1995

to July 2019 together with the di�erence between the future spot and futures contract

prices in logarithms. On the right-hand side we see the BSADF test-statistics sequence

together with the simulated BSADF and BSADF∗wb �nite sample critical values. In all

Figures 6 to 15 we can see the series that represents the di�erence between the crude oil

future spot and futures contract logarithmic prices. The series seem to exhibit periods

of non-stationarity especially for mid and longer maturity contracts (see for example

Figures 7 to 10 and 13 to 15) which resemble characteristics of a unit root.
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3.7.1 Testing for Autocorrelation

Sample autocorrelation functions are presented in Figures 16 to 28 and 19 to 21 when

data is at weekly and monthly frequency respectively. In both cases, non-stationary

behaviour looks apparent. At weekly frequency, the error term seems to have a highly

persistent e�ect on the current value of the st+n−ft,n series especially for longer maturity

futures contracts. As can be seen in Figure 16 a), shocks to the di�erence between

the one month crude oil future spot price and the one month futures contract price,

st+1 − ft,1, die away relatively faster compared to longer maturities, however there is

some persistence in the system that only goes away after eleven lags. Autocorrelation

appears to be larger for longer maturity futures contracts as the sample autocorrelation

function remains close to unity in some cases, suggesting that shocks are highly persistent

and might remain in the system inde�nitely especially for long maturity contracts (see

Figure 17 d) and 18 a)).

Similar pattern is observed at monthly frequency. Autocorrelation appears to grow

with the maturity of the futures contracts indicating persistent shocks in the system. At

monthly frequency, shocks to the di�erence between the one month crude oil future spot

price and the one month futures contract price, st+1 − ft,1, gradually decay after �ve

lags (see Figure 19 a)), whereas shocks to the di�erence between the three (six) month

crude oil future spot price and the three (six) month futures contract price, st+3 − ft,3

(st+6−ft,6) fade out after four (two) lags therefore persistence is relatively low. For longer

maturity contracts, autocorrelation is still persistent although it gradually decreases (see

Figure 20 d) and 21 a)).

High autocorrelation suggests that shocks in the system are rather persistent sug-

gesting that the series exhibit non-stationary behaviour that can be attributed to either

a unit root or an explosive episode. At weekly frequency, the BSADF test and the

BSADF∗wb test seem to agree on the origination dates of the two oil price episodes for

mid and longer maturity contracts and the proposed BSADF∗wb test identi�es the origi-

nation dates a few months earlier than the BSADF test for some futures contracts. In

addition, prior to the 2007-2008 oil price run-up the BSADF∗wb test is able to identify

periods of market ine�ciency that can be related to either a unit root or explosive be-

haviour of the series. At monthly frequency, our proposed BSADF∗wb test seems to be

able to identify more periods of non-stationarity compared to the BSADF test seems
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to be able to identify periods of market ine�ciency that could either be attributed to a

unit root or an explosive episode. When both tests identify such periods, the BSADF∗wb

test identi�es the episode earlier for some futures contracts.

Overall, our proposed BSADF∗wb test has identi�ed the WTI crude oil price run-up

of 2007-2008 and the WTI crude oil price collapse of 2014-2015 earlier than the BSADF

test across futures contracts of di�erent maturities whereas for some futures contracts

the BSADF test does not identify any non-stationarity at all, while at the same time our

proposed BSADFwb test indicates periods of market ine�ciency prior to these episodes,

re�ecting the superior power of the BSADF∗wb test to quickly detect non-stationary

episodes that can be attributed to market ine�ciency.

Our empirical result is consistent with the theoretical evidence presented in section

3.6 where we suggest that the wild bootstrap BSADF∗wb test shows better size and

power properties compared to the BSADF test and in this empirical exercise we present

empirical evidence that utilising the wild bootstrap version of the BSADF test of Phillips

et al. (2015) in �nite samples results in improved power performance and therefore,

advise utilising the BSADF∗wb test in practise.

3.8 Conclusion

This chapter examines whether the size and power performance of right-tailed Dickey-

Fuller unit root tests can be improved by applying a wild bootstrap approach to Phillips

et al. (2015) tests to account for potential heteroskedasticity that might be attributed to

structural breaks, regime changes or volatility breaks and deal with the size distortions

of the BSADF test when applied on a series that replicates the di�erence between future

spot and futures contract prices as in Pavlidis et al. (2018) to test for market e�ciency

in the commodity markets. Mainly interested in identifying explosive episodes in real-

time, we focus on end-of-sample bubble episodes. The simulations results show that the

proposed wild bootstrap test o�ers better size control and power performance in �nite

samples. Particularly, the wild bootstrap test appears to be less size distorted compared

to the non-bootstrap test while the power gains are signi�cantly higher.

In the empirical exercise we apply the proposed and extant tests on the di�erence

between the WTI crude oil future spot price and the price of nine futures contracts across

di�erent maturities over the period September 1995 to July 2019. Focusing mainly on
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the 2007-2008 oil price run-up and the 2014-2015 oil price collapse, our proposed test

identi�es the two episodes earlier as the wild bootstrap BSADF∗wb test suggests periods

of non-stationarity that indicate market ine�ciency prior to the 2007-2008 oil price run-

up while the conventional test of Phillips et al. (2015) under performs our proposed wild

bootstrap BSADF∗wb test.

In summary, the wild bootstrap BSADF∗wb test shows better size control than their

corresponding non-bootstrap BSADF test across di�erent maturity contracts, while the

BSADF∗wb test leads to greater power performance relative to the BSADF test in �nite

samples and o�ers signi�cantly improved size control. Our proposed BSADF∗wb test

identi�es the 2007-2008 oil price run-up and the 2014-2015 oil price collapse when the

BSADF test does either not identify any explosive episode at all or identi�es the explosive

episode with delay, re�ecting the superior power of the BSADF∗wb test to identify episodes

of non-stationarity (unit root or explosive) that can be attributed to market ine�ciency.
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3.9 Tables
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Table 4: Finite Sample Size

T = 200

Contract Length (Months) BSADF BSADF ∗wb

1 0.000 0.069
3 0.000 0.075
6 0.001 0.064
9 0.007 0.068
12 0.011 0.060
15 0.017 0.054
18 0.024 0.058
21 0.028 0.058
24 0.030 0.055

T = 400

Contract Length (Months) BSADF BSADF ∗wb

1 0.000 0.063
3 0.000 0.067
6 0.000 0.063
9 0.004 0.062
12 0.001 0.061
15 0.003 0.059
18 0.004 0.056
21 0.008 0.057
24 0.010 0.057

T = 800

Contract Length (Months) BSADF BSADF ∗wb

1 0.000 0.059
3 0.000 0.059
6 0.000 0.060
9 0.000 0.063
12 0.000 0.055
15 0.000 0.061
18 0.000 0.055
21 0.000 0.053
24 0.001 0.054

Data generated according to yt+n = st+n − ft,n with st+n − ft,n = ε∗t+n, ε
∗
t+n ∼iid

N(0, 0.1574) and ε∗t+n =
∑n

i=1 φ
n−iθt+i where θt ∼iid N(0, 1) and n is the length of the

futures contract.
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Table 5: Bubble Date Stamping (weekly frequency)

Series BSADF BSADF
∗
wb Series BSADF BSADF

∗
wb

st+1 − ft,1 - 1997M4-2019M7 st+15 − ft,15 2008M4-2008M5 2007M12-2008M9
- 2014M12-2015M3 2014M11-2016M3

st+3 − ft,3 - 1997M6-2019M7 st+18 − ft,18 2007M1-2007M2 2006M9-2007M11
- 2008M5-2008M7 2008M3-2008M8

2014M12-2015M4 2014M11-2015M4

st+6 − ft,6 2008M10-2009M3 2007M6-2019M7 st+21 − ft,21 2007M6-2007M10 2007M6-2008M2
- 2015M11-2015M12

st+9 − ft,9 - 2006M9-2008M10 st+24 − ft,24 - 2007M9-2007M10
2008M11-2009M3 2008M10-2009M9 - 2015M9-2015M10
2014M11-2015M4 2014M10-2015M9

st+12 − ft,12 - 2007M4-2007M9
2008M12-2009M1 2008M12-2011M11
2014M12-2015M4 2014M10-2016M3

Note: Bubble date stamping application on the WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019 at a weekly frequency,
constituting 1243 observations. The futures contracts maturity ranges from one month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and
the futures contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to the delivery month. We compute right-tailed �nite sample
critical values for both tests using 10, 000 Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. Both tests are performed at a 5% level of
signi�cance and a constant is included in the regression.
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Table 6: Bubble Date Stamping (monthly frequency)

Series BSADF BSADF
∗
wb Series BSADF BSADF

∗
wb

st+1 − ft,1 - 1998M6-2009M6 st+15 − ft,15 - 2007M7-2007M11
- 2009M9-2019M6 - 2015M11-2015M12

st+3 − ft,3 - 2007M3-2009M1 st+18 − ft,18 - 2007M7-207M11
- 2015M1-2015M7 - 2015M9-2015M12

st+6 − ft,6 - 2009M4-2009M6 st+21 − ft,21 2007M6-2007M10 2007M6-2008M2
2015M6-2015M7 2015M4-2015M8 - 2015M11-2015M12

st+9 − ft,9 - 2006M4-2008M4 st+24 − ft,24 - 2007M9-2007M10
- 2015M9-2015M12 - 2015M9-2015M10

st+12 − ft,12 - 2007M6-2007M11
2015M9-2015M10

Note: Bubble date stamping application on the WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019 at a monthly frequency,
constituting 287 observations. The futures contracts maturity ranges from one month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and
the futures contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to the delivery month. We compute right-tailed �nite sample
critical values for both tests using 10, 000 Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. Both tests are performed at a 5% level of
signi�cance and a constant is included in the regression.
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3.10 Figures
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Figure 3: Finite Sample Power
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BSADF test: BSADF∗wb test:

Data generated according to yt+n = ε∗t+n, t = 1, ..., 180 and yt+n = bt + εt+n + ε∗t+n,
t = 181, ..., 200 where bt = φtbt−1 + εt, t = 1, ..., 200, ε∗t ∼iid N(0, 0.1574) and εt ∼iid
N(0, 0.32).



91

Figure 4: Finite Sample Power
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BSADF test: BSADF∗wb test:

Data generated according to yt+n = ε∗t+n, t = 1, ..., 180 and yt+n = bt + εt+n + ε∗t+n,
t = 181, ..., 200 where bt = φtbt−1 + εt, t = 1, ..., 200, ε∗t ∼iid N(0, 0.1574) and εt ∼iid
N(0, 0.32).
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Figure 5: Finite Sample Power
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BSADF test: BSADF∗wb test:

Data generated according to yt+n = ε∗t+n, t = 1, ..., 180 and yt+n = bt + εt+n + ε∗t+n,
t = 181, ..., 200 where bt = φtbt−1 + εt, t = 1, ..., 200, ε∗t ∼iid N(0, 0.1574) and εt ∼iid
N(0, 0.32).
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Figure 6: Bubble Date Stamping (weekly frequency)
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(a) 1 Month Futures Contract (st+1 − ft,1)
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(b) 3 Month Futures Contract (st+3 − ft,3)
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spot price series: futures contract price series: spot price - futures contract
price series:

BSADF test-statistics: BSADF∗wb critical values:
BSADF critical values:

Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n − ft,n), where n is the time to maturity at weekly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 7: Bubble Date Stamping (weekly frequency)
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(a) 6 Month Futures Contract (st+6 − ft,6)
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(b) 9 Month Futures Contract (st+9 − ft,9)
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BSADF test-statistics: BSADF∗wb critical values:
BSADF critical values:

Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n − ft,n), where n is the time to maturity at weekly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 8: Bubble Date Stamping (weekly frequency)
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(a) 12 Month Futures Contract (st+12−ft,12)
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(b) 15 Month Futures Contract (st+15−ft,15)
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Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n − ft,n), where n is the time to maturity at weekly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 9: Bubble Date Stamping (weekly frequency)
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(a) 18 Month Futures Contract (st+18−ft,18)
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(b) 21 Month Futures Contract (st+21−ft,21)
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Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n − ft,n), where n is the time to maturity at weekly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 10: Bubble Date Stamping (weekly frequency)
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(a) 24 Month Futures Contract (st+24−ft,24)
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BSADF critical values:

Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n − ft,n), where n is the time to maturity at weekly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 11: Bubble Date Stamping (monthly frequency)
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(a) 1 Month Futures Contract (st+1 − ft,1)
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(b) 3 Month Futures Contract (st+3 − ft,3)
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BSADF test-statistics: BSADF∗wb critical values:
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Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n−ft,n), where n is the time to maturity at monthly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 12: Bubble Date Stamping (monthly frequency)
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(a) 6 Month Futures Contract (st+6 − ft,6)
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(b) 9 Month Futures Contract (st+9 − ft,9)
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Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n−ft,n), where n is the time to maturity at monthly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 13: Bubble Date Stamping (monthly frequency)
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(a) 12 Month Futures Contract (st+12−ft,12)
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(b) 15 Month Futures Contract (st+15−ft,15)
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Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n−ft,n), where n is the time to maturity at monthly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 14: Bubble Date Stamping (monthly frequency)
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(a) 18 Month Futures Contract (st+18−ft,18)
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(b) 21 Month Futures Contract (st+21−ft,21)
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BSADF test-statistics: BSADF∗wb critical values:
BSADF critical values:

Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n − ft,n) where n is the time to maturity at monthly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.



