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Abstract

This research investigates the impact of extralocal interactions in intercity coinvention net-

works on innovation in cities. Adopting a social network lens, we argue that the innovation

performance of a city hinges on its centrality in intercity coinvention networks, its ability

to fill structural holes in these networks, and its node cohesiveness and transitivity within

ego networks. Using a unique longitudinal data set of patents granted from 2001 to 2016 in

China, we construct two types of networks—those involving collaborations among universi-

ties as well as research institutes (URI) and those involving industry actors only (II)—and

identify six major stylized facts in regards to the formation of a complex intercity innovation

network within China’s national innovation system. A random-effects negative binomial re-

gression model reveals positive effects of the degree centrality and structural holes variables

on urban innovation in both URI and II networks, while a fixed-effects model suggests that

the effects are only significant for II networks. Our study confirms that city innovation not

only is determined by local innovative activities but also is enhanced when cities are deeply

embedded in intercity innovative networks.

Keywords: Extralocal Interactions, Intercity Innovation Network, Coinvention, Urban In-

novation, Network Embeddedness



1 Introduction

Cities are conducive to innovation processes (Hall, 1998; Glaeser, 2011; Shearmur, 2012) and are

important hubs in national innovation systems (Lundvall et al., 2002). As key organizing units

in localities, cities bring together firms, talent, and other institutions necessary for innovative

activities (Florida et al., 2017). Two dominant theories seek to explain the innovation mechanisms

at work in cities. Agglomeration theory posits that the scale and specialization of activities that

are clustered and concentrated in the city stimulate innovation. Firms in an agglomeration setting

benefit primarily from knowledge spillovers between proximate firms in the same industry in

addition to access to a thicker and more specialized labor market and access to more specialized

services (Shearmur, 2012). In contrast, diversity theory contends that it is the scope and diversity

of activities in the city that drive innovation (Jacobs, 1969; Florida, 2002). Cities provide a diverse

ideational milieu, i.e., a variety of economic actors and a dense ethnic, cultural and social fabric,

that allows the creative mind to better overcome blocks in the creative process (Niebuhr, 2010;

Simonton, 2011). Despite their differences, both theories nonetheless unanimously see innovation

as endogenous to cities; in other words, cities draw upon their own resources to innovate (Bathelt,

2011).

Another stream of research challenges this view of cities and endogenous innovation. This

literature argues that cities are in fact elements of an interdependent system (Pred, 1977; Simmie,

2003). First, cities are connected to each other by means of information pipelines, privileged com-

munication and transport channels, which enable cities to share in each others dynamics (Bathelt,

2011). Second, cities are connected nodes in a space of flows, so they are not isolated entities but are

part of a wider system of interdependent and functionally differentiated entities (Castells, 1996).

Third, innovation-enhancing exchanges are fostered not only by interactions between proximate

economic agents but also by social proximity (e.g., being part of a social network), organizational

proximity (e.g., being part of a strategic alliance), cognitive proximity (e.g., working in the same

knowledge domain) and institutional proximity (e.g., working for the same type of organization,

such as a university)(Shaw and Gilly, 2000; Boschma, 2005; Carrincazeaux and Coris, 2011). This

intertwined web of cities and its development plays a pivotal role in innovation in cities and the

evolution of the national innovation system.

This systematic view of cities and innovation suggests that research on cities and innovation

needs to go beyond local interactions in stand-alone innovation hubs to investigate extralocal

interactions in the interdependent system of cities. More recently, research has started investi-

gating extralocal interactions and their effects on innovation in cities in the context of city-region

(Martin and Simmie, 2008; Cao et al., 2018; Clark et al., 2018; Ma and Xue, 2019) and global

intercity networks (Simmie, 2003; Guan et al., 2015). Surprisingly, there is a dearth of research
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investigating extralocal interactions in intercity innovation networks within a single country and

the impact of such interactions on city innovation. Guan et al.’s (2015) and Lee’s (2018) research

works are an exception. Guan et al. (2015) explored the impact of multilevel inventor collaboration

networks on innovation using a sample of 41,007 patents in the field of alternative energy from

the USPTO database. Their findings confirmed the importance of extralocal interactions in that

there are positive effects of city-level network centrality and structural holes on the innovation

performance of cities in China. The authors also found that this positive relationship is enhanced

by country-level network centrality and the structural holes in China’s international networks of

collaboration. Lee (2018) examined the relative importance of extralocal interactions (network

proximity) as opposed to local interactions (spatial proximity) in biotechnology copatenting in

150 American cities from 1983 to 2013. The results showed that extralocal interactions illustrate

the biotechnology copatenting relationships among the U.S. cities better than local interactions.

Overall, in the literature on cities and national innovation systems, little attention has been paid

to intercity innovation networks, and few empirical studies have been conducted so far. We still

know very little about the structure and dynamics of intercity networks and innovation. Without

such knowledge, our understanding of cities and innovation in general and national innovation

systems in particular is incomplete. Shearmur (2012) thus called for more research on how one

locality connects to others to form city networks that facilitate innovation.

This research responds to this research gap and investigates extralocal interactions as mani-

fested in intercity networks of coinvention and the impact of such interactions on innovation in

cities. We pose two research questions: what are the patterns of intercity innovation networks

and their evolving trajectories in China? How do extralocal interactions in the form of intercity

innovation networks affect innovation in cities? Using a unique longitudinal data set on intercity

copatenting, we identify six characteristics of interorganizational and intercity networks of coin-

vention in China. Adopting a social network lens, we particularly focus on the impact of structural

embeddedness displayed in intercity coinvention networks on innovation in cities. We argue that

the innovation performance of a city hinges on its centrality in intercity coinvention networks, its

ability to fill structural holes in the networks, and its node cohesiveness and transitivity within ego

networks. China is an intriguing case for the study of cities and the national innovation system.

When China started to reform and open up to the outside world in the late 1970s, innovation in

its cities was significantly underdeveloped; the countrys innovation system was rudimentary and

fragmented. Forty years later, China had transformed itself from a backwater of global innovation

into the world’s hub of science and innovation (Ding and Li, 2015). Cities such as Beijing, Shang-

hai, and Shenzhen have emerged as truly innovative national hubs. Other cities across China have

also gradually integrated into the national system of innovation. In this paper, we use China as a

research context to test and confirm our arguments.

2



By investigating extralocal interactions and their impact on innovation in cities, our study

extends past research on extralocal interactions, which primarily focused on city-regions, and is

one of the first to test properties of structural embeddedness to explain the effect of intercity

networks of coinvention on innovation performance in cities. Our research also contributes to

the literature on cities and innovation by delineating the effects of network properties of different

types of interorganizational collaboration on innovation in cities. Finally, our work offers a better

understanding of the distinct features of intercity networks of coinvention in China.

The remainder of the article is organized as follows: Section 2 lays out the theoretical framework

and proposes testable hypotheses. Section 3 describes the data, the construction of the networks,

and some stylized facts about network evolution in cities. Section 4 details the empirical method

and construction of variables. Section 5 discusses the results. Section 6 concludes and discusses

the theoretical implications.

2 Theoretical Background and Hypothesis Development

Social network theory

In this research, social network theory (SNT) underpins our conceptualization of the impact of

the network structure in extralocal interactions on innovation in cities. SNT is concerned with

the attributes and consequences of social relations and social structure (Coleman, 1988). A social

network consists of a set of social actors and a set of relational ties connecting pairs of these

actors. SNT postulates that the relational ties among interdependent social actors have important

consequences for each social actor as well as for the larger social groupings that they comprise

(Knoke and Kuklinski, 1982).

