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Abstract 

X-ray crystallography of proteins is a well-established method to identify atomic level 

molecular arrangement, however when exposing crystalline proteins to ionising 

radiation, damage can occur to their overall molecular structure (global damage), 

while solvated electrons generated by X-rays can induce changes to metal sites within 

a protein (site-specific damage) (Garman & Weik, 2015). These changes occur quickly, 

at doses much lower than required to obtain a complete dataset, meaning there may 

be many metalloproteins deposited in the Protein Data Bank that are incorrect 

(Bowman, Bridwell-Rabb, & Drennan, 2016).  

 

The advent of X-ray free-electron lasers (XFELs) that produce femtosecond pulses of 

extremely high quality (brilliance) X-ray beams, allows data to be collected before 

radiation damage has the time to occur (Schlichting, 2015). This thesis will describe 

the development of novel ‘chip’ based serial data collection and processing strategies, 

applied at Diamond Light Source microfocus beamline I24, and at BL3 EH2 at the 

SACLA XFEL, Japan. A technique coined ‘multiple serial structures’ (MSS) has been 

developed and used in this thesis to assess how crystalline proteins change as a 

function of X-ray dose, as enzyme reactivity can be driven in crystals by exploiting X-

ray generated solvated electrons to drive redox reactions (Horrell et al., 2016). By 

performing a near identical data collection strategy at the SACLA XFEL, we have been 

able to directly compare the effects of accumulated dose in MSS datasets to ‘damage 

free’ XFEL structures, using the same target protein. Chip methods have also been 

examined and developed in this thesis as a tool to assess the ‘dark progression’ of 
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radiation damage, a technique we have coined ‘dark progression series’ (DPS). 

Further, we present a data processing technique that possesses the ability to identify 

protein-ligand complexes from extremely small subsets of synchrotron and XFEL 

diffraction data, whereby only a few hundred diffraction images may be needed. 
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Chapter 1: Literature review 

1.1. Radiation damage in X-ray crystallography 

The utilisation of X-ray crystallography to understand the atomic level structure of 

metalloproteins is well-established, and plays a major role in the field of structural 

biology. In this, X-ray crystallography of metalloproteins provides insight into key 

biological processes, allowing us to understand how proteins interact with one 

another, substrates, and drug targets to name a few. The effects of radiation damage 

are seldom absent in X-ray crystal structures however, with the global effects such as 

a loss of diffraction spot intensity seen initially in reciprocal space, and site-specific 

damage subsequently seen in real space models of refined protein structures 

(Garman & Weik, 2015b; Holton, 2009). Data collection methods have been 

developed to limit and examine these effects, with the advent of ‘damage free’ 

structures collected at X-ray free-electron lasers and their associated methods 

providing a new outlook on how best crystallographic data should be collected to limit 

radiation damage. This chapter will characterise radiation damage in terms of theory 

and its effects, as-well-as examine instances where radiation damage has been 

studied, the methods used to do this, recent developments in the field, and the 

background of the radiation sensitive metalloproteins chosen for study in this PhD 

project. 

 

1.1.1. Radiation damage theory 

One of the most common causes of poor-quality data from the X-ray crystallography 

experiment is the effect of radiation damage on a macromolecular protein crystal 
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(Garman & Weik, 2015b; Holton, 2009). Energy deposited in the crystal during data 

collection can lead to chemical transformations that compromise the quality of the 

final electron density maps by decreasing the intensity and resolution of X-ray 

diffraction patterns (Zeldin et al., 2013).  

 

In the classical X-ray crystallography experiment, a protein crystal is held in an X-ray 

beam in a polymer loop on a pin, with the base of the pin magnetically attached to a 

goniometer allowing the crystal to be rotated in the beam when exposed to X-rays 

(fig. 1.1). When a protein crystal is irradiated by an X-ray beam, only a small fraction 

of the radiation will interact with the crystal, with the rest passing straight through it. 

For example, a 100 µm thick metal-free crystal irradiated with a 13.0 keV X-ray beam 

(l of ~0.95Å) will only interact with approximately 3% of the radiation that passes 

through it; ~6.5% of the interacting X-rays giving rise to diffracted X-rays, whereby an 

incoming X-ray is elastically scattered with the X-ray wavelength remaining 

unchanged (Rayleigh scattering) (Garman & Owen, 2006) (fig. 1.2).  

 

The reminder of the radiation is deposited within the crystal and takes two forms: 

Inelastic (Compton) scattering accounts for ~6.6% of the interacting radiation, where 

the X-ray scatters from an atomic electron, losing part of its energy to the electron 

which may then ejected from the atom. However, the majority, ~86.9%, of the energy 

deposition occurs through the photoelectric effect, whereby the interacting photon 

transfers all of its energy to an atomic electron; this high-energy photoelectron is then 

ejected from the atom, leaving a vacant site which is filled with a higher shell electron,   
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Figure 1.1. Typical synchrotron endstation setup at beamline I24 Diamond Light Source 

The endstation setup for the collection of X-ray diffraction from a crystal mounted on a loop 

on a pin at I24 utilises a vertical goniometer to rotate a crystal during exposure to the X-ray 

beam, while the horizontal goniometer can be used for collecting data from crystals in trays 

(in-situ). A cryostream can be used to keep crystals cool in order to delay the onset of radiation 

damage effects. Samples are viewed using an on-axis viewing camera (OAV) illuminated by a 

ring light and a backlight (backlight not shown). The beamstop prevents intense, non-

diffracted X-rays from damaging the detector.  
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Figure 1.2. The different primary X-ray scattering processes  

Elastic scattering: ~6.5% of the interacting beam, resulting in the X-ray photon being 

scattered, causing in diffraction. Compton scattering: ~6.6% of the interacting beam, where 

the photon loses energy in an atomic electron, resulting in scattering at a longer wavelength 

(an electron may then be ejected from the atom). Photoelectric absorption: 86.9% of the 

interacting beam, resulting in the photon transferring all energy to an inner shell electron, 

which is subsequently ejected from the atom, known as a photoelectron. The resulting orbital 

vacancy is filled by a higher shell electron, and followed by either fluorescence emission or 

ejection of a lower energy Auger electron (figure adapted from Taberman, 2018). 
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simultaneously releasing excess energy in the form of X-ray fluorescence or of a lower 

energy Auger electron (Garman, 2010; Taberman, 2018) (fig 1.2). 

 

When incident X-ray radiation interacts with an atom in the crystal, the ionisation 

owing to photoelectric absorption or Compton scattering are referred to as primary 

radiation damage. Secondary radiation damage effects are those that arise from the 

formation of up to 500 low-energy secondary electrons per primary absorption event 

(Garman, 2010). Radiation damage effects manifesting as the overall loss in diffraction 

intensity, expansion of unit-cell volume, increase in scaling B-factors, rotation of the 

molecule within the unit cell, and often (but not always) an increase in mosaicity, are 

known as global effects of radiation damage (fig. 1.3) (Garman, 2010; Garman & Weik, 

2015a; Holton, 2009). Global damage is observable in reciprocal space and visible in 

the crystal as irradiation proceeds as a colour change. Site specific radiation damage 

is the damage to specific sites and structures within the atomic structure, arising from 

the formation of photoelectrons which are able to diffuse and induce ~500 further 

ionisation and excitation events, and is observable in real space (Southworth-Davies 

et al. 2007; Garman & Weik 2015). Common indicators of secondary radiation damage 

are the breakage of disulphide bridges and the loss of electron density of the carboxyl 

groups of acidic residues, with highly exposed carboxyl groups and those in the active 

site of the enzyme particularly susceptible (Weik et al., 2000).  

 

It has been proposed that electrons can be produced by radiolysis of water within a 

crystals solvent channels, giving rise to a series of reactions that lead to the formation 

of hydrogen peroxide, with ionization producing a molecular cation of water  
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Figure 1.3. Global radiation damage as a loss of diffraction intensity 

Loss of intensity in high resolution (> 1.9 Å, in this example) diffraction spots can be seen short 

and long exposure diffraction patterns (intense diffraction apparent ~1.68 Å are as a result of 

silicon diffraction silicon diffraction from fixed target silicon wafer used as a sample holder). 
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and an electron (fig. 1.4) (Hiroki, Pimblott, & Laverne, 2002). Site-specific radiation 

damage effects are therefore of particular concern in biomolecules containing 

transition metals, particularly those in high oxidation states. This is due to their high 

affinity for electrons, meaning they are susceptible toward oxidation state changes at 

much lower doses than those where global damage is an issue (Beitlich, Kühnel, 

Schulze-Briese, Shoeman, & Schlichting, 2007). This is due to the abundance of 

metalloprotein redox centres involved in electron transfer processes (e.g. 

cytochromes, iron−sulphur cluster proteins, and cupredoxins), with the whole range 

of reduction potentials in biology represented (Liu et al., 2014). 

 

Radiation damage to crystalline biological samples exposed to an X-ray source is 

thought to depend on many factors however, including the beam flux, flux density, 

energy, size and profile, the cryocooling regime, and the physical and chemical 

properties of the crystal (Garman & Owen, 2006) (fig. 1.5). In all cases, radiation 

damage can lead to a loss of structural resolution and lead to a lower quality dataset, 

hindering the interpretation of the studied protein.  

 

X-ray dose is affected by many of the parameters shown in figure 1.5. The dose of X-

rays absorbed by a crystal is the energy deposited per unit mass of the sample, and 

quantified in SI units of Gray (Gy; 1Gy = 1J/Kg -1), with dose measurements in MX 

generally of the order of a million Gray (1 MGy) (Garman, 2010; Paithankar & Garman, 

2010). The software program RADDOSE-3D allows the macroscopic modelling of an X-

ray diffraction experiment for the purpose of better predicting radiation-damage  
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Figure 1.4. Schematic for the decomposition of water leading to the formation of 

electrons 
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Figure 1.5. Schematic representation of the parameters believed to be relevant to radiation damage progression. 

 

  



 30 

progression, providing a one-dimensional model of absorbed dose in a 

macromolecular crystal (Paithankar & Garman, 2010; Zeldin et al., 2013). It is possible 

to run RADDOSE-3D via an online server (www.raddo.se), by inputting crystal 

parameteters such as shape, dimensions, unit cell, number of monomers, heavy atom 

content, and solvent fraction; beam parameters such as profile, flux, size, energy, and 

collimation; and rotation parameters such as rotation wedge, and exposure time. 

Running this provides an estimate of a crystals diffraction weighted dose, the average 

dose in the diffracting crystal volume from which scattering has occurred (Zeldin et 

al., 2013). 

 

1.1.2. Limiting radiation damage 

With the aim of reducing radiation damage to crystalline proteins, data collection 

methods have been developed in order to minimise the absorbed dose during 

structure determination, extending the possibility of collecting data from radiation 

sensitive crystals. An example of this is utilising ‘helical scan’ procedures, where start 

and end points are defined on a crystal, and a single data set is collected as the crystal 

translates through beam in a helical fashion, so as to move fresh sample into the beam 

(Flot et al., 2010). The most frequent technique employed to limit radiation damage 

however is the use of liquid nitrogen to cryocool protein crystals. Cryocooled crystals 

are then held in a nitrogen stream when X-ray data are being collected; by holding the 

sample at ~100 K the mobility of free radicals produced by ionising absorption events 

caused by exposure to ionising radiation is significantly reduced (Garman & Owen, 

2006; Nave & Garman, 2005). This results in a longer dose-lifetime of the crystal 

compared to that at room temperature (RT), allowing higher resolution data 
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collection, however electrons are still mobile meaning site specific damage, and in 

particular the reduction of metal centres, is still apparent at 100 K. Typically 

cryoprotectants such as small polyols, alcohols, sugars, polyethylene glycols, and 

inorganic salts (list not exhaustive, see Pflugrath, 2015, for a summary of common 

cryoprotectants) are commonly used to prevent the development of ice crystals in the 

cooled crystal (Pflugrath, 2015).  

 

Rather than forming crystalline ice when cooled, cryopreserved solutions vitrify into 

clear, super-cooled glasses, without damaging the protein crystal. In crystallo and in 

solution protein and solvent dynamics show a ‘dynamical transition’ occurring ~200 

K, believed to reflect the coupling of protein and solvent in a glass transition (Ringe & 

Petsko, 2003; Weik et al., 2001). Interestingly, the radiation sensitivity of protein 

crystals shows a clear shift in behaviour near ~200 K, with Warkentin and Thorne 

demonstrating in 2009 the increase in unit cell volume and Wilson B factor in 

thaumatin crystals occurs more rapidly when held in a cryostream above ~200 K, than 

identical crystals held below ~200 K (Warkentin & Thorne, 2009). 

 

1.1.3. Room temperature vs cryo  

The reluctance of the MX community to collect data from crystals at room 

temperature due to increased rates of radiation damage is well warranted, with the 

decrease in crystal lifetime at RT around two orders of magnitude compared to 

protein crystals held at cryogenic temperatures (Garman, 2010; Nave & Garman, 

2005). RT data collection introduces advantages, with simple methods based 

advantages such as eliminating the need to search for cryo-conditions which can be 
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time and sample intensive (Heymann et al., 2014). More importantly, flash-cooling of 

crystals has been seen to decrease the heterogeneity of the conformational ensemble 

also, therefore hiding the identification and interpretation of important functional 

mechanisms; Fraser et al., 2011, demonstrate in two separate proteins cyclophilin A 

(CypA) and H-Ras that the reduction in thermal motion associated with cryo-cooling 

restricts coupled motions in flexible regions otherwise detected by nuclear magnetic 

resonance (NMR) studies of the same proteins in solution (Fraser et al., 2011). 

 

This has been shown further by the collection of datasets across multiple 

temperatures; Keedy et al, 2015, present the collection of eight synchrotron datasets 

spanning 100-310K on the CypA protein, with multi-conformer models showing some 

alternative conformations in the active site network populated at only 240K and 

above, yet other alternative conformations populated 180K and below (Keedy et al., 

2015). This was deduced to be due to an exchange between rotamer states of a large 

aromatic ring that resides in the middle of the dynamic active-site network 

subsequently causing a shift in the conformational ensemble of associated network 

residues (Keedy et al., 2015), insight only identifiable by collecting at temperatures 

above 100 K. 

 

1.2. Data collection methods to assess and reduce radiation damage 

Even though the diffusion rate of X-ray generated free radical species is reduced 

significantly at low temperatures, the susceptibility of metal redox states and ligand 

binding to site specific damage means the solution of low dose structures from 

metalloprotein crystals is a particularly challenging endeavour. As this can impact the 
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interpretation of metalloprotein crystal structures, different data collection methods 

can be used to investigate structural questions such as the influence of X-ray dose on 

ligand binding, the difference between structural characteristics at room temperature 

versus 100K, and the prevalence of secondary radiation damage effects. This can be 

achieved by collecting single or multiple diffraction images from multiple crystals in a 

serial fashion (i.e. one crystal after another), therefore allowing the researcher to 

form composite datasets using desired parameters such as time and/or accumulated 

dose on crystals typically held at room temperature. 

 

1.2.1. Synchrotron methods 

Multiple structures from one crystal (MSOX), proposed and developed by Horrell et 

al. in 2016, presents the collection of a large number of serial datasets at near atomic 

resolution from the same X-ray exposed region of a single large crystal (Horrell et al., 

2016). This methodology allows a series of dose-dependent structures to be collected 

via the progressive addition of X-ray generated solvated electrons to the crystalline 

protein, enabling a “structural movie” of catalysis to be achieved. A major advantage 

of this is the ability to view the transition of structural states as radiolysis drives the 

enzyme from one state to the next, as opposed to the collection of single datasets 

that represent an average of the protein state over a particular dose/time, entirely 

missing subtle changes or classing them as insignificant. 

 

It also is possible to compile a dataset from multiple protein crystals at synchrotron 

sources, by merging small degree wedges of data to form composite datasets. This 

remains one of the best approaches to measure structures that are susceptible to 
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redox reactions (particularly when combined with single-crystal spectroscopy to 

analyse the redox state), as the X-ray dose individual protein crystals are exposed to 

is greatly reduced. This technique has been demonstrated frequently: Meharenna et 

al. (2010) utilised a composite data collection strategy using synchrotron radiation, 

allowing the Fe-O bond length in the ferryl intermediate species of cytochrome c to 

be determined as a function of dose, a critically important intermediate in heme 

metalloenzymes (Meharenna, Doukov, Li, Soltis, & Poulos, 2010). Beitlich et al. (2007) 

examined cryoradiolytic reduction on multiple crystalline heme proteins via on-line 

UV-vis spectrophotometry and X-ray crystallography. They reported that the dose 

required for photoreduction from ferric (Fe3+) to ferrous (Fe2+) iron in myoglobin and 

chloroperoxidase was accumulated within <0.5 MGy, even though they differ 

significantly in amino acid structure, reduction potential, and active site chemistry 

(Beitlich et al., 2007). By measuring the UV-vis spectra of a crystal during a composite 

data collection, it was possible to assess the damage caused by the X-ray beam to the 

chromophore of dose limited single crystals.  