102

Figure 15: Bubble Date Stamping (monthly frequency)
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(a) 24 Month Futures Contract (st+24−ft,24)
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Notes:
Left-hand side: WTI crude oil future spot and futures contract logarithmic prices and the di�erence
between them (st+n−ft,n), where n is the time to maturity at monthly frequency from September 1995
to July 2019.
Right-hand side: Right-tail �nite sample critical values are simulated for both tests using 10, 000
Monte Carlo for the BSADF test and 9, 999 bootstrap replications for the BSADF∗wb test. The minimum
window size is determined as in Equation (2.41) where T is the sample size of the observations as outlined
by Phillips et al. (2015). Both tests are performed at a 5% level of signi�cance and a constant is included
in the regressions.
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Figure 16: Sample Autocorrelation Function (weekly frequency)
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Note: Sample autocorrelation functions on the logarithmic di�erences between the WTI crude oil future
spot and futures contract prices, st+n − ft,n, where n is the time to maturity for the period September
1995 to July 2019 at weekly frequency.
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Figure 17: Sample Autocorrelation Function (weekly frequency)
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Note: Sample autocorrelation functions on the logarithmic di�erences between the WTI crude oil future
spot and futures contract prices, st+n − ft,n, where n is the time to maturity for the period September
1995 to July 2019 at weekly frequency.
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Figure 18: Sample Autocorrelation Function (weekly frequency)
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Note: Sample autocorrelation functions on the logarithmic di�erences between the WTI crude oil future
spot and futures contract prices, st+n − ft,n, where n is the time to maturity for the period September
1995 to July 2019 at weekly frequency.
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Figure 19: Sample Autocorrelation Function (monthly frequency)
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Note: Sample autocorrelation functions on the logarithmic di�erences between the WTI crude oil future
spot and futures contract prices, st+n − ft,n, where n is the time to maturity for the period September
1995 to July 2019 at monthly frequency.
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Figure 20: Sample Autocorrelation Function (monthly frequency)
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15 Month Futures Contract
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18 Month Futures Contract
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(d)

21 Month Futures Contract

st+21 − ft,21

Note: Sample autocorrelation functions on the logarithmic di�erences between the WTI crude oil future
spot and futures contract prices, st+n − ft,n, where n is the time to maturity for the period September
1995 to July 2019 at monthly frequency.
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Figure 21: Sample Autocorrelation Function (monthly frequency)
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(a)

24 Month Futures Contract

st+24 − ft,24

Note: Sample autocorrelation functions on the logarithmic di�erences between the WTI crude oil future
spot and futures contract prices, st+n − ft,n, where n is the time to maturity for the period September
1995 to July 2019 at monthly frequency.
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4 Testing for Bubbles in Commodity Spot and Futures Us-

ing a Co-explosive Autoregression

4.1 Introduction

It has been widely acknowledged that standard econometric analysis does not allow for

explosive behaviour, making bubble identi�cation rather challenging. Econometric tests

on bubble identi�cation such as unit root and cointegration tests are well documented

in the literature. In this chapter we study asset bubbles under the assumption that

rational expectations hold, however the tests and their extensions can be equally useful

not only in identifying rational bubbles but intrinsic bubbles -bubbles that depend on

market fundamentals (Froot and Obstfeld 1992)- or explosive bubbles -bubbles with high

probability of bursting- as well, see inter alia Evans(1991).16

4.1.1 Cointegration in a Rational Expectations Framework

In a rational bubble regime, asset prices move away from their market fundamentals and

therefore the equilibrium condition is violated. Non-stationary (or non-mean-reverting)

deviations from equilibrium may signal the indication of a bubble in the long-run. Coin-

tegration analysis is considered as one of the main approaches in testing for deviations

from equilibrium. For instance, Campbell and Shiller (1987) introduce the argument

that cointegration between stock prices and dividends can be considered as evidence of

no bubble. In their empirical work, Campbell and Shiller (1987) argue that there is

persistence on the deviations from fundamentals, however quite sensitive to the discount

rate. In an extension of Campbell and Shiller's (1987) cointegrating restriction, Craine

(1993) imposes a robust no-rational bubble constraint that does not hold the assumption

of a constant discount rate or a particular asset pricing model and provides evidence on

the non-stationarity of the discount factor for the S&P 500, arguing that any statistical

inference on bubble existence might be rather inconclusive.

An alternative hypothesis of a rational bubble is �rstly introduced by West (1987)

who examines the e�ect of the market fundamental on the asset price and concludes

that the impact of dividends on asset prices can be either attributed to asset pricing

16Rational expectations bubbles refer to the scenario where traders with rational expectations ex-
trapolate current blips in the asset markets into forming expectations about higher asset prices in the
future.
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model misspeci�cation or bubble. The above argument is subject to criticism as re-

jections of the alternative hypothesis might be justi�ed by other reasons such as the

inadequacy of the model to explain the bubble episode (Flood et al. 1994). Arguably,

conventional univariate econometric tests can provide misleading inference due to omit-

ted variable biases (Flood and Garber 1980), model misspeci�cations or inconsistent

statistical tests (Flood and Hodrick 1986), low power on identifying periodically col-

lapsing bubble episodes (Evans 1991), and size distortions and low power (see inter

alia Stock 1991 and Campbell and Perron 1991) leading to false rejection of the null

hypothesis of no bubble.

In their seminal paper Diba and Grossman (1988) emphasize the importance of

unit root testing in rational bubble identi�cation by introducing a left-tailed unit root

process to test the null hypothesis of a unit root assuming a time-invariant discount

rate. Furthermore, they argue that if both stock prices and dividends are stationary in

di�erences then there is no evidence of rational bubble. In their empirical exercise, they

test the real S&P 500 stock price index between 1871 and 1986 to conclude that stock

prices and dividends are stationary in di�erences and therefore there is no evidence of

rational bubbles on the S&P 500. In a cointegration framework, Diba and Grossman

(1988) consider the Bharghava (1986) ratios to infer that if two series e.g. the stock

price and the dividend are cointegrated then there is no evidence of bubble, which is

criticised by Evans (1991) on the basis of the complexity of the bubble characteristics

and the non-linearity of bubbles that cannot be captured by conventional cointegration

tests.

In a cointegrated vector autoregression framework, Johansen and Swensen (1999),

Johansen and Swensen (2004) and Johansen and Swensen (2011) test the restrictions of

rational expectations as �rstly proposed by Baillie (1989), although following a di�erent

methodology to account for non-stationarity. Furthermore, they generate the likelihood

ratio tests under the restrictions of the rational expectation hypothesis and argue that

present value models pose restrictions on the cointegrating relationships.

4.1.2 Analysis of Coexplosive and Cointegrated Processes

As an extension of the models suggested by Campbell and Shiller (1987) and Campbell

and Shiller (1988) and Johansen and Swensen (1999), Johansen and Swensen (2004) and
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Johansen and Swensen (2011), Nielsen (2010) introduces the idea of co-explosiveness

to allow the standard cointegrated VAR models to test for the existence of bubbles.

In particular, Nielsen (2010) proposes a VAR model that allows both unit roots and

explosive characteristic roots, utilising the standard cointegration techniques introduced

in Johansen (1991). The coexplosive and cointegrated vector autoregressive model arises

as a restriction to the standard VAR model and allows both a random walk and an

explosive stochastic component with a characteristic root, ρ > 1.

This model contradicts Diba and Grossman (1988) on the fact that two series can be

cointegrated and yet, their linear combination contain an explosive component (Engsted

2006). As a result, the VAR approach developed by Johansen (1991) o�ers the advantage

of testing for cointegration while simultaneously testing whether at least one of the

variables has an explosive characteristic root since testing for the number of cointegrating

vectors in the coexplosive case is similar to the standard Johansen procedure. The reason

for this is that the asymptotic distribution of the likelihood ratio test when there is an

explosive root is the same as in the standard Johansen cointegration test (Nielsen 2010).

In his empirical exercise, Nielsen (2010) applies the likelihood ratio test in Yugoslavian

hyperin�ation data of 1990-1994 and concludes that prices and money supply contain

both an explosive and random walk component whereas their linear combination is a

unit root process.

To test the rational bubble hypothesis, Engsted and Nielsen (2012) apply the like-

lihood ratio test on US real stock price and dividend data between 1974 and 2000 to

conclude that the real stock prices contain an explosive characteristic root, however

the evidence is rather weak as the null hypothesis of no cointegrating relationship is

marginally rejected. In the same framework, Engsted (2006) extends the Diba and

Grossman (1988) dataset to cover the period 1871-2000 (whereas the original dataset

only covers the period between 1871 and 1986) and applies the Johansen (1991) method-

ology to test for the long-term relationship between stock prices and dividends. Engsted

(2006) comes to a conclusion that is consistent with the standard present value model

with explosive bubbles as described in Diba and Grossman (1988a) and Diba and Gross-

man (1988) and infers that stock prices contain both a unit root and an explosive root

with dividends being a unit root process and their linear relationship containing an

explosive root.
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4.1.3 Recent Unit Root Tests for Explosive Behaviour

In standard time-series econometrics, non-stationary variables are either treated as �rst-

order integrated, second-order integrated or fractionally integrated. However, fractional

integration techniques have been applied to bubble testing as well. Cuñado et al. (2005)

suggest a fractionally integrated approach in NASDAQ stock prices and dividends and

provide evidence that bubble detection can be rather sensitive to the sampling frequency

of the data. Particularly, they �nd that daily and weekly frequency data suggest frac-

tional cointegration whereas monthly frequency data suggest no cointegration. Possible

explanations for this inconclusive inference can be the bias due to the low frequency

(temporal aggregation problem) or the sample size (Cuñado et al. 2005).

In an empirical study, Koustas and Serletis (2005) apply fractional integration method-

ologies to the logarithmic dividend yield of the S&P 500 �nding evidence in support of a

rational bubble. However, Koustas and Serletis (2005) technique is subject to criticism

by Frömmel and Kruse (2012) as it does not account for structural breaks. In contrast,

Frömmel and Kruse (2012) suggest a di�erent fractional integration approach that con-

siders structural breaks and changes in persistence in line with Sibbertsen and Kruse

(2009).

The problem of asymptotic bias of integrated, near-integrated or explosive regressors

has been emphasised by Magdalinos and Phillips (2009) who extent Phillips and Mag-

dalinos (2008) asymptotic theory for fully explosive cointegrated regressors to account

for moderately explosive regressors. Furthermore, they suggest that the relationship

between the explosive regressors determines the limit behaviour of the least squares es-

timator and that in a moderately explosive framework the regressors result on a mixed

normal limit.

More recent research focuses on right-tailed unit root processes, testing the alter-

native hypothesis of explosive behaviour. Phillips et al. (2011) argue that explosive

behaviour in the asset prices but not in the market fundamentals might be perceived

as a bubble episode. Moreover, Phillips et al. (2011) propose a forward recursive right-

tailed supremum Augmented Dickey-Fuller (SADF) test useful on identifying bubbles as

they grow and they apply the SADF test on NASDAQ stock prices and dividends to �nd

evidence of the dot-com bubble. The test has been successfully applied to commodity

future prices (Gilbert 2010), commodity and house prices (Homm and Breitung 2012)
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and the exchange rate market (Bettendorf and Chen 2013).

The Phillips et al. (2011) methodology seems to be less powerful in a multiple bub-

ble regime, indicating pseudo-stationarity issues. For this reason, Phillips et al. (2015)

suggest a backward and a generalised version of the SADF test capable of identifying

historical and real time multiple bubble episodes with periodically collapsing behaviour,

the BSADF and the GSADF test respectively. The GSADF test of Phillips et al. (2015)

appears to have good size and power properties since it has been designed to run recur-

sively for di�erent starting and ending points of the sample in a way that can detect

multiple explosive episodes. The BSADF test is widely used for date-stamping past bub-

ble episodes since it can precisely estimate the origination and termination dates of the

bubbles, being quite powerful on identifying bubbles that occur at the end of the sample.

As an empirical application, Phillips et al. (2015) apply the proposed GSADF test to

the S&P 500 stock price and dividend index for the period January 1871 - December

2010 and �nd strong evidence of bubble behaviour. Then, to date-stamp the explosive

episodes, they apply the BSADF test that successfully manages to identify more than

six historical banking crises and bubble episodes from January 1871 to December 2010.

Tsvetanov et al. (2016) apply the Phillips et al. (2015) methodology to test for

bubble episodes to crude oil spot and future markets. Speci�cally, Tsvetanov et al.

(2016) use crude oil prices for spot and futures contracts on NYMEX from 1995 to

2013 to test for explosive behaviour to �nd evidence of explosiveness at weekly and

monthly frequency between 2004 and 2008. The most important �nding of their study

is that longer-dated contracts suggest that the origination date of the bubble episode is

earlier compared to shorter-dated contracts or even spot prices and they provide strong

evidence against the null hypothesis of no bubble in support of their conclusion that

the evidence of bubble existence becomes stronger as maturity increases. In particular,

twelve, �fteen, eighteen, twenty one and twenty four month futures contracts suggest

that there is a multiple or continuous bubble episode that starts in early 2004 concluding

that futures contracts with maturity over six months have been signi�cantly overpriced

above their fundamentals, since the beginning of 2004. Their empirical �ndings seem to

be in accordance to the related literature as increased investment �ows into commodity

derivatives markets in�ated the oil futures contract prices (Sockin and Xiong 2015, Tang

and Xiong 2012 and Singleton 2014).
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Extending Phillips et al. (2015) methodology, Phillips and Shi (2018) account for a

delay bias that seems to a�ect the date-stamping outcome. To do so, they introduce a

reverse sample regression into the recursive window methodology of Phillips et al. (2015)

and they incorporate a market recovery parameter to date when asset prices return to

equilibrium. Furthermore, they distinguish the crashes of bubble episodes into sudden,

disturbing and smooth, di�erentiating the crash date from the market correction date.