An important feature of social networks is the embeddedness of individual and collective ac-

tors in social relations and social structures, which generates trust and discourages malfeasance

(Granovetter, 1985). Embeddedness can be defined as economic behavior that is closely integrated

within networks of social relations (Granovetter, 1985). Embedded relationships are advantageous

because they can generate social capital and a greater level of trust between embedded peers in

webs of social relations (Uzzi, 1996), enable the development of cooperative norms that facilitate

greater cooperation (Coleman, 1988), and create opportunities for finer-grained information flows

between peers (Uzzi, 1996). Granovetter (1992) referred to all this as relational embeddedness

and argued that the effect of relational embeddedness depends on the quality of dyadic relations

between actors.

Equally important is the network structure of relationships between a number of actors. Gra-

novetter (1985) described this as structural embeddedness. Network structure manifests itself in
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density, centrality, prestige, mutuality, and role at different levels: individual, organizational and

territorial (Uzzi, 1996). Accordingly, structural embeddedness indicates that social actors who

are situated within different network structures face different sets of resources and constraints

(Granovetter, 1985). Evidence confirms that the network structure of social relationships impacts

innovation (e.g., Lyu et al., 2019; Schillebeeckx et al., 2020). Therefore, from the innovation per-

spective, SNT predicts that a city will become more innovative if it displays greater strengths

of social relations and a better network structure of social relationships. In this research, we

primarily focus on structural embeddedness in intercity coinvention networks and its impact on

innovation in cities. We nonetheless acknowledge that while structural embeddedness indicates

the extent to which social actors benefit from their network structures, underneath it is the web

of personal relations, or relational embeddedness, that binds social actors together through the

development of social capital and trust.

In the system of innovation, innovators are ultimately embedded in localized economic sys-

tems in which the scale and specialization of activities, as emphasized in agglomeration theory, or

the scope and diversity of activities, as referred to in diversity theory, stimulate innovation. The

local embeddedness of actors also leads to institutional thickness, namely, the existence of local

cultures and local institutional fabrics (Amin and Thrift, 1992). As a result, structural embedded-

ness may favor local interactions. In other words, actors within the same bounded geographical

space benefit from trust-enabled, costless knowledge externalities, and thus information flows and

knowledge diffusion through social networks require colocation of actors (Breschi and Lissoni,

2001). However, as argued by Anthony Giddens (1990; 1992), there are disembedding forces at

work. Disembeddedness is described as a state in which social relations are detached from their

localized context of interaction (Giddens, 1990). While disembedding does not mean that personal

relations have lost all their importance in local embeddedness, it suggests that personal trust can

be delocalized (Hess, 2004). Disembedding also results from the fact that knowledge flows between

colocated actors in one locality might quickly become redundant if not complemented by flows of

new external knowledge (Boschma, 2005). Evidence from transnational ethnic networks (e.g., Sax-

enian, 1999; Hsu and Saxenian, 2000) and regional innovation networks (e.g., Coffano et al., 2017)

supports the importance of nonlocal forms of embeddedness. Overall, an important insight from

SNT underpinning our research is that disembedding is a process of extralocal network building

or embedding that creates and maintains personal relationships of trust at various, interrelated

geographical scales (Hess, 2004). We therefore draw insights from the structural embeddedness of

SNT to investigate the impact of network structure in intercity coinvention networks on innovation

in cities.
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Hypothesis Development

Traditionally, social network studies treated nodes as individuals and organizations, while more

recent studies applied social network analysis to administrative spaces such as cities, provinces,

regions, and countries (Fleming et al., 2007a; Sebestyén and Varga, 2013; Guan et al., 2015, 2016;

Sun, 2016; Lyu et al., 2019). Different kinds of nodes have different types of capabilities. For

example, when the nodes are firms, they can integrate information more efficiently than a city,

where organizations are loosely connected within an administrative boundary. Cities, however,

are capable of information integration to some degree due to intracity information exchange (local

interaction) (Hutton, 2004; Bathelt, 2011). As cities are compact and densely populated entities,

each city assumes a position as an innovation node within all interorganizational collaboration

connections in the city. The position of a city embedded in an intercity collaboration network

hence affects the innovation performance of the city through information flow. Because cities tend

to be specialized in certain industries (Cuadrado-Roura and Rubalcaba-Bermejo, 1998; Kemeny

and Storper, 2015), access to a flow of diverse information and knowledge is conducive to better

innovation performance.

As cities form and maintain collaborations with each other, they create ties that evolve into an

intercity patent collaboration network. Consistent with SNT, the position of a city in a network

determines the information flow it receives, sends, or channels. A central position of a city enables

the city to gain access to a variety of information and specialized knowledge from its network

neighbors. Previous studies, most of which used individuals (He et al., 2009; Abbasi et al., 2011),

organizations (Schilling and Phelps, 2007; Karamanos, 2012; Vasudeva et al., 2013), regions, and

country-level nodes (Sebestyén and Varga, 2013; Guan et al., 2015; Sun, 2016), confirmed a close

relationship between network structure embeddedness and an actor’s innovation performance. Less

is known about the effect of the network structure of a city as a node in intercity networks.

Centrality is an important feature of network structure that reflects the power and prominent

status of an actor (Burkhardt and Brass, 1990; Jackson, 2008). High centrality of a city reflects

its intermediary role and degree of access to resources and information from other cities. Integrat-

ing and exploiting complementary, specialized, and heterogeneous information and technology is

essential to innovation (Borgatti, 2005; Nieto and Santamaŕıa, 2007). The argument of structural

embeddedness suggests that intercity collaboration ties facilitate information flows and that dif-

ferent collaboration ties have different abilities to deliver such flows, leading to the integration of

different types of knowledge. Two key features of centrality that are essential to information flows
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in networks are degree centrality and closeness centrality (Jackson, 2008).1 Degree centrality (DC)

describes how a node is connected with other adjacent nodes, reflecting the width of connections

a focal node has in the network. Since DC refers to immediate effects of all parallel duplication

information flows from other connected nodes, a high DC means that a node is more likely to

acquire information with ease from a number of adjacent nodes when the information is channeled

simultaneously through many neighboring nodes (Borgatti, 2005). Therefore, a city with high DC

in an intercity innovation network can likely access information and knowledge easily from many

other cities it has a direct connection with. Hence, a greater breadth of connection of a focal

city in an intercity innovation network means that the city should perform well in innovation as a

result of its capacity to obtain and recombine emerging information and knowledge to engage in

innovation.

In contrast, closeness centrality (CNC) indicates how quickly a node can reach other nodes,

reflecting its depth of connection. The CNC of a node refers to the sum of the shortest distance

over which information travels from all other nodes. Since a node with a high CNC lies at a

short distance from other nodes, it tends to receive information flows sooner (Borgatti, 2005). If

DC represents the scale of connections, CNC depicts the communication efficiency of each edge

(Lu and Feng, 2009; Abbasi et al., 2011; Guan et al., 2016). With regard to information flows in

social networks, a high CNC suggest that a node is better positioned to obtain novel information

early, when such information has the most value (Borgatti, 2005). Thus, cities with high CNC in

an intercity innovation network are able to develop new ideas sooner than others and therefore

perform better in innovation. Based on the reasoning above, we propose the following hypotheses:

Hypothesis 1a The degree centrality of a city in a collaboration network positively affects its

innovation performance.