 

Other methods are also available at synchrotrons that can be used alongside X-ray 

crystallography for the purpose of accurate measurement of bond length. These 

include nuclear magnetic resonance (NMR) and Raman spectroscopy, to name a few, 

used to identify values of molecular bond lengths and angles with varied precision 

(Hardcastle & Wachs, 1991; Yannoni et al., 1991). X-ray absorption spectroscopy 

methods are also commonly utilised, including X-ray absorption near edge structure 

(XANES) and extended X-ray absorption fine structure (EXAFS), with the latter reliable 

within an error limit of 0.02 Å (Bianconi et al., 1983; Hennig et al., 2001). 
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1.2.2. Serial femtosecond crystallography 

The aforementioned techniques utilise single large crystals, and therefore have only 

required classical single crystal delivery methods that encompass a looped crystal on 

a goniometer. However, the advent of X-ray Free Electron Lasers (XFELs) in order to 

collect damage free crystallographic data has advanced sample delivery methods to 

accommodate a large number of very small microcrystals (<30 µm). XFELs are linear 

accelerator-based X-ray sources (fig. 1.6), producing X-ray pulses nine orders of 

magnitude more brilliant than synchrotron sources (Schlichting, 2015). When the X-

ray pulse interacts with the crystal providing a diffraction pattern, the transferred 

energy destroys the crystal by Coulomb explosion. Provided the pulse length is short 

enough, damage caused by chemically reactive species, one of the main causes of 

radiation damage at synchrotron sources, is mitigated at XFELs as the XFEL pulse 

terminates before these molecules are created (Chapman, Caleman, & Timneanu, 

2014; Nass, 2019). This has been coined ‘diffraction before destruction’ (Neutze et al., 

2000). As crystals are destroyed by an XFEL pulse, many thousands of randomly 

orientated crystals need to be serially presented to the beam in order to collect 

enough single diffraction patterns to completely sample reciprocal space, a technique 

known as serial femtosecond crystallography (SFX) (Schlichting, 2015). 

 



 36 

 

 

Figure 1.6. SACLA XFEL, Hyogo, Japan 

The linear accelerator at the SACLA XFEL next to the Spring-8 synchrotron, with the XFEL experimental hutch located in the building at the tip of the 

arrow depicting the X-ray direction. 
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SFX data is highly sought after as it is ‘damage free’ and on an extremely fast time 

scale, opening the possibilities for time resolved experiments alongside the main 

advantage of obtaining structures free of the effects of site-specific damage, provided 

the pulse length is short enough. Tens of femtosecond pulses are necessary for this 

as signatures of radiation damage are observable on crystals exposed to pulses as 

short as 70 fs; a systematic decrease in the intensity of high-resolution reflections is 

apparent for pulse lengths longer than 100 fs, with indications of damage apparent at 

70 fs, due to the presence of a steeper decrease in resolution for high intensity 

diffraction patterns compared to low intensity diffraction patterns (Lomb et al., 2011; 

Nass, 2019).  

 

1.2.3. Multi-crystal delivery methods 

The destructive nature of an XFEL source has led to the development of many sample 

delivery methods tailored to accommodate serial crystallography on XFELs. SFX 

demands that crystals are physically undamaged by sample delivery, whilst being 

large enough to diffract to a high resolution, produced in a large quantity, and 

sufficiently isomorphous and randomly oriented to allow merging of diffraction 

frames and assemble a complete sampling of reciprocal space (Heymann et al., 2014). 

One of the most widely used serial delivery methods are liquid jet or gas dynamic 

virtual nozzle (GDVN) technology (DePonte et al., 2009), where crystals are streamed 

through the X-ray beam via a narrow jet of liquid (Schlichting, 2015) (fig. 1.7). This has 

been a successful technique to collect SFX data, with a wide array of studies 

demonstrating this method at XFELs across the world (Aquila et al., 2012; Gisriel et 

al., 2019; Johansson et al., 2012).   
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Figure 1.7. Liquid jet sample delivery  

Schematic representation of liquid jet GDVN data collection. 
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A major disadvantage of GDVN however is that due to running the jet continuously at 

high speed (10 m s-1, displacing 10-30 µl min-1) much of the sample is wasted as it does 

not intersect the XFEL beam. Methods such as High Viscosity Extrusion jets (also 

known as “toothpaste jets”), where crystals within a highly viscous media such a lipid 

cubic phase (LCP) (Weierstall et al., 2014) or hyaluronic acid (Sugahara et al., 2016), 

are jetted through a stream through X-rays aim to combat rapid sample depletion. 

The higher viscosity of the media means that the jets can be run slower than a typical 

GDVN experiment, with typical flow rates between 1-300 nl min-1 (Weierstall et al., 

2014).  

 

Although originally developed for XFEL data collection, toothpaste jets have also been 

used at synchrotron beamlines; Nogly et al. demonstrate a synchrotron adaptation of 

SFX, coined serial millisecond crystallography or serial synchrotron crystallography 

(SMX or SSX), solving the structure of the light-driven proton-pump bacteriorhodopsin 

to a resolution of 2.4 Å at a synchrotron microfocus beamline, using this method 

(Nogly et al., 2015). Toothpaste jets are amenable to synchrotrons as the jet running 

more slowly than typical GDVN extruders allows the sample to be in the beam for long 

enough for a diffraction pattern to be obtained. 

 

Crystals can also be presented to the XFEL beam on solid supports, known as fixed 

targets or ‘chips’ (fig. 1.10). This method exploits high density sample grids that allow 

an X-ray beam to raster across many tens of thousands of fixed target positions that 

contain protein crystals, in order to produce a full dataset from a combination of 

thousands of single diffraction patterns. This method has been demonstrated widely   
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Figure 1.8 Fixed target ‘chip’ sample delivery method  

Schematic of a typical chip, comprising 8 x 8 compartments (a.) with a further 12 x 12 

apertures per compartment (b.). Typical chip loading procedure (c., d., e.), whereby a 

microcrystal solution is drawn through channels, allowing microcrystals to rest in the features 

and excess crystal solution removed via the bottom plate. (g.) Image of an ‘Oxford’ chip.  

g. 
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on XFELs using SFX (Frank et al., 2014; Hunter et al., 2014; Schlichting, 2015; Zarrine-

Afsar et al., 2012), however shows great promise for the development of microfocus 

synchrotron radiation techniques, and has been demonstrated numerous times 

(Baxter et al., 2016; Huang et al., 2015; Oghbaey et al., 2016; Owen et al., 2016). 

Murray et al. (2015) used hen egg-white lysozyme microcrystals of a 10-15 µm size 

range loaded into a chip-based support system, yielding a complete, high-resolution 

(<1.6 Å) dataset from a microfocus synchrotron beamline (Murray et al., 2015). 

 

1.3. Metalloproteins of interest 

In order to examine radiation damage effects and develop crystallographic methods, 

suitable target metalloproteins and metalloprotein-ligand complexes that exhibit 

unambiguous signs of secondary site-specific radiation damage effects are required. 

Metalloproteins, a generic term for a protein that contains a metal ion cofactor, are 

extremely numerous in occurrence, with an estimated 25 – 50 % of all proteins found 

within organisms containing metal ions (Waldron et al., 2009), and 22 % of protein 

structures in the protein data bank (PDB) containing biologically relevant transition 

metals or metallo-cofactors. Metals that are incorporated within enzymes can 

significantly expand their catalytic repertoire: heme containing proteins have diverse 

functions including oxygen transport and catalysis, as well as enabling electron 

transport (Colpa, Fraaije, & Van Bloois, 2014; M. Davies, Hawkins, Pattison, & Rees, 

2008; Meharenna et al., 2010; Yasushi Sugano, Muramatsu, Ichiyanagi, Sato, & Shoda, 

2007). Copper is also important in metalloproteins, as it is utilised in electron 

transport and oxidation-reduction reactions (Solomon, 1993; Solomon, Sundaram, & 

Machonkin, 1996). A copper protein that binds nitrite and a heme peroxidase were 
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therefore targeted for study in this PhD thesis, due to their useful characteristics and 

applications, and importantly, their susceptibility toward radiation damage effects. 

 

1.3.1. Achromobacter cycloclastes nitrite reductase 

Copper nitrite reductase (CuNiR) catalyses the reduction of nitrite (NO2-) to nitric 

oxide (NO), in the microbial respiratory N-oxide reduction denitrification pathway, a 

process widely studied due to its agronomic and environmental impacts (Hajdu et al., 

2000; Horrell et al., 2016; Hough et al., 2008; Murphy, Turley, & Adman, 1997; Nakano 

et al., 2012; Smith et al., 2012). Nitric oxide, generated by CuNiRs, is converted by 

nitric oxide reductases (NORs) into N2O, which has increased by roughly 20 percent in 

the atmosphere since the 1850s, with the primary driver of the increase being the 

enhanced microbial production of N2O in ever expanding fertilised agricultural lands 

(Smith et al., 2012). N2O has a 100-year global warming potential 296 times larger 

than an equal mass of CO2 (Ehhalt, Prather, & Dentener, 2001), and is therefore a 

powerful greenhouse gas that is increasingly being recognised as a major player in 

climate change.   

 

CuNiR is found as a homotrimer in its biological assembly (fig. 1.9a), with each 

monomer of CuNiR containing a type 1 Cu centre (T1Cu), which has a role in electron 

transfer, and a catalytic type 2 copper centre (T2Cu) (fig. 1.9b) ~12.6 Å� apart, the 

copper centres are characterised by a low driving force for electron transfer in the 

absence of nitrite, located close to the surface of the protein. The T1Cu accepts electr-  
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Figure 1.9. Overall and active site structure of AcNiR 

a. Overall structure of AcNiR depicted as the biological assembly, a homotrimer, with subunits 

individually coloured (PDB: 5OFF). b. Distance between type 1 and type 2 copper centres, and 

conserved residues of interest surrounding the T2Cu are shown. 
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ons from its natural donor azurin, transferring them to the T2Cu where nitrite is 

reduced (Horrell et al., 2016; Krzemiński et al., 2011; Kukimoto et al., 1996; Wijma et 

al., 2006).  At the T2Cu nitrite initially binds in a ‘top-hat’ geometry, before orientating 

to a ‘side-on’ geometry. Nitrite is then converted to nitric oxide in a side-on 

orientation, before a final resting state with a bound water which can then convert to 

a ‘dead-end’ state with nothing bound (Krzemiński et al., 2011; Horrell et al., 2016) 

(fig. 1.10).  

 

Furthermore, as previously mentioned, MSOX was developed and utilised by Horrell 

et al. to study and further distinguish the catalytic mechanism of the CuNiR from 

Achromobacter cycloclastes (AcNiR). This was achieved by measuring a series of 45 

consecutive serial datasets from the same AcNiR crystal held at 100 K with a nitrite 

ligand bound to the T2Cu site, enabling X-ray driven catalysis to be followed and 

reaction intermediates to be defined (Horrell et al., 2016) .It was therefore possible 

to determine ligand turnover in AcNiR at 100 K, with dual occupancy top-hat nitrite 

converted to single occupancy side-on nitrite after 2.76 MGy, single occupancy side-

on nitric oxide after 11.73 MGy exposure, and a single water molecule after 27.6 MGy 

of exposure. This was elaborated upon in 2018 via the collection of 190 K and RT 

MSOX series, identifying nitrite to nitric oxide conversion after 4.89 MGy at 190 K, and 

only 0.18 MGy at RT, while the dead end branch was achieved after 21.65 MGy and 

0.30 MGy at 190 K and RT respectively (fig. 1.11) (Horrell et al., 2018). 
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Figure 1.10. Catalytic mechanism of AcNiR 

The proposed nitrite reductase mechanism determined using a 190 K MSOX series shows the 

resting state active site of AcNiR, followed by top-hat bound nitrite at the T2Cu. Following 

electron transfer a side-on binding mode is apparent of initially nitrite, followed by nitric oxide. 

The dead end state is indicated by a red arrow  (figure adapted with permission from Horrell 

et al., 2018).  
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Figure 1.11. AcNiR ligand conformations at 190 K and room temperature 

MSOX movies capturing the catalytic cycle of AcNiR at 190 K (a.-f.) and room temperature (g.-

n.) indicates the turnover of nitrite to nitric oxide to a final resting state/dead end species of 

AcNiR occurs at much lower dose at room temperature (figure adapted with permission from 

Horrell et al., 2018). 
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1.3.2. DyP-type peroxidase Aa 

Heme peroxidases (peroxidases containing prosthetic heme groups) catalyse the 

oxidation of substrates using hydrogen peroxide (H2O2) as a final electron acceptor, 

and have been thoroughly studied (Sugano et al., 2007; Verdín et al., 2006; 

Wesenberg, Kyriakides, & Agathos, 2003). The dye-decolourising peroxidases (DyPs) 

are new category of heme peroxidases first recognised only two decades ago, when 

DyPDec1 was isolated from the fungus Thenetephorus cucumeris Dec1 for their ability 

to degrade a class of commercial dyes that are widely used by the textile industry 

(known as anthraquinones) (Kim & Shoda, 1999; Roberts et al., 2011). The crystal 

structures of DyP family metalloproteins reveal a two domain structure with a 

ferredoxin-like fold, and a penta-coordinated heme iron with a conserved histidine 

ligand (Zubieta et al., 2007) (fig. 1.12), with an aspartic acid (Asp171) conserved in DyP 

proteins is proposed as the replacement for the catalytic histidine used by plant 

peroxidases as a proton donor/acceptor (Sugano et al., 2007). 

In 2007, Sugano et al. recognized DyPs not considered members of the plant or animal 

peroxidase superfamilies, due to their specific primary and tertiary structures and 

unique reaction characteristics, known as the dye-decolourising peroxidase-type 

(DyP-type) peroxidase family (Sugano, 2009; Sugano et al., 2007). The most 

comprehensive overview of the DyP-type peroxidase (Dtp) family can be found on the 

InterPro database (https://www.ebi.ac.uk/interpro/), this details how this 

superfamily comprises over 5000 enzymes, of which nearly all 5000 are found in 

bacteria, with over 100 found in eukaryotes, and more than 10 in archaea (Colpa et 

al., 2014).  
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Figure 1.12. Overall and active site structure of DyP DtpA 

(a.) Overall view of the dimer found in the asymmetric unit of DtpA, coloured by secondary 

structure (helix, blue; sheet, purple; loop, pink), with heme sites highlighted in green (PDB: 

5MAP). (b.) Active site of ‘pure’ (oxygen only) oxy-ferrous species of DtpA, with proximal 

His353, and conserved residues Asp251 and arg369 shown. Electron density contoured at 1s.   
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Only a few DyP-type peroxidases of fungal and bacterial derivation have had their 

biochemical properties investigated thus far, though all characterised proteins 

feature a non-covalently bound heme (proto heme IX) as a cofactor (Colpa et al., 2014; 

Li et al., 2012; Sturm et al., 2006; Van Bloois et al., 2010; Zubieta, Joseph, et al., 2007; 

Zubieta, Krishna, et al., 2007).  Potential long range electron transfer between the 

heme cofactor and enzyme surface has been suggested, due to the fact the DyP-type 

peroxidases possess the ability to oxidise substrates that are too large to fit in the 

active site (Roberts et al., 2011). 

 

Peroxidases react via a two-electron redox reaction, reducing H2O2 to H2O and 

oxidising the enzyme via an iron-oxo intermediate (fig. 1.13) (Nelson et al., 1994; 

Zubieta, Krishna, et al., 2007). Metal sites in heme peroxidases can be affected X-ray 

generated photoelectrons, due to the sensitivity of the oxidase and peroxidase cycles 

to electrons (outlined in figure 1.13). Subsequently, this has led to redox and ligand 

state changes when collecting crystallographic data on peroxidases, even at 100 K 

(Kekilli et al., 2014, 2017). The X-ray generated photoreduction of a Dtp from S. 

lividans known as DtpA has been studied previously, using in situ single-crystal 

spectroscopy and diffraction, identifying complete reduction of the ferric heme after 

only 14.6 kGy (Kekilli et al., 2017). A homologue of DtpA known as DtpAa has also 

been identified in Streptomyces lividans as one of the three genes encoding for DyPs 

(the third, DtpB is cytoplasmic, while DtpA and DtpAa are extracytoplasmic), with 

DtpAa identified to have a 100-fold slower compound I formation than DtpA (Lučić et 

al., 2020).  
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Figure 1.13. The oxidase/peroxidase cycle of heme peroxidases  

Schematic representation of H2O2 production (oxidase cycle) and H2O2 scavenging (peroxidase 

cycle) by peroxidases. In a peroxidases ground state H2O2 scavenging is performed, 

transferring an oxygen atom from H2O2 to the heme group to form compound I. to return to 

the ground state they need to react with an electron donor (substrate) to form compound II, 

and then after a second reaction with an electron donor to return to its ground state. In the 

presence of a strong electron donor the ferrous state enzyme can be formed. After reacting 

with oxygen compound III can be formed. Compound III can also be formed from compound II 

if H2O2 is present in a high enough concentration. The reaction of compound III with an 

electron donor allows the formation of H2O2, returning the peroxidase to its ground state 

(Berglund et al., 2002; O’Brien, Daudi, Butt, & Bolwell, 2012).  
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Interestingly, the reduction of the ferric heme in peroxidases is associated with a 

linear increase in the Fe-O bond length of a water molecule bound to the Fe atom of 

the heme: Chreifi et al. utilised a comparative study between synchrotron and XFEL 

structures of a cytochrome c peroxidase; this was utilised to identify the increase in 

Fe-O bond length, with a damage free bond length of 1.7 Å, and a 0.53 MGy bond 

length of 1.9 Å collected at 65 K in (Chreifi et al., 2016; Meharenna et al., 2010). This 

bond length increase can therefore be used to identify and track the onset and 

progression of radiation damage in peroxidases. 

