| 1           | Supplementary Information for                                                                                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4 | Disproportionate increase in freshwater methane emissions induced by experimental warming                                                                                                                                                               |
| 5<br>6<br>7 | Yizhu Zhu <sup>1</sup> , Kevin J Purdy <sup>2</sup> , Özge Eyice <sup>1</sup> , Lidong Shen <sup>1,3</sup> , Sarah F Harpenslager <sup>1,4</sup> , Gabriel Yvon-<br>Durocher <sup>5</sup> , Alex J. Dumbrell <sup>6</sup> , Mark Trimmer <sup>1</sup> * |
| 8           | Affiliations:                                                                                                                                                                                                                                           |
| 9           | <sup>1</sup> School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.                                                                                                                                           |
| 10          | <sup>2</sup> School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.                                                                                                                                                                     |
| 11<br>12    | <sup>3</sup> Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.                                                                                                      |
| 13<br>14    | <sup>4</sup> Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecosystem Research, 12587, Berlin, Germany.                                                                                                              |
| 15<br>16    | <sup>5</sup> Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10<br>9FE, UK.                                                                                                                          |
| 17          | <sup>6</sup> School of Life Sciences, University of Essex, Colchester, Essex, U.K. CO4 3SQ.                                                                                                                                                             |
| 18          | This Supplementary Information includes:                                                                                                                                                                                                                |
| 19          | Supplementary Discussion                                                                                                                                                                                                                                |
| 20          | Supplementary Fig. 1 to 6                                                                                                                                                                                                                               |
| 21          | Supplementary Tables 1 to 10                                                                                                                                                                                                                            |

## 22 Supplementary Discussion

#### 23 The production of both CH<sub>4</sub> and CO<sub>2</sub> by a combination of acetoclastic and hydrogenotrophic

24 methanogenesis in relation to Ralf Conrad's 1999 publication (Ref. 24 in main text)

25 Determining the absolute ratio of CH<sub>4</sub>:CO<sub>2</sub> from any substrate via methanogenesis is challenging. Conrad

26 (Ref. 24 in main text) calculated the idealised outcome of glucose degradation in a strictly methanogenic

27 system, which does return a 1:1 ratio of  $CH_4$  and  $CO_2$ , via 33% hydrogenotrophic and 67% acetoclastic

- 28 methanogenesis. However, he then shows that this idealised ratio is rarely true in nature where a strictly
- 29 methanogenic system simply does not exist (and see Ref. 28 and 34 cited in the main text). Indeed here,
- 30 we have compiled CH<sub>4</sub> and CO<sub>2</sub> production data from 13 studies including wetlands<sup>1-11</sup>, permafrost
- 31 thaw<sup>12</sup> and lakes<sup>13</sup> which demonstrate that the vast majority of CH<sub>4</sub>:CO<sub>2</sub> production ratios are less than 0.5
- 32 with a median of 0.28 only (*see* panel **a** in the figure below). Thus, in reality, Conrad's idealised ratio
- 33 appears to be rare in natural systems and the same is true in our experimental ponds where the CH<sub>4</sub>:CO<sub>2</sub>
- ratios are less than 1:1 in both the ambient and warmed ponds (0.2:1 vs. 0.7:1).



35

Given that the carbon quality is similar between the warmed and ambient ponds (*see* Fig. 2b in main text),
 why has the CH<sub>4</sub>:CO<sub>2</sub> ratio increased after eleven years' warming? Here Conrad's model can be used to

38 consider what a change in the CH<sub>4</sub> to CO<sub>2</sub> ratio might mean. Conrad's concept (ref. 24) through

39 fermentation assumes that:

 $40 \qquad (R1) \ 2CH_2O + 2H_2O \rightarrow 2CO_2 + 4H_2$ 

41 In most freshwater ecosystems where inorganic electron acceptors other than CO<sub>2</sub> are not available,

42 hydrogenotrophic methanogenesis competes against homoacetogenesis for electrons from H<sub>2</sub>. We can

43 assume that the proportion of available H<sub>2</sub> utilized by hydrogenotrophic methanogenesis is n (0<n<1) and 44 by multiplying everything in hydrogenotrophic methanogenesis with n as a factor we get:

45 (R2) 
$$nCO_2 + 4nH_2 \rightarrow nCH_4 + 2nH_2O$$

46 The sum of reaction (R1) and (R2) is:

47 (R3) 
$$2CH_2O + (2-2n)H_2O \rightarrow (4-4n)H_2 + (2-n)CO_2 + nCH_4$$

48 The ratio of CH<sub>4</sub> to CO<sub>2</sub> produced is therefore n/(2-n). The 1:1 ratio of CH<sub>4</sub> to CO<sub>2</sub> production occurs

49 only when 100% of H<sub>2</sub> produced via fermentation (R1) is used up to reduce  $CO_2$  to  $CH_4$  (i.e., n=1), the

50  $CH_4:CO_2$  production ratio is however < 1:1 when homoacetogenesis outcompetes hydrogenotrophic

51 methanogenesis for H<sub>2</sub> and electrons flow to acetate rather than  $CH_4(n<1)$ . More importantly, (R3)

52 predicts that the ratio of CH<sub>4</sub> to CO<sub>2</sub> increases exponentially as a function of the proportion of available

53  $H_2$  being utilized by hydrogenotrophic methanogenesis (*n*) (see panel **b** in the figure above). As  $H_2$ 

becomes more available at higher temperatures<sup>13</sup>, should an increasing  $CH_4$ : $CO_2$  ratio with temperature be

55 expected? Indeed, this hypothesis is validated by a positive correlation between incubation temperatures

and CH<sub>4</sub>:CO<sub>2</sub> ratios produced in anoxic wetland soils<sup>1,6,8,14</sup> (*see* panel **c** in the figure above). Therefore, an

57 idealized 1:1 ratio is rare in reality but the CH<sub>4</sub>:CO<sub>2</sub> ratio increases towards the idealized 1:1 ratio

58 predicted by Conrad at higher temperatures.