Hypothesis 1b The closeness centrality of a city in a collaboration network positively affects its

innovation performance.

While centrality refers to the position of a node in the whole network, structural holes exist

in the ego network2 for each node. When two of the ego’s contacts are not connected, a struc-

tural hole exists between them (Burt, 1992). A node that fills a structural hole tends to have

1Numerous measures of centrality have been proposed in the literature, including degree centrality, closeness,
betweenness, eigenvector centrality, information centrality, flow betweenness, and the rush index (Borgatti, 2005).
However, there is no consensus so far on the measurement of network centrality. Papers on innovation and social
network analysis often considered one or a few selected measures (e.g., Ferriani et al., 2009; Guan et al., 2015, 2016;
Guan and Liu, 2016; Zhang et al., 2014) for reasons of research relevance and/or the correlation of measures. Since
our research is concerned with intercity innovation collaboration, which assumes the importance of information
flows, we follow Borgatti (2005) in considering DC and CNC as the two most relevant features of network centrality
in this paper.

2An ego network refers to all the nodes surrounding a given node with all the ties among them.
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more nonredundant ties, through which more fresh ideas are channeled. Consistent with Burt’s

(1992) pioneering social network studies, nodes (cities) that fill greater structural holes in inter-

city networks can achieve better performance in innovation as a result of greater access to novel

information, minimized information redundancy and control over who benefits from exchange of

information when the focal nodes facilitate connections between nonredundant contacts. Burt’s

theory has been confirmed by numerous studies (Burt, 1992, 1997, 2004; Fleming et al., 2007b).

Based on this overall reasoning, we propose the following hypothesis:

Hypothesis 2 The structural holes filled by a city in an innovation network positively affect its

innovation performance.

In addition to degree centrality, closeness centrality and structural holes, the clustering coef-

ficient (CC) is another important feature of the egocentric network of each node. It indicates a

network’s transitivity, that is, the likelihood that the connected nodes in the ego network also

connect to each other (Watts and Strogatz, 1998). A networks transitivity has considerable con-

sequences. If focal city a is connected to city b and cities b and c are connected to each other,

resulting in cities a and c also being connected, city a in the highly clustered intercity networks

will benefit from the density and cohesiveness of the networks. According to Coleman (1990),

dense and cohesive networks reduce information search costs, promote trust, and facilitate the

emergence of norms. All this suggests that a higher CC should enhance higher-level local cooper-

ation and information transmission (Uzzi and Spiro, 2005), thereby enhancing cities’ innovation

performance. Thus, we posit the following hypothesis:

Hypothesis 3 The clustering coefficient of a city in an innovation network positively affects its

innovation performance.

3 Data and Network Evolution

3.1 Patent Data

In this study, we use a comprehensive data set of coinvention patents from the Chinese Patent

Office (SIPO) to investigate the structure and dynamics of intercity innovation collaboration in

China and the effect of network structure on city innovation performance. SIPO maintains a

patent database with complete information on every patent granted since 1985, the year China

enacted its patent law (Hong, 2008). The database includes information on titles of patents, dates

of application, names, and address of the first assignee and has been extensively used in studies

of Chinese innovation (e.g., Hong and Su, 2013; Sun and Cao, 2015). The SIPO database is
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preferred to USPTO data for Chinese studies because its patent collection is more representative

and comprehensive and does not just cover overseas patents (Sun and Cao, 2015). We limit the

time window to 2001 to 2016 due to a limited number of copatenting events before 2001 and

incomplete information after 2016. In addition, recent data are more informative than older data

about Chinas current innovation dynamics and are better for charting innovation trends.

SIPO grants three types of patents, namely, invention, utility and design patents. Since patent

values vary across types, we only include granted invention patents because it is generally acknowl-

edged that invention patents are of consistently higher value than utility and design patents (Dang

and Motohashi, 2015). Coinvention patents are those registered with more than two organizations

or individuals. We include patents filed by firms, universities, and research institutions, but we

exclude patents registered with individuals because of their lack of location information.

The original patent data include only the addresses of the first assignees. To compile a data

set for the purposes of this research, we use registration information to locate the second assignee.

Specifically, for firms, we match firm names with the official firm registration information from the

State Administration of Industry and Commerce (SAIC), where all firms are legally required to

register with an address. Since our study only considers intercity collaboration networks (extralo-

cal interactions), in the empirical section, we exclude intracity collaboration observations (local

interactions).

To assess coinvention, we construct our data by using copatents filed by interorganizational

collaborators and then aggregating them to the prefecture city level. In total, we examine 137,098

coinvention patents3, 69,347 intercity collaborations, and 293 prefecture-level cities in our study.

3.2 Constructing Networks

Collaborative innovation actors are deeply embedded in network structures. We use a group of

research organizations and firms within a city as a node, and an urban collaboration network

is formed by aggregating the collaborative ties of innovative actors into cities. The edges that

connect cities come from intercity organizational collaborations (extralocation interactions), which

represent information flows between cities. Borgatti and Halgin (2016) categorized network models

as choice or success models based on the outcome variable and flow or bond models based on the

connection types. Our analysis is of the choice type because we use city-level patents, and it is a

flow model because the underlying mechanism is that information and knowledge flow from city

to city through intercity collaboration ties (extralocation interactions).

3From 2001 to 2016, a total of 243,264 coinvention patents were granted. After excluding foreign applicants,
we are left with 201,586 patents. Then, in the process of locating the second applicant, we eliminate those patents
applied for by individuals and firms that cannot be matched with registration information. After data cleaning, we
use a data set containing 137,098 patents, which account for 68% of the total domestic coinvention patents granted
in the sample period.
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Interorganizational patent collaborations come in different types based on cooperation among

different innovative actors. The triple helix (TH) theory, developed by Etzkowitz and Leydesdorff

(2000), explains the interactive dynamics and mechanisms among universities, industries, and

governments. This theory emphasizes the achievement of the optimal level of interaction among

the three sectors to produce a highly efficient innovation system (Ivanova and Leydesdorff, 2014;

Etzkowitz and Zhou, 2017). Some literature focuses on industry, university, and research institute

(IUR) research collaborations, stressing their positive influence and importance (Cohen et al.,

2002; Perkmann and Walsh, 2010; Dutrénit and Arza, 2010; Laursen et al., 2011; Chen et al.,

2017). However, most of those studies underline the effect on each type of organization, and

few have explored the influence of interorganizational collaborations on organizations within the

administrative boundaries of a city. We distinguish between two types of interorganizational

collaboration networks, i.e., collaborations involving universities as well as research institutes

(URI) and intra-industry collaboration (II). Since most universities and research institutes are

publicly funded in China, their URI network position reflects the degree to which each city can

access publicly funded knowledge, while the II network property indicates the innovative capacity

of the commercial and private sectors. The two types of innovation capacity may overlap with each

other to varying degrees. For example, Beijing hosts the best research institutes and universities

in China, while the private sector remains strong as well. In contrast, Shenzhen has stronger

private (II) than public (URI) innovation capacity. By examining both, we can uncover which

interorganizational networks are more relevant for determining innovation performance in cities.

Therefore, we analyze two types of intercity collaboration (extralocal interaction) networks and

their respective impacts on city innovation performance in China’s national innovation system.

3.3 Stylized Facts on Intercity Coinvention Networks in China

The analysis of Chinese patents over the period 2001-2016 highlights six stylized facts on intercity

coinvention networks in China.