Applying their model on the NASDAQ stock market index between January 1973 and

August 2013, Phillips and Shi (2017) identify four stages of the dot-com bubble episode;

the origination date, the implosion date, the market correction or recovery date and

�nally a further correction date resulting in a more precise real-time mechanism for

bubble identi�cation.

More recently, Pavlidis et al. (2017) argue that periodically collapsing bubbles result

in a disruption of the relationship between future spot and futures contract prices and

therefore market e�ciency. As a consequence, futures contract prices become a biased

predictor of the future spot prices with the degree of bias being explosive. In their

empirical application of the Phillips et al. (2015) tests and the rolling Fama regressions

to the "German Hyperin�ation" period (December 1921 to August 1923), the "Recent

Float" period (January 1979 to December 2013) and the U.S equity market (December

1982 to March 2015), Pavlidis et al. (2017) conclude that explosive behaviour in asset

prices does not necessarily imply the existence of a bubble episode as explosiveness might

be attributed to bubble behaviour in fundamentals. Thus, any statistical inference on

rational bubbles based on unit root testing can be rather inconclusive as any rejection

of the null hypothesis of a unit root can be either attributed to the existence of bubbles

or misspeci�cation of the asset pricing model or both.

In the same framework, Pavlidis et al. (2018) apply their proposed methodology

to the crude oil market and use market expectations instead of futures contract prices,

as the former is not in�uenced by the risk premium, to test for speculative bubbles on

WTI crude oil during the period January 1990 to December 2013. They support that

since the �nancialisation of the oil futures markets in 2003, it is the fundamentals that

drove oil prices up and not the the development of speculative bubble and that explosive

episodes in the oil market should be perceived as changes in fundamentals rather than

evidence of speculative bubbles.
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In this article we consider the application of Nielsen (2010) approach to test for coin-

tegrating relationships across di�erent series while simultaneously testing whether the

series contain any explosive components, allowing to perform the cointegration analysis

of Johansen (1991) even in the presence of explosive behaviour. Particularly, we inves-

tigate the oil price run-up in the WTI crude oil market between July 2007 and July

2008 as this period is indicated as explosive as well as the oil price collapse between

November 2015 and February 2016, to argue whether the 2007-2008 oil price run-up can

be attributed to the existence of a speculative bubble and whether the oil price collapse

exhibits any characteristics of bubble implosion. One of our main �ndings of this chapter

is that contemporaneously, crude oil spot prices and all futures contracts contain both

an explosive root and a unit root component from July 2007 to July 2008, whereas when

we match the futures contract prices with the actual future spot prices then oil future

prices of spot and the prices of the six month, twelve month and eighteen month futures

contracts contain both an explosive root and a unit root component for this period.

Examining the 2014-2015 crude oil price collapse we argue that contemporaneously,

crude oil spot prices and the one month futures contract and crude oil spot prices and the

three month futures contract contain both an explosive root and a unit root component

between November 2015 and February 2016, whereas matching the futures contract

prices with the actual future spot prices results in a single explosive root between the

future spot prices and the three month futures contract therefore the system contains

both an explosive root and a unit root component during this period. Therefore, we

argue that both oil prices of spot and futures contracts are I(1, x) processes and the

two variables cointegrate such that their linear combination is an I(0) process for the

periods July 2007 to July 2008 and November 2015 to February 2016. This is in support

of the view commonly stated in the empirical literature that prices of spot and (short

maturity) futures contracts should cointegrate even when there is a bubble episode in

the sample (Engsted, 2006).17

As an extension to our study, we apply a date-stamping technique to the di�erence

between the future spot prices and the futures contract prices as proposed by Pavlidis

et al. (2017) that results in a delayed identi�cation of the origination date of the bubble

oil episode of 2007-2008 providing no statistical evidence of explosive behaviour between

17The notation I(1, x) stands for variables with both explosive and random walk components and
I(x) for variables with just explosive common trends as in Nielsen (2010).
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July 2007 and July 2008. Furthermore, applying the same date-stamping technique

to the reverse series of the di�erence between the future spot prices and the futures

contract prices results in a delayed identi�cation of the origination date of the oil price

collapse episode of 2014-2015 providing no statistical evidence of explosive behaviour (in

the reverse series, therefore no market collapse in the original series as in Phillips and

Shi 2018) between November 2015 and February 2016. These �ndings are consistent

with our argument that during the peak of the oil price run-up of 2007-2008 and the oil

price collapse of 2014-2015, crude oil future spot prices and futures contract prices are

cointegrated, therefore their linear relationship is stationary and since the characteristic

roots of their VAR model are, in some cases, explosive we conclude that oil prices of the

spot and futures contracts coexplode during these two periods of interest.

The remainder of this chapter is organised as follows. Section 4.2 outlines the model

and assumptions of testing for cointegration and co-explosiveness utilising the Johansen

cointegration rank test and estimating a coexplosive vector autoregressive model. In

Section 4.3 we present the Granger-Johansen representation theorem whereas in Section

4.4 we review how statistical analysis and hypothesis testing is conducted in a cointegra-

tion framework. Section 4.5 provides the limit theory around the Johansen cointegration

test. Section 4.6 presents an empirical application on the WTI crude oil spot prices and

futures contracts. Section 4.7 concludes. Tables and Figures are presented in sections

4.8 and 4.9 respectively.

In what follows, for a full column rank matrix α, we let ᾱ = α(α′α)−1, while α⊥

denotes a basis to the orthogonal complement of span of α so α′⊥α = 0 and (α, α⊥) is

invertible. The notation a.s. P and D is used for properties holding almost surely, in

probability and in distribution, respectively.

4.2 The Model and Assumptions

This section is structured as follows. We �rstly present the simple vector autoregressive

model as a starting point of our analysis. To continue with, we introduce the restriction

of cointegration, followed by the restriction of co-explosiveness.
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4.2.1 The VAR Model

Consider a p-dimensional time series vector Xt of order k. The vector autoregressive

model is given by;

Xt = µ+ θt+
k∑
j=1

AjXt−j + εt for t = 1, ..., T (4.1)

where the innovation term εt ∼iid Np(0,Ω) is a martingale di�erence sequence, Aj ,Ω ∈

Rp×p, Ω is positive de�nite and µ, θ ∈ Rp.

4.2.2 The Cointegrated VAR Model

Suppose a p-dimensional time series vector Xt of order k containing I(1) variables as in

Johansen (1995). Then, Equation (4.1) can be reparameterised in equilibrium correction

form as;

∆1Xt = µ+ ΠXt−1 + Πlt+
k−1∑
j=1

Γj∆1Xt−j + εt for t = 1, ..., T (4.2)

where ∆1 is a �rst di�erence operator de�ned as ∆1Xt = Xt − Xt−1, the innovation

term εt ∼iid Np(0,Ω), Γj ,Ω ∈ Rp×p, Ω is positive de�nite and µ ∈ Rp. The usual

reduced-rank cointegration hypothesis applies;

H1(r) : rank(Π,Πl) ≤ r

and under the reduced rank restriction, Equation (4.2) can be written as;

∆1Xt = µ+ α(β
′
1Xt−1 + δ

′
1t) +

k−1∑
j=1

Γj∆1Xt−j + εt for t = 1, ..., T (4.3)

where again ∆1 is a �rst di�erence operator de�ned as ∆1Xt = Xt−Xt−1, the innovation

term εt ∼iid Np(0,Ω), Γj ,Ω ∈ Rp×p, Ω is positive de�nite, µ ∈ Rp, δ1 ∈ Rr and

α, β1 ∈ Rp×r.

4.2.3 The Coexplosive VAR Model

Nielsen (2010) introduces the coexplosive VAR model to examine the presence of both a

unit root and a single explosive root in the series. To avoid inconsistency problems that

can arise with multiple explosive roots, Nielsen (2010) focuses on the case that there is

just one positive explosive root in the system.
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We now assume that the characteristic polynomial for Equation (4.3) has a single

positive explosive root, ρ > 1. As a restriction to Equation (4.3), the following coexplo-

sive model arises as suggested by Nielsen (2010);

∆1∆ρXt = µ+ Π1∆ρX
∗
t−1 + Πρ∆1Xt−1 +

k−2∑
j=1

Φj∆1∆ρXt−j + εt (4.4)

where ∆1 is a �rst di�erence operator de�ned as ∆1Xt = Xt − Xt−1 and ∆ρXt =

Xt − ρXt−1 is a ρ order di�erence operator and ∆ρX
∗
t−1 = {∆ρX

′
t−1, (1 − ρ)t}′ . The

innovation term εt ∼iid Np(0,Ω), Π1,Πρ,Φj ∈ Rp×p, µ ∈ Rp and ρ ∈ R.

Under the hypothesis of reduced rank, Equation (4.4) can be rewritten as;

∆1∆ρXt = µ+ α1β
∗′
1 ∆ρX

∗
t−1 + αρβ

′
ρ∆1Xt−1 +

k−2∑
j=1

Φj∆1∆ρXt−j + εt (4.5)

where β∗1 = (β
′
1, δ

′
1)
′

∆1 and ∆ρ are a �rst and ρ di�erence operator respectively. The

new parameters α1, αρ, βρ and Φj depend non-linearly on the original parameters in

Equation (4.3);

α1 =
α

1− ρ
, αρβ

′
ρ = −ρ

(
Ip +

aβ
/
1

1− ρ
−
k−1∑
j=1

ρ−jΓj

)
, Φj =

k−1∑
l=j+1

ρj−lΓl (4.6)

and the characteristic polynomial for Equation (4.3) or Equation (4.5) is given by the

determinant of;

(1− z−1)Ip − z−1αβ
′
1 −

k−1∑
j=1

z−j(1− z−1)Γj =
z − 1

z

(
Ip +

αβ
′
1

1− z
−
k−1∑
j=1

z−jΓj

)
. (4.7)

In case that z = ρ, Equation (4.7) reduces to (1 − ρ−1)αρβ
′
ρ , rank(αρβ

′
ρ) = p − 1

and therefore there is one characteristic root at ρ. The new parameters vary freely, so

α1, β1 ∈ Rp×r, αρ, βρ ∈ Rp×(p−1), µ ∈ Rp,Φj ,Ω ∈ Rp×p so Ω is positive de�nite and

ρ > 1.
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4.3 The Granger-Johansen Representation

In order to interpret the parameters of Equation (4.5) we use Assumption 4.3.

Assumption 4.3. The parameters need to satisfy the following conditions:

1. The matrices α1, β1 ∈ Rp×r and αρ, βρ ∈ Rp×(p−1) have full column rank.

2. If |A(z)| = 0 then |z| = 1 or |z| = ρ where ρ > 1 meaning that the non-stationary

characteristic roots of Xt are either at 1 or ρ, where ρ > 1.

3. The det(α
′
1⊥Ψ1β1⊥) 6= 0 and det(α

′
ρ⊥Ψρβρ⊥) 6= 0 where;

Ψ1 = Ip +
αρβ

′
ρ

ρ− 1
−
k−2∑
j=1

Φj , Ψρ = Ip +
α1β

′
1

1− ρ
−
k−2∑
j=1

ρ−jΦj .

where the parameters β1 and βρ re�ect the cointegrating and coexplosive relationships.

As noted by Nielsen (2010) and given Assumption 4.3 the Granger's representation

theorem (Engle and Granger 1987) can be formulated as follows.

Theorem 4.4. Consider Equation (4.5) and suppose Assumption 4.3: condition 1 holds.

Then;

Ut = {(∆ρX
∗
t )
′
β∗1 , (∆1Xt)

′
βρ, (∆1∆ρXt)

′
, ..., (∆1∆ρXt−k+3)

′}′

can be given a stationary initial distribution ensuring the representation;

Xt
D
=

1

1− ρ
C1

t∑
s=1

εs +
1

ρ− 1
Cρ

t∑
s=1

ρt−sεs + Yt + τc + τ`t+ τxρ
t,

where Cx = βx⊥(α
′
x⊥Ψxβx⊥)−1α

′
x⊥ and Yt is a stationary process. In particular, β

′
cXt−1

can be given a stationary initial distribution for any βc ∈ span(β1) ∩ span(βρ).

The linear slope coe�cient τl can be de�ned as;

τl =
C1µ

1− ρ
+ (C1Ψ1 − I(p))β̄1δ

′
1

so β
′
1τl + δ

′
1 = 0. The coe�cients for the exponential term τx, and the constant level τc

depend on the initial values in such a way that β
′
ρτx = 0 and;

β
′
1τc = ᾱ

′
1

(
Ψ1C1 − Ipµ

1− ρ

)
+ ᾱ

′
1

(
Ψ1C1Ψ1 −Ψ1

)
β̄1δ

′
1 +

δ
′
ρ

(1− ρ)
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Finally, X̃t = Xt − τc − τ`t satis�es the following equation;

∆1∆ρX̃t = α1β
′
1∆ρX̃t−1 + αρβ

′
ρ∆1X̃t−1 +

k−2∑
j=1

Φj∆1∆ρX̃t−j + εt. (4.8)

As a consequence of the representation, under Assumption 4.3, condition 1 the pro-

cess that satis�es Equation (4.5) has p − r random walk (unit root) components and

one explosive root ρ.18 The coe�cients β1 and βρ are vectors and can be interpreted as

cointegrating and coexplosive relationships respectively, in that β′1Xt−1 has no random

walk component, while β′ρXt−1 has no explosive trend.