59 Furthermore, now we can rationalize the disproportionate increase in CH<sub>4</sub>:CO<sub>2</sub> production ratio seen in

60 our long-term warmed ponds using the proportion of available  $H_2$  being utilized by hydrogenotrophic

61 methanogenesis. At lower temperatures, electrons flow to acetate and as a result methane production is

62 dominated by acetoclasty<sup>15</sup> and only a minor proportion of available  $H_2$  is utilized by hydrogenotrophic

63 methanogenesis (30 %, the blue dot in panel **b**, *see* figure above). In contrast, as  $H_2$  concentrations

64 increase with temperature, which thermodynamically favours hydrogenotrophic methanogenesis, a larger

proportion of electrons and carbon flow to CH<sub>4</sub> (80 %, the red dot in panel **b**, *see* figure above), ultimately

66 increasing the CH<sub>4</sub> to CO<sub>2</sub> ratio closer towards the idealised ratio predicted by Conrad. In Figure 3d of the

67 main text, we show clearly that hydrogenotrophic methanogenesis is favoured by warming and so

68 conclude that, from whatever source, more of the available hydrogen is being directed more efficiently

69 into methane in the warmed compared to the ambient ponds and that such disproportionate increase in

70 CH<sub>4</sub>:CO<sub>2</sub> ratio will probably occur in natural freshwaters as the Earth warms.

# 72 Supplementary Figures

- 73 Supplementary Fig. 1 | Magnitude and frequency of methane emission through ebullition events
- 74 (*n*=198, 1.2% identified of the 16504 total chamber measurements using our two criteria and
- 75 exclusion of 7 other non-steady flux events *see* Methods).
- 76 Ebullition in our ponds exports methane from the sediments to the atmosphere directly and therefore: 1,
- should increase with enhanced methanogenesis under warming; and 2, follow a similar seasonal pattern to
- 78 diffusion. Indeed, in line with our enhanced methanogenesis under warming, the average magnitude of
- ebullition events **a**, was 3-fold greater in the warmed ponds (80 ng CH<sub>4</sub> per event versus 27 ng CH<sub>4</sub> per
- 80 event in the ambient ponds, *t*-statistic, \*\*\*: p < 0.001). In addition, the magnitude of ebullition events **b**,
- 81 and their frequency **c**, peaked in summer, demonstrating a similar seasonal pattern to diffusional methane
- 82 emissions (Extended Data Fig. 2). Ebullition events in our ponds have therefore been captured. However,
- 83 ebullition contributed only 0.2% of total methane emissions in both warmed and ambient ponds. The
- 84 magnitude of ebullition events was calculated using the maximum methane concentration in a chamber
- 85 measurement *see* equation (1) in Methods. Error bars are standard errors of the magnitude of an
- 86 ebullition event.



- 89 Supplementary Fig. 2 | Methanogen alpha diversity (*n*=79, monthly samples from April to August
- 90 in 2016 from 8 ambient and 8 warmed ponds, *see* Methods). a, Observed OTUs, b, Shannon's
- 91 diversity, **c**, Chao 1 diversity and **d**, evenness are all practically the same between the warmed (red) and
- 92 ambient (blue) ponds. Statistical significance  $(P_{LRT})$  was determined by a likelihood ratio test. Box lower
- and upper bounds are 25th and 75th percentiles, respectively, the line is the median. Whiskers indicate
- 94 largest/smallest value no further than 1.5 times the interquartile range. The data points (in magenta)
- 95 beyond the end of whiskers are outliers.



#### 98 Supplementary Fig. 3 | Water column and sediment oxygen concentrations in the experimental

- 99 ponds. a, Seasonality of the *in situ* dissolved oxygen concentrations in the overlying water of the warmed
- 100 (red) and ambient (blue) ponds from October, 2015 to October, 2016 (*n*=5120, data collected at 10-
- 101 minute intervals using oxygen sensor in 7 ambient and 7 warmed). **b**, Mean *in situ* dissolved oxygen
- 102 concentration was lower in the warmed ponds compared to their ambient controls (*n*=5120, *t*-statistic,
- 103 p < 0.001). c, Oxygen penetration profiles measured in intact sediment cores at 15 °C (n=6, from 3 warmed
- and 3 ambient in April, 2016). Oxygen concentrations showed a steeper decline and penetrated to a
- shallower depth in the warmed pond sediment (4.86 mm) compared to 6.67 mm to the ambient pond
- 106 sediments.



- 109 Supplementary Fig. 4 | Effect of long-term warming on the methanotroph community composition
- 110 (*n*=80, monthly samples from March to July in 2017 from 8 ambient and 8 warmed ponds, see
- 111 Methods). a, No overall change in the methanotroph community with long-term warming demonstrated
- 112 by principal coordinate analysis (PCoA) using Bray-Curtis analysis and a Hellinger standardized dataset
- 113 (at genus level) and **b**, differential abundance analysis at genus level detected no significant changes in
- 114 any methanotroph genus.



- 117 Supplementary Fig. 5 | Methanotroph alpha diversity (*n*=80, monthly samples from March to July
- 118 in 2017 from 8 ambient and 8 warmed ponds, *see* Methods). a, Observed OTUs, b, Shannon's
- 119 diversity, **c**, Chao 1 diversity and **d**, evenness are practically the same between the warmed (red) and
- 120 ambient (blue) ponds. Statistical significance  $(P_{LRT})$  was determined by a likelihood ratio test. Box lower
- 121 and upper bounds are 25th and 75th percentiles, respectively, the line is the median. Whiskers indicate
- 122 largest/smallest value no further than 1.5 times the interquartile range.



- 125 Supplementary Fig. 6 | Example of chamber measurements for a, steady-state flux b, strong
- 126 ebullition and c, gentle ebullition. Chambers with a steady state flux (a) had standing methane
- 127 concentrations of ~2 ppm. When a strong ebullition event occurred methane rose very rapidly to 30 ppm
- 128 at ~ 4,000 ppb/s, while, in gentler ebullition events (c), methane concentrations could increase at 90 ppb/s
- 129 to ~5 ppm. In both cases methane concentrations subsequently decreased more gently than the rapid
- 130 increase.



132

# 134 Supplementary Tables

## 135 Supplementary Table 1 | Original data sources for the analysis of methane emission capacities from

136 **globally distributed sites.** Lat and Long represent latitude and longitude of each site. Avg. Temp =

137 average annual temperature in each site. *n* represents the number of daily rate measurements of methane

138 emissions for each site. The *p* values are less than 0.05 for each site, representing a good relationship

139 between methane emission and air-temperature.