First, the number of coinvention patents in China increased rapidly from 2001 to 2016, as

shown in the left panel of Figure 1. The country experienced a surge of innovation as manifested

in the number of granted patents primarily due to rapid economic growth and government support

(Li, 2012; Gao, 2015). The total granted patent count peaked in 2015 and stagnated thereafter.

The reason for this trend may be that the patenting process, from application to the grant of the

patent, typically takes three years or even longer. Therefore, many patent applications may simply

not yet have been processed and published by the time of our data collection. Other factors may

also explain this change, for example, the petering out of funding from the government patent

subsidy program, closer scrutiny of patent applications, and a new normal inaugurated by the
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Figure 1: Total Patenting and Organization Types in Patent Collaborations over Time

Figure 2: Share of Interregional Patent Collaborations over Time

economic slowdown.

Second, interfirm collaboration has grown to become the dominant form of coinvention. In

the right panel of Figure 1, the colors indicate the share of different types of interorganizational

coinvention, namely, URI and II collaborations. In the early 2000s, the majority of coinvention

patents involved either universities or research institutes. However, the share of interfirm collab-

oration has grown steadily, and by the end of the sample period, coinvention involving interfirm

collaboration had become dominant.4

Third, intercity collaborations have become more important over time. While interorgani-

4A similar pattern was documented by Sun and Cao (2015) for the post-2001 period.
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Figure 3: Graphical Representation of Intercity Patent Collaboration

zational coinvention patterns have evolved over time, interregional collaboration patterns have

remained stable over the same period. Figure 2 shows that approximately half of interorganiza-

tional patent collaborations were within the same cities, suggesting that local interactions remained

influential in coinvention and that intracity patent collaboration has an important function for

city innovation performance (Marrocu et al., 2013). However, there was an increase in intercity

collaborations (both within and across provinces) after 2011, indicating the growing importance of

extralocal interactions, thanks in part to the rapid development of transport infrastructure, which

potentially facilitates collaboration among high-skilled knowledge workers (Dong et al., 2019).

Fourth, the cities that were most deeply embedded in invention collaboration networks were

located in the eastern regions of China with the highest population density and most dynamic

economic activities, as shown in Figure 3. Cities in the periphery, including the northeastern,

southwestern, and northwestern regions, tended to collaborate with cities in central China. A

glance at the map suggests that Beijing, Shanghai, and Shenzhen were the three most influential

innovation hubs in China in terms of network embeddedness. Beijing was the dominant force in
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the entire country, and Shanghai and Shenzhen held the second and third positions.

Fifth, intercity coinvention networks have evolved from being relatively sparse and fragmented

to being the fabric of the national innovation system.5 As illustrated in Figure 4, from 2001 to

2004, the intercity network of innovation was relatively sparse, with few nodes and edges. The

two largest innovation hubs were clearly Beijing and Shanghai, and yet they were only connected

through one third city, Wenzhou. Some cities were disconnected from the largest component of the

network. During that period, collaborations were largely bounded by the geographical distance

separating the cities. For example, Shanghai formed a close collaboration with the cities of Suzhou,

Wenzhou, and Taizhou, two of the cities within the Yangtze River city cluster, while Beijing was

connected with Baoding and Nanjing. The thick edges between Beijing and Nanjing indicate the

intensity of their collaboration, while Shanghai maintained a relatively weak connection with its

partners. Several cities were disconnected from the nationwide network. The sparse collaboration

suggests that during the period, a nationwide intercity collaboration network had yet to be formed.

Figure 4: Intercity Invention Collaboration Network Evolution from 2001 to 2017

5While Figure 3 shows the overall innovation performance and innovation connectedness of Chinese cities,
we next demonstrate the network evolution of intercity invention collaborations in Figure 4. Figure 4 shows the
network evolution in China using four periods with four-year, nonoverlapping time windows from 2001 to 2016. A
larger size and lighter color of the nodes represent high centrality of the city, and the edges represent the invention
collaboration between each pair of cities. We use the number five as the minimum for connections, so a pair of
cities is only connected when they created more than five coinventions during that period.
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From 2005 to 2008, many more cities took part in nationwide invention collaborations, with

Shanghai and Beijing still being in the dominant position. Some cities, for example, Hangzhou,

Shenzhen, Wuhan, and Tianjin, moved to a more central position. However, parts of the network

were still characterized by geographical regions. For example, Shanghai and Wuhan formed local

collaboration networks that were distinct and distant from those of Beijing.

In the third period from 2009 to 2012, the network became denser. Notably, some of the second-

tier cities came to rival those in the top tier. For example, Nanjing, Wuhan, Chengdu, Shenzhen,

and Hangzhou began to catch up with Shanghai and became the dominant forces in their respective

regional innovation systems. In the last period, a completely interwoven nationwide collaboration

network emerged, featuring an even denser and more complex system. The four graphs depict

the rapid formation of a full-blown intercity collaboration network within the Chinese national

innovation system.

Figure 5: Comparison of Degree Centrality of URI and II Networks

Sixth, different types of interorganizational collaborations displayed varying centrality in the

intercity networks of coinvention.6 As shown in Figure 5, a salient pattern is that there exists

a clear positive correlation between the two network types. Most of the cities are concentrated

in the left lower corner because of their low centrality in both URI and II networks, and only a

handful of cities stand out as achieving high centrality in terms of both measures. The 45-degree

6 Figure 4 uses the number of total patents for cities, but it fails to capture the different types of collaborations
between innovative organizations. To demonstrate a deeper dimension of the intercity collaboration network, Figure
5 compares the degree centrality of the URI and II networks in each city, with the y-axis representing the II networks
and x-axis representing the URI networks. We use the normalized degree centrality measure, which is measured
by node connections divided by total connections in the network. Therefore, the sum of all degrees equals one.
By normalization, we can compare the two degree centrality types for the same city, and the value represents the
relative degree among all cities. The figure excludes two outliers, Shanghai and Beijing.
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line divides the sample into two halves: cities in the upper half achieve higher centrality in the II

than the URI network, and the opposite is true for those in the lower half. We use blue to indicate

provincial capital cities and municipalities7 and red to denote the others. Most of the red cities

are small or medium and less influential cities, except cities such as Shenzhen, Suzhou, Xiamen,

and Qingdao8. Blue cities are important in terms of both their political and their economic roles.

One interesting phenomenon is that for most of the blue cities, the relative centrality of their URI

networks is higher than that of their II networks because cities with political significance tend to

possess more public resources to fund academic and research institutes. Cities such as Shenzhen,

Zhuhai, Suzhou, and Foshan perform better in terms of II than URI centrality.

Figure 6: Change in Degree Centrality of URI and II Networks

Figure 6 demonstrates the evolution of degree centrality over the years. Beijing was relatively

more dominant in II than URI degree centrality in the sample period because it hosts the head-

quarters of many state-owned enterprises (Hu and Jefferson, 2004). Among the first-tier cities,

Shanghai maintained the second position over the years, and Guangzhou and Shenzhen had sim-

ilar importance relative to the second-tier cities. Recent years saw the rise of second-tier cities

(Bolshaw, 2014) such as Hangzhou, Xi’an, Qingdao, Tianjin, and Suzhou, which experienced a

remarkable improvement in URI degree centrality, while Nanjing, Wuhan, Foshan, and Changsha

made good progress in II degree centrality.