 

1.4. Aims 

The aims of this PhD project focus on the development of fixed-target methods that 

aim to reduce, track, and exploit radiation damage, with an emphasis on radiation 

sensitive proteins and obtaining damage free structures. Two proteins, AcNiR and 

DtpAa, introduced in this review are the targets and these were used in the 

development of microcrystal methods that encompass serial synchrotron 

crystallography, serial femtosecond crystallography, microspectrophotometry, and 

advanced data processing techniques.  
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Chapter 2: Crystallographic theory 

X-ray crystallography is (as of 2020) the primary technique for the determination of 

the three-dimensional atomic arrangement of macromolecules, as the diffraction of 

X-rays from a crystal of identical molecules arranged in a repeating lattice makes it 

possible to view atomic level structures that cannot be seen by visible light (400 – 700 

nm) (Rupp, 2009). The understanding of the theory behind the technique is therefore 

paramount. The principles of X-ray diffraction are covered extensively in a number of 

textbooks, and will be discussed in brief here, utilising the textbooks ‘Crystallography 

Made Crystal Clear’, Gale Rhodes, 2006, and ‘Biomolecular Crystallography: 

Principles, Practice, and Application to Structural Biology’, Bernhard Rupp, 2009 

(Rhodes, 2006; Rupp, 2009).  

 

2.1. Macromolecular crystallisation 

In order to perform the crystallographic experiment, a researcher first needs to grow 

a protein crystal. Macromolecular crystal formation occurs in two stages; nucleation 

and growth, via controlled precipitation of proteins from an aqueous solution of a 

specific pH, that does not denature the protein. Purified, concentrated protein 

solution is combined with an equal or similar volume of buffer system (mother liquor). 

This volume is enclosed in a sealed environment, with an adjacent reservoir of mother 

liquor at a higher concentration and left to equilibrate via vapour diffusion, causing 

the protein to become supersaturated and precipitate in solution, instigating 

nucleation of the macromolecules and then growth of the protein crystal (fig. 2.1a). 

When large numbers of small crystals are required however batch crystallisation is 
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utilised, whereby protein is combined rapidly with the buffer system, creating a 

supersaturated solution of protein that instigates the nucleation zone immediately 

upon mixing producing many crystals at once (fig. 2.1b). Typically, this is performed 

on smaller volumes of protein/buffer mixtures and scaled up to satisfy crystal 

intensive experiments. 

 

2.2. Crystal properties 

A crystal is made up from many repeating asymmetric units; where an asymmetric 

unit contains a representation of the macromolecular molecule with no 

crystallographic symmetry elements. This is known as the unit cell (though can contain 

>1 asymmetric unit). Unit cells pack beside and on top of one another, though are not 

perfectly ordered, and stack in rough alignment with one another, known as the 

mosaicity of a crystal. The unit cell parameters are designated by six numbers: the 

lengths of the three cell edges a, b, and c; and their internal angles α, β, and γ, where 

the angle between a and b is γ, b and c is α, and the angle between c and a is β (fig. 

2.2). 

 

How unit cells stack in specific symmetrical conformations determined by the space 

group, calculated from combinations of the 32 crystallographic point groups and the 

14 possible Bravais lattices, meaning 230 possible space groups exist in 

crystallography. The geometric conformation of the unit cell exists in 7 conformations, 

known as crystal systems; cubic (a = b = c, α = β = γ = 90°), tetragonal (a = b ¹ c, α = β 

= γ = 90°), orthorhombic (a ¹ b ¹ c, α = β = γ = 90°), rhombohedral (a = b = c, α = β = γ 

¹ 90°), hexagonal (a = b ¹ c, α = β = 90° γ = 120°), monoclinic (a ¹ b ¹ c, α = γ = 90° β   
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Figure 2.1. Phase diagram of crystallisation trajectories (Beale et al., 2019) 

Protein and reservoir component (variable) concentrations are plotted on the y and x axes. 

The ‘variable’ is any factor which may influence the crystallization experiment, e.g. PEG, salt 

or buffer concentration. The purple lines show the boundary of protein supersaturation. Red 

circles and arrows denote the starting and finishing points of a crystallization experiment; 

precipitation (pink), nucleation (green), metastable (blue), and undersaturated (yellow) zones. 

The blue dotted lines show the theoretical limit of nucleation-zone penetration for non-batch 

methods. (a.) The trajectory of a vapour diffusion experiment: the components of the drop 

must transition from outside to inside the nucleation zone to crystallise. (b.) Batch experiments 

are not bound by the nucleation-zone limit and can theoretically exploit every part of the 

nucleation zone. 

  

a. 

b. 
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Figure 2.2. Unit cell properties of a crystal 

Example of a unit cell of cubic symmetry, with edges a, b, c, angles α, β, γ, and directions x, y, 

and z denoted.  
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¹ 90°), and triclinic (a ¹ b ¹ c, α ¹ β ¹ γ ¹ 90°) (fig. 2.3). It is possible to draw an infinite 

number of equivalent parallel planes through these lattice points, as they can all be 

thought of as potential sources of diffraction. Furthermore, each plane can be 

designated a set of three indices, known as Miller indices. The three Miller indices hkl 

define the number of times a plane passes through a unit cell edge in a specific 

direction x, y, or z as coordinates.  

 

2.2. Bragg’s law 

When X-rays encounter electrons, they scatter in all directions. When X-rays scatter 

from different electrons and subsequently travel different distances, they will differ 

in their relative phases and there will be interference as they add up. We must 

calculate how far apart the planes must be for the difference in pathlength to be equal 

to the wavelength of the incoming radiation, so that the scattered rays from the two 

planes would again be in phase.  

 

By quantifying the angle of incidence (θ), using Bragg’s law it is possible to calculate 

the difference in path length. For a set of planes with interplanar spacing dhkl, a 

diffracted beam is produced when X-rays of a specific wavelength (λ) act on the planes 

at angle θ. They are then reflected at the same angle which can be demonstrated 

when θ meets the condition:  

2"#$%&'() = (+���

Equation 2.1 
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 System 
Unit-cell 

dimensions 
(Å) 

Unit-cell angles 
(°) 

Characteristic symmetry 

A Cubic a = b = c a = b = g = 90 Four threefold axes 
B Tetragonal a = b ¹ c a = b = g = 90 One fourfold axis 

C Orthorhombic a ¹ b ¹ c a = b = g = 90 
Three perpendicular 
twofold axes or/and 

mirrors 

D Trigonal a = b ¹ c 
a = b = 90, g = 

120 
One threefold axis 

  a = b = c a = b = g ¹ 90  

E Hexagonal a = b ¹ c 
a = b = 90, g = 

120 
One sixfold axis 

F Monoclinic a ¹ b ¹ c 
a = g = 90, b ¹ 

90 
Single twofold axis 

or/and mirror 

G Triclinic a ¹ b ¹ c a ¹ b ¹ g ¹ 90 
Only inversion centre 

possible 
 

Figure 2.3. Crystallographic systems of symmetry 
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Where this condition is apparent with n as an integer of the path length of the wave, 

intense spots of reflected radiation formulate a diffraction pattern (fig. 2.4). When X-

rays scattered from adjacent Bragg planes combine, this is known as constructive 

interference. 

 

2.3. The Ewald sphere 

A geometric construction known as the Ewald sphere helps visualise which Bragg 

planes are in the correct orientation to diffract. X-rays passing through a crystal lattice 

(the real space lattice) can diffract in any direction in three dimensions. This means X-

ray diffracted from the real space lattice residing at the centre of a sphere with a 

radius of 1/λ, known as the crystal origin (0, 0, 0), can exit anywhere at the surface of 

that sphere, the reciprocal lattice origin (fig. 2.5). 

 

Wherever a reciprocal lattice point intersects with the Ewald sphere, the diffraction 

condition has been fulfilled; by rotating the crystal along its axes further reciprocal 

lattice points intersect the Ewald sphere, due to the rotation of the reciprocal lattice. 

As diffraction from a crystal is confined to points on the reciprocal lattice, rotating the 

crystal allows the measurement of a complete diffraction dataset. 

2.4. Structure factors 

A single diffracted X-ray can be described as a structure factor ,#$%, consisting of the 

three terms; frequency, amplitude, and phase. By writing ,#$% as a sum of the 

contributions of each unit cell volume (.), and making . infinitely small in order to 

precisely equal the correct values of 0(1, 3, 4), the structure factor at this point in  
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Figure 2.4. Bragg’s law 

In a crystalline solid, two beams of equal phase and wavelength can reflect at the same angle, 

combining into a constructive wave, causing high intensity diffraction. The lower wave must 

travel 2dhkl sin q to be in phase with the top beam as BC = AB sin q = dhkl sin q. If the difference 

in path length for beams reflected from two successive planes (2dhkl sin q) is equal to an integer 

of the wavelength of the beam (nl), then constructive interference will occur.  
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Figure 2.5.The Ewald Sphere 

By rotating the crystal, different points of the reciprocal lattice will fulfil the diffraction 

condition set out by Bragg’s law, resulting in constructive interference. 
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reciprocal space can accurately be described by: 

,#$% = 	∫ 0(1, 3, 4)
	

7
89:;	(#<=$>=%?)".. 

Equation 2.2 

 

2.5. Fourier transform 

In order to calculate atomic distributions via these scattered X-rays however, the 

experimentally produced reciprocal lattice data must be converted into real space 

inside the unit cell. This is achieved using a Fourier transform operation, expressing 

electron density at any point 0(1, 3, 4) in the unit cell as the sum of a sine wave: 

0(1, 3, 4) = 	
@

7
∑ ∑ ∑ ,#$%8

B9:;(#<=$>=%?)
%$# . 

Equation 2.3 

This equation represents a simple three-dimensional wave whereby the frequency	ℎ 

in the x-direction, D in the y-direction, and E in the z-direction, has amplitude ,#$%, 

implying the phase α#$%  of the three-dimensional wave.  

 

2.6. Data reduction 

Crystallographic data reduction first involves the indexing of reflections on diffraction 

images, as to assign Miller indices (ℎ, D, E) and accurately determine the crystal and 

experimental geometry. These indexed images are then integrated, whereby 

reflection intensities, G, and background value, H(G), are determined. Individual 

integrated images are then scaled, which involves inferring the structure factor from 

the measured intensity of a reflection by putting the measured intensities on the 

same scale; this is achieved by making the data internally consistent by adjusting the 
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scaling model to minimise the difference between symmetry-related observations, 

producing an estimate of the intensity of each unique reflection, an estimate of the 

error, and an estimate of the structure amplitude (Evans, 2011). The data are finally 

merged into a single dataset. Programmes used for data reduction in this thesis will 

be discussed individually in both the methods and their respective chapters. 

 

2.7. Data quality 

A number of data quality metrics are utilised in crystallographic data reduction in 

order to assess data quality at indexing, integration, scaling, merging and refinement 

stages. This allows the experimenter to define at what point measured data fails to 

yield any usable information and make informed decisions about the quality or 

potential anomalies within their data. Publications reviewing data metrics used to 

measure the quality of experimental diffraction are numerous (Evans, 2011; Evans & 

Murshudov, 2013; Karplus & Diederichs, 2012; Wlodawer et al., 2013), therefore will 

be covered in brief.  

 

The average signal-to-noise ratio, G/H(G), is the intensity of a given reflection, and can 

be used to define the resolution limit of diffraction when G/H(G) decreases to a value 

of 2.0. Improving G/H(G) is complemented by a high data redundancy (multiplicity) of 

measurements, improving the quality of the merged dataset by increasing the 

number of measured intensities and estimated uncertainties.  

 

Rsplit measures the agreement between sets of intensities by merging odd- and even-

numbered patterns from the overall dataset, 



 64 

JKL%;M =
@

9N/O
∑|	QRSRTBQUVV|
N

O
∑(QRSRT=QUVV)

, 

Equation 2.4 

 

Rmerge values measure the spread of n independent measurements of the intensity of 

a reflection, G;(ℎDE), around their mean G(̅ℎDE),  

JXYZ[Y =
∑ ∑ 	|	Q\(#$%)BQ\̅(#$%)|

T
\]N 	^_`

∑ ∑ Q\̅(#$%)
T
\]N^_`

, 

Equation 2.5 

reporting on the agreement between multiple measurements of a given reflection. 

Rmerge has subsequently been corrected to be independent of multiplicity, known as 

Rmeas, allowing a reliable report on the consistency of individual measurements by 

adjusting by a factor of a b

bB@
. 

 

Pearson’s correlation coefficients (CC) are also often used for the estimation of 

resolution limit and data quality, with CC1/2 one of the most common; this metric is 

calculated by separating unmerged data into two randomly selected half sets of 

unique reflections, and calculating the correlation coefficient between the two data 

sets, with CC1/2 values ranging from 1 for perfect data, to 0 for highly imprecise data. 

The advantage of this is that CC1/2 provides a model-free, empirical measure of the 

level of discernible signal calculated within each resolution shell with, for good quality 

values close to 1 observed at low resolution, dropping smoothly to 0 as the 

measurable signal decreases at higher resolution. This behaviour is advantageous as 
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deviations in this smooth decrease can be an indicator of an irregularity in the data 

(Karplus & Diederichs, 2012).  

 

The standard indicator for assessing the agreement between a refined model and the 

measured data is the crystallographic R value, defined as: 

J =
∑ 	|c	Ude(#$%)Bc	fg`f(#$%)|^_`

∑ c	Ude(#$%)^_`
, 

Equation 2.6 

with ,	hiK(ℎDE) and ,	jk%j(ℎDE) being the observed and calculated structure factor 

amplitudes, respectively (Karplus & Diederichs, 2012). R can be 0.0 for perfect 

agreement and near 0.59 for a random model, with Rfree a cross validated R based on 

a small subset of reflections not used during refinement, and Rwork the larger 

“working” set of reflections used during refinement, with values Rfree and Rwork values 

of < 0.20 typical in high resolution, high quality refined structures. Further parameters 

of interest in refinement are B-factors (also referred to as temperature factors), as 

they are isotropic approximations of the mobility in space for each atom. B-factors 

are isotropic approximations expressed in Å2, and range from ~2 to ~100 (Wlodawer 

et al., 2013). 

 

2.8. Structure refinement 

After the initial process of phasing (experimental or otherwise) and model building, 

the protein model typically contains many imperfections. In order to improve the 

phases and the interpretation of the electron density map, refinement methods that 

incorporate multiple ‘rounds’ of rebuilding and refinement are typically required. 
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Atomic coordinates are adjusted statistically in order to fit the diffraction data better; 

Rwork is used as a measurement of how the calculated amplitudes fit the observed 

amplitudes, and Rfree used as refinement validation by using a subset of reflections 

excluded from refinement, therefore giving an independent measure of the 

refinement process (Kleywegt & Jones, 1997).  

 

Maximum likelihood, and simulated annealing (SA) refinement are most widely used 

in X-ray crystallography: maximum likelihood refinement adjusts the phases to 

minimise the R value, while SA refinement ‘heats’ the structure to add randomness 

before slowly ‘cooling’ the structure during refinement (Adams et al., 1997). Once a 

round of refinement is completed, any missing atoms, incorrect rotamers, alternate 

conformations etc. are manually corrected, and the refinement protocol repeated. 

Refinement constraints are exact mathematical conditions used in structural 

refinement, whereby one or more parameters are held fixed or determined by the 

value of one or more refined parameters, e.g. fixing of the x, y, and z coordinates of 

an atom on an inversion centre (Bourhis et al., 2015). Refinement restraints can also 

be included, whereby additional information is fixed based on additional observations 

or pseudo-observations besides the observed structure factors, for example fixing the 

standard deviation of a chemical bond (Bourhis et al., 2015).  
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Chapter 3: Materials and methods 

3.1. Protein expression and purification 

3.1.1. AcNiR 

An AcNiR gene, codon optimised for expression in E. coli and cloned into a pet26b 

plasmid was purchased from Genscript previously, and kept in storage at -20 °C at the 

metalloprotein laboratory at the University of Essex. This vector was transformed into 

E. coli BL21 (DE3) cells and used to produce overnight 10 ml pre-cultures (LB medium; 

Thermo Fischer scientific). Pre-cultures were successively used to inoculate 1.5 L of LB 

medium in the presence of 50 µg/ml kanamycin and 2 mM CuSO4 (final 

concentration), and grown at 37 °C, 180 rpm. At an OD600 of 0.4-0.6, cultures were 

induced using 2 mM Isopropyl β-d-1-thiogalactopyranoside (IPTG). Flasks were sealed 

with a sponge bung and tinfoil, and incubated for a further 18 h (overnight) at 18 °C. 