| Site ID | Site Name                                                     | Lat   | Long    | Avg.<br>Temp<br>(°C) | Туре           | n    | <i>p</i><br>value | Ref. |
|---------|---------------------------------------------------------------|-------|---------|----------------------|----------------|------|-------------------|------|
| AT-Neu  | Neustift                                                      | 47.12 | 11.31   | 10.0                 | Grasslan<br>d  | 539  | < 0.05            |      |
| CA-SCB  | Scotty Creek Bog                                              | 61.31 | -121.3  | 11.8                 | Wetland        | 639  | < 0.05            | 16   |
| FR-LGt  | La Guette                                                     | 47.32 | 2.28    | 13.4                 | Wetland        | 215  | < 0.05            |      |
| US-CRT  | Curtice Walter-Berger<br>cropland                             | 41.63 | -83.35  | 7.2                  | Cropland       | 246  | < 0.05            | 17   |
| US-EML  | Eight Mile Lake<br>Permafrost thaw gradient,<br>Healy Alaska. | 63.88 | -149.25 | 3.6                  | Open<br>shrubs | 1015 | < 0.05            | 18   |
| US-LA1  | Pointe-aux-Chenes<br>Brackish Marsh                           | 29.50 | -90.45  | 22.9                 | Wetland        | 206  | < 0.05            | 19   |
| US-LA2  | Salvador WMA<br>Freshwater Marsh                              | 29.86 | -90.29  | 24.0                 | Wetland        | 531  | < 0.05            | 20   |
| US-Los  | Lost Creek                                                    | 46.08 | -89.98  | 6.9                  | Wetland        | 1499 | < 0.05            | 21   |
| US-Myb  | Mayberry Wetland                                              | 38.05 | -121.77 | 17.1                 | Wetland        | 2687 | < 0.05            | 22   |
| US-ORv  | Olentangy River Wetland<br>Research Park                      | 40.02 | -83.02  | 13.3                 | Wetland        | 1132 | < 0.05            | 23   |
| US-OWC  | Old Woman Creek                                               | 41.38 | -82.51  | 20.3                 | Wetland        | 104  | < 0.05            | 24   |
| US-PFa  | Park Falls/WLEF                                               | 45.95 | -90.27  | 6.9                  | Forest         | 975  | < 0.05            | 25   |
| US-Sne  | Sherman Island Restored<br>Wetland                            | 38.04 | -121.76 | 16.1                 | Wetland        | 575  | < 0.05            | 26   |
| US-StJ  | St Jones Reserve                                              | 39.09 | -75.44  | 18.0                 | Wetland        | 250  | < 0.05            | 27   |
| US-Tw1  | Twitchell West Pond<br>Wetland                                | 38.11 | -121.65 | 18.6                 | Wetland        | 2039 | < 0.05            | 28   |
| US-Tw4  | Twitchell East End<br>Wetland                                 | 38.10 | -121.64 | 17.5                 | Wetland        | 1668 | < 0.05            | 29   |
| US-Twt  | Twitchell Island                                              | 38.11 | -121.65 | 18.2                 | Cropland       | 351  | < 0.05            | 30   |
| US-Uaf  | University of Alaska,<br>Fairbanks                            | 64.87 | -147.86 | 12.0                 | Forest         | 236  | < 0.05            | 31   |
| US-WPT  | Winous Point North<br>Marsh                                   | 41.46 | -82.99  | 11.3                 | Wetland        | 793  | < 0.05            | 32   |

### 140 Supplementary Table 2 | Annual methane budget, pond water characteristics and pond sediment

141 characteristics.

|                |                                                                                                       | Ambient  | Warmed    | Ratio (W/A) |  |
|----------------|-------------------------------------------------------------------------------------------------------|----------|-----------|-------------|--|
|                | Methane production capacity at 15 °C <sup>1</sup>                                                     | 2795     | 7086      | 2.5         |  |
|                | $(MG_{T15}, \mu mol CH_4 m^{-2} d^{-1})$                                                              | (1092)   | (2767)    | 2.5         |  |
|                | Effect of 4 °C warming predicted using the apparent                                                   | 1        | 15        | 15          |  |
| Draduation     | activation energy $\overline{E_{MP}}$ (Effect <sub>warming</sub> ) <sup>2</sup>                       | 1        | 1.5       | 1.5         |  |
| Production     | Methane production capacity (totMG) <sup>3</sup>                                                      | 2795     | 10274     | 3.7         |  |
|                |                                                                                                       |          | 6.77      | 15          |  |
|                | mera abundance (log10(copy g (wet sediments)))                                                        | (0.045)  | (0.034)   | 1.5         |  |
|                | Methanogen cell-specific activity (fmol CH <sub>4</sub> mcrA <sup>-1</sup> h <sup>-1</sup> )          | 0.35     | 0.59      | 1.7         |  |
|                | Annual methane emission                                                                               | 233      | 562       | 2.4         |  |
| Emission and   | (ME, µmol CH <sub>4</sub> m <sup>-2</sup> d <sup>-1</sup> )                                           | (22)     | (63)      | 2.4         |  |
| Emission and   | Amount of methane oxidized in situ <sup>4</sup>                                                       | 2562     | 0712      | 2.0         |  |
| CU oridized    | ( <i>in situ</i> totMO, μmol CH4 m <sup>-2</sup> d <sup>-1</sup> )                                    | 2303     | 9/15      | 3.8         |  |
| in situ        | Proportion of methane oxidized in situ <sup>5</sup>                                                   | 02       | 05        | 1.02        |  |
| ın siiu        | (MO%, %)                                                                                              | 92       | 95        | 1.05        |  |
|                | Required proportion of CH <sub>4</sub> oxidized (% <sub>pred</sub> ) <sup>6</sup>                     |          | <b>98</b> |             |  |
|                | Kinetic effect of in situ methane concentrations                                                      | 1        | 1.0       | 1.0         |  |
|                | $(Effect_{kinetic})^7$                                                                                | 1        | 1.7       | 1.7         |  |
|                | Effect of 4 °C warming predicted using apparent                                                       | 1        | 1.4       | 1.4         |  |
|                | activation energy $\overline{E_{MO}}$ (Effect <sub>warming</sub> ) <sup>2</sup>                       | 1        | 1.4       | 1.4         |  |
|                | Effect of sampling depth (Effect <sub>sampling</sub> ) <sup>8</sup>                                   | 1        | 1.4       | 1.4         |  |
| Oxidation      | Methane oxidation capacity (ex situ totMO) <sup>9</sup>                                               |          |           | 3.6         |  |
|                | nmal shundanca (log., (conv.g <sup>-1</sup> (wat sadiments)))                                         | 3.99     | 4.38      | 2.45        |  |
|                | pmoA abundance ( $\log_{10}(\operatorname{copy} g)$ (wet sediments)))                                 | (0.047)  | (0.038)   | 2.45        |  |
|                | Predicted fold increase in pmoA abundance to offset                                                   |          |           | 2.67        |  |
|                | warming-induced methane production (Ab <sub>pred</sub> ) <sup>10</sup>                                |          |           | 2.07        |  |
|                | Methanotroph cell-specific activity (pmol CH <sub>4</sub> <i>pmoA</i> <sup>-1</sup> h <sup>-1</sup> ) | 25.0     | 10.2      | 0.4         |  |
| Water          | Dissolved CH4 concentration (umol I -1)                                                               | 0.51     | 1.07      | 2.1         |  |
| characteristic | Dissolved CH4 concentration (µmor L <sup>-</sup> )                                                    | (0.15)   | (0.21)    | 2.1         |  |
|                | Sadiment 1/ control                                                                                   | 0.83     | 1.23      | 1 40        |  |
|                | Sedment % carbon                                                                                      | (0.089)  | (0.13)    | 1.48        |  |
| Sediment       | Sadimant % nitrogan                                                                                   | 0.084    | 0.11      | 1 2 1       |  |
| characteristic | Seument % Introgen                                                                                    | (0.0061) | (0.0010)  | 1.31        |  |
|                | Sadimant C.N                                                                                          | 9.37     | 10.40     | 1.11        |  |
|                | Seament C:N                                                                                           | (0.41)   | (0.31)    |             |  |