7There are a total of four municipality cities in China, including Shanghai, Chongqing, Tianjin, and Beijing
8Shenzhen, Suzhou, and Qingdao are each home to close to or more than 10 million people.
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4 Method and Construction of Variables

4.1 Dependent Variables

This paper investigates the effects of the network structures of cities in intercity innovation net-

works on city innovation performance. We use the total invention patents granted for each city as

the dependent variable. This is consistent with extant research using the city-level patent count

of a specific field (Guan et al., 2015), country-level R&D efficiency (Guan et al., 2016), and total

patent count in a region (Sebestyén and Varga, 2013; De Noni et al., 2017). We use invention

patents because they are the most valuable type of patents compared to utility or design patents

because normally the requirements to be granted an invention patent are the highest and the

process takes more than four years on average (Tong et al., 2018).

4.2 Explanatory Variables

As discussed previously, we include degree centrality (DC), closeness centrality (CNC), structural

holes (SH), and the clustering coefficient (CC) as our independent variables. DC and CNC repre-

sent the structural embeddedness of cities in the whole network, whereas SH and CC reflect the

property of the ego network of each node.

Degree Centrality (DC)

DC refers to the number of connections that a node has (Freeman, 1978; Opsahl et al., 2010).

It is calculated by the following formula:

DCi =
ki

N − 1
=

∑
i 6=j

αij

N − 1
,

where ki indicates the number of connections of each node i, and N is the total number of nodes

in the social network. An adjacency matrix describes the social network, in which αij is 1 if a tie

exists between nodes i and j and 0 otherwise.

Closeness Centrality (CNC)

CNC measures how close a given node is to other nodes. The traditional closeness definition

is restricted to nodes within the largest component of a network (Opsahl et al., 2010). Because

numerous nodes are disconnected from the main component in our networks, we adopt another

measure of closeness centrality, namely, decay centrality (Jackson, 2008),

CNCi =
∑
j 6=i

δl(i,j) ,

where l(i, j) is set to infinity if i and j are not path-connected and l(i, j) is the number of links
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on the shortest path between i and j. The decay parameter δ, where 0 < δ < 1, tunes the

measurement of closeness centrality. As δ approaches one, decay centrality measures the sum of

the number of links on the shortest paths a node lies on. As δ approaches 0, decay centrality gives

infinitely more weight to closer nodes than to more distant nodes. At intermediate values of δ, a

node is rewarded for how close it is to other nodes, but in such a way that very distant nodes are

given less weight than closer nodes.

Structural Holes (SH)

We use a network constraint to measure structural holes (Burt, 1992; Wang et al., 2014; Guan

et al., 2016). The formula for SH is

SHi = 2−
∑
j

(Pij +
∑
q 6=i 6=j

piqpqj)
2 ,

where the second term is the network constraint of node i and pij is the proportion of the connec-

tions of node i that are connected to node j. Hence, SHi is the proportion of node i’s relationships

that are connected with node j through node i. Higher values on this measure imply that the

node fills a greater structural hole, thereby brokering the network more extensively.

Clustering Coefficient (CC)

CC indicates the node cohesiveness and transitivity within the ego network, which is calculated

for node i as the fraction of linked neighbors of i (Barrat et al., 2004).

The measure is computed on a node-by-node basis. We use the following formula,

CCi(g) =
#{jk ∈ g|k 6= j, j ∈ Ni(g), k ∈ Ni(g)}

di(g)(di(g)− 1)/2
,

where g denotes the whole network, j ∈ Ni(g), k ∈ Ni(g)9 denotes that j and k are partners of

node i, and jk ∈ g denotes that j and k are also connected to each other. di(g)(di(g)−1)/2 shows

the possible maximum number of links among i’s total partners. Thus, CCi considers all pairs of

nodes that are linked to i and then considers how many of them are linked to one another.

4.3 Control Variables

The existing literature indicates that innovation performance is also a function of other socioeco-

nomic factors. We include the following control variables.

City-level GDP: Overall city-level economic development is measured by GDP. It is widely

recognized that innovation capacity tends to be positively correlated with income. This pattern

holds not only at the national level but also at the city level.

9We borrow the notations from Jackson (2008).
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City-level science & technology public expenditure: Government support is essential

for local innovation (Li, 2012). We control for science and technology public expenditure by the

local government, which indicates the level of government support. Higher public expenditure and

support for science and technology research is expected to lead to stronger innovation performance.

Mobile phone users: We use the total number of mobile phone users as a proxy for the

telecommunication infrastructure. Telecommunication infrastructure serves as the fundamental

hardware for information flows. A better telecommunication framework enhances the efficiency of

information flows for both local and extralocal interactions.

Share of manufacturing industry output: China is the worlds workshop, and the manu-

facturing industry is the backbone of its cities’ economies. Unsurprisingly, the recent increase in

granted invention patents is closely related to the manufacturing industry. We thus include the

share of manufacturing industry output in regional gross economic output as a proxy for demand

for innovation.

In addition to the above control variables, we also include time fixed effects and city fixed

effects. From the raw descriptive statistics, we have seen that the core explanatory variables

(centrality measures) demonstrate a clear time trend, as cities have become better connected with

each other over the years. By controlling for time fixed effects, we can rule out time-related

factors that might confound our key explanatory variables. Controlling for city fixed effects teases

out time-invariant geographical and socioeconomic factors. For example, cities located in the

geographical center of China tend to be more connected to other cities. Hence, by using city fixed

effects, we can exclude time-invariant factors that might influence urban innovation performance.

4.4 Statistical Approach

We estimate multiple negative binomial panel regression models to obtain our main result and

linear regressions as robustness checks. The dependent variable is the total number of invention

patents granted during a four-year window for each city. Negative binomial regressions are designed

to deal with count-dependent variables affected by the overdispersion problem. The majority of

studies dealing with patents as the outcome variable have used negative binomial regressions (e.g.,

Guan et al., 2016). To ensure the robustness of our result, we also run a linear regression with

different panel specifications. For the linear model, the dependent variable is log-transformed to

approximate a normal distribution and to allow interpretation of the results in percentage terms.

All of our dependent variables are nonzero positive counts, which allows us to avoid the logarithmic

zero problem.

We specify the following basic regression model:
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yit = βX + αi + τt + εit (1)

The basic form of the model specifies that city-level innovation is a function of independent vari-

ables X, including network position measurements and other city-level time-varying control vari-

ables. τt stands for the time period-specific effect in period t. The term αi stands for unobserved

city-level heterogeneity that directly correlates with city innovation. The random-effects model

assumes that αi is random and is typically subject to a normal distribution with a mean of zero

and constant variance and that αi is uncorrelated with the independent variables X (Wooldridge,

2010). In contrast, the fixed-effects model drops the assumption of no correlation and uses within-

transformation to remove the city-specific constant αi (Wooldridge, 2010). Most network analysis

studies using panel data often assume αi is a random variable of each node i (Ferriani et al., 2009;

Guan et al., 2015, 2016; Guan and Liu, 2016). We argue that random effects might be suitable

in some cases because the random-effects model assumes αi to be independent of all the network

position measurements. This is often not the case for network centralities and structural holes,

because those network position measurements are likely to be correlated with unobserved city

heterogeneity. For instance, Beijing hosts many world-renowned universities, which is why it en-

joys the central position in the URI network. Those universities are obviously not random factors

that arbitrarily appear in any city during different time periods following a stochastic process—on

the contrary, such specific factors persist through time. Our reasoning is also confirmed by the

Hausman test (Hausman, 1978), which rejects the use of random effects with high confidence and

a very low p-value. To better illustrate the result, we use both city random and fixed effects since

they both have their own pros and cons. Both results together help us better understand the

robustness of the results. The following equation describes the whole model.