4.4 Statistical Analysis and Hypothesis Testing

In order to determine the cointegrating rank of Equation (4.2), the reduced rank hy-

pothesis H1(r) : rank(Π,Πl) ≤ r needs to be tested. The likelihood ratio test statistic

is;

LR = −2
(
(T − k) lnLT (θ̂0)− (T − k) lnLT (θ̂1)

)
(4.9)

where θ̂0 is the restricted parameter that corresponds to the reduced-rank model and θ̂1

is the unrestricted parameter that corresponds to the full rank model, T is the sample

size and k is the number of lags. Using the eigen decomposition form of the log-likelihood

function;

lnLT (θ̂0) = −T
2

(1 + ln 2π)− 1

2
ln |S00| −

1

2

r∑
i=1

ln(1− λ̂i) (4.10)

lnLT (θ̂1) = −T
2

(1 + ln 2π)− 1

2
ln |S00| −

1

2

p∑
i=1

ln(1− λ̂i). (4.11)

The estimation of the parameters θ̂0 and θ̂1 happens as follows. We �rstly estimate

the residual vectors R0,t and R1,t from regressing ∆1Xt and (X ′t−1)′ on ∆1Xt−1, ...,

∆1Xt−k+1 and a constant and then we �nd the sum of square matrices

Sij = T−1
T∑
i=1

R̂i,tR̂
′
j,t i, j = 0, 1. (4.12)

18The case of one explosive root is emphasised here.



121

To continue with, after computing the Choleski decomposition S11 = LL
′
we perform

an eigen decomposition on L−1S10S
−1
00 S01L

−1′ and we estimate the eigenvalues λ̂ and

matrix of eigenvectors E. Finally, we normalise the eigenvector matrix L−1′E to obtain

the coe�cients of Equation (4.3). The maximised log likelihood function of Equation

(4.3) can now be written as;

ˆ̀= max `(θ) = −T
2

{
log det(S00) +

r∑
j=1

log(1− λ̂j)
}

(4.13)

where S00 = T−1
∑T

t=1R0,tR
′
0,t. We can now form an alternative likelihood ratio test

statistic, known as the trace statistic given by;

LR{H1} = −T
p∑

j=r+1

log(1− λ̂j). (4.14)

The maximum likelihood estimators can be easily found by taking advantage of the

reparameterisation. Thus, the estimated explosive root of the characteristic polynomial

for Equation (4.3) will be the estimated explosive root, ρ. The parameters of Equation

(4.5) can be estimated using Equation (4.6).

By knowing the coexplosive vector ρ, we can maximise the log likelihood function.

In particular, θ's can be estimated for a given value of ρ as outlined above; the residual

vectors R0,t(ρ) and R1,t(ρ) are computed and then the eigenvalues and eigenvectors are

estimated. The log likelihood function for ρ will be;

ˆ̀(ρ) = max `(ρ, θ) = −T
2

[
log det{S00(ρ)}+

r∑
j=1

log{1− λ̂j(ρ)}
]

(4.15)

where S00(ρ) = T−1
∑T

t=1{R0,t(ρ)}{R0,t(ρ)}′ . The log likelihood function of Equation

(4.15) can be maximised by running the test over all possible ρ's with ρ > 1. Finally, we

estimate the likelihood ratio test statistic by testing against the hypothesis of full rank;

LR = −2(ˆ̀
0 − ˆ̀

1) (4.16)

where ˆ̀
0 and ˆ̀

1 are the maximum likelihood estimators that correspond to the reduced-

rank model and the full rank model respectively. According to Nielsen (2010) Corollary

1 the likelihood ratio test statistic follows a χ2
r×(p−r) distribution with r×(p−r) degrees
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of freedom.

4.5 Limit Theory

As noted by Nielsen (2010), to derive the asymptotic distribution of the cointegration

rank test, the following assumptions need to be made �rst given that (εt,F ) is a mar-

tingale di�erence sequence for some algebraic �ltration;

Assumption 4.4. For some γ > 0 exists, such that suptE{(ε
′
tεt)

(2+γ)/2|Ft−1} < ∞

a.s.

Assumption 4.5. Suppose E{(ε′tεt)|Ft−1} = Ω a.s., where Ω is positive de�nite.

Assumption 4.4 is utilised here to set an upper bound to the �uctuations of the error

term whereas Assumption 4.5 makes the conditional heteroskedasticity time-invariant.

Johansen (1995) derived the limit theory of the cointegration rank test under the as-

sumption that the number of the unit roots is p − r and the remaining characteristic

roots are stationary.19

Theorem 4.5. As in Nielsen (2010), assume Assumptions 4.1-4.3 hold and suppose

model (4.5). The asymptotic distribution of (4.14) will be given as in Johansen (1995)

by;

LR{H1}
D−→ tr

{∫ 1

0
dBuF

′
u

(∫ 1

0
FuF

′
udu

)−1 ∫ 1

0
FudB

′
u

}
, (4.17)

where Fu = (B
′
u −

∫ 1
0 B

′
sds, u − 1/2)

′
with Bu being a p − r standard Brownian

motion.20

As mentioned earlier, the likelihood ratio test statistic is asymptotically distributed

as χ2 with r × (p− r) the degrees of freedom (Nielsen 2010).

Corollary 4.1. As noted by Nielsen (2010), under the assumption that the coexplosive

vectors in (4.5) are known (Hx : βρ = βoρ), suppose Equation (4.5) with ρ ≥ % for % > 1.

Assume Assumptions 3.1-3.3 hold and that τ
′
εt ∼iid N(0, τ

′
Ωτ). Then;

LR(Hx)
D−→ χ2

r×(p−r)

19According to Nielsen (2010) the last assumption is not necessary.
20For the case of no deterministic constant or trend see Johansen (1995) Chapter 6, Theorem 6.1.
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where τ = (I2 − τ⊥τ̄
′
⊥)αρ, τ⊥ = Ψρβρ⊥ a non-zero vector due to Assumption 4.1 that

formulates the asymptotic result and r × (p− r) the degrees of freedom.

The asymptotic theory presented above is consistent with rational expectations since

the distribution of the likelihood ratio test has been derived under the assumption that

the innovation term, εt is a F− martingale di�erence sequence.

4.6 Empirical Application

This section discusses an empirical application of the cointegration rank test of Johansen

(1988) as discussed by Nielsen (2010).

4.6.1 Data

We download WTI crude oil prices from Eikon for the period September 1995 to July

2019 and construct monthly and weekly series for each spot and associated futures

contracts. In particular, our dataset contains crude oil prices for spot and nine futures

contracts on NYMEX from 1995 to 2019 at weekly frequency. The futures contract

maturities are one month, three, six, nine, twelve, �fteen, eighteen, twenty one, and

twenty four months. The NYMEX crude oil future contracts expire on the third business

day prior to the twenty �fth calendar day of the month prior to the delivery month.

WTI crude oil spot prices together with the percentage change of WTI crude oil

price on a year earlier can be seen in Figure 22. The oil prices move upward from the

beginning of 2007 until mid-2008. In particular, crude oil prices rise steadily until the

end of 2007, followed by explosive growth during the �rst six months of 2008. In half

a year, prices increased more than 50% of their nominal value to collapse during the

second half of 2008 reverting back to 2004 prices (Saporta, Tudela and Trott 2009).

4.6.2 Cointegration Tests

Testing for cointegration across the whole sample period, that is September 1995 to

July 2019, cannot give us information about any potential breaks to the cointegrating

relationship that can be explained by price collapses as the unit root component might

dominate the explosive component, leaving no evidence of cointegration breaks. For

this reason, we perform the Johansen cointegration analysis recursively across di�erent

subsamples for the period September 1995 to July 2019 at 5% level of signi�cance. We
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�x the end of the sample at the date that the WTI crude oil spot price reached its highest

value for the 2007-2008 oil price bubble episode whereas focusing on the 2014-2015 oil

price collapse, we �x the end of the subsample at the date that the WTI crude oil spot

price dropped to its lowest level whereas we let the beginning of the subsample to change

recursively, subject to a minimum window size that allows us to perform the Johansen

cointegration test (ten observations). A constant is included in the cointegrating VAR

model but no trend and the lag length is set to three, following Nielsen (2010).

We see that from June 2004, when the oil price run-up started, to July 2008 when

the oil price collapsed, crude oil spot prices are cointegrated (recursively) with all future

contracts prices except the three month one (see Figure 23). Additionally, crude oil spot

prices are cointegrated between November 2015 and February 2016 marking the period

of the 2014-2015 crude oil price collapse.

We consider the periods from July 2007 to July 2008 and November 2015 to February

2016 as our subsamples since the former contains the peak of the 2008 bubble episode,

whereas the latter contains the 2014-2015 oil price collapse, ignoring any short-term

blips. During the second subsample, from November 2015 to February 2016, both WTI

crude oil spot and futures contract prices exhibit a severe price decline. Bearing in

mind that expansion and collapse are the two main aspects of an asset bubble episode

whereas market collapse can be as much of importance and impact as market expansion,

we want to examine whether a coexplosive relationship still holds when an asset price

series collapses. We choose to arrange the series of interest {yt} in reverse order such

that y∗t = yT+1−t for t = 1, 2, ..., T , from the period November 2015 to February 2016

in line with Philips and Shi (2018). Expanding the subsample to capture longer periods

of explosiveness would result in rather inconclusive statistical inference as unit root

and cointegration tests might not be able to identify bubble episodes that continuously

grow and burst over time in the case the unit root component dominates the explosive

component (Evans 1991).

4.6.3 Coexplosiveness: the contemporaneous case

Conducting a multivariate analysis on the logarithm of prices for the spot and futures

contracts we estimate a bivariate VAR model for the sample periods July 2007 to July

2008 and November 2015 to February 2016 at weekly frequency, �tting three lags and
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including an intercept in the cointegrating regression. According to Theorem 3.2, the

likelihood ratio test has the same asymptotic distribution as in Johansen (1995, Chap.

6) even in the presence of an explosive root.

Table 7 reports the cointegration rank tests for the period July 2007 to July 2008.

The likelihood ratio test suggests that the cointegrated VAR model has a rank of one

for the crude oil spot prices and all futures contracts. The trace test-statistic ranges

from 21.66 for the �fteen month futures contract to 24.08 for the three month futures

contract. All trace test statistics are larger than the critical value of 20.26 and therefore

we reject the null hypothesis of zero rank at 5% level of signi�cance. Additionally, under

the alternative hypothesis of full rank, the trace test-statistic is smaller than the 9.16

critical value at 5% signi�cance level for all futures contracts and therefore we do not

reject the null hypothesis of reduced rank of one. Similarly, in Table 9 we perform

the likelihood ratio test over the period November 2015 to February 2016. The trace

test-statistic is greater than the critical value at 5% across all maturities of the futures

contracts.

For all maturities of the futures contracts, the trace test-statistics exceed the 5%

critical values and as the p-values are less than 5%, we can reject the null hypothesis

of zero rank of the cointegrated VAR model, therefore there is statistical evidence of

cointegration in the explosive subsample of our interest. The crude oil spot prices are

cointegrated with the prices of the one, three, six, nine, twelve, �fteen, eighteen, twenty

one and twenty four futures contract during the periods July 2007 - July 2008 and

November 2015 - February 2016.

4.6.4 Coexplosiveness: the non-contemporaneous case

So far we have made use of contemporaneous crude oil prices for spot and futures con-

tracts. The crude oil spot price on a particular date is combined with the price of the

futures contract (of a particular maturity) on the same date. Additionally, instead of

using contemporaneous crude oil spot prices and futures contracts we perform the coin-

tegration analysis on the actual future spot prices (st+n) and futures contract prices

(ft,n). In other words, we match the spot price with the futures contract price on the

expiration date. For instance, we combine the crude oil spot price today with the price

of the one month futures contract that expires today.
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Following the same methodology, in Tables 8 and 10 we report the log-likelihood and

trace test-statistics of the cointegration rank test by estimating a bivariate VAR model

between crude oil future spot prices and the futures contract prices of the nine contracts

across two subsample periods, July 2007 to July 2008 and November 2015 to February

2016 at a weekly frequency, �tting three lags and an intercept in the cointegrating

regression.

In Table 8, the trace test-statistics suggest that the cointegrated VAR model has a

reduced rank of one for the crude oil prices of the spot and one, six, twelve and eighteen

month futures contract with a p-value less than 5% for the one, six and twelve month

futures contract and less than 10% for the eighteen months futures contract rejecting the

null of zero rank in favour of the alternative hypothesis of at least full rank for all four

contracts. To continue, under the null of reduced rank of one the trace test-statistic does

not exceed the 5% critical value of 9.16 and therefore we cannot reject the null hypothesis

of rank one for the �rst three contracts (i.e. one, six and twelve month futures contract)

and the 10% critical value of 7.56 for the eighteen month futures contract to conclude

that the crude oil prices of the spot and the one, six, twelve, eighteen months futures

contract are cointegrated from July 2007 to July 2008.