142 Numbers given in the brackets are standard errors.

143 1. Methane production capacity at 15 °C was calculated by taking the exponential of the ln-transformed

144 methane production rate in equation (4)  $(\overline{lnF(T_c)})$  and converting from nmol g<sup>-1</sup> h<sup>-1</sup> to  $\mu$  mol m<sup>-2</sup> d<sup>-1</sup>

145 (sediment density 1,068 Kg m<sup>-3</sup> and depth 0.08 m) (MG<sub>T15</sub> =  $\overline{lnF(T_c)} \times 10^6 \times 24 \times 1.068 \times 10^6 \times 0.08)$ 

- 146 2. Effect of 4 °C warming on methane production and oxidation was calculated from the apparent
- 147 activation energies:  $\overline{E_{MP}}$  and  $\overline{E_{MO}}$  for methane production and oxidation, respectively (see equations (2))
- 148 and (4)). Apparent activation energies for methane production and oxidation in the warmed ponds are 0.7
- 149 eV and 0.57 eV, respectively, predicting a 1.5- and 1.4-fold increase in the methane production and
- 150 oxidation, respectively.
- 151 3. In total, methane production capacity in the warmed ponds increased by 3.7-fold
- 152 (totMG=MG<sub>T15</sub>×Effect<sub>warming</sub>).
- 4. Total methane oxidized *in situ* is the difference between methane production capacity and annual
- 154 methane emission (i.e., *in situ* totMO = totMG ME)
- 155 5. Proportion of oxidized methane is the percentage of methane emission to methane production capacity
- 156 at annual average temperatures (i.e.,  $MO\% = (totMG ME)/totMG \times 100\%)$ .
- 6. Proportion of methane oxidation required in the warmed ponds to prevent methane emissions from increasing (i.e., (totMG<sub>warmed</sub> – ME<sub>ambient</sub>)/ totMG<sub>warmed</sub> ×100%).
- 159 7. Methane oxidation capacities at *in situ* methane concentrations were calculated using Michaelis-
- 160 Menten model based on the methane concentrations in the pond water (*see* equation (7)).
- 161 8. Oxygen penetrated 4.86 and 6.67 mm into the warmed and ambient pond sediments, respectively
- 162 (Supplementary Fig. 3). These depths were used as proxy for the active methanotrophy layer. Therefore,
- 163 the effect of sampling the same depths in the warmed and ambient ponds for methane oxidation capacity
- 164 measurements is  $\text{Effect}_{\text{sampling}} = \frac{20 \text{ mm}}{4.86 \text{ mm}} / \frac{20 \text{ mm}}{6.67 \text{ mm}}$ .
- 165 9. In total, warming increased the measured methane oxidation capacity in the warmed ponds by 3.6-fold
- 166 (Effect<sub>kinetic</sub>×Effect<sub>warming</sub>×Effect<sub>sampling</sub>), accounting for the discrepancy between predicted and measured
- 167 methane emissions *in situ* ( $ex \ situ$  totMG = *in situ* totMO).
- 168 10. Warming has increased the methane oxidation capacity by 3.6-fold but not the 3.9-fold required to
- 169 offset the greater warming-induced methane production (i.e., (totMG<sub>warmed</sub> ME<sub>ambient</sub>)/(totMG<sub>ambient</sub> –
- 170 ME<sub>ambient</sub>)). Predicted methanotroph abundance (Ab<sub>pred</sub>) to offset the greater warming-induced methane
- 171 production is therefore the abundance of methanotroph required to achieve the predicted 3.9-fold methane
- 172 oxidation capacity in warmed pond sediment if the efficiency per methanotroph stays the same (i.e., 10.2
- 173 pmol CH<sub>4</sub>  $pmoA^{-1}h^{-1}$ ).
- 174 *In situ* methane oxidation is limited by the diffusion of methane and oxygen. We acknowledge that by
- 175 mixing the sediments and <sup>13</sup>C-CH<sub>4</sub> in our laboratory slurry measurements we would have optimized the

- 176 methane oxidation capacity in the sediments from both the warmed and ambient ponds. Therefore, we
- 177 represent here, for the *ex situ* methane oxidation capacity, only the ratio between the warmed and ambient
- pond sediments (ratio W/A) to show that the kinetic effect and temperature effect increased the methane
- 179 oxidation capacity by 1.9- and 1.4-fold in the warmed ponds relative to their ambient counterparts,
- 180 respectively. In addition, if the depth of oxygen penetration serves as a proxy for active methanotrophy
- 181 layer, altogether, the *ex situ* methane oxidation capacity in the warmed ponds would be 3.6-fold higher
- 182 than in the ambient controls, close to the increase in methane production in the warmed ponds i.e. 3.7-
- 183 fold, as well as the predicted amount of methane oxidized *in situ* i.e. 3.8-fold.