Ptit = β0 + β1xit + γZ + Timet + εit (2)

xit ∈ {URI.DCit, URI.SHit,URI.CNCit, URI.CCit,

II.DCit, II.SHit, II.CNCit, II.CCit}

The dependent variable Ptit stands for total invention patents in city i during period t. The

explanatory variable xit is the network position in either the URI or the II network. DCit, SHit,

CNCit and CCit stand for, respectively, degree centrality, structural holes, closeness centrality

and the ego-network clustering coefficient for node i during period t. We control for the quadratic

terms for degree centrality and the clustering coefficient because degree centrality is often shown to

have diminishing returns (Ferriani et al., 2009; Guan and Liu, 2016) and the clustering coefficient is
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documented to have conflicting effects, with a tendency both to increase and to decrease innovation

(Uzzi and Spiro, 2005; Fleming et al., 2007a; He and Fallah, 2009). Z represents the city-level

time-variant control variables, including city-level GDP, science and technology public expenditure,

industrial output share, and total mobile phone users.

5 Results

Table 1 presents the summary statistics and correlation analysis. The average city-level patent

count in the sample is 2,767, while the standard deviation is 9,713. The difference between the

mean and standard deviation suggests an overdispersion problem in the count data, ruling out

a Poisson regression and justifying the use of a negative binomial model to test our hypotheses.

The average city-level GDP is 192 billion yuan from 2001 to 2016, and the standard deviation

is 279 billion, suggesting considerable intercity income inequality. Science and technology public

expenditure is 85.8 million on average with a high standard deviation of 163.1 million. The average

number of mobile phone users in each city is 3.6 million. All the aforementioned economic variables

are positively correlated with each other, with correlation coefficients ranging from 0.76 to 0.89.

The industrial output share is negatively correlated with the economic indicators, suggesting that

a higher development level is associated with a lower industrial output share and thus a higher

tertiary output share.

Table 1: Statistical Summary and Correlation Analysis

SD Mean 1 2 3 4 5 6 7 8 9 10 11 12 13

1. Patents 9, 713.549 2, 767.837 1
2. GDP(million) 279, 579.000 192, 039.100 0.765 1
3. ST.Fund(million) 2, 230.447 613.972 0.896 0.786 1
4. Mobile.Users(million) 4.285 3.627 0.803 0.845 0.761 1
5. IndustryShare 0.097 0.499 -0.199 -0.108 -0.169 -0.150 1
6. URI.Degree 0.031 0.016 0.696 0.642 0.609 0.701 -0.151 1
7. URI.StructHoles 0.338 1.226 0.462 0.563 0.405 0.641 -0.039 0.686 1
8. URI.Closeness 2.407 2.046 0.618 0.688 0.584 0.743 -0.067 0.656 0.817 1
9. URI.ClustCoefficient 0.139 0.037 0.020 0.062 0.017 0.119 -0.023 0.055 0.197 0.174 1
10. II.Degree 0.037 0.014 0.778 0.614 0.679 0.679 -0.172 0.773 0.435 0.489 0.031 1
11. II.StructHoles 0.326 1.208 0.483 0.588 0.442 0.668 -0.076 0.507 0.696 0.722 0.199 0.506 1
12. II.Closeness 2.962 2.250 0.622 0.625 0.592 0.683 -0.104 0.453 0.572 0.755 0.193 0.542 0.782 1
13. II.ClustCoefficient 0.152 0.045 0.070 0.129 0.055 0.146 0.023 0.091 0.221 0.255 0.044 0.056 0.215 0.202 1

The next eight variables summarize cities’ network positions in both the URI and II networks.

The two types of centrality measures are at comparable scales due to the similar density of the

two networks. The average degree centrality for the URI network is 0.016, slightly higher than

that of the II network, which suggests that there are more total ties in the URI network than in

the II network. The nodes are on average closer to each other in the URI than in the II network,

as suggested by the closeness centrality, implying a more centralized pattern in the URI network.

In terms of the ego networks, the URI network, on average, exhibits large structural holes and a
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lower clustering coefficient. The structural holes range from 1 to 2 by the constraint formula, with

means of 1.226 and 1.208, respectively, for the URI and II networks.

All the variables are positively correlated with the dependent variable. There are high corre-

lation coefficients among the degree centrality, closeness centrality and structural holes variables,

ranging from 0.656 to 0.817 for the URI network and 0.506 to 0.782 for the II network. The

high correlations suggest a potential multicollinearity problem. To address this concern, we use

only one network position measurement for each regression. The following two tables report the

regression results.

Table 2 reports the results of the negative binomial regression with city random and fixed

effects. It contains the results of ten regression models, with all the covariates standardized to

a mean of zero and a standard deviation of one. We apply city random effects in Models (1) to

(5) and city fixed effects in Models (6) to (10). From Models (1) to (4), we test each network

position measurement for both the URI and II networks in each regression to avoid potential

multicollinearity problems. In Hypothesis 1a, we propose that the degree centrality of a city in

a collaboration network positively affects its innovation performance. Model (1) regresses the

total patents measure on the degree centralities for both URI and II networks, and the effects are

both positive and significant. Thus, Hypothesis 1a is supported. The effect size suggests that a

one-standard-deviation increase in URI degree centrality is associated with an increase of approx-

imately 18.3% in total invention patents. The negative coefficient of the squared term suggests

a diminishing marginal effect of extralocation interactions: when a city’s URI degree centrality

is low, an initial positive change in the degree centrality increases the innovation rapidly, but

the effect immediately diminishes for relatively high degree centrality (Guan et al., 2016). The

effect size for the II networks indicates that a one-standard-deviation increase in the II degree

centrality is associated with a 21% increase in total invention patents relative to other cities, and

the quadratic term is nonsignificant. In Hypothesis 2, we posit that cities able to fill structural

holes in the innovation network tend to have higher innovation performance. Model (2) suggests

a significant effect of bridging structural holes in both the URI and II innovation networks; the

effect for URI is smaller and less significant than that for the II network. Hence, Hypothesis 2

is confirmed. The positive role of the structural holes measure echoes previous findings (Burt,

2004; Fleming et al., 2007b). In Hypothesis 1b, we postulate that the closeness centrality of a

city in a collaboration network positively affects its innovation performance, and in Hypothesis 3,

we propose that cities with high clustering coefficients in their ego-network tend to have higher

innovation performance. Models (3) and (4) show that the closeness centralities and clustering

coefficients of both networks play little role in facilitating city innovation performance. Therefore,

both hypotheses are not supported. Model (5) contains all the variables, and the major results

continue to hold. The structural hole variable in the URI model ceases to be significant. Ad-
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ditionally, closeness centrality for the the II network becomes negative, possibly due to its high

correlation with other variables and hence the multicollinearity problem. Thus, it seems that the

model with a single network position variable generates more reliable effect estimates.