In Table 10, the trace test-statistics indicate that the bivariate cointegrated VAR

model has a reduced rank of one when the crude oil spot price is considered alongside

the one, three, six, twelve and eighteen month futures contract with a p-value less than

5% for all �ve futures contracts rejecting the null of zero rank in favour of the alternative

hypothesis of at least rank one. In particular, under the null of reduced rank of one the

trace test-statistic does not exceed the 5% critical value of 9.16 and therefore we cannot

reject the null hypothesis of rank one for the one, three, six, twelve and eighteen month

futures contract, concluding that the crude oil prices of the spot and the one, three, six,

twelve, eighteen months futures contract are cointegrated for the period November 2015

to February 2016.

To continue, a VAR model as Equation (4.1) with an intercept and three lags is �tted.

Table 11 presents the estimated roots of the characteristic polynomial for the periods July

2007 to July 2008 and November 2015 to February 2016 both for the contemporaneous

and non-contemporaneous series. In the contemporaneous series, the WTI crude oil

spot prices match with the futures contract prices on the same date whereas in the non-



127

contemporaneous case, the WTI crude oil future contract prices match with the futures

contract prices on the expiration date of the futures contract. As it can been seen in

Table 11 for the period July 2007 to July 2008, the vector autoregression for the crude

oil spot prices and the one month futures contract has a characteristic root of 1.0107

that is larger than one, indicating an explosive root in the system. That applies to the

longer maturity contracts as well, since their vector autoregressive systems appear to

have explosive characteristic roots that range between 1.016 for the three month futures

contract to 1.029 for the twenty one month futures contract. In Table 11 we see that for

the period November 2015 to February 2016 and when the series are contemporaneous,

the vector autoregression for the crude oil spot prices and the one and three month

futures contract have a characteristic root of 1.035 and 1.057 respectively that are larger

than one, indicating an explosive root in the two systems.

From Table 7, we have inferred that there is evidence of cointegration between the

crude oil spot and the one, three, six, eight, twelve, �fteen, eighteen, twenty one and

twenty four months futures contract prices and since the estimated roots of the char-

acteristic polynomials for all futures contracts are explosive, we conclude that there

is statistical evidence of co-explosiveness between the crude oil prices of the spot and

futures contracts between July 2007 and July 2008.

Furthermore, from Table 9 we have concluded that there is evidence of cointegration

between the crude oil spot and the one, three, six, eight, twelve, �fteen, eighteen, twenty

one and twenty four months futures contract prices and as the characteristic roots of the

VAR model described above for the one and three month futures contract are explosive,

we infer that there is statistical evidence of co-implosiveness between the crude oil prices

of the spot and the one month and three month futures contract between November 2015

and February 2016.

In Table 11 we present the estimated roots of the characteristic polynomial across all

futures contracts for the period July 2007 to July 2008 and November 2015 to February

2016 both at a weekly frequency when the series are non-contemporaneous. In Table 11

we see that all characteristic roots for the crude oil future prices of spot and all futures

contracts, with the exception of the one month and three month futures contacts, are

larger than one and therefore explosive. As in the contemporaneous case, the oil prices of

the spot and futures contracts coexplode during the subsample July 2007 to July 2008, if
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they are cointegrated and the VAR model contains an explosive root. Combining these

two, we can infer that there is statistical evidence of co-explosiveness between the crude

oil spot prices and the six month, twelve month (both at 5%) and eighteen month (at

10%) futures contract.

As we can see in Table 11, the characteristic roots for the crude oil future prices

of spot and the three, nine and twenty one month futures contract are larger than

one and therefore explosive for the period November 2015 to 2016. Again, as in the

contemporaneous case, the oil prices of the spot and futures contracts co-implode during

the subsample period November 2015 to February 2016, if they are cointegrated and the

VAR model contains an explosive root. Bearing this in mind, we can conclude that there

is statistical evidence of co-implosiveness between the crude oil spot prices and the three

month futures contract between November 2016 and February 2016 when we match the

future spot price with the futures contract price on the expiration date.

4.6.5 Causality Testing

A question arising after �nding evidence of cointegration between crude oil spot and

futures contract prices, is what is the direction of the casual impact of the one series on

the other and thus we test for Granger causality. Consider a bivariate VAR(2) model

with a constant:

 rst

rft,n

 =

Φs,0

Φf,0

+

Φss,1 Φsf,1

Φfs,1 Φff,1

 rst−1

rft−1,n

+

Φss,2 Φsf,2

Φfs,2 Φff,2

 rst−2

rft−2,n

+

Φss,3 Φsf,3

Φfs,3 Φff,3

 rst−3

rft−3,n

+

 εs,t

εf,n,t


(4.18)

where rst are the returns on WTI crude oil spot prices, rft,n the returns on WTI crude

oil futures contracts, n is the futures contract length and [εs,t εf,n,t]
′ the heteroskedastic

error term vector. We make use of the likelihood ratio test to investigate whether it is

returns on spot prices (rst) causing returns on futures contract prices (rft,n where n is

the futures contract length) or vice versa. We �t three lags of spot and futures returns

and we account for the case that the errors are heteroskedastic but uncorrelated by

performing a heteroskedasticity robust likelihood ratio test. We test the hull hypothesis

of no Granger causality across all possible restrictions, therefore:
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H0,ss : Φss,1 = Φss,2 = Φss,3 = 0

H0,sf : Φsf,1 = Φsf,2 = Φsf,3 = 0

H0,fs : Φfs,1 = Φfs,2 = Φfs,3 = 0

H0,ff : Φff,1 = Φff,2 = Φff,3 = 0.

According to the null hypothesis H0,ss, lag of returns on WTI crude oil spot prices

do not Granger cause returns on WTI crude oil spot prices at time t. Respectively,

according to the null hypothesis H0,sf , lag of returns on WTI crude oil futures contract

prices (of length n) do not Granger cause returns on WTI crude oil spot prices at time t

whereas not rejecting the null hypothesis H0,fs, would mean that lag of returns on WTI

crude oil spot prices do not Granger cause returns on WTI crude oil futures contract

prices (of length n) at time t. Finally, under to the null hypothesis H0,ff , lag of returns

on WTI crude oil futures contract prices (of length n) do not Granger cause returns on

WTI crude oil futures contract prices (of length n) at time t.

In Table 12, we report the probabilities of rejection of the null hypotheses of no

Granger causality between WTI crude oil returns on spot prices rst and WTI crude oil

returns on futures contract prices rft,n. We �nd that lags of returns on short (one to

three months) and mid maturity WTI crude oil futures contracts (six to nine months at

5% level of signi�cance) Granger-cause returns on spot prices for the entire sample period

September 1995 to July 2019. Furthermore, we see that lags of returns on short (one to

three months) and mid maturity WTI crude oil futures contract prices (six months at

5% level of signi�cance) Granger-cause returns on WTI crude oil futures contract prices

for the same period. Finally, there is some Granger causality between lags of returns on

long maturity (eighteen to twenty four months) crude oil futures contracts and returns

on spot prices for the entire sample period September 1995 to July 2019.

To summarise, in the contemporaneous case crude oil spot prices and all futures

contracts contain both an explosive root and a unit root component whereas when we

match the futures contracts prices (ft,n) with the actual future spot prices (st+n) then

crude oil future spot prices and the six month, twelve month and eighteen month futures

contract prices contain both an explosive root and a unit root component for the period
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July 2007 to July 2008.

4.6.6 Unit Root Testing for Rational Bubbles

Interested in investigating whether a coexplosive relationship still holds when a price

series collapses as the impact of a market collapse can be severe and therefore it is

important to be able to identify crisis episodes, we run the BSADF test on the reverse

series of the di�erence between future spot and futures contract prices.

In the rational bubbles literature, the di�erence between spot and futures contract

prices is commonly perceived as a relationship between prices and fundamentals. There-

fore, any deviations between future spot prices and futures contract prices for a prolonged

period of time might be considered as deviations from fundamentals supporting the ar-

gument in favour of a bubble episode. However, in commodity markets it is not always

obvious what is the fundamental of a particular commodity. In particular, in the oil

market the convenience yield (i.e. costs of storage) is used as a proxy of market funda-

mentals (see for instance Tsvetanov et al. 2016). In the framework of this chapter, we

consider the �uctuations between future spot and futures contract prices as evidence of

market ine�ciency (rather than deviations from fundamentals) that could, potentially,

lead to a bubble episode.

As a robustness check, we investigate the oil price run-up of 2007-2008 as well as the

oil price collapse of 2014-2015 further. We compare our results to Pavlidis et al. (2017),

according to which it is the fundamentals that are responsible for the �uctuations in oil

prices in the early 2000s and not a speculative bubble as the fundamental price of oil is

practically unobservable and therefore any statistical inference in favour of a speculative

bubble might be due to misspeci�cation error. Finding no evidence of a bubble episode

in the di�erence between future spot and futures contract prices using Pavlidis et al.

(2017) approach during the periods we identi�ed earlier as coexplosive supports our

evidence that the series coexplode (or co-implode for the reverse series) during the oil

price run-up of 2007-2008 and the oil price collapse of 2014-2015.

In particular, we apply the ADF, SADF and GSADF tests to the di�erence between

the future spot prices (st+n) and futures contract prices (ft,n) where n is the contract

length, across all di�erent maturity contracts for the sample period September 1995 to

July 2019.
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Table 13 summarises the unit root test results in di�erences together with the �nite

sample critical values. Both the ADF and SADF test-statistics are below the 95% critical

values across all di�erences between future spot prices and futures contract prices failing

to reject the null hypothesis of a unit root. The poor performance of the ADF and SADF

tests is expected as the former one su�ers from low power whereas the latter one under

performs in a multiple bubble environment (Phillips et al. 2015).

In contrast, the GSADF test-statistics reject the null hypothesis of a unit root in

favour of the alternative hypothesis of explosiveness, for all the di�erences between

the spot prices and the mid and longer maturity futures contract prices, namely the

di�erences between the six month future spot price and the six month futures contract

price (st+6−ft,6), the nine month future spot price and the nine month futures contract

price (st+9 − ft,9), the twelve month future spot price and the twelve month futures

contract price (st+12 − ft,12), the �fteen month future spot price and the �fteen month

futures contract price (st+15 − ft,15), the eighteen month future spot price and the

eighteen month futures contract price (st+18 − ft,18), the twenty one month future spot

price and the twenty one month futures contract price (st+21−ft,21) and the twenty four

month future spot price and the twenty four month futures contract price (st+24−ft,24).

To continue, in order to identify the exact periods of explosive behaviour in the oil

market we apply the BSADF test of Phillips et al. (2015). Figures 24 to 26 plot the

BSADF test-statistics sequence of the di�erences between the future spot price and the

futures contract price for all nine futures contracts (i.e. st+n − ft,n) together with their

simulated �nite sample critical value sequence at 95% level of signi�cance. In addition,

we apply the BSADF test in the reverse order of the series that represents the di�erence

between the future spot price and the futures contract price across futures contracts

with di�erent maturities so that if yt = st+n − ft,n where n is the contract length

then y∗t = yT+1−t for t = 1, 2, ..., T . Figures 27-29 illustrate the BSADF test-statistics

sequence of the reversed series that represents the di�erence between the future spot price

and the futures contract price across di�erent contract lengths with the corresponding

simulated �nite sample critical value sequence at 95% level of signi�cance.

The reverse regression approach is capable of identifying the origination date of the

collapse as well as the termination date that corresponds to the market recovery date

when either single or multiple market crashes take place since by reverse transforma-
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tion, the original (mildly integrated) collapse process transforms to a (mildly) explosive

process and vice versa (Philips and Shi 2018). Thus, the reverse regression approach is

able to identify the market collapse, however it does so by utilising ex post data and

therefore can be used for identifying historical episodes of crashes rather than real time

bubble episodes.

Ignoring any short term blips and focusing on the oil crisis of 2007-2008 and the oil

price collapse of 2014-2015, the BSADF test-statistics increase above the 95% critical

value sequence for all the di�erences between the future spot prices (st+n) and futures

contract prices (ft,n) except for the one month futures contract and then drops again

below the 95% critical value sequence.

To be more precise on the exact time period of the oil price run-up and collapse

episode, we perform a date-stamping technique on the BSADF test-statistics calculated

on the di�erence between the future spot price and the futures contract price for all

contracts (i.e. st+n − ft,n). Particularly, we de�ne the origination date of the bub-

ble episode as the �rst chronological observation of which the test statistic is greater

than the simulated �nite sample critical value therefore rejecting the null hypothesis

of stationarity in favour of the alternative hypothesis of an end-of-sample bubble. On

the same framework, the termination date of the bubble episode is de�ned as the �rst

chronological observation of which the test-statistic becomes smaller than the simulated

�nite sample critical value. Respectively, the origination date of the collapse episode

is given by the �rst chronological observation of which the test statistic of the reverse

regression is greater than the simulated �nite sample critical value whereas the termi-

nation date of the collapse episode and, therefore the market recovery date, is given by

the �rst chronological observation of which the test-statistic becomes smaller than the

simulated �nite sample critical value.

Table 14 presents the periods of explosive episodes (origination and termination

dates) for the period September 2015 to July 2019 as identi�ed by the Phillips et al.

(2015) methodology. Particularly, we apply BSADF test on the di�erence between the

future spot price and the futures contract price for all nine contracts (st+n− ft,n, where

n is the length of the contract), and we compare these origination and termination dates

against the respective dates of the bubble episodes that are suggested by applying the

BSADF test on the crude oil future spot and futures contract prices separately. In Table
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15, we report the market crash and recovery dates for the 2014-2015 oil price collapse

by applying the BSADF test on the reverse series that represents the di�erence between

crude oil future spot and futures contract prices as well as the the crude oil spot and

futures contract prices across di�erent contract lengths.