Cells were harvested via centrifugation (10,000 g, 30 min, 4 °C) and the cell pellet 

resuspended in 20 mM Tris/HCl, pH 7.5. The resuspended cell suspension was lysed 

using an EmulsiFlex-C5 cell disrupter (Avestin) followed by centrifugation (18,000g, 20 

min, 4°C). The cleared lysate was loaded into 8000 kDa MWCO dialysis tubing (Thermo 

Fischer Scientific), and dialysed against 5 L 2mM CuSO4, 20 mM Tris pH 7.5 for 2.5 

hours, and further dialysed against 5 L 20 mM Tris pH 7.5 for 18 hours (overnight).  

 

The dialysed supernatant was loaded on a 10 ml DEAE sepharose column (GE 

Healthcare) equilibrated against 20 mM Tris pH 7.5, and eluted by a linear salt 

gradient using buffers of 50 mM NaCl, 20 mM Tris pH 7.5 (buffer A), and 1000 mM 

NaCl, 20 mM Tris pH 7.5 (buffer B), with the AcNiR peak fractions eluting at 
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approximately 30-40 % buffer B. Eluted fractions were run on an SDS PAGE gel to 

judge purity, pooled and concentrated using a Centricon centrifugal concentrator 

(VivaSpin) with a 10 kDa cut-off, at 4 °C. This step was followed by application to a 

disposable PD10 de-salting column in order to remove NaCl that might interfere with 

subsequent purifications. DEAE and PD10 purification/SDS-PAGE steps were then 

repeated. Pooled AcNiR fractions were applied to an S200 Sephadex column (GE 

Healthcare) equilibrated with 20 mM Tris pH 7.5. A major peak eluted consistent with 

fractions assessed by SDS-PAGE. Fractions were pooled, concentrated to 20 mg/ml, 

and stored at −80 °C, with concentrations determined via UV–visible spectroscopy 

(Varian Cary 60 UV–vis spectrophotometer) using an extinction coefficient at 280 nm, 

measured in units of M−1 cm−1. 

 

3.1.2. DtpAa 

Purified DtpAa protein was provided by Dr. Jonathan Worrall of the University of Essex 

in order to perform a collaborative experiment, with the identified expression, 

purification and crystallisation optimisation methods used by their research group 

stated below. As purification of DtpAa was not performed by the author full 

purification details can be found in Ebrahim, Moreno-Chicano, et al., 2019. 

 

3.2. Crystallisation  

3.2.1. AcNiR  

Crystallisation conditions for single crystals of AcNiR are well established via previous 

study (Antonyuk et al., 2005; Horrell et al., 2016), with multiple small AcNiR crystals 

grown in 6 µl drops consisting of 3 µl protein and 3 µl 1.6 M ammonium sulphate, 100 



 69 

mM sodium citrate pH 4.5, via hanging drop vapour diffusion. These small AcNiR 

crystals are used as seeds to produce larger (>50 µm) crystals, via transfer into fresh, 

identical conditions.  

 

In order to complete the planned research for this thesis however, larger volumes of 

crystallisation solution (>150 µl) containing a high concentration of microcrystals are 

required, due to the sample intensive nature of serial crystallography (see section 

1.2). Trials of conditions to produce microcrystal slurries in batch were performed in 

order to elucidate optimal large-scale microcrystal conditions; different ratios of 

protein to buffer, protein concentrations, and crystallisation temperatures were all 

used to optimise batch crystallisation in 2.5 M Ammonium Sulphate, 0.1 M Sodium 

Citrate pH 4.5 (results shown in chapter 4.3.1). 

 

From this point forward, batch microcrystals were prepared by rapidly mixing 20 

mg/ml AcNiR in 20 mM Tris, pH 7.5 with a solution containing 2.5 M ammonium 

sulphate, 0.1 M sodium citrate pH 4.5 buffer, in a ratio of 1:3 and mixed by vortexing 

for 60 seconds. Microcrystals with a diameter of 5-15 µm grew at room temperature 

over a period of 4-6 days. Microcrystal suspensions were centrifuged at 800 rpm for 

30 seconds to sediment crystals, with the crystallisation solution then removed and 

replaced with a storage buffer comprising 1.6 M ammonium sulphate, 0.1 M sodium 

citrate pH 4.5, in order to cease crystallisation. 
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3.2.2. DtpAa  

Optimisation of DtpAa crystallisation conditions was performed by the Worrall and 

Hough groups at the University of Essex, with the material used for data collection in 

this thesis provided as part of a collaborative project. Optimal conditions to produce 

DtpAa microcrystals in a total volume of >500 µl were discovered to be a 1:1 ratio of 

6.5 mg/ml DtpAa protein solution with a precipitant solution containing 20% PEG 

6000, 100 mM HEPES pH 7.0, with crystals growing to typical dimensions of ~15-30 

µm.  

 

3.3. Sample preparation 

3.3.1. Fixed target ‘chips’ 

Silicon wafer fixed targets, referred to as ‘chips’, were used primarily for serial data 

collection from microcrystals in throughout this thesis (fig. 3). Chips of this design, 

known as an ‘Oxford chip’, were developed by Diamond Light Source and 

manufactured by Southampton Nanofabrication Centre at the University of 

Southampton, via an iterative process of chemical etching. Nanofabrication details are 

beyond the scope of this thesis, though are readily available via multiple publications 

(Mueller et al., 2015; Oghbaey et al., 2016; Zarrine-Afsar et al., 2012).  

 

The chip is made out of a single-side polished silicon wafer coated in silicon nitride, 

measuring 30 mm x 30 mm x 550 µm (fig. 3.1a, b, c). The chip contains a high capacity 

layout of funnel shaped apertures, split into 8 x 8 compartments known as ‘city 

blocks’, which each contain 20 x 20 apertures (fig. 3.1c). The nominal capacity of the 

chip is therefore 25,600, with a four-fold symmetry. In order to accurately align the   
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Figure 3.1 Oxford chip schematics. 

 The front (a.) and back (b.) of the silicon nitride chips. (c.) Schematic of the overall size of the 

chip and the locations of ‘city blocks’ of apertures. (d.) Zoomed-in schematic of crystal and 

fiduciary apertures, as well as the distances separating city blocks (800 µm), and individual 

apertures from one another (125 µm) and from the fiduciary marker (400 µm). All 

measurements are taken from the centre of an aperture to the centre of an aperture.  
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chips to the beam there are fiducial marks 400 µm from the centre of each corner 

aperture (fig. 3.1d). The distance between city blocks is 800 µm, with the distance 

between individual apertures 125 µm (all measurements made from the centre of an 

aperture to the centre of an aperture, see figure 3.1d). Apertures are funnel shaped, 

with the larger end of the funnel opening on the “front” of the chip where the crystals 

are loaded onto, so that they can become lodged in the narrower end of the aperture 

while removing any excess solvent via a weak vacuum from below. 

 

The chip surface was prepared by glow discharge (PELCO easiGlow™ glow discharger) 

in order to make the silicon more hydrophilic; due to the hydrophobic nature of 

silicon, when water is placed on the surface of the chip the water will minimise its 

silicon contact. This results in the crystal solution sitting as large beads on the surface 

of the chip, making it difficult to evenly spread the crystals across its entire surface. 

Glow discharging the chips involves depositing negatively charged ions on the silicon, 

giving a more hydrophilic surface. This is accomplished by placing the chip between a 

cathode and anode in a partially evacuated chamber. When high voltage is applied 

between the cathode and anode the electron potential ionises the gas within the 

chamber, with these negatively charged ions depositing on the chip. Preliminary 

experiments did not involve glow discharging, however since introducing it to the chip 

loading protocol the dispersion of the crystal slurry on the chip surface has improved, 

reducing the volume of crystal slurry required to load a chip, as-well-as improved 

drawing of liquid through the chip apertures.  
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3.3.2. Fixed target loading 

Chips were loaded within a humidity control enclosure (Solo Containment, Cheshire 

UK) (fig. 3.2), kept at >80% humidity using a 2.8L ultrasonic humidifier, in order to 

prevent crystal solutions drying to the chip surface in low humidity. Rubber tubing is 

used to connect a vacuum pump to a pressure gauge and a sample loader block, via a 

conical flask and stopcock. Typically, a microcrystal suspension of 100-200 μl is 

pipetted onto the surface of a glow discharged chip sitting in the sample loading block. 

A weak vacuum was then applied from beneath the chip to draw microcrystals into 

individual apertures and remove excess solvent. Development of sample loading 

procedures used in this thesis can be found in Mueller et al., 2015 and Oghbaey et al., 

2016. 

 

In order to securely hold the chip in place when collecting data, the chip is placed in a 

sample holder (fig. 3.3) and mounted to the stages using a magnetic kinematic mount, 

allowing rapid, tool-free sample exchange. The sample holder is designed by Diamond 

and manufactured by Gatehouse engineering, machined from aluminium. The chip 

holder uses two flat plates with an area slightly larger than the fixed target cut out 

from the centre of top and bottom half (fig. 3.3a, b, c), and the magnetic kinematic 

mount (Thorlabs) located on only the bottom half of the holder. Both halves utilise a 

metal and a rubber O-ring; the metal O-ring is used to clamp mylar film 

(https://www.spexsampleprep.com/) (fig. 3.3 e, f) on either side of the chip holder in 

order to prevent the chip from drying out during data collection, while the smaller 

rubber O-ring is utilised to improve the seal between both halves of the chip holder. 

The halves are held together with magnets and are secured closed using hex key bolts    
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Figure 3.2. Sample loading instruments and environment. 

Sample loading equipment in place at Diamond Light Source, consisting of a vacuum pump 

(a.), glove-box (b.), and humidifier (c.). Within the glove-box vacuum pressure is used to act 

on a chip loaded with crystal slurry held in a sample block (d.) attached to a Büchner flask (e., 

green arrow), via a pressure regulator (f., yellow arrow) attached to a stopcock (g., blue 

arrow). Humid air is pumped into the tent via plastic tubing attached to the humidifier (h.), 

and measured using a hygrometer (i.). Components were held in place using clamp stands (j.). 
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Figure 3.3. Sample holder and chip cleaning components 

Sample holders utilise a metal O-ring (a.) to clamp mylar film onto a top (b.) and bottom (c.) 

half, with the bottom half sporting kinematic mounts (d.) that are used to attach the sample 

holder to the sample stages. The mylar film (6µm [e.] or 3µm [f.]) as well as rubber O-rings 

(white arrows) prevent a crystal-loaded chip in a sample holder closed with hex bolts (g.) from 

quickly drying out. Chips were cleaned using 15-minute baths in H2O, 1M HCl, and H2O (h.). 
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(fig. 3.3g). Chips are cleaned using 15-minute wash in water, 15-minute wash in 1M 

HCl, and a final 15-minute wash in water (fig. 3.3h). 

 

3.4. Fixed target instrumentation and data collection 

Instrumentation for the movement of chips through the X-ray beam were mounted 

on beamline I24, Diamond Light Source, UK and beamline BL3 EH2, SACLA, Japan. The 

following will refer to the setup for both environments, unless stated otherwise.  

 

3.4.1. Sample stages  

Chips in chip holders were translated through the X-ray beam using three linear 

positioning stages, movable in x, y, and z directions (fig. 3.4). The xyz sample stage is 

a collaborative design by Diamond Light Source and SmarAct 

(http://www.smaract.de), and have been custom-built by SmarAct using three linear 

translation stages, with a kinematic magnetic mount used to attach the chip holder. 

Each translation stage has 50 mm of travel, precise crossed roller guideways, and an 

integrated sensor with up to 1 nm resolution, although in practice the resolution is 

intentionally limited to 100 nm to allow an increased maximum velocity of 20 mm/s. 

Motion control of the stage setup is accomplished via a DeltaTau 

(http://www.deltatau.co.uk) Geobrick LV-IMS-II. Sample stages mounted upside-

down at DLS only (fig. 3.5). 
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Figure 3.4. SmarAct xyz sample stages 

(a.) Schematic representation of stage xyz movement of stages and chip, and (b.) how 

recording xyz reference positions relates to the movement of the chip. (c.) stages with 

attached sample holder mounted on the endstation of I24, Diamond Light Source. Figure 3.4a, 

b, reproduced from Sherrell et al., 2015. 
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3.4.2. OAV and chip alignment  

Alignment of the chip via on-axis viewing is described briefly below. For an in-depth 

description of the development and implementation of this system refer to Sherrell 

et al., 2015. 

 

On-axis viewing (OAV) provides simple and direct viewing of the chip on the stages, 

allowing simplified alignment of the chip in the X-ray beam. The OAV image is viewed 

and manipulated on the same computer running the stages, with a simple graphical 

user interface (GUI) utilised to interact with the sample stages (fig. 3.5). The chip 

alignment system uses a quick coordinate transform calculation to convert the 

coordinate system of the sample holder and chip to that of the stages, accounting for 

the rotational misalignment, depth and offset from the origin of the sample holder 

relative to the OAV.  

 

This allows efficient sample exchange between data collections, despite the fact that 

no two chips will have the exact same alignment within their respective sample 

holders; this system allows a particular chip aperture to always have the same 

coordinates irrespective of how reproducibly the samples were mounted. This is 

achieved by locating the etched fiducials in three corners of the chip (fig. 3.1c, d). Each 

fiducial is aligned with on-screen crosshairs using a graphical user interface and 

brought into the focal plane of the image. The position of the stage in each fiducial 

position is saved, with the sharpness of the image on the screen provided by the OAV 

giving a good estimate of the z direction translation.  
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Figure 3.5. Chip alignment GUI. 

Screenshot of the GUI used to interact with the stages in order to align chips to the X-ray beam. 

The series of green buttons (top left) were used to fine tune the location of the chip in reference 

to its fiducial mark, with the series of blue “Home”, “Goto”, and “Set” buttons used to make 

large movements between fiducials, and set their respective locations. Parameters defining 

where data are written, as-well-as data collection settings are entered within the “Chip and 

Data Collection Setup” section. 
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By providing these coordinates the offset and three-dimensional rotation of the target 

can then be calculated. The coefficients of the matrix A,  

l = m
n@@ n@9 n@o
n9@ n99 n9o
no@ no9 noo

p = m
n@@ n@9 0
n9@ n99 0
0 0 1

p	, 

describe the transformation between the Cartesian coordinate system of the chip 

against the Cartesian coordinate system of the stages, including any scale factor and 

offset, considering of all degrees of freedom (i.e. offset, pitch, roll and yaw). Each chip 

axis is then defined as a combined movement of the stage axes on the PMAC 

controller, i.e;  

sj#;L = 	 n@@sKMk[Y + 	n@9uKMk[Y +	n@ovKMk[Y , 

uj#;L = 	n9@sKMk[Y +	n99uKMk[Y + 	n9ovKMk[Y , 

vj#;L = 	no@sKMk[Y + 	no9uKMk[Y +	noovKMk[Y . 

ensuring full synchronisation of all three axes during chip motion. All motion of 

sample holders is then performed via requests to these virtual axes rather than 

movement of the individual stages.  

 

3.4.3. Serial data collection 

3.4.3.1. DLS I24  

All data presented in this thesis that were collected at Diamond Light Source were 

collected at beamline I24 within the macromolecular crystallography village of 

beamlines. All serial data were collected at an X-ray energy of 12.8 keV, with beam 
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attenuation specified in respective experimental chapters. A Pilatus3 6M detector was 

used in shutterless mode in order to collect serial diffraction patterns, with the X-ray 

shutter left open between apertures on the chip, remaining open for the duration of 

the experiment. The horizontal and vertical goniometers were retracted in order to 

allow free movement of sample stages on the I24 endstation (fig. 3.6). 

 

Typically, the time taken to translate the stages between chip apertures was 9 ms. 

Stages will move between apertures, stop in order to collect a diffraction image at 

that aperture, and then move to the next feature. This means it is possible to measure 

all 25,600 positions in under 15 minutes with a typical exposure period of 10ms. 

Additionally, a rapid data series can be measured from each aperture of a chip, a 

technique we have coined as Multiple Serial Structure (MSS) data collection. Up to 

twenty diffraction patterns were recorded (though not an inherent limit) at each 

aperture prior to translation to the next, fresh aperture. Data can then be selectively 

sorted into dose-dependent bins and merged, allowing dose dependent structures to 

be obtained. This movement and binning strategy are shown schematically in figure 

3.9. 

 

A typical exposure period of 10 ms is used for each image in an MSS series, meaning 

a ten-dose series (100 ms X-ray exposure per crystal) can be recorded from an entire 

chip in ~46 minutes. The image series at each position was individually triggered using 

a Keysight 33500B signal generator which in turn was triggered by a DeltaTau 

Geobrick LV-IMS-II stage controller when each crystal position had been reached. The 

X-ray shutter remained open for the duration of data collection and was not closed   
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Figure 3.6. Modified I24 endstation for serial chip experiments  
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Figure 3.7. Formation of dose-resolved datasets 

Multiple images collected at each crystal location allows composite datasets to be formed, achieved by selectively binning data into respective dose-

resolved data-series that can be individually processed, merged, and refined. 
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between apertures on a chip when collecting data at I24, while data collection 

parameters such as exposure time, detector distance, and beam dimensions were 

chosen on a sample to sample basis. X-ray fluxes were measured on I24 using a silicon 

PIN diode as described in Owen et al., 2006, while beamsizes on I24 were measured 

using a knife-edge scan (Owen et al., 2009). Absorbed doses were estimated using 

RADDOSE-3D (Paithankar & Garman, 2010).  