Models (6) to (10) lay out the same model configurations as in the previous models and include

city fixed effects. The fixed effects dramatically change the results for the URI network in that

the previous significant coefficients of the degree centrality and structural holes variables become

nonsignificant. In contrast, for the II network, degree centrality and structural holes continue

to be significant, albeit with a slightly lower effect size, and hence offer evidence in support of

Hypothesis 1a and Hypothesis 2. The effect size suggests that a one-standard-deviation increase in

degree centrality and structural holes in the II network increases total invention patents by 14.6%

and 11%, respectively. Compared with the random-effects regressions, the inconsistency of the

results for degree centrality and structural holes in the URI model with city fixed effects is evidence

of a strong correlation between unobserved city-level heterogeneity and the URI network position

measurements. This is actually not very surprising, since universities and research institutes—

key contributors to URI network positions—are heavily concentrated in major cities, such as

Beijing and Shanghai. Universities and research institutes are mostly publicly funded, established

institutions that are not subject to temporary changes in economic conditions. In contrast, firms,

as the main actors in the II networks, form intercity research collaboration networks through

searching and matching processes, and their activities are less correlated with city-specific effects.

On balance, the results from the random- and fixed-effects models suggest strong evidence in

support of Hypothesis 1a and Hypothesis 2 for the II network, inconclusive evidence on both

hypotheses for the URI network, and no evidence in support of either Hypothesis 1b or Hypothesis

3 for the URI and II networks.

Robustness Check

Table 3 reports the results of linear regressions of the same regression models with log-transformed

dependent variables; the effect estimates are very similar to those in Table 2, suggesting that the

results are robust. Next, to better illustrate the change in results from different model specifica-

tions, we additionally estimate pooled and between estimators of the linear panel models. Table

4 summarizes the coefficients resulting from all six types of panel regressions. Models (iv) to (vii)

are extracted from Tables 2 and 3.

The pooled model ignores the unobserved heterogeneity and runs a simple OLS regression

using the panel data. Compared to the random- and fixed-effects models, the pooled model

generates highly significant coefficients with large effect sizes. In addition to degree centrality

and structural holes, the closeness centralities of both networks are positive and significant. The
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Table 4: Summary and Comparison of Panel Regression Results of Different Models

Models Coefficients

URI.DC URI.SH URI.CNC URI.CC II.DC II.SH II.CNC II.CC
(i). Linear Pooled: 0.831∗∗∗ 0.533∗∗∗ 0.605∗∗∗ 0.283∗∗ 0.342∗∗∗ 0.418∗∗∗ 0.283∗∗∗ 0.137
(ii). Linear Between: 1.528∗∗∗ 0.819∗∗∗ 1.387∗∗∗ 0.396 0.348 0.746∗∗∗ 0.554∗∗∗ 0.322
(iii). Linear Prov-FE: 0.943∗∗∗ 0.484∗∗∗ 0.509∗∗∗ 0.045 0.456∗∗∗ 0.255∗∗∗ 0.152∗∗ -0.056
(iv). Linear RE: 0.198∗∗∗ 0.059∗ 0.052 -0.022 0.240∗∗∗ 0.120∗∗∗ 0.016 -0.080
(v). NegBinomial RE: 0.183∗∗∗ 0.060∗∗∗ 0.058 -0.021 0.210∗∗∗ 0.110∗∗∗ 0.008 -0.067
(vi). Linear FE: -0.005 0.009 0.032 -0.024 0.155∗∗∗ 0.119∗∗∗ 0.011 -0.054
(vii). NegBinomial FE: 0.0001 0.015 0.041 -0.020 0.146∗∗∗ 0.110∗∗∗ 0.006 -0.045
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Linear Prov-FE is a pooled linear regression with

province dummies as controls. NegBinomial means negative binomial regressions.
We include time fixed effects for all regressions except for the between estimator.

effect sizes of degree centrality and structural holes in the URI network are notably greater than

those in the II network, suggesting that innovative cities are more highly associated with central

positions in the URI network than with similar positions in the II network. The between estimator

runs an OLS regression using the average of the independent variables for each city, thus totally

ignoring within-city variation and only focusing on cross-sectional variation. The coefficients are

even more inflated than those in the pooled model, especially for the URI networks. II network

degree centrality ceases to be significant, likely due to the decreased number of observations after

averaging the variables. Figure 7 graphically illustrates the change in the effect estimates over

different model specifications. The lines, shaped by the estimated coefficients, describe the effect

of degree centrality and structure on city innovation. The effect size noticeably declines as we

use more robust estimation models and focus on the within variation. Despite these changes,

the degree centrality and structural holes variables for the II network maintain their positive

coefficients.

We have estimated multiple empirical models using panel regressions. Now the question boils

down to which model—random- or fixed-effects—we should give credence to. There exists a trade-

off between fixed and random effects. On the one hand, fixed-effects models are considered a more

robust inference method—unlike the random-effects model, which assumes zero correlation be-

tween the city-specific parameter αi in Equation (1) and the network position. On the other

hand, the fixed-effects model fails to account for between-city variation and only explains within-

city variation (Schunck and Perales, 2017). The random-effects estimator partially accounts for

between-city variation because it uses a matrix-weighted average of the fixed-effects and between

estimator (Hausman and Taylor, 1981; Baltagi, 2008). Moreover, the random-effects model ap-

pears to be the favored specification among social network studies using panel regression methods

(Ferriani et al., 2009; Guan et al., 2015, 2016; Guan and Liu, 2016). However, we conduct a

Hausman test on the linear specifications, and it suggests that the assumption underpinning the
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Figure 7: Effect of Changing Network Centrality on Urban Innovation

random-effects model is not satisfied. Despite this difference, both models prove the significant

effect of degree centrality and structural holes on city innovation in the II network, thereby con-

firming Hypotheses 1a and 2. From the fixed-effects model, one-standard-deviation increases in

the II degree centrality and structural holes increase city innovation by 14.6% and 11%, respec-

tively. From the random-effects model, a one-standard-deviation increase in degree centrality

in both networks increases city innovation by approximately 20%, and a one-standard-deviation

improvement in the bridging of structural holes increases innovation by 6% to 11%.

6 Conclusion and Implications

Despite growing research on collaborative innovation networks due to the importance of innovation

cooperation and teamwork in national innovation systems, little effort has been made to conduct

network studies using cities as nodes, relative to an abundance of literature using individuals,

organizations, provinces, and countries as nodes. This study fills this gap and argues that cities

thrive in terms of innovation if they can draw resources from extralocal interactions. We investigate

the effect of structural embeddedness in extralocal interactions on city innovation using social

network theory. In addition, the existing literature largely centers on developed countries using

USPTO or EPO patent data, which fail to capture the significance of recent innovation advances

in China. In this research, we use a comprehensive data set on SIPO patents granted from 2001

to 2016 to study intercity innovation networks in China. We document the rapid evolution of the
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intercity R&D collaboration system from an initially sparse network into a full-blown complex

network over the last 16 years and describe six major features of the structure and evolution of

this network in China during that period. Furthermore, we examine how extralocal interactions

affect city innovation by investigating the role of each city’s network structure in facilitating its

own innovation. Using various panel regression model specifications, we find evidence to support

our arguments, with features of network structure such as degree centrality and structural holes

positively affecting innovation in cities.

We contribute to the empirical study of extralocal interactions by conducting empirical analysis

and estimating regressions with network positions as the independent variables. The bulk of

empirical social network studies implicitly assumed the exogeneity of network positions and thus

inferred a causal relationship for such effects (Phelps et al., 2012). However, observational data are

often subject to severe barriers to causal inference (Gangl, 2010). One major problem arises from

the assumption that unobserved individual-level heterogeneity is not correlated with independent

variables (in our case network position), which often does not hold in the real world (Phelps

et al., 2012). To tease out the unobserved individual-level heterogeneity, it is necessary to apply

panel regression methods and use panel data with observations of the same individual over multiple

periods. However, Phelps et al. (2012) pointed out in their survey that only 35% of network studies

used panel data, that only half of those utilized panel regression estimations and that almost

all interpersonal network research used cross-sectional variation. Such cross-sectional studies also

include recent studies, such as those by Guan et al. (2017) and Li et al. (2019). Many studies using

longitudinal data applied random effects in panel regression models (Ferriani et al., 2009; Guan et

al., 2015, 2016; Guan and Liu, 2016), and a few used fixed-effects models (Yan and Guan, 2018).