As we see in Table 14, when applied to the series separately, the BSADF test succeeds

to detect the explosive episode of 2007-2008 on time, however when applied on the

di�erence between crude oil future spot prices and futures contract prices the date-

stamping results in delayed identi�cation of the 2007-2008 bubble episode as the WTI

crude oil spot price collapsed at the end of July 2008. Concerning the 2014-2015 oil

price collapse, it can be seen that in Table 15 the BSADF test identi�es the collapse

date between January 2016 and March 2016 which is in line with the oil price collapse

that took place in February 2016 whereas the market recovery date is set between March

2016 and May 2016.

Once again, applying the reverse regression BSADF test on the di�erence between

the future spot price and the futures contract price across all contracts with di�erent

maturity results in either no identi�cation of the crash episode at all or in a delayed

identi�cation as indicated by the di�erences between the nine month future spot price

and the nine month futures contract price (st+9−ft,9), the �fteen month future spot price

and the �fteen month futures contract price (st+15 − ft,15), the eighteen month future

spot price and the eighteen month futures contract price (st+18 − ft,18), the twenty one

month future spot price and the twenty one month futures contract price (st+21 − ft,21)

and the twenty four month future spot price and the twenty four month futures contract

price (st+24 − ft,24).

Overall, in Tables 14 and 15 we can see that date-stamping the test-statistic of the

BSADF test applied on the di�erence between the future spot price and the futures

contract price results in a delayed identi�cation of the origination date of the oil bubble

episode of 2007-2008 and a delayed identi�cation of the 2014-2015 crude oil price collapse.

Pavlidis et al. (2017) methodology seems to identify the origination date of the 2007-

2008 explosive episode as well as the origination date of the 2014-2015 oil price collapse

episode with delay (or even not at all for some futures contracts) comparing to what the

application of the BSADF test on the individual series suggests.

Particularly, the BSADF test on the three month future contract suggests the origi-
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nation date of the oil bubble episode of 2007-2008 eight months earlier than the BSADF

test on the di�erence between the future spot price in three months and the three month

futures contract price (st+3 − ft,3). To continue, applying the BSADF test to mid ma-

turity contracts (six to eighteen months) we identify the origination date of the bubble

episode one year earlier compared to Pavlidis et al. (2017) (i.e. the di�erence between

the future spot prices and the futures contract prices) whereas applying the BSADF test

to longer-maturity contracts (twenty one to twenty four months) suggests that the origi-

nation date of the oil bubble episode more than four years earlier compared to Pavlidis et

al. (2017) (i.e. the BSADF test on the di�erence between the future spot price and the

futures contract price, st+n − ft,n, where n is the length of the contract). Furthermore,

applying the BSADF test on the di�erences between future spot and short-term length

futures contract results in no identi�cation of the 2014-2015 oil price collapse episode at

all, whereas for mid and longer-maturity contracts the reverse regression BSADF test

identi�es the origination date of the collapse episode between between ten to thirteen

months later compared to the application of the BSADF test on the spot and each fu-

tures contract prices separately. To conclude, there seems to be a signi�cant delay in

identifying the beginning of the oil bubble episode of 2007-2008 and the oil price collapse

of 2014-2015 compared to the date-stamping results of the BSADF on the actual spot

and future contract prices series.

Our cointegration analysis seems to be in accordance to Pavlidis et al. (2017) since

applying the BSADF test on the future spot prices and the futures contract prices provide

no statistical evidence of explosive behaviour on the di�erences between the future spot

price and the futures contract price between July 2007 and July 2008 that we identify

co-explosiveness and between November 2015 and February 2016 that we identify co-

explosiveness at the reverse series and therefore co-implosiveness in the series itself,

implying that the two linear relationships are a stationary process, as date-stamping

identi�es the origination date of the bubble and collapse episode on st+n− ft,n, where n

is the length of the contract, with delay across futures contracts with di�erent maturities.

4.7 Conclusion

This chapter applies an extension of Johansen's cointegration rank test (Johansen 1988)

that allows for explosive roots as suggested by Nielsen (2010). This approach can o�er
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valuable information since it allows to test for cointegrating relationships across di�erent

series while simultaneously testing whether the series contain any explosive components,

allowing to perform the cointegration analysis of Johansen (1991) even in the presence

of explosive behaviour in the related series.

We have utilised Johansen's cointegration rank test to analyse an explosive episode

in the WTI crude oil market between July 2007 and July 2008 and the oil price collapse

between November 2015 and February 2016 at a weekly frequency as the former period

is indicated as explosive and the latter one has characteristics of a market crash.

We provide evidence that during the period July 2007 to July 2008 when we choose

to use contemporaneous crude oil prices for spot and futures contracts there is a single

explosive root in the cointegrated VAR model between the crude oil spot prices and

all futures contracts while at the same time the series are cointegrated, whereas when

we match the actual future spot price with the futures contract price, there is a single

explosive root in the cointegrated VAR model between the crude oil spot prices and the

six month, twelve month and eighteen month futures contract while at the same time

the series are cointegrated for that time period. Therefore, the series of the crude oil

spot prices and futures contracts coexplode and their linear relationship is stationary

between July 2007 and July 2008.

When we test for the oil price collapse between November 2015 and February 2016

contemporaneously, we �nd a single explosive root in the cointegrated VAR model be-

tween the crude oil spot prices and the one month futures contract and between the

reverse series of the crude oil spot prices and the three month futures contract while

at the same time the series are cointegrated. Matching the actual future spot price

with the futures contract price, we conclude that there is a single explosive root in the

cointegrated VAR model between the crude oil spot prices and the three month futures

contract while at the same time the two series are cointegrated for that time period.

Therefore, the series of the crude oil spot prices and futures contract co-implode and

their linear relationship is stationary from November 2015 to December 2016.

Our �ndings suggest that both oil prices of spot and futures contracts are I(1, x)

processes and the two variables cointegrate such that their linear combination is an I(0)

process for the periods July 2007 to July 2008 and November 2016 to February 2017.

This is in support of the view stated in the empirical literature that prices of spot and
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(short maturity) futures contracts should cointegrate even when there is a bubble episode

in the sample (Engsted 2006).

Applying a date-stamping technique to the di�erence between the future spot prices

and the futures contract prices results in a delayed identi�cation of the origination date

of the bubble oil episode of 2007-2008 and the oil price collapse of 2014-2015. This

provides no statistical evidence of explosive behaviour between July 2007 and July 2008

as well as no statistical evidence of explosiveness of the reversed series between November

2015 and February 2016 in support of our evidence that during the oil run-up of 2007-

2008 and the oil price collapse of 2014-2015, crude oil future spot prices and futures

contract prices are cointegrated. Therefore their linear relationship is stationary and

since the characteristic roots of their VAR model are, in most of the cases, explosive we

conclude that oil prices of the spot and futures contracts coexplode/co-implode during

these periods.
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4.8 Tables



138

Table 7: Cointegration rank determination for the period July 2007 to July 2008, contemporaneous series

Hypothesis 1 month 3 month 6 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 285.89 22.27 0.026 264.77 24.08 0.014 247.80 23.75 0.016
rank≤ 1 294.34 5.38 0.276 273.88 5.85 0.205 256.32 6.71 0.143
rank≤ 2 297.27 276.81 259.68

Hypothesis 9 month 12 month 15 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 237.56 22.66 0.0231 229.91 21.91 0.030 223.62 21.66 0.032
rank≤1 245.52 6.74 0.141 237.48 6.76 0.140 231.03 6.84 0.136
rank≤2 248.89 240.86 234.45

Hypothesis 18 month 21 month 24 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 218.41 21.78 0.031 214.72 22.02 0.029 211.59 22.13 0.028
rank≤1 225.81 6.98 0.128 222.20 7.07 0.123 219.06 7.18 0.118
rank≤2 229.30 225.73 222.65

Note: Cointegration rank determination with an intercept restricted in the cointegrating regression. Critical values are based on Johansen (1995, Table 2) and Doornik (1998)
and the tests are performed at 5% level of signi�cance. The Table summarises results from estimating a cointegrated VAR model for the logarithmic prices for the spot
and futures contracts across di�erent maturities we estimate a bivariate VAR model for the sample period July 2007 to July 2008 at weekly frequency, �tting three lags and
including an intercept in the cointegrating regression. The likelihood ratio test has the same asymptotic distribution as in Johansen (1995, Chap.6) even in the presence of an
explosive root.
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Table 8: Cointegration rank determination for the period July 2007 to July 2008, non-contemporaneous series (lags)

Hypothesis 1 month 3 month 6 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 172.22 40.01 0.001 169.97 20.26 0.300 148.64 20.49 0.046
rank≤1 189.08 6.28 0.170 178.89 9.16 0.053 156.36 5.05 0.325
rank≤2 192.22 180.24 158.89

Hypothesis 9 month 12 month 15 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 139.76 14.22 0.305 139.46 20.90 0.041 144.04 22.98 0.021
rank≤1 146.30 1.14 0.932 145.43 8.96 0.055 150.11 10.84 0.024
rank≤2 146.87 149.91 155.53

Hypothesis 18 month 21 month 24 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 176.87 19.58 0.062 187.35 25.13 0.010 186.97 25.84 0.008
rank=≤1 183.05 7.22 0.116 194.63 10.57 0.027 193.61 12.57 0.011
rank≤2 186.66 199.91 199.89

Note: Cointegration rank determination with an intercept restricted in the cointegrating regression. Critical values are based on Johansen (1995, Table 2) and Doornik (1998)
and the tests are performed at 5% level of signi�cance. The Table summarises results from estimating a cointegrated VAR model for the logarithmic prices for the future spot
and futures contracts across di�erent maturities we estimate a bivariate VAR model for the sample period July 2007 to July 2008 at weekly frequency, �tting three lags and
including an intercept in the cointegrating regression. The likelihood ratio test has the same asymptotic distribution as in Johansen (1995, Chap.6) even in the presence of an
explosive root.
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Table 9: Cointegration rank determination for the period November 2015 to February 2016, contemporaneous series

Hypothesis 1 month 3 month 6 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 40.32 22.80 0.022 38.10 21.57 0.033 37.45 20.97 0.040
rank≤1 49.15 5.14 0.311 45.45 6.86 0.134 45.15 5.57 0.246
rank≤2 51.72 48.88 47.93

Hypothesis 9 month 12 month 15 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 38.01 22.01 0.029 38.25 24.44 0.013 39.03 29.45 0.003
rank≤1 46.50 5.02 0.329 47.94 5.05 0.325 51.12 5.27 0.292
rank≤2 49.01 50.47 53.76

Hypothesis 18 month 21 month 24 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 33.37 33.49 0.001 39.68 37.30 0.001 39.59 40.36 0.001
rank≤1 53.33 5.56 0.249 55.41 5.84 0.207 56.72 6.10 0.184
rank≤2 56.11 58.33 59.77

Note: Cointegration rank determination with an intercept restricted in the cointegrating regression. Critical values are based on Johansen (1995, Table 2) and Doornik (1998)
and the tests are performed at 5% level of signi�cance. The Table summarises results from estimating a cointegrated VAR model for the logarithmic prices for the spot and
futures contracts across di�erent maturities we estimate a bivariate VAR model for the sample period November 2015 to February 2016 at weekly frequency, �tting three lags
and including an intercept in the cointegrating regression. The likelihood ratio test has the same asymptotic distribution as in Johansen (1995, Chap.6) even in the presence
of an explosive root.
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Table 10: Cointegration rank determination for the period November 2015 to February 2016, non-contemporaneous series (lags)

Hypothesis 1 month 3 month 6 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 31.49 23.48 0.018 32.79 21.00 0.040 35.07 20.49 0.001
rank≤1 40.68 5.10 0.318 41.36 3.86 0.504 48.14 5.05 0.316
rank≤2 43.23 43.29 50.70

Hypothesis 9 month 12 month 15 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 33.78 14.24 0.304 35.52 64.18 0.041 43.24 15.44 0.203
rank≤1 38.51 4.79 0.364 58.95 17.32 0.055 48.26 5.41 0.271
rank≤2 40.90 67.61 50.97

Hypothesis 18 month 21 month 24 month

Log Trace p-value Log Trace p-value Log Trace p-value
Likelihood test Likelihood test Likelihood test

rank=0 51.34 24.62 0.012 51.79 15.47 0.200 52.88 13.33 0.380
rank≤1 59.99 7.31 0.112 57.86 3.33 0.580 57.54 4.02 0.480
rank≤2 63.65 59.53 59.55

Note: Cointegration rank determination with an intercept restricted in the cointegrating regression. Critical values are based on Johansen (1995, Table 2) and Doornik (1998)
and the tests are performed at 5% level of signi�cance. The Table summarises results from estimating a cointegrated VAR model for the logarithmic prices for the future
spot and futures contracts across di�erent maturities we estimate a bivariate VAR model for the sample period November 2015 to February 2016 at weekly frequency, �tting
three lags and including an intercept in the cointegrating regression. The likelihood ratio test has the same asymptotic distribution as in Johansen (1995, Chap.6) even in the
presence of an explosive root.
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Table 11: Characteristic Roots