 

3.4.3.2. SACLA BL2  

The SACLA beamline BL2 EH3 was utilised to collect SFX data presented in this thesis 

(fig. 3.8a). The presented SFX data were at an X-ray energy of 10.0 keV, using a pulse 

length of 10 fs and a repetition rate of 30 Hz, with a beam size of 1.2 x 1.3 µm, 

attenuated to 13% of full flux. Diffraction data were recorded using the SACLA MPCCD 

detector (Kameshima et al., 2014) (fig. 3.8b). 

 

SFX experiments were performed in a helium chamber (355 x 420 x 400 mm) in order 

to minimize air scatter (fig. 3.8c). The helium chamber utilises a customised entry port 

so that chips could be exchanged rapidly (fig 3.8d), minimising the volume of helium 

gas lost to the atmosphere outside the chamber, as well as keeping a high sustained 

rate of data collection in order to maximise the use of allotted beamtime. A trigger 

for the movement of chip stages occurs 15 ms before the 30 Hz X-ray pulse. The 

detector readout from the X-ray pulse informs the stages translate to the next 

aperture (~9 ms) to be in position 5 ms before trigger, with a 2 ms safety margin on 

the wait time (schematic comparison with DLS I24 stage movement shown in figure 

3.9).  
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Figure 3.8. SACLA BL2 EH3 setup 

(a.) Overview of experimental hutch. (b.) MPCCD detector used for the collection of SFX 

diffraction data (Kameshima et al., 2014). (c.) Details of helium chamber and detector setup. 

(d.) View of stages and OAV through access port, used for fast changeover of samples to limit 

helium lost from the chamber. Movement of chip stages highlighted in inset. 
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Figure 3.9. Schematic representation of SACLA and DLS stage movement and data collection timings  
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3.5. Data processing and refinement strategies 

Serial data processing was performed using the DIALS (Winter et al., 2018), PRIME 

(Uervirojnangkoorn et al., 2015), and CrystFEL (White et al., 2012) data processing 

suites, with DIALS and PRIME utilised in the processing of SSX data, and CrystFEL for 

SFX data, respectively. The following section will give a general overview of command 

line data processing, as well as the PHENIX (Adams et al., 2010) and CCP4 (Evans, 2011) 

suites used in structure refinement, while detailed parameters used to produce 

individual mtz files will be specified within their respective results chapters. 

 

3.5.1. Indexing and integrating SSX data 

SSX data took the form of sequentially numbered images in CBF format. All images 

were indexed and integrated using dials.still_process in DIALS version 1.8.5 

using the Diamond computing cluster.  

 

A simple bash shell script (process.sh) was used to define the version of DIALS to 

run, define that dials.stills_process should be used, define the path to the CBF 

files, and define the process.phil file (the file used to specify processing 

parameters). The process.phil file specifies the path to a mask used to cover the 

Si spots on the detector created by the X-ray diffraction through the chip apertures, 

whether to enable the significance filter and at what I/sigI it is defined, how to handle 

the known symmetry, the maximum number of lattices to index per diffraction 

pattern, and the known symmetry details of the crystal. Example of both scripts can 

be found in appendices sections 3.7.1 and 3.7.2, respectively. 
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In order to use the cluster the following command was used;  

$ qsub -cwd -q low.q -pe smp 20 process.sh  

where -cwd sets the current working directory, -q assigns the queue that the job will 

run in on the cluster (low.q used primarily, medium.q used for jobs of high 

importance), while -pe smp 20 sets the number of processors being used to 20.  

 

3.5.1. Joint refinement 

In order to optimise the detector geometry after the indexing/integration for a multi-

crystal experiment, a joint refinement is used. A joint refinement combines the data 

into a single multi-experiment, achieved by refining all of the cells at the same time, 

allowing the model to better fit the observed data. This can be performed on the full 

chip or a subsection of the chip using dials.combine_experiments on the output 

files *_refined_experiments.json and *_indexed.pickle: 

$ dials.combine_experiments *_refined_experiments.json 

*_indexed.pickle n_subset=2000 

reference_from_experiment.average_detector=True 

 

This produces the files combined_experiments.json and 

combined_experiments.pickle, which can be processed using dials.refine 

against a refine.phil file (appendices section 3.7.3). 

Command line input: 

$ dials.refine combined_experiments.json 

combined_reflections.pickle refine.phil 
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This produces a refined_experiments.json file. This file can be opened in a text 

editor, and these lines searched for (n.b. numerical values differ between 

experiments): 

fast_axis: {1,0.000138539,-5.3528e-05} 

slow_axis: {0.000138424,-0.999998,-0.00213172} 

origin: {-217.633,226.578,-248.6} 

 

These parameters define the refined detector geometry and are added to the top 

lines of the process.phil file in the following format: 

geometry { 

    detector { 

        panel { 

            fast_axis = 1,0.0001385,-5.35280e-05 

            slow_axis = 0.000138424,-0.9999977,-0.00213172 

            origin = -217.63276,226.57777,-248.5997 

        } 

    } 

} 

By re-running dials.stills_process with the updated detector geometry it is 

possible to improve the number of integrated files. 

 

3.5.2. Merging SSX data 

Subsequent scaling and merging of SSX data was performed using PRIME, using a 

.phil file (prime.phil) to take inputs and run with a reference mtz from a rotation 

dataset in order to correct for indexing ambiguity. The top line of the file specifies the 

path to the integrated data, while the merging parameters are specified in the final 

two sections of the script. The prime.phil file (example available in appendices 
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section 3.7.4) is again run using the Diamond computing cluster to produce a 

mean_scaled_merge.mtz that can be used for refinement. 

 

Bash script (prime.sh): 

module load dials 

prime.run prime.phil > prime.out 

 

For MSS data, data needs to be separated by dose (fig 3.7). It is possible to bin these 

data into their separate doses within a .dat file, using the script get_int_file.py 

(appendices 3.7.5), written by Martin Appleby, a DLS year in industry student. This is 

run by using a text file that contains a list of dials.stills_process directories that 

contain the int*.pickle files needed for merging, against the arguments -d and -

td; -d referring to the dose number, while -td refers to the total number of doses: 

 

List file (list.txt): 

/dls/i24/data/path/to/data/chip_1 

/dls/i24/data/path/to/data/chip_2 

/dls/i24/data/path/to/data/chip_3 

… 

 

Command line input: 

$ module load python/ana 

$ python get_int_file.py -l list.txt -d 1 -td 10 
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3.5.3. Indexing and integrating SFX data 

While SSX data collected at I24 produces single, sequentially numbered .cbf files, SFX 

data collected at SACLA is output in HDF5 format. In order to handle these data HDF5 

files were indexed and integrated using indexamajig in CrystFEL version 1.8.5 using 

the command line. 

 

As with SSX data, simple bash shell scripts were utilised to speed up data processing 

by sending jobs to the Diamond computing cluster. A bash script was used for indexing 

(index.sh); this defines the version of CrystFEL to run, that indexamajig should be 

used, and the the hdf5 file locations (file.lst), the geometry file location (*.geom), 

the peakfinding algorithm (e.g. zaef), the unit cell parameter location (*.cell), the 

output file (*.out), and the number of cores to use on the cluster (-j 20). None of 

the other input parameters were edited, unless stated otherwise in their respective 

chapters. An example of the shell script can be found below: 

 

Bash script (index.sh): 

$ module load CrystFEL 

$ indexamajig -i files.lst --peaks=zaef -threshold=300 --min-

gradient=100000 --min-snr=5 --int-radius=3,4,5 --indexing=asdf 

-g *.geom -p *.cell -o *.out -j 20 

 

In order to correct for indexing ambiguity ambigator was run against the *.out file 

from indexamajig with a defined point group (e.g. -y 23). --operator is the 

symmetry operator for alternate indexing, while --fg-graph outputs a table of 
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correlation coefficients. A *_reindexed.out file is output after running the following 

bash script: 

 

Bash script (ambig.sh): 

$ module load CrystFEL 

$ ambigator -i *.out -y 23 --operator=k,h,-l --fg-graph=index-

amb-plot -o *_reindexed.out -j 20 

 

The detector_shift script in CrystFEL can be used to refine the detector geometry 

by updating the beam X, Y, position, using the command: 

 

$ ./detector-shift *_reindexed.out 23382-1.geom 

 

3.5.4. Merging SFX data 

process_hkl in CrystFEL was utilised for merging and scaling of SFX data, 

implementing scaling and post-refinement with no external reference data set. The 

input file is the *.out file (reindexed.out in ambigator), and also uses the same 

the symmetry, process.hkl, and performed initially on the *.out using a simple bash 

script merge.sh, written by Dr. Danny Axford of DLS beamline I24: 

$ inp=SFX_10000.out 

$ out=SFX_10000.hkl 

$ pg="m-3" 

 

$ module load CrystFEL 
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$ process_hkl -y $pg --push-res=1.6 --scale --odd-only -i $inp 

-o ${out}1 -j 20 & 

$ process_hkl -y $pg --push-res=1.6 --scale --even-only -i $inp 

-o ${out}2 -j 20 & 

$ process_hkl -y $pg --push-res=1.6 --scale -i $inp -o ${out} -

j 20 & 

wait 

Merging via process_hkl using merge.sh outputs three hkl files, *.hkl, *.hkl1, and 

*.hkl2 (*.hkl1 and *.hkl2 each corresponding to half the crystals in the dataset). 

These data are used to check the merging statistics using stat.sh, a script written by 

Dr. Danny Axford from DLS beamline I24 (example shown for AcNiR): 

#!/bin/bash 

 

inp=96p4_1p68_ambig.hkl 

inp1=96p4_1p68_ambig.hkl1 

inp2=96p4_1p68_ambig.hkl2 

basename=96p4_1p68_ambig 

fom="R1I R2 Rsplit CC CCstar" 

pdb="AcNIR96p4.cell" 

pg="m-3" 

highres="1.68" 

 

module load CrystFEL 

 

if [ ! -d "stat" ]; then 

 mkdir stat 

fi 

 

for mode in $fom 

do 

    compare_hkl $inp1 $inp2 -y $pg -p $pdb --fom=$mode --

highres=$highres --nshells=20 --shell-file="stat/${basename}-

$mode".dat 2>>stat/${basename}.log 

done 
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check_hkl -p $pdb --nshells=20 --highres=$highres -y $pg  --

shell-file="stat/${basename}-shells".dat $inp 

2>>stat/${basename}.log 

 

An mtz file that can be used for refinement, using the create-mtz script (see 

appendices 3.7.6) via the following command: 

$./create-mtz *_unity.hkl 

 

3.5.5. Structure solution and refinement 

Structure solution via molecular replacement was handled using Phaser within the 

PHENIX suite (Adams et al., 2010), from a published starting model, or a model refined 

from a rotation dataset. Structures were refined using phenix.refine and were 

rebuilt in COOT (Emsley et al., 2010) between rounds of refinement. Validation was 

performed using tools built within COOT (e.g. difference map peaks, check waters, 

etc.), Molprobity (Chen et al., 2010), the JCSG QCCheck server 

(https://smb.slac.stanford.edu/jcsg/QC/) and the PDB Validation server 

(https://validate-rcsb-1.wwpdb.org/). Side chain atoms not supported by electron 

density were typically deleted from the model unless stated otherwise. Coordinates 

and structure factors were deposited in the RCSB Protein Data Bank 

(https://www.rcsb.org/) where appropriate, with accession numbers given within 

their respective results chapters. Surface areas and volumes were calculated in 3VEE 

Volume Assessor (Voss & Gerstein, 2010). 
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3.6. Online UV-vis spectrophotometry 

In situ UV–Vis absorption spectra were collected on beamline I24 at Diamond Light 

Source using mirror lenses (Bruker) mounted in an off-axis geometry and a deuterium 

halogen light source (Ocean Optics). Spectra were recorded over the wavelength 

range of 300 – 800 nm using a Shamrock 303 imaging spectrograph (Andor). Onine 

UV-vis data presented in this thesis were collected using an X-ray energy of 12.8 keV, 

an X-ray beamsize of 30x30 µm (FWHM) and a UV-Vis focal spot 40 µm in diameter. 

An exposure time of 10 ms was utilised for static spectra, with two 10ms 

accumulations used per kinetic spectrum.  
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3.7. Appendices 

3.7.1. Script process.sh 

Bash script process.sh: 
 

$ module load dials/ 
$ dials.stills_process /path/to/images*.cbf process.phil 

 
3.7.2. Script process.phil 

Processing defaults file process.phil: 
 
# mask to cover Si spots and beamstop appropriate to detector distance 
spotfinder.lookup.mask=/dls/i24/data/path/to/mask 
integration.lookup.mask=/dls/i24/data/path/to/mask 
  
significance_filter.enable=True 
significance_filter.isigi_cutoff=1.0 
  
  
indexing.stills.refine_candidates_with_known_symmetry=True 
  
# protein name 
indexing { 
  known_symmetry { 
    space_group = P213 
    unit_cell = 195.59 195.59 195.59 90 90 90 
  } 
  #for good quality data with many images indexable up to 3 lattices, 
can run for up to 6 max lattices. 
  multiple_lattice_search.max_lattices=3 
  refinement_protocol.d_min_start=2.5 
  basis_vector_combinations.max_refine=5 
} 
 
3.7.3. Script refine.phil 

Refinement defaults file refine.phil: 
 
refinement { 
    parameterisation { 
        auto_reduction { 
            min_nref_per_parameter = 3 
            action = fail fix *remove 
        } 
        beam { 
            fix = *all in_spindle_plane out_spindle_plane wavelength 
        } 
        detector { 
            fix_list = Tau1 
        } 
    } 
    refinery { 
            engine = SimpleLBFGS LBFGScurvs GaussNewton 
LevMar *SparseLevMar 
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    } 
    reflections { 
        outlier { 
            algorithm = null auto mcd tukey *sauter_poon 
            separate_experiments = False 
            separate_panels = True 
        } 
    } 
} 
 
3.7.4. Script prime.phil 

Merging inputs file prime.phil: 
 
data = /path/to/data/ 
run_no = name_of_run 
title = TITLE sad anom=true cut 1.9A frames 0-1909 
scale { 
  d_min = 2.0 
  d_max = 6.0 
  sigma_min = 1.5 
} 
indexing_ambiguity { 
  flag_on = True 
  mode = Auto 
  index_basis_in = rotation.mtz 
} 
postref { 
  scale { 
    d_min = 2.0 
    d_max = 6.0 
    sigma_min = 1.5 
    partiality_min = 0.1 
  } 
  crystal_orientation { 
    flag_on = True 
    d_min = 2.0 
    d_max = 45 
    sigma_min = 1.5 
    partiality_min = 0.1 
  } 
  reflecting_range { 
    flag_on = True 
    d_min = 2.0 
    d_max = 45 
    sigma_min = 1.5 
    partiality_min = 0.1 
  } 
  unit_cell { 
    flag_on = True 
    d_min = 2.0 
    d_max = 45 
    sigma_min = 1.5 
    partiality_min = 0.1 
    uc_tolerance = 3 
  } 
  allparams { 
    flag_on = False 
    d_min = 0.1 
    d_max = 99 
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    sigma_min = 1.5 
    partiality_min = 0.1 
    uc_tolerance = 3 
  } 
} 
merge { 
  d_min = 1.9 
  d_max = 45 
  sigma_min = -1.5 
  partiality_min = 0.1 
  uc_tolerance = 3 
} 
target_anomalous_flag = False 
flag_apply_b_by_frame = False 
target_unit_cell = 96.4,96.4,96.4,90,90,90 
target_space_group = P213 
n_residues = 340 
pixel_size_mm = 0.172 
 
 
3.7.5. Script get_int_file.py 

Sorting int*.pickle files get_int_file.py: 
 