- 185 Supplementary Table 3 | Linear mixed-effect model results for the β-diversity analysis of *mcrA*
- 186 library (*n*=79, monthly samples from April to August in 2016 from 8 ambient and 8 warmed ponds,
- 187 see Methods) and pmoA library (n=80, monthly samples from March to July in 2017 from 8 ambient
- 188 and 8 warmed ponds, see Methods).
- 189 The  $\beta$ -diversity was estimated using the scores along the first two principle coordinate axis (PCoA1 and
- 190 PCoA2) of the Bray-Curtis distance measures. These were then fitted into a mixed-effects model with
- 191 pond and sampling month treated as random effects. The statistical significance of the treatment (i.e.,
- ambient or warmed ponds) was determined from the *F*-test using Satterthwaite's method for denominator
- 193 degrees-of-freedom and *F*-statistic. The results were similar to a PERMANOVA analysis.

|           | PCoA1                  |          |          | PCoA2                  |          |          |  |
|-----------|------------------------|----------|----------|------------------------|----------|----------|--|
| Treatment | %                      | E value  | D volue  | %                      | E value  | D value  |  |
|           | Variation <sup>1</sup> | 1'-value | I -value | Variation <sup>1</sup> | 1°-value | I -value |  |
| mcrA      | 34.04                  | 6.13     | <0.05    | 22.93                  | 3.54     | <0.10    |  |
| pmoA      | 46.20                  | 0.037    | 0.85     | 13.89                  | 0.46     | 0.51     |  |

194 <sup>1</sup>. The amount of variation captured in the axis is defined as the proportion of eigenvalue of that axis
 195 to the sum of all eigenvalues.

198 Supplementary Table 4 | Taxonomy assignment to the *mcrA* OTUs at 85 % identity (*n*=79, monthly

199 samples from April to August in 2016 from 8 ambient and 8 warmed ponds, see Methods). Numbers

200 in parentheses are standard errors.

| <br>E                          | Correct                                           | Sequence reads   |                    |  |
|--------------------------------|---------------------------------------------------|------------------|--------------------|--|
| Family                         | Genus                                             | Ambient          | Warmed             |  |
| Hydrogenotrophic methanogens   |                                                   |                  |                    |  |
| unclustered Methanomicrobiales | unclustered Methanomicrobiales                    | 227,766<br>(558) | 225,753<br>(1,304) |  |
| Methanospirillaceae            | Methanospirillum                                  | 256,777<br>(583) | 184,696<br>(1,169) |  |
| Methanobacteriaceae            | Methanobacterium                                  | 69,265<br>(210)  | 107,752<br>(398)   |  |
| Methanomicrobiaceae            | Methanoplanus                                     | 316<br>(3)       | 320<br>(7)         |  |
| Methanomicrobiaceae            | Methanomicrobium                                  | 174<br>(2)       | 223<br>(5)         |  |
| Methanocellaceae               | Methanocella                                      | 149<br>(3)       | 83<br>(2)          |  |
| Methanothermaceae              | Methanothermaceae Methanothermus                  |                  | 161<br>(2)         |  |
| Methanocaldococcaceae          | Methanocaldococcus                                | 69<br>(1)        | 13<br>(0.3)        |  |
| Methanobacteriaceae            | nobacteriaceae Methanothermobacter                |                  | 31<br>(1)          |  |
| Methanomicrobiaceae            | Methanoculleus                                    | 0<br>(0)         | 73<br>(2)          |  |
| Acetoclastic methanogens       |                                                   |                  |                    |  |
| Methanosaetaceae               | Methanosaeta                                      | 257,132<br>(606) | 287,992<br>(1,345) |  |
| Methanosarcinaceae             | unclustered Methanosarcinaceae                    | 7,285<br>(42)    | 5,071<br>(44)      |  |
| Methylotrophic methanogens     |                                                   |                  |                    |  |
| unclustered Thermoplasmata     | unclustered Thermoplasmata                        | 648<br>(7)       | 271<br>(7)         |  |
| Methanosarcinaceae             | Methanohalophilus                                 | 394<br>(4)       | 1,012<br>(8)       |  |
| Methanoplasmatales             | Methanoplasmatales unclustered Methanoplasmatales |                  | 28<br>(1)          |  |
| Methanosarcinaceae             | Methanosalsum                                     | 0<br>(0)         | 25<br>(1)          |  |
| Methanosarcinaceae             | Methanomethylovorans                              | 0 (0)            | 320<br>(8)         |  |

## 202 Supplementary Table 5 | Taxonomy assignment to the *pmoA* OTUs at 90 % identity (*n*=80, monthly

203 samples from March to July in 2017 from 8 ambient and 8 warmed ponds, *see* Methods).

- 204 Highlighted warmed pond data were at a lower relative abundance in those ponds compared to the
- ambient ponds. Numbers in parentheses are standard errors.

| Family                         | Conus                                 | Sequence reads         |         |  |  |
|--------------------------------|---------------------------------------|------------------------|---------|--|--|
| Faimry                         | Genus                                 | Ambient                | Warmed  |  |  |
| Mathylogoggggg                 | Tune Ib                               | 713,570                | 597,859 |  |  |
| <i>Memylococcuceue</i> Type Io |                                       | (1,689)                | (1,081) |  |  |
| Mathylocystacaaa               | Mathylocustis                         | 357,045                | 324,967 |  |  |
| Methylocystacede               | Memyloc ysus                          | (1,166)                | (855)   |  |  |
| Methylocystaceae               | Type IIa                              | 4,784                  | 100     |  |  |
| memyiocystaceae                | rype nu                               | (59)                   | (2)     |  |  |
| MO3                            | unclustered MO3                       | 2,532                  | 1,681   |  |  |
| 1105                           |                                       | (53)                   | (26)    |  |  |
| Beijerinckjaceae               | Reijerinckiaceae Methylocansa-related |                        | 5       |  |  |
| Deiger mentaleeure             |                                       | (37)                   | (0.1)   |  |  |
| Environmental samples Type IIb |                                       | 2,012                  | 79      |  |  |
|                                |                                       | (26)                   | (1)     |  |  |
| Methylococcaceae               | TUSC-like                             | 1,062                  | 14      |  |  |
|                                |                                       | (12)                   | (0.4)   |  |  |
| Methylococcaceae               | Methylobacter                         | 1,372                  | 158     |  |  |
| 5                              | 2                                     | (13)                   | (3)     |  |  |
| Methylocystaceae               | Methylosinus                          | 535<br>(7)             | 1,848   |  |  |
|                                |                                       | (7)                    | (18)    |  |  |
| unclustered Proteobacteria     | unclustered Proteobacteria            | 502<br>(5)             | 0       |  |  |
|                                |                                       | (3)                    | (0)     |  |  |
| pmoA-2                         | unclustered pmoA-2                    | (4)                    | 410     |  |  |
|                                |                                       | (4)                    | (3)     |  |  |
| Methylocystaceae               | unclustered Methylocystaceae          | (2)                    | (2)     |  |  |
|                                |                                       | (2)                    | 12      |  |  |
| unclustered Rhizobiales        | unclustered Rhizobiales               | (2)                    | (0.3)   |  |  |
|                                |                                       | 13                     | 0       |  |  |
| Methylococcaceae               | Methylomonas                          | (03)                   | (0)     |  |  |
|                                |                                       | 0                      | 181     |  |  |
| unclustered Methylococcales    | unclustered Methylococcales           | $(\overset{\circ}{0})$ | (4)     |  |  |
|                                |                                       | 0                      | 28      |  |  |
| Methylococcaceae               | unclustered Methylococcaceae          | (0)                    | (1)     |  |  |
|                                |                                       | ~ /                    |         |  |  |