Futures Contracts Characteristic Roots

July 2007-July 2008 November 2015-February 2016

Contemporaneous Non-contemporaneous Contemporaneous Non-contemporaneous
Series Series (Lags) Series Series (lags)

1 month 1.0107 0.9854 1.0350 0.9219
3 month 1.0162 0.9615+0.0364i 1.0570 1.2670
6 month 1.0226 1.0544 0.9837 0.9178+0.3787i
9 month 1.0260 1.0178 0.8352 1.0664
12 month 1.0274 1.0366 0.7715+0.1912i 0.8988+0.1465i
15 month 1.0283 1.0215 0.7982+0.2343i 0.8991
18 month 1.0288 1.0235 0.7767+0.2259i 0.8919+0.2411i
21 month 1.0290 1.0214 0.7479+0.2115i 1.0810
24 month 1.0289 1.0248 0.7149+0.1753i 0.6532+0.1326i

Note: The characteristic roots are the estimated roots of the characteristic polynomial for Equation (4.1) for the periods July 2007 to July 2008 and November 2015 to February
2016 using both contemporaneous and non-contemporaneous (lags) series. In the contemporaneous series, the WTI crude oil spot prices match with the futures contract prices
on the same date whereas in the non-contemporaneous case, the WTI crude oil future contract prices match with the futures contract prices on the expiration date of the
futures contracts.
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Table 12: Granger Causality test

Futures Contracts H0,ss H0,sf H0,fs H0,ff

1 month 0.003* 0.000* 0.025* 0.000*
3 month 0.061 0.000* 0.077 0.000*
6 month 0.431 0.001* 0.908 0.006*
9 month 0.876 0.025* 0.637 0.234
12 month 0.683 0.188 0.334 0.612
15 month 0.381 0.596 0.081 0.661
18 month 0.243 0.969 0.048* 0.441
21 month 0.171 0.760 0.047* 0.323
24 month 0.138 0.628 0.028* 0.185

* statistically signi�cant at 5%, p− value < 0.05

Note: Probabilities of rejection of the null hypothesis of no Granger causality. We consider a bivariate
VAR(3) model with a constant and we use of the likelihood ratio test to investigate whether it is returns
on spot prices causing returns on futures contract prices or vice versa. We �t three lags of spot and
futures returns and we account for the case that the errors are heteroskedastic but uncorrelated by
performing a heteroskedasticity robust likelihood ratio test. We test the hull hypothesis of no Granger
causality across all possible restrictions. In particular, according to the null hypothesis H0,ss, lag of
returns on WTI crude oil spot prices do not Granger cause returns on WTI crude oil spot prices at time
t. Respectively, according to the null hypothesis H0,sf , lag of returns on WTI crude oil futures contract
prices (of length n) do not Granger cause returns on WTI crude oil spot prices at time t whereas not
rejecting the null hypothesis H0,fs, would mean that lag of returns on WTI crude oil spot prices do not
Granger cause returns on WTI crude oil futures contract prices (of length n) at time t. Finally, under
to the null hypothesis H0,ff , lag of returns on WTI crude oil futures contract prices (of length n) do
not Granger cause returns on WTI crude oil futures contract prices (of length n) at time t.
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Table 13: Unit Root Tests

Series/Test ADF SADF GSADF

Panel A: test statistics

st+1 − ft,1 -13.730 -3.031 -1.054
st+3 − ft,3 -6.622 -1.287 1.942
st+6 − ft,6 -4.371 -0.113 3.959*
st+9 − ft,9 -3.545 0.214 4.134*
st+12 − ft,12 -3.288 0.524 3.074*
st+15 − ft,15 -3.101 -0.104 3.108*
st+18 − ft,18 -2.761 0.254 2.958*
st+21 − ft,21 -2.648 0.283 2.484*
st+24 − ft,24 -2.503 0.242 2.387*

Panel B: critical values

90% -0.44 1.23 2.10
95% -0.07 1.53 2.34
99% 0.60 2.03 2.79

* statistically signi�cant at 5%

Note: Critical values of both SADF and GSADF tests are obtained from Monte Carlo simulations
with 2, 000 replications (sample size 1,243 observations). We apply the ADF, SADF and GSADF tests
to the di�erence between the future spot prices (st+n) and futures contract prices (ft,n) where n is the
contract length, across all di�erent maturity contracts for the sample period September 1995 to July
2019.
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Table 14: Bubble Explosion Date Stamping

Series BSADF Series BSADF

st 2008M2-2008M7
ft,1 2008M2-2008M7 st+1 − ft,1 -
ft,3 2008M2-2008M8 st+3 − ft,3 2008M10-2009M1
ft,6 2007M10-2008M8 st+6 − ft,6 2008M10-2009M3
ft,9 2007M10-2008M8 st+9 − ft,9 2008M11-2009M3
ft,12 2007M10-2008M8 st+12 − ft,12 2008M11-2009M3
ft,15 2007M10-2008M8 st+15 − ft,15 2008M12-2009M1
ft,18 2007M10-2008M8 st+18 − ft,18 2008M12-2009M1
ft,21 2004M4-2008M8 st+21 − ft,21 2008M12-2009M1
ft,24 2004M4-2008M8 st+24 − ft,24 2008M12-2009M1

Note: Bubble date stamping application on the WTI crude oil spot and futures contract logarithmic
prices over the period September 1995 to July 2019 at a weekly frequency, constituting 1243 observations.
The futures contracts maturity ranges from one month to three, six, nine, twelve, �fteen, eighteen,
twenty one and twenty four months and the futures contracts expire on the third business day prior to
the twenty �fth calendar day of the month prior to the delivery month. We compute right-tailed �nite
sample critical values for the BSADF test using 2, 000 Monte Carlo replications. The test is performed
at a 5% level of signi�cance and a constant is included in the regression.

Table 15: Bubble Implosion Date Stamping

Series BSADF Series BSADF

st 2016M3-2016M4
ft,1 2016M2-2016M5 st+1 − ft,1 -
ft,3 2016M1-2016M5 st+3 − ft,3 -
ft,6 2016M1-2016M5 st+6 − ft,6 -
ft,9 2016M1-2016M4 st+9 − ft,9 2016M11-2016M12
ft,12 2016M1-2016M4 st+12 − ft,12 -
ft,15 2016M1-2016M3 st+15 − ft,15 2017M5-2017M7
ft,18 2016M1-2016M3 st+18 − ft,18 2017M8-2017M10
ft,21 2016M1-2016M3 st+21 − ft,21 2017M11-2017M12
ft,24 2016M1-2016M3 st+24 − ft,24 2018M2-2018M3

Note: Bubble implosion date stamping application on the WTI crude oil spot and futures contract
logarithmic prices over the period September 1995 to July 2019 at a weekly frequency, constituting 1243
observations. We apply the BSADF test in the reverse order of the series that represents the di�erence
between the future spot price and the futures contract price across futures contracts with di�erent
maturities so that if yt = st+n − ft,n where n is the contract length then y∗t = yT+1−t for t = 1, 2, ..., T .
The futures contracts maturity ranges from one month to three, six, nine, twelve, �fteen, eighteen,
twenty one and twenty four months and the futures contracts expire on the third business day prior to
the twenty �fth calendar day of the month prior to the delivery month. We compute right-tailed �nite
sample critical values for the BSADF test using 2, 000 Monte Carlo replications. The test is performed
at a 5% level of signi�cance and a constant is included in the regression.
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4.9 Figures



147

Figure 22: WTI crude oil prices
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WTI crude oil spot prices together with the percentage change of WTI crude oil price on a year earlier.
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Figure 23: Johansen Cointegration Test on WTI crude oil prices

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0

50

100

150

U
S 

D
ol

la
rs

 p
er

 b
ar

re
l

Spot
1 month Future
3 month Future
6 month Future
9 month Future
12 month Future
15 month Future
18 month Future
21 month Future
24 month Future

Note: Johansen cointegration analysis across di�erent subsamples recursively. From June 2004, when the oil price run-up started, to July 2008 when the oil price collapsed,
crude oil spot prices are cointegrated with all future contracts prices except the three month one. Additionally, crude oil spot prices are cointegrated between November 2015
and February 2016 marking the period of the 2014-2015 crude oil price collapse.
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Figure 24: Bubble Explosion Date Stamping
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BSADF test: critical value sequence at 95%:

Note: The right-sided critical 95% values are approximated using Monte Carlo simulations with 2, 000
replications. The minimum window size is determined as in Equation (2.41) where T is the sample size
of the observations as outlined by Phillips et al. (2015). Bubble date stamping is performed on the
WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019
at a weekly frequency, constituting 1243 observations. The futures contracts maturity ranges from one
month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and the futures
contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to
the delivery month. The test is performed at a 5% level of signi�cance and a constant is included in
the regression.
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Figure 25: Bubble Explosion Date Stamping

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-3

-2

-1

0

1

2

3

4

(a) st+12 − ft,12

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-3

-2

-1

0

1

2

3

4

(b) st+15 − ft,15

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-3

-2

-1

0

1

2

3

(c) st+18 − ft,18

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(d) st+21 − ft,21

BSADF test: critical value sequence at 95%:

Note: The right-sided critical 95% values are approximated using Monte Carlo simulations with 2, 000
replications. The minimum window size is determined as in Equation (2.41) where T is the sample size
of the observations as outlined by Phillips et al. (2015). Bubble date stamping is performed on the
WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019
at a weekly frequency, constituting 1243 observations. The futures contracts maturity ranges from one
month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and the futures
contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to
the delivery month. The test is performed at a 5% level of signi�cance and a constant is included in
the regression.
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Figure 26: Bubble Explosion Date Stamping

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) st+24 − ft,24

BSADF test: critical value sequence at 95%:

Note: The right-sided critical 95% values are approximated using Monte Carlo simulations with 2, 000
replications. The minimum window size is determined as in Equation (2.41) where T is the sample size
of the observations as outlined by Phillips et al. (2015). Bubble date stamping is performed on the
WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019
at a weekly frequency, constituting 1243 observations. The futures contracts maturity ranges from one
month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and the futures
contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to
the delivery month. The test is performed at a 5% level of signi�cance and a constant is included in
the regression.
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Figure 27: Bubble Implosion Date Stamping
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BSADF test: critical value sequence at 95%:

Note: The right-sided critical 95% values are approximated using Monte Carlo simulations with 2, 000
replications. The minimum window size is determined as in Equation (2.41) where T is the sample size
of the observations as outlined by Phillips et al. (2015). Bubble date stamping is performed on the
WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019
at a weekly frequency, constituting 1243 observations. The futures contracts maturity ranges from one
month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and the futures
contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to
the delivery month. The test is performed at a 5% level of signi�cance and a constant is included in
the regression.
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Figure 28: Bubble Implosion Date Stamping
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BSADF test: critical value sequence at 95%:

Note: The right-sided critical 95% values are approximated using Monte Carlo simulations with 2, 000
replications. The minimum window size is determined as in Equation (2.41) where T is the sample size
of the observations as outlined by Phillips et al. (2015). Bubble date stamping is performed on the
WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019
at a weekly frequency, constituting 1243 observations. The futures contracts maturity ranges from one
month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and the futures
contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to
the delivery month. The test is performed at a 5% level of signi�cance and a constant is included in
the regression.
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Figure 29: Bubble Implosion Date Stamping
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BSADF test: critical value sequence at 95%:

Note: The right-sided critical 95% values are approximated using Monte Carlo simulations with 2, 000
replications. The minimum window size is determined as in Equation (2.41) where T is the sample size
of the observations as outlined by Phillips et al. (2015). Bubble date stamping is performed on the
WTI crude oil spot and futures contract logarithmic prices over the period September 1995 to July 2019
at a weekly frequency, constituting 1243 observations. The futures contracts maturity ranges from one
month to three, six, nine, twelve, �fteen, eighteen, twenty one and twenty four months and the futures
contracts expire on the third business day prior to the twenty �fth calendar day of the month prior to
the delivery month. The test is performed at a 5% level of signi�cance and a constant is included in
the regression.
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5 Concluding Remarks

In this thesis we have proposed test procedures that result in early identi�cation of

bubble episodes in �nancial time series while dealing with the lower power of extant

unit root tests. Additionally, we provide empirical evidence that in the presence of

speculative bubbles, two series can be cointegrated so their linear combination does not

contain a unit root while at the same time there is an explosive root in the system.

This is in contrast to what is commonly mentioned in the literature that the existence

of speculative bubbles in two series implies no cointegration between the two series.

In the second chapter of this thesis, a bootstrap unit root test that includes covari-

ates has been proposed. It has been shown that the inclusion of relevant covariates in

the conventional Augmented Dickey Fuller test regression leads to improved size con-

trol, while o�ering signi�cant power gains, when an end-of-sample explosive episode is

present. Concentrating on identifying explosive episodes that occur at the end of the

sample, as the detection of ongoing bubbles is of most importance to practitioners, our

proposed test has been applied in a recursive window framework as suggested by Phillips

et al. (2015). Dealing with potential bias we have applied a bootstrap procedure of the

proposed covariate test to ensure the asymptotic validity of the critical values drawn

from the bootstrap distribution of the test. Simulation results have shown the ability

to control size while o�ering great power gains in �nite samples relative to extant tests.

In particular, the CBSADF∗ test su�ers less severe size distortions compared to conven-

tional tests that do not utilise a bootstrap procedure or omit relevant covariates, whilst

displaying signi�cantly better power properties as well.