#MODULES 
import os 
import numpy as np 
import pandas as pd 
import argparse 
   
   
def argarser(): 
    parser = argparse.ArgumentParser( description="blah") 
    parser.add_argument( "-l", "--input_list", 
                        help="if you use this flag you must have a 
input list file" ) 
    parser.add_argument( "-i", "--no_of_images", type=int, 
                        help="if you want to select a random sample of 
of images give number" ) 
    parser.add_argument( "-s", "--stills_directory", type=str, 
                        help="stills processing directory" ) 
    parser.add_argument("-d", "--dose", type=int, 
                        help="dose number in a dose experiment") 
    parser.add_argument("-td", "--total_dose", type=int, 
                        help="number of doses") 
    args=parser.parse_args() 
    if args.input_list and args.stills_directory: 
       parser.error("cannot have two inputs -l and -s") 
    elif args.input_list or args.stills_directory: 
       pass 
    else: 
       parser.error("must have an input: -l or -s") 
    if args.dose and args.total_dose: 
       pass 
    elif args.dose or args.total_dose: 
       parser.error("-d and -td are both needed") 
    return args 
   
def get_int_pickles( still_dir , dose=None, doses=None): 
    # create empty np array for int+pwds 
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    pickle_list = np.array( [ [ ] ] ) 
    # finds all pwd and files in the still dir 
    for path, dirs, files in os.walk( still_dir ): 
        for name in files: 
            # searches for int files 
            if name.startswith( "int" ) and name.endswith( ".pickle"
 ): 
                if dose:# creates complete int.pickle path 
                    integer = int(name.rstrip('.pickle').split('_')[
1]) 
                    if (integer%doses) +1 == dose: 
                        pickle_pwd = os.path.join( path, name ) 
                        # inputs pickle_pwd into np array 
                        pickle_list_1 = np.array( [ [ pickle_pwd ] ] 
) 
                        pickle_list = np.concatenate( ( pickle_list, 
pickle_list_1 ), axis=1 ) 
                else: 
                    pickle_pwd = os.path.join( path, name ) 
                    # inputs pickle_pwd into np array 
                    pickle_list_1 = np.array( [ [ pickle_pwd ] ] ) 
                    pickle_list = np.concatenate( ( pickle_list, 
pickle_list_1 ), axis=1 ) 
    # returns single column np array of int_pwds 
    return pickle_list 
   
def main( args ): 
    # cols for still_dirs df 
    cols = [ "still_dir" ] 
    # if -l 
    if args.input_list: 
        still_dirs = args.input_list 
        still_df = pd.read_csv( still_dirs, names=cols ) 
    elif args.stills_directory: 
        still_dir = [ args.stills_directory ] 
        still_df = pd.DataFrame( still_dir, columns=cols ) 
    # empty np array for pickles 
    pickle_list = np.array( [ [ ] ] ) 
    print "dir searching for int files:" 
    for still_dir in still_df[ "still_dir" ]: 
        print still_dir 
        pickle_list_1 =  get_int_pickles( still_dir, args.dose, 
args.total_dose ) 
        pickle_list = np.concatenate( ( pickle_list, pickle_list_1 ), 
axis=1 ) 
        print "done" 
    pickle_list = np.transpose( pickle_list ) 
    pickle_len = len( pickle_list ) 
    if args.no_of_images: 
        images = args.no_of_images 
    else: 
        images = pickle_len 
    cols = [ "still_pwd" ] 
    pickle_df = pd.DataFrame( pickle_list, columns=cols ) 
    sample_df = pickle_df.sample( images ) 
    if args.dose: 
       file_name = "prime_input_{0}_images_dose_{1}.dat".format( 
images, args.dose ) 
    else: 
        file_name = "prime_input_{0}_images.dat".format( images ) 
    sample_df.to_csv( file_name, header=False, index=False ) 
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args = argarser() 
main( args ) 
 
 
3.7.5. Script create-mtz 

#!/bin/sh 
 
# When you've edited the relevant parameters, delete this comment and 
the following two lines 
echo "You need to edit this script first, to set the space group and 
cell parameters." 
exit 1 
 
OUTFILE=`echo $1 | sed -e 's/\.hkl$/.mtz/'` 
 
echo " Input: $1" 
echo "Output: $OUTFILE" 
if [ -e $OUTFILE ]; then 
 echo "   The output file already exists:" 
 echo "   " $OUTFILE 
 echo "   To confirm that you want to continue, which will 
DESTROY the" 
 echo "   current contents of this file, type 'y' and press 
enter." 
 read conf 
 if [ $conf != y ]; then 
  echo "Not confirmed." 
  exit 1 
 else 
  echo "Proceeding" 
 fi 
fi 
 
sed -n '/End\ of\ reflections/q;p' $1 > create-mtz.temp.hkl 
 
echo "Running 'f2mtz'..." 
f2mtz HKLIN create-mtz.temp.hkl HKLOUT $OUTFILE > out.html << EOF 
TITLE Reflections from CrystFEL 
NAME PROJECT wibble CRYSTAL wibble DATASET wibble 
CELL 100 100 100  90  90 90 
SYMM P1 
SKIP 3 
LABOUT H K L IMEAN SIGIMEAN 
CTYPE  H H H J     Q 
FORMAT '(3(F4.0,1X),F10.2,10X,F10.2)' 
EOF 
 
if [ $? -ne 0 ]; then echo "Failed."; exit; fi 
 
rm -f create-mtz.temp.hkl 
echo "Done." 
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Chapter 4: New methods for resolving radiation-driven 

effects in microcrystals 

4.1 Introduction 

The advancement of large crystal room-temperature techniques in X-ray 

crystallography in recent years allows the determination and subsequent 

understanding of atomic-level protein structures to be completed with relative ease 

and confidence. Determining room temperature structures as both ‘high-quality’ (low 

R-factors, high CC1/2 etc.) and free from radiation damage effects in micro-crystal X-

ray crystallography however presents more of a challenge; this is due to crystal-to-

crystal variation being more apparent when using a multi-crystal approach, a 

necessity when considering microcrystals as the primary sample for data collection.  

 

X-ray induced changes are a limiting factor when exploring metalloproteins, where X-

ray induced changes can occur rapidly at the active site, with radiation damage to a 

protein crystal sample resulting from the absorption of photons from the X-ray beam 

by either the photoelectric effect or Compton scattering (Garman, 2010) (see chapter 

1.1.1). Interestingly, the accumulation of radiation damage as the diffraction 

experiment proceeds can lead to non-isomorphism within the crystal, due in part to 

the expansion of unit-cell volume, and movement of the protein molecule within the 

unit-cell (expressed as an increase in B-factors). This effect can be somewhat 

mitigated via collection at 100K (see chapter 1.1.2, 1.1.3), however in order to reveal 

protein features or reactions potentially hidden by cryogenic data collection, room 
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temperature data collection requires that data are merged from multiple crystals due 

to a significant reduction in comparative crystal lifetimes.  

 

A general increase in error arises when using multi-crystal merging to produce a 

complete dataset due to non-isomorphism. Initially discovered by Elihard Mitscherlich 

in 1819 who found that the crystal forms of specific hydrated potassium phosphate 

and arsenate salts were identical, he described isomorphism as how identical crystals 

are in shape (Melhado, 1980). The modern definition more accurately denotes 

isomorphous crystals as crystals with the same space group and unit cell dimensions. 

Moreover, isomorphism can still exist when the type and position of atoms in both 

crystals are the same except for a replacement of one (or more) atoms in one 

structure with different types of atoms in the other, for example, heavy atoms. Crystal 

polymorphism adds to the non-isomorphism issue: polymorphic crystals occur where 

crystals of the same molecule exist across two or more crystalline forms; this means 

that crystals of the same protein can differ in crystal form, space group, and/or unit 

cell dimensions, and may be caused by differences in crystallisation conditions such 

as precipitant, buffer, pH value, as well as additives (Bonnefond et al., 2011).  

 

Non-isomorphism within crystals can have effects on data collection and subsequent 

analysis, being a source of disagreement between symmetry-related reflections. 

Consequently, datasets collected from more than one crystal of the same form may 

show differences between them,  owing to differences in the structure factors (Borek, 

Minor, & Otwinowski, 2003). Issues with non-isomorphism have been longstanding; 

in the late 1950s Crick and Magdoff identified that a small change of 0.5% in unit cell 
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parameters, can cause an average change in the intensity of structure factors of > 15% 

(Crick & Magdoff, 1956). Additionally, through exhaustive processing of data taken 

from lysozyme crystals in the late 1960s, it was recognised that high-resolution 

measurements had been made from two different types of crystals with essentially 

identical unit-cell dimensions; the subtly different diffraction patterns, subsequently 

lead to the identification of type I and type II lysozyme (Blake et al., 2012, 1965). 

 

The aforementioned issues concerning crystal isomorphism mean that robust data 

collection and processing methods are necessary to identify non-isomorphous 

crystals in serial crystallography. As many tens of thousands of crystals are utilised to 

make complete, composite datasets, innovative methods are also needed to identify 

how these effects can progress via accumulated dose. This chapter aims to combine 

SSX and MSOX into a method we have coined Multiple Serial Structures (MSS). By 

collecting multiple low-dose datasets from individual locations on the fixed target, it 

is possible to produce a series of dose dependent structures, allowing effects of 

radiation damage to be tracked on a target protein as dose is accumulated. This was 

achieved by adapting the pre-existing MSOX method of data collection (Horrell et al., 

2016; Horrell et al., 2018) to the fixed target data collection method as outlined in 

Owen et al., 2017, and Sherrell et al., 2015 (Owen et al., 2017; Sherrell et al., 2015). 

 

AcNiR, a copper nitrite reductase from the organism Achromobacter cycloclastes (see 

chapter 1.3.1) was chosen for this series of experiments. AcNiR has been studied by 

the Hough group at the University of Essex extensively, and used for the multiple 

structures from one crystal study by Horrell et al. in 2016 due to it undergoing specific 
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electron driven reaction steps, showing ideal potential of the protein crystals to be 

durable when collecting multiple dose-dependent datasets (Horrell et al., 2016; 

Horrell et al., 2018). The reduction of NO2- to NO is the first committed (i.e. 

irreversible reaction that commits the organism to produce the final product) step in 

the denitrification pathway (equation 7), and is the process carried out by CuNiRs. 

Further, this reaction being electron driven makes AcNiR an ideal candidate for low-

dose structure study  

 

!"#	% + '% + 2)* → !" + )#" 

Equation 7 
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4.2 Methods 

4.2.1 AcNiR purification and microcrystal optimisation 

Recombinant AcNiR was expressed and purified as described in detail in chapter 3. 

Purified AcNiR in 20 mM Na citrate pH 6 was concentrated to 20 mg/ml-1, quantified 

by its absorbance at 280 nm. As large volumes of microcrystals are needed for serial 

crystallography experiments, batch microcrystal optimisation was used to elucidate 

optimal large-scale microcrystal conditions. This was achieved by applying different 

ratios of protein to buffer, protein concentrations, and crystallisation temperatures 

from a starting point of 2.5M ammonium sulphate, 0.1M sodium citrate pH 4.5 (table 

4.1). 

 

Batch microcrystals used for experimentation were prepared by rapidly mixing 

20mg/ml AcNiR in 20mM Tris pH 7.5 with a solution consisting of 2.5M ammonium 

sulphate, 0.1M sodium citrate pH 4.5 buffer in a ratio of 1:3 and mixing by vortexing 

for 30 s. Microcrystals with a diameter of 5-15µm grew at room temperature over a 

period of 4-6 days. Microcrystal suspensions were centrifuged at 800 rev min-1 for 30 

seconds to sediment the crystals; the crystallisation buffer was then removed and 

replaced with a storage buffer consisting of 1.6M ammonium sulphate, 0.1M sodium 

citrate pH 4.5. Crystals were soaked in a solution of mother liquor supplemented with 

100mM sodium nitrite for a duration of 20 minutes prior to loading onto the chip. 

Serial dilutions were achieved by adding additional storage-buffer solution.
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Table 4.1. AcNiR batch microcrystal optimisation  

 

Test # 1 2 3 4 5 6 7 8 

Protein concentration (mg/ml) 20 20 20 50 50 50 50 50 

Ratio (Protein:Buffer) 1:3 1:1 1:2 1:1 1:1.5 1:1 1:2 1:1.5 

Crystallisation temperature (°C) RT RT RT RT RT RT RT RT 

Vortex time (seconds) 30 30 30 30 30 0 0 0 

Test # 9 10 11 12 13 14 15 16 

Protein concentration (mg/ml) 50 20 20 20 20 20 50 50 

Ratio (Protein:Buffer) 1:1.25 1:1 1:1.25 1:1 1:1 1:1 1:1 1:1.25 

Crystallisation temperature (°C) RT 4°C 4°C 4°C 4°C 18°C 18°C 18°C 

Vortex time (seconds) 0 0 0 0 0 0 0 0 
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4.2.2 Data collection 

Data in this chapter were collected using the fixed-target serial crystallography 

methods as described in chapter 3 sections 3.3, 3.4, and 3.5, and therefore only the 

specific parameters to the experiments performed within this chapter will be referred 

to in detail. 

  

4.2.2.1 Sample loading, beamline instrumentation and parameters  

Fixed target chips were loaded as described in chapter 3.3.2, with instrumentation 

used for the movement of chips through the X-ray beam on beamline I24 also 

described in detail in chapter 3.4. For this experiment a beamsize of 8 x 8 µm (full 

width half maximum; FWHM) was used, with all data collected at 12.8 keV using a 

PILATUS3 6M detector with a crystal-to-detector distance of 310 mm. Beam flux was 

3 x 1012 photons s-1, measured immediately prior to the experiments using a silicon 

PIN diode (Owen et al., 2009), and attenuated tenfold for the described data 

collections (3 x 1011 photons s-1). The diffraction weighted dose absorbed by each 

crystal was estimated using RADDOSE-3D (Paithankar & Garman, 2010). 

 

4.2.2.2 Data collection strategies 

A multiple serial structure (MSS) method of data collection was developed and utilised 

in this chapter. Collection of multiple serial structures differs from the typical fixed 

target methodology – rather than a single diffraction image being collected from each 

aperture position prior to translation to a fresh aperture, multiple diffraction images 

are recorded at each position. An exposure period of 20 ms (corresponding to an 

absorbed dose of ~11 kGy) was utilised for each image meaning a twenty-image series 
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totalled 400 ms (~220 kGy) X-ray exposure per crystal. The number of images to be 

collected at each position was selected using a GUI (see chapter 3, figure 3.5), with 

the image series at each position triggered using a Keysight 33500B signal generator, 

which in turn was triggered by a DeltaTau Geobrick LV-IMS-II stage controller when 

each crystal position had been reached. The X-ray shutter remained open during the 

entire duration of the data collection (shutterless mode). 

 

4.2.2.3 Data processing, structure solution and refinement 

Data were written to disk in the form of sequentially numbered images in CBF format, 

with all images indexed using dials.stills_process in DIALS v1.8.5 (Winter et 

al., 2018). Data from each position were selectively binned by dose using the script 

get_int_file.py (appendices 3.7.5), and subsequently merged into dose-

dependent structures, shown schematically in figure 3.7. Subsequent scaling and 

merging steps were performed using PRIME (Uervirojnangkoorn et al., 2015). Indexing 

ambiguity in space group P213 was resolved using a reference dataset, with structures 

refined from the same starting model of AcNiR-NO2
- from which water and nitrite had 

been removed (PDB: 5I6L; Horrell et al., 2016) using the PHENIX crystallography suite 

(Adams et al., 2010), with structures rebuilt between iterative rounds of refinement 

using COOT (Emsley et al., 2010). Structure validation was performed using the JCSG 

Quality Control Check server (https://smb.slac.stanford.edu/jcsg/QC/) and the PDB 

validation server (https://validate-rcsb-1.wwpdb.org/). Coordinates and structure 

factors were deposited in the RCSB Protein Data Bank. Surface areas and volumes 

were calculated in 3VEE (Voss and Gerstein, 2010). 
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4.3 Results 

4.3.1 AcNiR purification and microcrystal optimisation  

The expression and purification of AcNiR has been explored and refined through 

previous studies (Antonyuk et al., 2005; Horrell et al., 2016), making the process of 

expression straightforward for this body of work. SDS PAGE was utilised in order to 

clarify the level of contamination in the sample after DEAE ion exchange 

chromatography (fig. 4.1a, revealing that further purification was required. The 

samples were then recombined and concentrated to under 10mL in order to be 

passed through a Sephadex G-75 size exclusion chromatography column, which was 

effective in removing the remaining contamination (fig. 4.1b). 

 

This purified protein was used to elucidate microcrystal conditions in batch. Out of 

the conditions evaluated in table 4.1, only conditions 1 (20mg/ml AcNiR:2.5 M 

Ammonium Sulphate and 0.1 M Sodium Citrate pH 4.5 [1:3]) and 3 (20mg/ml 

AcNiR:2.5 M Ammonium Sulphate and 0.1 M Sodium Citrate pH 4.5 [1:2]) gave 

appropriate batch microcrystal slurries, producing crystals ranging from 10-20 µm at 

a concentration of 3.5 x 106 after 4 days for condition 1 (fig. 4.2), and 6.4 x 105 after 6 

days for condition 3, respectively. As condition 1 gave a greater quantity of 

microcrystals in the slurry this was selected as the condition to repeat and scale up. 

Repeats of condition 1 gave identical results at both 200µL and 4 mL total volumes.  
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Figure 4.1. AcNiR SDS PAGE 

(a.) Ion exchange chromatography via DEAE sepharose shows strong bands for monomer (~37 

kDa) and trimer (~117 kDa) AcNiR, though also indicate that further purification is required 

due to a large number of contaminants. (b.) Size exclusion chromatography via Sephadex G-

75 show strong bands for AcNiR with extremely low levels of contamination. 
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Figure 4.2. AcNiR microcrystals 

Batch grown AcNiR protein crystals vary in size, with cubic crystals between 5 – 30 µm 

commonly seen, with the majority of crystals ~ 8 µm. 
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4.3.2 MSS data collection, processing, and discrimination between crystal polymorphs 

By using an MSS method of data collection, it was possible to collect a total of 20 

sequential images of 20 ms exposure at each aperture of the chip. A single chip loaded 

with AcNiR crystal slurry was used to collect the entire 20 dose-point dataset. The 

total data therefore comprised 512,000 images, and was possible to collect in less 

than 3 hours, with initial diffraction measured to 1.6 Å toward the corners of the 

detector (fig. 4.3). Data were indexed and integrated using dials.stills_process 

in DIALS v1.8.5, and the script index.sh (detailed outline of this processing method 

can be found in methods 3.5, though important parameters shall be described in this 

section).  