208 Supplementary Table 6 | Multi-model selection for fitting generalized additive mixed effects models

209 to the seasonal CH<sub>4</sub> emission data (*n*=3553 steady-state estimates, representing emissions from 7

ambient and 7 warmed ponds with each pond being notionally measured three times per day – see

- 211 **Methods** ).
- 212 To assess the effect of long-term warming on the median rate of methane emissions, a range of
- 213 generalized additive mixed effects models (GAMMs) were fitted to the daily methane emission rate data
- 214 (ME) as a function of treatment (i.e., warmed or ambient pond) and day of the year since 1<sup>st</sup> January 2017
- 215 (DOY). Whether the seasonal pattern of methane emissions differed between the treatment was also
- 216 tested by comparing the smoother terms (DOY, by=Treatment) and s(DOY). Models were ranked using
- 217 the AIC.  $\Delta$ AIC refers to differences in AIC relative to the smallest AIC value and AIC weight is the
- 218 probability of any model providing the best fit to the data e.g., 0.913 indicates that model (1) is the best fit
- to the data.

|     | Model                                | d.f. | AIC     | ΔΑΙΟ   | AIC Weight |
|-----|--------------------------------------|------|---------|--------|------------|
| (1) | Ln(ME)~Treatment+s(DOY,by=Treatment) | 8    | 12035.0 | 0.00   | 0.913      |
| (2) | Ln(ME)~s(DOY,by=Treatment)           | 7    | 12039.7 | 4.71   | 0.087      |
| (3) | Ln(ME)~Treatment+s(DOY)              | 6    | 12194.2 | 159.24 | 0.000      |
| (4) | Ln(ME)~s(DOY)                        | 5    | 12198.9 | 163.94 | 0.000      |

220 A GAMM which included treatment on the intercept and a treatment-specified smoother term for DOY

provided the best fit to the seasonal methane emission data, demonstrating an increase in median methane emission from warmed ponds as well as a difference in seasonality.

223

- 225 Supplementary Table 7 | Multi-model selection for fitting linear mixed-effect models to CH<sub>4</sub>
- 226 potential production data (nmol CH<sub>4</sub> g<sup>-1</sup>h<sup>-1</sup>) as a function of treatment (e.g. warmed or ambient
- 227 ponds), additional substrates and experimental incubation temperature (Ts) (*n*=662). Sediment
- samples collected monthly and randomly from 3 to 5 of the 10 ambient and 3 to 5 of the 10 warmed
- 229 ponds with each incubated at 3 temperatures and with up to 2 substrates. The sample size for
- control only, i.e., without additional substrates, of the total 662 samples, was 238. No replicate was
- applied within each pond.

232 Ts represents the standardized temperature  $\left(\frac{1}{kT_c} - \frac{1}{kT_{ij}}\right)$  in equation (4). A range of linear mixed-effect

233 models were fitted to the rate of methane production (ln(MG)) data. Note that only the fixed-effect parts

of the models are included in the table. As in Supplementary Table 6, models were ranked using the AIC

and an AIC weight of 0.76 indicates that model 1 is the best fit to the data.

|     | Model                                                               | d.f. | AIC    | ΔΑΙΟ  | AIC Weight |
|-----|---------------------------------------------------------------------|------|--------|-------|------------|
|     | Ln(MG)~Ts+Treatment+Substrate                                       |      |        |       |            |
| (1) | +Ts×Treatment+Ts×Substrate                                          | 13   | 1820.6 | 0.00  | 0.76       |
|     | +Treatment×Substrate                                                |      |        |       |            |
|     | Ln(MG)~Ts+Treatment+Substrate                                       |      |        |       |            |
| (2) | $+Ts \times Treatment + Ts \times Substrate +$                      | 15   | 1823.4 | 2.78  | 0.19       |
|     | $Treatment \times Substrate + Ts \times Treatment \times Substrate$ |      |        |       |            |
| (3) | Ln(MG)~Ts+Treatment+Substrate                                       | 12   | 1826 3 | 5 71  | 0.04       |
| (3) | $+Ts \times Substrate + Treatment \times Substrate$                 | 12   | 1820.3 | 5.71  | 0.04       |
| (4) | Ln(MG)~Ts+Treatment+Substrate                                       | 11   | 1820.2 | 867   | 0.01       |
| (4) | +Ts×Treatment+Ts×Substrate                                          | 11   | 1029.2 | 002   | 0.01       |
| (5) | Ln(MG)  Ts +- Treatment +- Substrate +- Ts  Substrate               | 10   | 1834.5 | 13.94 | 0.001      |

Note that in the incubations above  $22^{\circ}$ C the rate of CH<sub>4</sub> production plateaued and therefore we excluded these data from the model.

- 239 Supplementary Table 8 | Model selection procedure for fitting linear mixed-effect models to
- sediment methane potential production data (MG) as a function of carbon turnover *k* (*n*=32,
- 241 sediment samples collected from 4 ambient and 4 warmed ponds in April, May, June and August,
- 242 **2017).**
- 243 The full model included additive terms and their interactions for two fixed effects natural logarithm of
- 244 carbon turnover k (lnk) and treatment type (i.e., ambient or warmed ponds). The significance (p-values) of
- the fixed-effect terms was determined using a likelihood ratio test on nested models. The *p*-value for
- comparing "Treatment×lnk" was 0.40, and the term removed from the model. As removing
- <sup>247</sup> "Treatment×lnk" had no significant effect on model fit, model F1, that included a single slope but distinct
- 248 intercepts provided the best fit to the methane potential data (marked in bold), demonstrating that the
- 249 potential of sediments to produce methane increased equally in both the warmed and ambient pond
- sediments as carbon quality also increased but warming has stepped-up the fraction of carbon respired to
- 251 methane.

| Model                                    | d.f. | AIC   | LogLik | <i>p</i> -value |
|------------------------------------------|------|-------|--------|-----------------|
| F0) ln(MG) ~ lnk×Treatment+lnk+Treatment | 6    | 94.2  | -41.09 |                 |
| F1) ln(MG) ~ lnk + Treatment             | 5    | 92.9  | -41.44 | 0.40            |
| F2) $\ln(MG) \sim \ln k$                 | 4    | 98.8  | -45.4  | < 0.01          |
| F3) ln(MG) ~ 1                           | 3    | 107.7 | -50.9  | < 0.001         |
|                                          |      |       |        |                 |