We have compared the regression results of multiple model specifications. The pooled and between

models generate results that differ extensively from the estimates produced by the random- and

fixed-effects models, suggesting that the cross-sectional variation is insufficient to allow for rigorous

causal inferences. Furthermore, for network studies that address higher-level nodes, such as cities,

regions, and countries, a fixed-effects model might be more appropriate to account for unobserved

individual heterogeneity because compared to individuals and organizations, geographical areas

contain more unobserved characteristics that persist through time. Therefore, we argue that

future studies should use panel regressions and especially the fixed-effects model to better identify

a causal effect of network structures and positions.

6.1 Theoretical Implications

Our findings have some major theoretical implications. First, our study contributes to the existing

cities and innovation literature by identifying the structure and dynamics of China’s intercity inno-
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vation collaboration network. Our research supports the argument that innovation is not entirely

endogenous to cities and that extralocal interactions are just as powerful as local interactions in

stimulating innovation in cities that are part of innovation networks. We particularly theorize and

confirm that cities are more able to capitalize on the benefits of extralocal interactions when they

have higher degree centrality and when they fill larger structural holes. Such cities should thus

have higher innovative capacities and perform better in terms of innovation. The evidence clearly

lends support to the argument that proximity needs to be understood in a sociological rather

than a geographic sense (Granovetter, 1985; Boschma, 2005; Shearmur, 2012). We also predict

positive effects on city innovation of closeness centrality and the cluster coefficients of cities in

extralocal interactions but find little evidence to support these arguments. Future studies may

investigate the effects of these network properties on innovation in cities in other research contexts

to generalize the research findings.

Second, we contribute to the theoretical discourse by introducing the division between URI and

II collaboration types. The literature has used patent collaborations to represent connections in

a network without considering the type of interorganizational collaborators. Research and devel-

opment collaboration involved with universities and research institutes differs from that between

firms in various ways, including the knowledge base, conduciveness for knowledge transfer, and

other aspects that impact information flows between cities. Our descriptive statistics document

the rapid growth of collaboration for copatenting; in addition, the relative share of URI collabora-

tion compared to II collaboration declines over the whole period. We carry out empirical network

analysis on the intercity system considering both URI and II networks and compare how network

positions in the two types of networks affect city innovation. Our comparison yields mixed inter-

pretations. The pooled and between estimators suggest that the URI network effects are greater

than the II network effects. The random-effects model reports a modest difference between the

two. The fixed-effects model shows that only in II networks do the degree centrality and structural

holes variables improve city innovation. We conclude that at least for the within variation, the

effect size is greater in the II network than in the URI network. In other words, for a city, being

able to increase its central position in the II network makes it more innovative, but this is not the

case for the URI network. Using rigorous and robust methods, we establish the causal linkage for

the II network.

Third, our results suggest that indirect ties, namely, closeness centrality and the clustering

coefficient within the city network, are not as important as direct ties, such as degree centrality.

Indirect ties might play an important role in interpersonal networks in that one can easily approach

a friend’s friends (Zuo et al., 2014; Marineau et al., 2016) or in that the cohesiveness of a team

can impact everyone (Uzzi and Spiro, 2005). However, intercity linkages do not work like personal

social ties. It is difficult for a city to access knowledge and innovation resources through an indirect
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tie the way an individual might ask for a favor from a friend’s friend. A city is a large, internally

complex, and spatially distributed collective rather than a simple and unitary actor (Phelps et al.,

2012). Thus, networks of different levels are unlikely to be isomorphic to each other, especially

when high-level nodes such as cities and countries are considered. Due to this limited isomorphism

and the lack of studies on intercity innovation networks, we propose that more innovation studies

should be conducted at the city level to examine the network structure properties of innovation

networks.

6.2 Practical Implications

We find that a high degree of extralocation interaction, manifested by a central position in col-

laboration networks, facilitates the knowledge and information flows that are crucial for urban

innovation. The implication for policymakers is to lower the costs and remove the barriers to

intercity research collaborations and any other form of extralocal interaction. In particular, poli-

cymakers should encourage local firms in their cities to increase their ability to absorb and transfer

technology inflows as well as develop an effective collaborative strategy to occupy central places

and span structural holes within the intercity network. Additionally, effective endeavors include

building telecommunication and transportation infrastructures to better connect cities, providing

financial subsidies for intercity R&D collaboration, especially for smaller cities that lack internal

resources, and attracting subsidiary companies owned by major innovative corporations, because

organizational proximity is conducive to collaboration and knowledge transfer.

6.3 Limitations

This study has several limitations. First, patent data may not necessarily be a perfect indicator of

innovation in cities. For example, Acs et al.’s (2002) research finds that patents offer a relatively

accurate assessment of the geography of product innovation across US metropolitan areas (MSAs)

but are less valid for smaller cities or nonurban areas and for other types of economic innova-

tion. Furthermore, invention patents only record major product innovations and do not document

incremental innovations (Acs et al., 2002); patents may record new ideas that some large firms

have no intention of bringing to market (Heller, 2008); and some smaller firms may choose to rely

on secrecy rather than publicize their inventions (Griliches, 1998). Second, the study does not

consider innovation variables that are particular to the Chinese context. For instance, state-owned

enterprises (SOEs), informal guanxi networks, and province-specific innovation policies all play an

important role in the Chinese economy and innovation. Third, a multilevel network analysis at the

organization, city, and province levels might reveal deeper insights into the effects of innovation

networks on innovation in cities.
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Lundvall, Bengt-Åke, Björn Johnson, Esben Sloth Andersen, and Bent Dalum, “Na-
tional systems of production, innovation and competence building,” Research policy, 2002, 31
(2), 213–231.

Lyu, Yibo, Binyuan He, Yuqing Zhu, and Li Li, “Network embeddedness and inbound open
innovation practice: The moderating role of technology cluster,” Technological Forecasting and
Social Change, 2019, 144, 12–24.

Ma, Yan and Feng Xue, “Deciphering the Spatial Structures of City Networks in the Economic
Zone of the West Side of the Taiwan Strait Through the Lens of Functional and Innovation
Networks,” Sustainability, 2019, 11 (10), 2975.

Marineau, Joshua E, Giuseppe Joe Labianca, and Gerald C Kane, “Direct and indirect
negative ties and individual performance,” Social Networks, 2016, 44, 238–252.

Marrocu, Emanuela, Raffaele Paci, and Stefano Usai, “Proximity, networking and knowl-
edge production in Europe: What lessons for innovation policy?,” Technological Forecasting and
Social Change, 2013, 80 (8), 1484–1498.

Martin, Ron and James Simmie, “Path dependence and local innovation systems in city-
regions,” Innovation, 2008, 10 (2-3), 183–196.

Niebuhr, Annekatrin, “Migration and innovation: Does cultural diversity matter for regional
R&D activity?,” Papers in Regional Science, 2010, 89 (3), 563–585.
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