 

For the 20 dose MSS series a joint refinement method was utilised in order to optimise 

the number of hits by updating the detector geometry. This was performed on a 

subset of images, allowing an updated geometry for a 310 mm detector distance by 

adding the following to the index.sh file: 

 

fast_axis = 0.9999978683114457, 1.1160941591376779e-06, -

0.002064793287198249 

slow_axis = -2.304596132502108e-06, -0.9999986277164502, 

-0.0016566713329461246 

origin = -216.04450994806226, 226.762983964268, -

308.3022872184386 
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Figure 4.3. AcNiR SSX diffraction 

Example image of AcNiR microcrystal diffraction pattern from MSS-ds1. Reflections were seen 

to greater than 1.6 Å resolution. Intense silicon diffraction spots were masked (methods 

section 3.5.1) to avoid introducing systematic errors into data processing. 
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Indexing and integration were performed again using the updated detector geometry, 

with indexable diffraction patterns identified on 332,272 images in total, a 64.9% hit 

rate. It was possible however to index 589,403 patterns, owing to multi-lattice 

indexing of up to three patterns per image. Multi-lattice indexing provided 

percentages of single, double and triple lattices of 36, 36, and 28%, respectively. The 

space group was found to be the same as that of previous AcNiR structures, P213. 

 

CBF image files were binned into individual dose-dependent datasets using the script 

get_int_file.py (appendices 3.7.5), meaning individual diffraction images (stills) 

from the first image measured from each aperture would make the first dose-

dependent dataset, known as MSS-dataset1 (MSS-ds1). It was possible to plot a 

histogram derived from a subset of crystals in order to accurately determine how 

isomorphous the unit cell is within the crystal slurry using the following command 

within DIALS: 

 

$ cctbx.xfel.plot_uc_cloud_from_experiments 

*_refined_experiments.json 

 

The unit cell histogram revealed a bimodal distribution of unit cell parameters within 

the full MSS-ds1 dataset; unit cell dimensions gave a range of a = b = c = 97.8 +/- 0.7 

Å, and two distinct peaks at 96.5 +/- 0.2 Å and 97.8 +/- 0.2 Å (fig. 4.4). 
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Figure 4.4. AcNiR unit cell distribution for MSS-ds1 crystal subset 

The command cctbx.xfel.plot_uc_cloud_from_experiments within DIALS 

shows multiple unit cells within a single crystal population. This plot was used to interpret all 

data unit cell dimensions of a = b = c = 97.0 ± 0.7 Å, a = β = g = 90.00 °, small cell unit cell 

dimensions of a = b = c = 96.5 ± 0.2 Å, a = β = g = 90.00 °, and large cell unit cell dimensions of 

a = b = c = 97.8 ± 0.2 Å, a = β = g = 90.00 °, respectively. 
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All patterns in MSS-ds1 were initially merged into a single MSS dataset. These data 

were then reprocessed and binned into two groups above and below a mid-peak cut-

off of 97.25 Å, in order to define two distinct datasets containing only a single unit 

cell, either large or small. MSS-ds1 AcNiR-large were therefore processed and refined 

against unit cell dimensions of a = b = c = 97.75 Å, with MSS-ds1 AcNiR-small processed 

and refined against a = b = c = 96.38 Å. The MSS-ds1 all data AcNiR structure 

comprised 38,908 integrated frames, with 24,976 integrated frames used for MSS-ds1 

small structure, while the number of integrated frames used for MSS-ds1 large 

structure comprised 13,932, respectively (table 4.2, fig. 4.5). 

 

It was possible to merge dose 1 structures with good quality statistics to a resolution 

of 1.48 Å, despite a nominal resolution of 1.7 Å imposed by the crystal to detector 

distance. This was made possible due to the extremely high multiplicity obtained 

using the fixed target serial method, with a dose 1 redundancy of 927.03 (301.80) for 

the all cell structure, 548.16 (206.50) in the small cell structure and 357.91 (137.03) 

in the large cell structure (tables 4.3-4.5). Rsplit and CC1/2 were also used to assess the 

quality of the data and at what resolution to cut the data during the merging process, 

with respective metrics in dose 1 structures of 5.15 (54.54) and 99.70 (55.42) using all 

data, 5.71 (87.73) and 99.60 (72.60) for small cell and 7.43 (81.12) and 99.46 (48.66) 

for large cell (tables 4.3-4.5). These resolution cut-offs were chosen as CC1/2 

approached 50% in the all data structure, and subsequently used as the cut-off for 

both the small and large cell structures. 
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Dose kGy 
Number of integrated images Percentage of population 

All data Small cell Large cell % small % large 
1 11 38908 24367 13481 62.63 34.65 

2 22 38584 24506 13102 63.52 33.96 

3 33 38284 24020 13398 62.75 35 

4 44 37803 22622 14383 59.85 38.05 

5 55 35424 19100 15643 53.92 44.16 

6 66 32944 14907 17427 45.25 52.9 

7 77 31032 11209 19420 36.13 62.59 

8 88 30009 8605 20854 28.68 69.5 

9 99 29392 6934 21950 23.6 74.69 

10 110 28726 5808 22437 20.22 78.11 

11 121 28082 5043 22609 17.96 80.52 

12 132 27372 4428 22546 16.18 82.37 

13 143 26641 4005 22265 15.04 83.58 

14 154 25873 3666 21844 14.17 84.43 

15 165 25269 3386 21569 13.4 85.36 

16 176 24521 3091 21117 12.61 86.12 

17 187 23723 2850 20568 12.02 86.71 

18 198 23054 2717 20055 11.79 87 

19 209 22272 2536 19460 11.39 87.38 

20 220 21490 2399 18824 11.17 87.6 

Total 589403 196199 382952   

 

Table 4.2. Number of integrated images used for MSS datasets 
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Figure 4.5. Number of integrated images used for MSS datasets 

The number of all data, small cell, and large cell integrated images used for selective 

integration into small and large cell datasets, representing the entire dose series. Figures 

produced using OriginLab graphing and data analysis software (www.originlab.com). 
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Dose 1 all cells 

Bin Resolution range Completeness <N_obs> Rmerge Rsplit CC1/2 <I/sigI> <I> <I**2> 

1 29.21 - 4.01 100 1777.42 98.7 4.01 99.49 11.25 575.7 1.81 

2 4.01 - 3.19 100 1330.95 91.99 4.3 99.41 7.78 350.6 1.78 

3 3.19 - 2.78 99.9 1208.03 90.11 4.63 99.18 3.81 154.8 1.62 

4 2.78 - 2.53 100 1128.9 89.08 4.86 99.1 2.5 89.3 1.57 

5 2.53 - 2.35 100 1073.15 88.59 5.4 98.92 2.02 65.6 1.55 

6 2.35 - 2.21 100 1033.33 88.38 5.57 98.8 1.77 55.2 1.52 

7 2.21 - 2.10 100 1029.13 88.21 5.72 98.85 1.51 46.3 1.52 

8 2.10 - 2.01 100 990.23 88.26 6.09 98.77 1.2 35.1 1.55 

9 2.01 - 1.93 100 994.49 89.02 6.9 98.32 0.99 27.3 1.52 

10 1.93 - 1.86 100 952.4 89.8 7.48 98.22 0.79 21 1.52 

11 1.86 - 1.81 100 963.75 90.89 8.64 97.4 0.62 15.9 1.48 

12 1.81 - 1.75 100 939.07 92.38 10.59 96.65 0.48 11.8 1.51 

13 1.75 - 1.71 100 921.81 93.55 12.57 95.29 0.39 9.3 1.52 

14 1.71 - 1.67 100 883.15 94.48 14.44 94.44 0.33 7.9 1.54 

15 1.67 - 1.63 100 739.9 95.46 18.05 91.57 0.28 6.7 1.55 

16 1.63 - 1.59 100 646.07 95.99 21.42 88.77 0.25 5.8 1.59 

17 1.59 - 1.56 100 599.59 96.41 25.24 84.96 0.22 5 1.58 

18 1.56 - 1.53 100 520.31 96.86 28.46 79.97 0.2 4.4 1.58 

19 1.53 - 1.51 100 427.73 97.23 35.19 72.39 0.18 3.9 1.6 

20 1.51 - 1.48 100 301.79 97.75 54.54 55.42 0.15 3.2 1.83 
 TOTAL 100 927.03 94.45 5.15 99.7 1.88 76.8 8.06 

 

Table 4.3. MSS-ds1 all cell statistics 
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Dose 1 small cell 
Bin Resolution range Completeness <N_obs> Rmerge Rsplit CC1/2 <I/sigI> <I> <I**2> 

1 29.07 - 4.01 100 1052.82 93.82 4.63 99.3 9.84 519.9 2.01 

2 4.01 - 3.19 100 786.27 83.29 4.42 99.42 7.01 326.5 2.05 

3 3.19 - 2.78 100 714.87 80.59 4.67 99.48 3.53 146.9 1.97 

4 2.78 - 2.53 100 666.66 80.07 5.36 99.27 2.38 86.7 1.98 

5 2.53 - 2.35 100 636.74 80.2 5.81 99.13 1.92 63.3 1.94 

6 2.35 - 2.21 100 608.51 79.94 6.14 99.03 1.73 54.6 1.9 

7 2.21 - 2.10 100 610.11 80.07 6.16 99.23 1.52 47 1.93 

8 2.10 - 2.01 100 584.13 81.32 6.84 99.05 1.21 35.3 1.95 

9 2.01 - 1.93 100 588.07 82.66 7.37 98.96 0.98 27.2 1.97 

10 1.93 - 1.86 100 559.72 83.76 8.19 98.71 0.83 21.9 1.94 

11 1.86 - 1.81 100 568.48 85.88 9.36 98.23 0.65 16.5 1.85 

12 1.81 - 1.75 100 553.58 88.35 11.42 97.64 0.5 12.3 1.89 

13 1.75 - 1.71 100 543.02 90.02 13.74 96.83 0.41 9.9 1.95 

14 1.71 - 1.67 100 522.79 91.35 15.5 96.1 0.36 8.5 1.92 

15 1.67 - 1.63 100 428.48 92.49 19.3 95.02 0.31 7.2 2.06 

16 1.63 - 1.59 100 376.73 93.23 22.38 92.83 0.28 6.4 2.07 

17 1.59 - 1.56 100 355.53 94.34 26.12 89.97 0.24 5.3 2 

18 1.56 - 1.53 100 304.81 94.77 30.64 87.55 0.22 4.9 2.09 

19 1.53 - 1.51 100 249.02 95.29 37.07 82.69 0.21 4.4 2.08 

20 1.51 - 1.48 100 206.5 96.34 49.81 72.6 0.17 3.5 2.21 
 TOTAL 100 548.16 87.73 5.71 99.6 1.75 72.3 8.63 

 

Table 4.4. MSS-ds1 small cell statistics 
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Dose 1 large cell 
Bin Resolution range Completeness <N_obs> Rmerge Rsplit CC1/2 <I/sigI> <I> <I**2> 

1 29.48 - 4.01 100 680.57 87.98 5.44 99.13 9.7 499.1 1.97 

2 4.01 - 3.19 100 510.96 81.61 5.72 99.13 6.57 302.9 1.98 

3 3.19 - 2.78 100 463.46 80.81 6.2 99.01 3.14 131.9 2.01 

4 2.78 - 2.53 100 433.88 81.7 7.16 98.72 2.06 76.2 1.92 

5 2.53 - 2.35 100 414.2 82.61 8.05 98.31 1.62 54.5 1.93 

6 2.35 - 2.21 100 396.77 82.99 8.3 98.45 1.41 45.6 1.88 

7 2.21 - 2.10 100 397.55 83.54 8.58 98.35 1.24 39.4 1.83 

8 2.10 - 2.01 100 381.27 85.34 9.88 97.82 0.95 28.7 1.82 

9 2.01 - 1.93 100 384.7 86.63 10.76 97.66 0.8 22.8 1.81 

10 1.93 - 1.86 100 366.39 88.31 12.74 96.83 0.63 17.2 1.86 

11 1.86 - 1.81 100 372.2 90.06 14.44 96.04 0.51 13.4 1.86 

12 1.81 - 1.75 100 362.7 92.3 18.87 93.69 0.38 9.7 1.88 

13 1.75 - 1.71 100 356.61 93.33 21.55 91.32 0.33 8.1 1.81 

14 1.71 - 1.67 100 343.8 94.61 25.37 89.58 0.27 6.5 1.91 

15 1.67 - 1.63 100 281.27 95.32 31.98 85.73 0.24 5.7 1.96 

16 1.63 - 1.59 100 247.34 95.96 36.96 81.44 0.21 4.9 2.03 

17 1.59 - 1.56 100 232.84 96.61 43.76 76.6 0.18 4.1 2.11 

18 1.56 - 1.53 100 199.83 96.9 51.7 68.19 0.16 3.7 2.08 

19 1.53 - 1.51 100 163.89 97.23 62.06 59.94 0.15 3.3 2.17 

20 1.51 - 1.48 100 137.03 97.74 81.12 48.66 0.12 2.8 2.47 
 

TOTAL 100 357.91 85.7 7.43 99.46 1.57 65.7 9.03 

 

Table 4.5. MSS-ds1 large cell statistics 
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4.3.3 Changes to polymorph populations with X-ray dose 

The diffraction-weighted dose was calculated using RADDOSE-3D (Paithankar & 

Garman, 2010), with a crystal size of 8 x 8 x 8µm selected to represent the smallest 

cubic crystals exposed to the beam (full input parameters and complete output data 

can be found in appendices section 4.5.2). The cumulative dose was calculated to be 

11 kGy per 20 ms dataset, equating to a dose rate of 1.1 MGy s-1. In order to quantify 

global radiation damage in MSS datasets total Bragg intensity was normalised for each 

dataset against the Bragg intensity for dose 1 in both small and large cell polymorphs 

(table 4.6). Global radiation damage was evident in the form of a rapid decrease in 

normalised diffracting power with accumulated dose in both polymorphs (fig. 4.6).  

 

By assessing the unit cell population change throughout the dose series, it is possible 

to show how the mean cell dimension undergoes a small progressive increase in each 

polymorph, consistent with many previous studies showing unit-cell expansion with 

accumulated X-ray dose. However, in this data series an interchange between the 

polymorph cell populations is also evident; the AcNiR-small population rapidly 

decreases, with a simultaneous increase in the AcNiR-large cell population (fig. 4.6). 

As represented in figure 4.7, the number of overall integrated images decreases in the 

all data dose series as expected, due to the accumulation of dose and subsequent 

global radiation damage effects. By plotting the selectively integrated small (a = b = c 

= 96.83 Å) and large cell (a = b = c = 97.25 Å) data in the MSS series, it is possible to 

see that there is a lack of overlap between the small and large cell structures 

throughout the MSS series. Further, in figure 4.7 it is possible to show that the 

increase in cell begins immediately upon irradiation, and the switch from small to   
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Dose kGy <I> small <I> small normalised <I> large <I> large normalised 
1 11 72.3 1 65.7 1 

2 22 73.6 1.018 67.1 1.0214 

3 33 65.1 0.9005 66 1.0046 

4 44 50.5 0.6985 57.5 0.8752 

5 55 37.4 0.5173 46 0.7002 

6 66 29.1 0.4025 37.2 0.5663 

7 77 24.4 0.3375 30.5 0.4643 

8 88 21.4 0.296 27.9 0.4247 

9 99 19 0.2628 23.8 0.3623 

10 110 17.4 0.2407 21.9 0.3334 

11 121 16 0.2214 20.2 0.3075 

12 132 14.7 0.2034 19.1 0.2908 

13 143 13.6 0.1882 17.9 0.2725 

14 154 12.8 0.1771 16.9 0.2573 

15 165 12.3 0.1702 15.8 0.2405 

16 176 11.5 0.1591 15.1 0.2299 

17 187 10.9 0.1508 14.5 0.2208 

18 198 10.3 0.1425 13.7 0.2086 

19 209 9.8 0.1356 13 0.1979 

20 220 9.4 0.1301 12.6 0.1918 

 

Table 4.6. Bragg intensities and normalised Bragg intensities for dose series 

polymorphs  
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Figure 4.6. Decrease in normalised diffracting power as a function of accumulated 

dose. 

Total diffracting power for each polymorph dose point was calculated by dividing the total 

Bragg intensity (I) for each dataset as reported in PRIME after integration against the total 

Bragg intensity for the small or large cell ds1 dataset. It can be seen that although there is a 

very slight increase in intensity in small and large cell ds1 and large cell ds2 datasets, there is 

an exponential decay in diffraction intensity as dose is accumulated.  
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Figure 4.7. Change in polymorph unit cell as a function of accumulated dose 

Change in unit cell dimension (a = b = c, space group P213) as a function of accumulated dose 

shown using a two-dimensional histogram, with an extremely high population of all indexed 

images at low dose exhibiting either a unit cell of 96.38 or 97.75 Å (small and large cell, 

respectively), with respective polymorph population cell dimensions increasing to 96.56 and 

98.04 Å by 220 kGy. The number of small cell indexed images has decreased vastly by the end 

of the data collection, whilst the number of large cell has increased.  