254 Supplementary Table 9 | Model selection procedure for fitting mixed-effect models to methane

255 oxidation as a function of kinetic or temperature responses.

a, Fitting Michaelis-Menten models to CH<sub>4</sub> oxidation rate (MO) as a function of initial CH<sub>4</sub>

concentration (*n*=158, sediment samples collected from 8 ambient and 8 warmed ponds in July,

258 **2017**, and December, 2018, with a range of initial methane concentrations, *see* equation (7) in

- 259 **Methods).** The full model included the initial methane concentrations ( $C_{CH4}$ ) and the two Michaelis-
- 260 Menten parameters defining the kinetic response, i.e., the maximum methane oxidation rate  $(V_{max})$  and the
- 261 Michaelis constant ( $K_m$ ). The significance of treatment (i.e., warmed or ambient) on the parameters ( $V_{max}$
- 262 + Treatment) and  $(K_m$  + Treatment) was determined via Likelihood Ratio Test on nested models. As
- 263 removing the effect of treatment on  $K_m$  and  $V_{max}$  had no significant effect on model fit (p=0.98 and
- 264 p=0.45, respectively), the model with the same  $V_{max}$  and  $K_m$  terms for both warmed and ambient pond
- sediments provided the best fit to the CH<sub>4</sub> oxidation data (model F2, marked on bold).

| Model                                                                         | d.f. | AIC     | LogLik   | <i>p</i> -value |
|-------------------------------------------------------------------------------|------|---------|----------|-----------------|
| F0) MO ~ (C <sub>CH4</sub> , $V_{max}$ +Treatment, K <sub>m</sub> +Treatment) | 6    | 2106.21 | -1047.10 |                 |
| F1) MO ~ ( $C_{CH4}$ , $V_{max}$ +Treatment, $K_m$ )                          | 5    | 2104.21 | -1047.10 | 0.98            |
| F2) MO ~ $(C_{CH4}, V_{max}, K_m)$                                            | 4    | 2102.78 | -1047.39 | 0.45            |

266

#### 267 b, Model selection procedure for fitting linear mixed-effect models to the temperature sensitivity of CH<sub>4</sub> oxidation rate (ln(MO)) (n=192, sediment samples collected from 8 warmed and 8 ambient 268 ponds in May, June and July, 2017, incubated under four different temperatures). The full model 269 included additive terms and their interactions for two fixed effects - standardized temperature at 15 °C 270 (Ts, term $\left(\frac{1}{kT_c} - \frac{1}{kT_{ij}}\right)$ in equation (4)) and treatment type (i.e., ambient or warmed ponds). The 271 significance of fixed-effect terms (p-values) were determined using a likelihood ratio test on nested 272 273 models. For example, the significance of the term "Treatment×Ts", i.e., distinct slopes between warmed and ambient pond sediments, was determined by comparing nested model F0 to its reduced model F1. 274 275 The *p*-value of this comparison was 0.24, the term "Treatment $\times$ Ts" was not significant and was thus 276 removed from the model. As removing "Treatment×Ts" or "Treatment" had no significant effect on model fit, the model F2, that included a single slope and intercept, therefore provided the best fit to the 277 278 CH<sub>4</sub> oxidation rate data (marked in bold), demonstrating that the CH<sub>4</sub> oxidation capacity and its 279 temperature sensitivity were the same in both the warmed and ambient ponds.

| Model                                | d.f. | AIC    | LogLik  | $\chi^2$ | <i>p</i> -value |
|--------------------------------------|------|--------|---------|----------|-----------------|
| F0) ln(MO)~Ts+Treatment×Ts+Treatment | 8    | 287.12 | -135.56 |          |                 |
| F1) ln(MO)~Ts+Treatment              | 7    | 286.48 | -135.56 | 1.36     | 0.24            |
| F2) ln(MO)~Ts                        | 6    | 287.81 | -137.91 | 3.33     | 0.068           |
| F3) ln(MO)~1                         | 5    | 329.75 | -159.88 | 43.94    | < 0.001         |

Supplementary Table 10 | Model selection procedure for fitting linear mixed-effect models to the
 carbon conversion efficiency (CCE) data.

a, Carbon conversion efficiency as function of temperature (*n*=191, sediment samples collected from

8 warmed and 8 ambient ponds in May, June and July, 2017, incubated under four different

285 temperatures). The full model included additive terms and their interactions for two fixed effects –

286 centered temperature at 15 °C (Tc, term  $T - T_C$  in equation (8)) and treatment types (i.e., ambient or

287 warmed ponds). The significance (*p*-values) of fixed-effect terms was determined using a likelihood ratio

test on nested models. As removing "Treatment×Tc" or "Treatment" had no significant effect on model

fit, the model, F2, that included one common slope and intercept provided the best fit to CCE data

290 (marked in bold).

| Model                              | d.f. | AIC    | LogLik  | $\chi^2$ | <i>p</i> -value |
|------------------------------------|------|--------|---------|----------|-----------------|
| F0) CCE~Tc+Treatment+ Treatment×Tc | 8    | 1041.2 | -512.61 |          |                 |
| F1) CCE~Tc+Treatment               | 7    | 1039.5 | -512.72 | 0.23     | 0.63            |
| F2) CCE~Tc                         | 6    | 1037.7 | -512.84 | 0.23     | 0.63            |
| F3) CCE~1                          | 5    | 1069.0 | -529.51 | 33.34    | < 0.01          |

<sup>291</sup> 

b, Carbon conversion efficiency as function of methane concentration (*n*=69, sediment samples

collected in July, 2017, from 8 ambient and 8 warmed ponds with a range of initial methane

294 concentrations): The full model included additive terms and their interactions for two fixed effects –

initial  ${}^{13}$ C-CH<sub>4</sub> concentration (C<sub>CH4</sub>, *see* equation (9)) and treatment type (i.e., ambient or warmed ponds).