We have conducted empirical work that put emphasis on whether the proposed test

can be e�ective as an early warning mechanism, indicating the possibility of a bubble

episode to occur, contributing to structuring macroprudential policy. We have examined

the e�ectiveness of our proposed test on earlier detection of historical bubbles in the S&P

500 price dividend series compared to the tests of Phillips et al. (2015), utilising the

Moody's Seasoned Aaa and Baa Corporate Bond Yields, the Ten-Year Treasury Rate

and the Volatility Index (VXO) as covariates. We have found that our proposed test

results in the earlier detection of two major explosive episodes: Black Monday of October

1987 and the dot-com bubble.
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In the third chapter of this thesis, a wild bootstrap procedure of the right-tailed

Dickey-Fuller recursive unit root tests of Phillips et al. (2015) has been proposed to test

for market e�ciency in the commodity markets. This approach resembles the behaviour

of heteroskedastic errors in a �nancial time series when there are structural breaks,

regime changes or volatility breaks o�ering robust critical values. In the simulations it

has been found that our proposed test o�ers better size control and power performance

in �nite samples. It has been shown that our proposed wild bootstrap test has less size

distortions compared to the non-bootstrap test while the power performance has been

signi�cantly improved.

In the empirical exercise we have applied the proposed and extant tests on the

di�erence between the WTI crude oil future price and the price of nine futures contracts

across di�erent maturities as in Pavlidis et al. (2018) over the period September 1995

to July 2019 at weekly and monthly frequency. Our proposed test has identi�ed the

2007-2008 oil price run-up and the 2014-2015 oil price collapse while the Phillips et al.

(2015) test has either not identi�ed an episode at all, or identi�ed the origination day of

the episode with delay, re�ecting the superior power of our proposed wild bootstrap test

to e�ectively identify episodes of non-stationarity that occur at the end of the sample.

The proposed test has suggested periods of market ine�ciency prior to the existence of

the bubble episode as identi�ed by the conventional tests of Phillips et al. (2015).

In the forth chapter, we examined empirically whether two �nancial series can be

cointegrated and yet, their linear combination contain an explosive component. As a

result, the VAR approach developed by Johansen (1991) allows testing for cointegration

while examining whether at least one of the variables has an explosive characteristic root.

Extending the Johansen (1988) approach to allow for explosive roots in the cointegrating

system as suggested by Nielsen (2010) can o�er valuable information since it allows to

test for cointegration across di�erent series while simultaneously testing whether the

series contain any explosive components, allowing to perform the cointegration analysis

of Johansen (1991) even in the presence of explosive behaviour in the related series.

We have utilised Johansen's cointegration rank test to analyse an explosive episode

in the WTI crude oil market between July 2007 and July 2008 as well as an oil price

collapse between November 2015 and February 2016 at a weekly frequency. We have

provided evidence that when we use contemporaneous crude oil prices for spot and fu-
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tures contracts there is a single explosive root in the cointegrated VAR model between

the crude oil spot prices and all futures contracts while at the same time the series

are cointegrated, whereas when we match the actual future spot price with the futures

contract price, there is a single explosive root in the cointegrated VAR model between

the crude oil spot prices and the six month, twelve month and eighteen month futures

contract while at the same time the series are cointegrated for that time period. There-

fore, we have concluded that the series of the crude oil spot prices and futures contracts

coexplode and their linear relationship is stationary for the period July 2007 to July

2008.

When we test for the oil price collapse between November 2015 and February 2016

using contemporaneous series, we �nd a single explosive root in the cointegrated VAR

model between the crude oil spot prices and the one month futures contract and between

the crude oil spot prices and the three month futures contract while at the same time

the series are cointegrated during this period. When using non-contemporaneous series,

we conclude that there is a single explosive root in the cointegrated VAR model between

the crude oil spot prices and the three month futures contract while at the same time

the two series are cointegrated for that time period. Therefore, the series of the crude

oil spot prices and futures contracts coexplode and their linear relationship is stationary

from November 2015 to December 2016.

It has been found that during the periods July 2007 to July 2008 and November 2015

to February 2016 both oil prices of spot and futures contracts are I(1, x) processes and

the two variables cointegrate and therefore their linear combination is an I(0) process

for these periods. As an extension of our study, following Pavlidis et al. (2017) we have

applied a date-stamping procedure to the di�erence between the future spot prices and

the futures contract prices that results in a delayed identi�cation of the origination date

of the bubble oil episode of 2007-2008 and the oil price collapse of 2014-2015 and suggests

no statistical evidence of explosiveness from July 2007 to July 2008 and November 2015

to February 2016 (in the reverse series) in accordance to our �ndings that during that

period (future) spot prices and futures contract prices are cointegrated and as their VAR

model contains, for some futures contracts, characteristic roots we have concluded that

oil prices of the spot and futures contracts coexplode.
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5.1 Future Research

The proposed bootstrap unit root testing for explosive behaviour using covariates may

constitute a conservative and strict tool of macro-prudential policy and surveillance.

Macroprudential regulation may focus on dealing with bubble episodes using tools that

are speci�cally structured to do so (such as countercyclical capital requirements, credit

constraints, credit-to-GDP ratio monitoring and margin requirements, see Borio 2003)

than monetary policy instruments that might fuel the bubble. Overall, there is a great

challenge for both theorists and empirical researchers to understand the magnitude of

asset price bubbles, investigate their origin and causes and track their development.

A potential avenue for future research with respect to the second chapter would be

to consider a multi-covariate model, theoretically, to examine the size and power perfor-

mance of our proposed covariate bootstrap BSADF test as including more information

from related series could, potentially, contribute, empirically, to the earlier identi�cation

of bubble episodes in real time while o�ering even greater size control and power gains.

An immediate avenue for further research arising from the third chapter would be to

allow for the possibility of non-stationary volatility in the innovations. To allow for non-

stationary volatility we could consider volatility breaks in our proposed wild bootstrap

BSADF test as in Harvey et al. (2017). We envisage that allowing the innovations

of the series to exhibit non-stationary volatility could be considered, without a�ecting

the good size performance of our proposed test signi�cantly and could, possibly when

applied for date-stamping processes, lead to a more precise estimation of the origination

and termination dates of episodes of non-stationarity. We leave this for future research.

The wide swings in crude oil prices during the early 2000s have attracted the interest

of professionals, regulators, academics and policy makers. Many argue that crude oil

price �uctuations have mainly been attributed to reasons related to oil demand and

supply shocks with the popular view that the remarkable price increase of 2007-2008

is mainly related to increase in demand. Although there is a growing consensus that

speculative activity together with the �nancialisation of the oil futures market might

have caused a speculative bubble that subsequently collapsed in mid-2008, identifying

speculative bubbles in the oil market can be rather inconclusive since the fundamental

price of oil cannot be observed. Therefore, any statistical evidence of explosive behaviour

can either be attributed to a misspeci�ed model for fundamentals or the existence of
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speculative bubbles (the joint hypothesis problem) or both (Gürkaynak 2008).

One might argue that examining variables in a bivariate framework might o�er signif-

icant advantages as bubble episodes emerging in the futures market might be transmitted

in the spot market causing speculative bubbles and thus cointegration and coexplosive

analysis can be proven valuable in bubble identi�cation. A natural avenue for future

research would be to consider applying time-varying causality tests to examine the ca-

sual impact of crude oil spot prices to futures contract prices and vice versa utilising

forward recursive and rolling window tests as in Shi et al. (2018). Additionally, market

expectations could be, potentially, utilised in that framework as in Pavlidis et al. (2018)

who use market expectations for WTI crude oil future contract prices as a fundamental

price, although this data is proprietary. Moreover, it would be interesting to apply a

recursive bootstrap algorithm to determine the cointegration rank in the coexplosive

VAR model of Nielsen (2010) to ensure the bootstrap statistics converge weakly to the

usual asymptotic distributions and the probability of choosing the rank smaller than the

true one converges to zero as in Swensen (2006).

The signi�cance of crude oil for the real economy has widely been acknowledged

and the magnitude of the oil price spikes can be great. Speculative bubbles in the oil

futures market might require stricter regulation of speculation to minimise the impact

of oil price collapses on the real economy. Furthermore, there is a great need for deeper

understanding of the mechanisms asset bubbles formation, by the central banks and

policy makers, as well as information on how they grow, collapse and contaminate other

markets and the real economy. Fiscal regulators and institutional surveillance mecha-

nisms require tools with low false detection rate to implement macro-prudential policy

implementation to address bubble episodes in �nancial markets (Phillips et al. 2015).

The question whether central banks should intervene when a speculative bubble

grows or wait until the crash takes place or whether these bubbles have rational or

behavioural determinants is still left to be answered. There is great scope for further

research.
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A Appendix The Limit Theory of the CGSADF and the

bootstrap CGSADF test

Proofs

Proof of Theorem 2.1

(a) If we denote a CADF unit root test statistic applied to the subsample of data from

t = br1T c, ..., br2T c as tr1,r2 then following Chang, Sickles and Song (2017) we �rst

de�ne

Ar1,r2 =

br2T c∑
t=br1T c

yt−1εt −

 br2T c∑
t=br1T c

yt−1z
′
t

 br2T c∑
t=br1T c

ztz
′
t

−1 br2T c∑
t=br1T c

ztεt



Br1,r2 =

br2T c∑
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y2
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 br2T c∑
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yt−1z
′
t

 br2T c∑
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′
t

−1 br2T c∑
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Cr1,r2 =

br2T c∑
t=br1T c

ε2
t −

 br2T c∑
t=br1T c

εtz
′
t

 br2T c∑
t=br1T c

ztz
′
t

−1 br2T c∑
t=br1T c

ztεt


If we de�ne r = r2 − r1, then from Lemma 2.1 of Park and Phillips (1989) we know

that

br2T c∑
t=br1T c

ztz
′
t = Op(r),

br2T c∑
t=br1T c

ztεt = Op(r
1/2) and

br2T c∑
t=br1T c

yt−1z
′
t = Op(r).

therefore

∣∣∣∣(∑br2T ct=br1T c yt−1z
′
t

)(∑br2T c
t=br1T c ztz

′
t

)−1 (∑br2T c
t=br1T c ztεt
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′
t

∣∣∣ ∣∣∣∣(∑br2T ct=br1T c ztz
′
t

)−1
∣∣∣∣ ∣∣∣∑br2T ct=br1T c ztεt
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t
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)−1 (∑br2T c
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′
t

∣∣∣ ∣∣∣∣(∑br2T ct=br1T c ztz
′
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)−1
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∣∣∣ = Op(r),
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∣∣∣∣(∑br2T ct=br1T c εtz
′
t

)(∑br2T c
t=br1T c ztz

′
t

)−1 (∑br2T c
t=br1T c ztεt

)∣∣∣∣ ≤ ∣∣∣∑br2T ct=br1T c εtz
′
t

∣∣∣ ∣∣∣∣(∑br2T ct=br1T c ztz
′
t

)−1
∣∣∣∣ ∣∣∣∑br2T ct=br1T c ztεt

∣∣∣ = op(r).

Thus,

(br2T c − br1T c)−1Ar1,r2 = (br2T c − br1T c)−1

br2T c∑
t=br1T c

yt−1εt + op(1),

(br2T c − br1T c)−2Br1,r2 = (br2T c − br1T c)−2

br2T c∑
t=br1T c

y2
t−1 + op(1),

(br2T c − br1T c)−1Cr1,r2 = (br2T c − br1T c)−1

br2T c∑
t=br1T c

ε2
t + op(1).

Furthermore,

Ar1,r2B
−1/2
r1,r2

d→ σε

∫ r2
r1
Q(s)dP (s)(∫ r2

r1
Q(s)2ds

)1/2

and therefore it follows from Park and Phillips (1989) that

σ̂2
r1,r2 = E(ε2

t )+Op(r
−1) = (br2T c−br1T c)−1

br2T c∑
t=br1T c

(εt− ε̄r1,r2)2+Op(r
−1) = σ2

ε+op(1).

Under the null hypothesis of δ = 0 we thus have that

CGSADF = sup
r2∈[r0,1]

r1∈[0,r2−r0]

CADF r2r1 = sup
r2∈[r0,1]

r1∈[0,r2−r0]

1

σ̂r1,r2
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B
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1
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r1
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)1/2

The proof of Theorem 2.1 (b)-(c) is obtained in a similar manner to that of Theorem

2.1 (a).
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Proof of Theorem 2.2

(a) The stochastic orders for the bootstrap sample moments appearing in the de�nitions

of the bootstrap CGSADF ∗ test are easily obtained. Following Chang, Sickles and Song

(2017) we �rst de�ne

A∗r1,r2 =

br2T c∑
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If we de�ne r = r2 − r1 also we have that
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Consequently,

(br2T c − br1T c)−1A∗r1,r2 = (br2T c − br1T c)−1
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y∗t−1ε
∗
t + o∗p(1),
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(br2T c − br1T c)−2B∗r1,r2 = (br2T c − br1T c)−2

br2T c∑
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y∗2t−1 + o∗p(1),
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Furthermore,
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and therefore if we de�ne σ̂∗2r1,r2 to be the bootstrap counterpart of σ̂2
r1,r2 , then it follows

from Park and Phillips (1989) that

σ̂∗2r1,r2 = E(ε∗2t )+O∗p(r
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Under the null hypothesis of δ∗ = 0, the stated limit distribution of CGSADF ∗

follows from Equation (2.15) as
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The proof of Theorem 2.2 (b)-(c) is obtained in a similar manner to that of Theorem

2.2 (a).
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