296 The significance (*p*-value) of fixed-effect terms was determined using a likelihood ratio test on nested

297 models. As removing "C<sub>CH4</sub>×Treatment" or "Treatment" had no significant effect on model fit, the model,

F2, that included one common slope and intercept provided the best fit to CCE data (marked in bold).

| Model                                                            | d.f. | AIC    | LogLik  | $\chi^2$ | <i>p</i> -value |
|------------------------------------------------------------------|------|--------|---------|----------|-----------------|
| F0) CCE~C <sub>CH4</sub> +Treatment+ C <sub>CH4</sub> ×Treatment | 6    | 458.78 | -223.39 |          |                 |
| F1) CCE~C <sub>CH4</sub> +Treatment                              | 5    | 456.86 | -223.43 | 0.083    | 0.77            |
| F2) CCE~C <sub>CH4</sub>                                         | 4    | 455.63 | -223.82 | 0.77     | 0.38            |
| F3) CCE~1                                                        | 3    | 463.93 | -228.97 | 10.30    | < 0.01          |

# 300 Supplementary References

- Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. *Biogeochemistry* **108**, 77–90 (2012).
- Hodgkins, S. B. *et al.* Changes in peat chemistry associated with permafrost thaw increase
  greenhouse gas production. *Proc. Natl. Acad. Sci. U. S. A.* 111, 5819–5824 (2014).
- 305 3. Valentine, D. W., Holland, E. A. & Schimel, D. S. Ecosystem and physiological controls over 306 methane production in northern wetlands. *J. Geophys. Res. Atmos.* **99**, 1563–1571 (1994).
- Tfaily, M. M. *et al.* Journal of Geophysical Research: Biogeosciences. J. Geophys. Res. Biogeosciences 119, 661–675 (2014).
- Wright, E. L. *et al.* Contribution of subsurface peat to CO<sub>2</sub> and CH<sub>4</sub> fluxes in a neotropical peatland. *Glob. Chang. Biol.* 17, 2867–2881 (2011).
- Updegraff, K., Pastor, J., Bridgham, S. D. & Johnston, C. A. Environmental and substrate controls
  over carbon and nitrogen mineralization in northern wetlands. *Ecol. Appl.* 5, 151–163 (1995).
- 313 7. Blodau, C. & Deppe, M. Humic acid addition lowers methane release in peats of the Mer Bleue
  314 bog, Canada. *Soil Biol. Biochem.* 52, 96–98 (2012).
- 8. Kolton, M., Marks, A., Wilson, R. M., Chanton, J. P. & Kostka, J. E. Impact of warming on
  greenhouse gas production and microbial diversity in anoxic peat from a Sphagnum-dominated
  bog (Grand Rapids, Minnesota, United States). *Front. Microbiol.* 10, 1–13 (2019).
- Hodgkins, S. B. *et al.* Soil incubations reproduce field methane dynamics in a subarctic wetland. *Biogeochemistry* 126, 241–249 (2015).
- Keller, J. K. & Bridgham, S. D. Pathways of anaerobic carbon cycling across an ombrotrophic minerotrophic peatland gradient. *Limnol. Oceanogr.* 52, 96–107 (2007).
- Bridgham, S. D., Johnston, C. A., Pastor, J. & Updegraff, K. Potential Feedbacks of Northern
  Wetlands on Climate Change. *Bioscience* 45, 262–274 (1995).
- McCalley, C. K. *et al.* Methane dynamics regulated by microbial community response to
   permafrost thaw. *Nature* 514, 478–481 (2014).
- 326 13. Glissmann, K., Chin, K. J., Casper, P. & Conrad, R. Methanogenic pathway and archaeal
   327 community structure in the sediment of eutrophic Lake Dagow: Effect of temperature. *Microb.* 328 *Ecol.* 48, 389–399 (2004).
- Keller, J. K., Weisenhorn, P. B. & Megonigal, J. P. Humic acids as electron acceptors in wetland decomposition. *Soil Biol. Biochem.* 41, 1518–1522 (2009).
- Fey, A. & Conrad, R. Effect of Temperature on Carbon and Electron Flow and on the Archaeal
  Community in Methanogenic Rice Field Soil. *Appl. Environ. Microbiol.* 66, 4790–4797 (2000).
- 333 16. Sonnentag, O. & Quinton, W. L. AmeriFlux CA-SCB Scotty Creek Bog. (2016)
  doi:10.17190/AMF/1498754.
- 335 17. Chen & Jiquan. AmeriFlux US-CRT Curtice Walter-Berger cropland. (2016)
  336 doi:10.17190/AMF/1246156.
- 337 18. Schuur & Ted. AmeriFlux US-EML Eight Mile Lake Permafrost thaw gradient, Healy Alaska.
  338 (2018) doi:10.17190/AMF/1418678.
- 339 19. Krauss & Ken. AmeriFlux US-LA1 Pointe-aux-Chenes Brackish Marsh. (2016)
  340 doi:10.17190/AMF/1543386.
- 341 20. Krauss & Ken. AmeriFlux US-LA2 Salvador WMA Freshwater Marsh. (2016)
  342 doi:10.17190/AMF/1543387.
- 21. Desai & Ankur. AmeriFlux US-Los Lost Creek. (2016) doi:10.17190/AMF/1246071.
- Baldocchi & Dennis. AmeriFlux US-Myb Mayberry Wetland. (2016)
  doi:10.17190/AMF/1246139.
- Bohrer & Gil. AmeriFlux US-ORv Olentangy River Wetland Research Park. (2016)
   doi:10.17190/AMF/1246135.
- 348 24. Bohrer & Gil. AmeriFlux US-OWC Old Woman Creek. (2018) doi:10.17190/AMF/1418679.

- 349 25. Desai & Ankur. AmeriFlux US-PFa Park Falls/WLEF. (2016) doi:10.17190/AMF/1246090.
- Baldocchi & Dennis. AmeriFlux US-Sne Sherman Island Restored Wetland. (2018)
  doi:10.17190/AMF/1418684.
- 352 27. Vargas & Rodrigo. AmeriFlux US-StJ St Jones Reserve. (2016) doi:10.17190/AMF/1480316.
- Baldocchi & Dennis. AmeriFlux US-Tw1 Twitchell Wetland West Pond. (2016)
  doi:10.17190/AMF/1246147.
- Baldocchi & Dennis. AmeriFlux US-Tw4 Twitchell East End Wetland. (2016)
  doi:10.17190/AMF/1246151.
- 357 30. Baldocchi & Dennis. AmeriFlux US-Twt Twitchell Island. (2016) doi:10.17190/AMF/1246140.
- 358 31. Iwata, H., Ueyama, M. & Harazono, Y. AmeriFlux US-Uaf University of Alaska, Fairbanks.
  359 (2016) doi:10.17190/AMF/1480322.
- 360 32. Chen & Jiquan. AmeriFlux US-WPT Winous Point North Marsh. (2016)
  361 doi:10.17190/AMF/1246155.