  



 126 

large cell represents a damaged AcNiR-large cell, rather than a switch to the AcNiR-

large polymorph that is identified in the original population at dose 1. 

 

4.3.4 Influence of dilution on unit cell population 

To provide insight into what concentration of microcrystals would give the best hit 

rate with limited multiple lattices, a serial dilution was performed on a single stock of 

AcNiR batch produced microcrystals (concentration not measured prior, 

concentration of similar batches ~ 3 x 106 crystals ml–1). Data were collected on only 

4 city blocks (1600 apertures) per concentration, with 50 µl of slurry loaded to the 

chip using the same vacuum loading method as used previously. Intriguingly, data 

processing revealed that unit cell populations are affected depending on the dilution 

of microcrystals (fig. 4.8, 4.9). The undiluted crystals had an average a = b = c = 96.5 

+/- 0.2 Å. This unit cell value increases across the serial dilution with a 2x dilution 

exhibiting a unit cell of 96.9 +/- 0.5 Å, 4x exhibiting a unit cell of 97.4 +/- 0.6 Å, 8x 

exhibiting a unit cell of 97.6 +/- 0.5 Å, and a 10x dilution exhibiting a unit cell of 97.7 

+/- 0.4 Å, respectively. A final dilution of 15x exhibited a unit cell of 97.8 +/- 0.0 Å. 

 

4.3.5 AcNiR MSS structures 

Selected structures were refined in order to investigate the polymorphic unit cell and 

the influence of accumulated dose on the active site throughout the dose series. It 

was possible to refine all MSS-ds1 structures to 1.48 Å, with an Rwork/Rfree of 

0.235/0.276 in the all data structure, and 0.186/0.217 and 0.205/0.228 in the small 

and large cell structures, respectively (table 4.7). In the all data MSS-ds1 structure, 

electron density reveals the characteristic homotrimer seen in CuNiRs (fig. 4.10a),  
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Figure 4.8. Unit cell histograms for dilution series 

Unit cell histograms for serial dilutions from a single AcNiR microcrystal batch. As the 

concentration of crystals decreases within the slurry volume the initial unit cell of a = b = c = 

96.5 +/- 0.2 Å shifts toward a larger cell, with the final 15x dilution presenting a unit cell of a 

= b = c = 97.8 Å. Histograms calculated and produced using DIALS v1.8. 

  



 128 

 

Figure 4.9. Fraction of polymorph as a function of microcrystal suspension 

concentration. 

Data collected on multiple crystal dilutions from 1600 apertures indicate as the concentration 

of microcrystals in a suspension decreases, the fraction of integrated images that exhibit a 

small unit cell also decreases. Dilution on the X axis is shown as a serial dilution, as microcrystal 

concentration measurements were not calculated prior to data collection. 
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Small Cell dose1 Large Cell dose1 All Data dose1 

Data Collection 

Cumulative dose (AcNiR) 11 11 11 

Number of integrated 
frames 

24,976 13,932 38,908 

Number of images used 24,367 13,481 38,798 
Data processing 

Space Group P213 

Cell dimensions (Å) 96.38 97.75 96.87 

Resolution (Å) 29.21-1.48 (1.51-1.48) 29.21-1.48 (1.51-1.48) 29.21-1.48 
(1.51-1.48) 

Rsplit (%) 5.71 (87.73) 7.43 (81.12) 5.15 (54.54) 
CC1/2 99.60 (72.60) 99.46 (48.66) 99.70 (55.42) 

<I> 72.3 (3.5) 65.7 (2.8) 76.8 (3.2) 

I/σ(I) 1.75 (0.17) 1.57 (0.12) 1.88 (0.15) 
Multiplicity 548.16 (206.50) 357.91 (137.03) 927.03 (301.8) 

Completeness (%) 100 (100) 100 (100) 100 (100) 
Refinement 

Number of reflections 49894 49430 50595 

Rwork/Rfree 0.186 / 0.217 0.205 / 0.228 0.235 / 0.276 

RMSD bond lengths (Å) 0.013 0.012 0.012 

RMSD bond angles (deg) 1.63 1.62 1.58 
Ramachandran plot: 

Most favoured (%) 97.3 96.7 97.5 

Allowed (%) 2.7 3.3 2.5 
PDB accession code 6GB8 6GBB 6GBY 

 

Table 4.7. Data processing and refinement values for MSS-ds1 datasets 
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Figure 4.10. Overall and active site structure of MSS-ds1 all data 

(a.) Overall homotrimeric structure of AcNiR all data dataset MSS-ds1, shown as a cartoon 

and coloured by secondary structure (blue = alpha helices, red = beta sheets, purple = loop). 

(b.) Chemical structure of nitrite. (c.) Active site arrangement of MSS-ds1 all data structure, 

including Asp98 in the proximal position, and histidine residues His100, His135, and His306 

that coordinate the copper atom at the T2Cu (electron density omitted around these residues 

for clarity). Electron density contoured at 1s. 

  



 131 

with each monomer containing a type 1 copper centre (T1Cu) and type 2 copper 

centre (T2Cu). A full occupancy NO2
- is bound to the type 2 copper centre (fig. 4.10b, 

c) in a ‘top hat’ conformation, while the T1Cu and T2Cu are ~12.7 Å apart (fig. 4.11), 

as seen in previously (Horrell et al., 2016). The T2Cu is coordinated by three histidines, 

His100, 135, and 306, with Asp98 in the proximal conformation (Horrell et al., 2018).  

 

Structurally, the MSS-ds1 all data and polymorph structures differ in a loop region, 

consisting of residues 187-193 and 201-205, existing in a dual conformation in the all 

data structure, and in only one or the other conformation in the polymorphs (fig. 

4.12). The active site remains unchanged in the dose series until ~44 AcNiR (ds4) 

where NO2
- is converted to NO and an H2O (fig. 4.13), with the high-resolution limit 

decreasing to 1.53 Å. This active site state remains unchanged until ~66 AcNiR (ds6), 

whereby the water molecule remains and a second water molecule is bound in place 

of the NO, with the high-resolution limit decreasing to 1.63 Å. The active site remains 

unchanged at higher doses, however past MSS-ds11 it becomes difficult to confidently 

determine the active site due to limited resolution of the data.   
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Figure 4.11. Distance between copper centres in MSS-ds1 all data  

Distance measured between the T1Cu and the T2Cu is ~12.7 Å in MSS-ds1 all data. 
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Figure 4.12. MSS-ds1 all data and polymorph 187-193 loop regions 

MSS-ds1 all data and polymorph structures differ in a loop region, consisting of residues 187-

193, existing in a dual conformation in the all data structure and a single loop in the small and 

large cell structures. 
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Figure 4.13.  X-ray induced active site change in AcNiR 

Dose series structures for small cell MSS-ds1, MSS-ds4, and MSS-ds6 (11, 44, and 66 kGy, 

respectively) reveal X-ray induced ligand turnover in AcNiR, showing the conversion of nitrite 

to nitric oxide to water. (a.) Active site arrangement after an initial exposure of 11 kGy for the 

small cell structure reveals a single occupancy NO2 bound in the top hat position above the 

T2Cu, with Asp98 in the proximal position. (b.) After an accumulated dose of 44 kGy NO is 

bound to the T2Cu with a water molecule, (c.) and after a further 22 kGy nitric oxide is 

converted to water. Maps contoured at 1s, with electron density around histidine and aspartic 

acid omitted for clarity.  
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4.4. Discussion 

4.4.1. Data and structure quality indicators 

The polymorphic nature of AcNiR crystals was initially discovered using the native unit 

cell histogram plot in DIALS. This is not obviously reflected in the all data merging and 

refinement parameters for the all data structure, with very good CC1/2 and multiplicity 

for all data MSS-ds1 (99.70 [55.42], 927.03 [301.8]) (see table 4.7). However, once 

data were separated, CC1/2 improved for small cell (99.60 [72.60]), with very good 

CC1/2 values for large cell (99.46 [48.66]), with very good multiplicity for both small 

and large polymorphs (548.16 [206.50], 357.91 [137.03]) (see table 4.7). Although 

fewer images were used in MSS-ds1 small vs all (23,467 vs 38,798), as-well-as 

presenting lower multiplicity statistics, the outer shell CC1/1 is vastly improved (72.60 

vs 55.42). High resolution structures with an outer shell resolution of 1.51-1.48Å were 

achieved despite a nominal resolution limit of 1.7 Å, imposed by crystal to detector 

distance (inscribed circle on the detector surface). This was due to the multiplicity of 

the data; the high multiplicity associated with serial data collections is apparent here, 

despite the data being collected from only a single chip, allowing complete reflections 

from the corners of the detector to be used in data processing.  

 

Utilisation of careful, stepwise data processing allowed the identification of a 

microcrystal slurry that exhibits multiple unit cell populations within it. Separation of 

unit cell polymorphs via data processing methods led to an improvement in data 

quality, with the all data dose 1 structure exhibiting Rwork/Rfree values of 0.235/0.276 

compared to the small and large cell dose 1 exhibiting an Rwork/Rfree of 0.186/0.216 

and 0.205/0.227, respectively. As all data were cut to the same resolution limit of 
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1.48Å, the difference between the all cell and single cell R values suggest that this 

analysis step prior to merging is beneficial over simply merging all data regardless of 

unit cell parameter. Further, percentile ranks, used to compare structures deposited 

to the PDB against all deposited structures as-well-as against X-ray structures of a 

similar resolution (111,664 total PDB entries at the time of deposition, 3964 at a 

resolution range of 1.50 – 1.46 Å), place the Rfree values for both the small and large 

cell MSS-ds1 structures favourably, with both structures residing in the upper 

percentile ranks for Rfree (fig. 4.14). The all data MSS-ds1 structure however performs 

markedly worse in comparison, with Rfree ranking in the bottom 30% when compared 

to all deposited structures, and Rfree ranking against depositions in the 1.50 – 1.46 Å 

resolution range in the bottom 10% of structures (fig. 4.14). 

 

4.4.2. Structural comparison 

When superimposing the MSS-ds1 large and small structures (fig. 4.15a), an r.m.s.d. 

value of 0.16 Å is apparent. While structures are extremely similar, there are 

structural differences observed at the N- and C-termini, and in the loop structure 

around residues 187-193 and 201-205 (fig. 4.15a, b). Further, when viewing the 

structure as a symmetry generated trimer, the biological assembly of AcNiR, it is 

possible to reveal a difference between the overall volume between the polymorphs; 

the volume of the AcNiR large trimer was 157399 Å3, an increase of 1901 Å3 over the 

AcNiR small volume of 155498 Å3. The corresponding increase in surface area was 659 

Å2, with AcNiR large exhibiting a surface area of 22998 Å2 and AcNiR small exhibiting 

a surface area of 22339 Å2. Volume and surface area measured using 3vee 

(3vee.molmovdb.org; Voss & Gerstein, 2010). Without this polymorph separation  
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Figure 4.14. PDB percentile ranks of the MSS-ds1 structures 

Deposited small cell (6GB8), large cell (6GBB), and all data (6GBY) structures also fall within 

better than average percentile ranks for factors including clashscore, Ramachandran outliers, 

sidechain outliers, as-well-as real-space R-value Z-score (RSRZ score) which measures the 

quality of fit between a part of an atomic model and the data in real space. Figures were 

generated via PDB Validation Report. Both small cell and large cell percentiles are an 

improvement over those of the all data structure, indicating the strength of using a robust 

data processing method when collecting serial data.  
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Figure 4.15. Superimposed small and large cell AcNiR 11 kGy structures 

(a.) Superimposed MSS-ds1 small and large structures coloured by r.m.s.d. between 

structures, with blue indicating low values and red indicating high values. The highest 

deviation between structures can be seen in the loop region around Asp188, residues 187-193. 

(b.) Superposition of aligned small (pink) and large (yellow) structures (biological assembly) 

viewed from down the threefold axis (residues 186-195 shown in dark grey).   
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procedure, the MSS-ds1 all data structure exists in a dual conformation, with a shift 

between the loop region residues 187-193 and 201-205 representing both large and 

small polymorph structures. Interestingly, this polymorphic loop region is also 

apparent in AcNiR structures that have been deposited in the PDB; Horrell et al. (2016) 

deposited 6 serial structures of AcNiR from a multiple structure using one crystal 

(MSOX) experiment performed at 100 K that all also exhibit the same dual 

conformation of residues 187-193 (PDB codes: 5I6K, 5I6L, 5I6M, 5I6N, 5I6O, 5I6P).  

 

Due to the structural differences in the loop region around Asp188 are observed 

between polymorphs, further comparison was undertaken to seek to understand the 

different loop conformations; multiple single crystal structures are available for 

AcNiR, measured at a variety of temperatures though primarily data have been 

collected at 100K. Superposition of this loop region in AcNiR structures determined at 

different temperatures reveals a progressive shift of the loop from 100 K (cell length 

95.41 Å) to 240 K (cell length 96.13 Å; PDB entry 5N8F) and room temperature (cell 

length 96.23 Å; PDB 5OFF), with the latter being very similar in structure to the AcNiR 

small polymorph (fig. 4.16). A further shift then occurs to the AcNiR large polymorph 

(98.21 Å).  

 

When comparing conversion at the active site with a published dose series of AcNiR 

at room temperature, a similar progression of NO2
- to NO to H2O is seen. Horrell et al 

published a ten frame MSOX series at room temperature, with the same top-hat 

orientation of the bound NO2 in the 30 kGy dose 1 structure (Horrell et al., 2018); NO2
- 

is converted to NO after 180 kGy in their MSOX series, compared to just 44 kGy in  
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Figure 4.16. Superposed AcNiR loop conformations at different temperatures 

Asp 188 loop region from single crystal AcNiR structures at 100K (cyan; PDB: 2BW4), 240K 

(blue; PDB: 5N8F), and RT (orange; PDB: 5OFF), aligned against the multi crystal small cell 

(yellow), and large cell (red) structures. Interestingly there is a progressive shift as 

temperature increases between the single crystal structures, to the point at where the single 

crystal room temperature loop region is very closely aligned to that of the small cell structure. 
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MSS-ds4, with the NO replaced with a water by 300 kGy compared to only 66 kGy in 

MSS-ds6. These studies differ in key sample and data collection parameters however, 

which goes towards explaining why conversion happens at a much faster rate in an 

MSS experiment. Crystals used for the Horrell et al. MSOX study were approximately 

300 x 200 x 200 µm, with a 30 x 30 µm beam, and an X-ray flux of 1.6 x 1011 photons 

s-1 utilised, a dose rate of 300 kGy s-1. This is compared to the average 8 x 8 x 8 µm 

crystals used in this fixed target experiment, an 8 x 8 µm beam, and a higher X-ray flux 

of 3 x 1011 photons s-1, a comparative dose rate of 550 kGy s-1. Although it has been 

demonstrated experimentally that radiation damage in protein crystals is mitigated 

when using smaller X-ray beams (Sanishvili et al., 2011), there is an increase in X-ray 

exposure per unit sample volume when using microcrystals with microbeams 

compared to an MSOX large crystal method. This leads to photoelectron trajectories 

distributing through a greater percentage of total crystal volume in microcrystals, 

inducing ligand turnover via secondary radiation damage events throughout a high 

proportion of the crystal, explaining ligand turnover occurring at lower dose in this 

MSS method when compared to an MSOX method on a larger AcNiR crystal.  

 

It is apparent from figure 4.7 that the switch from small to large cell for any particular 

microcrystal yields a cell that is consistent with the ‘damaged large cell’ of a particular 

dose rather than the large cell at dose point 1. The increase in unit cell for both 

polymorphs begins immediately upon irradiation, while the switching of polymorphs 

is minimal within the first 100 ms before proceeding rapidly. The lack of overlap 

between the two populations implies a specific structural change between 

polymorphs and could suggest that expansion of the small cell acts as a trigger/seed 
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leading to subsequent polymorph swapping. The precise mechanism by which unit 

cell expansion between AcNiR-small and AcNiR-big remains unclear, though insights 

may be gained from known site-specific radiation damage phenomena; as 

decarboxylation of aspartic acid residues has been well characterised (Burmeister, 

2000; Holton, 2009; Garman, 2010), the dual conformation loop region containing 

residues Asp188 and Glu189 is of note.  

 

When comparing dose points 1 and 15, election density of Asp188 remains clear at 

both dose points, while Glu189 was disordered at both dose points. This similarity 

between both points may point toward solvent rather than being involved in crystal 

contacts. Other possible explanations for the dose driven polymorph exchange may 

be related to hydration or thermodynamic factors, which could arise from heating of 

the microcrystal and surrounding mother liquor in the beam, or the generation of 

gases by radiolysis (Meents et al., 2010). An interesting follow-up experiment to this 

would be performing the same experiment at cryogenic temperature. ‘Mini chips’ that 

comprised of only a single city block can be mounted on a pin and then cryocooled.  

can be used at cryo as the entire city block can be covered by the nitrogen stream at 

the endstation. By collecting and processing data from multiple mini chips, it would 

be possible to check whether the polymorphic unit cell is still apparent and the 

comparative dose rate at which the unit cell flip takes place. 

 

4.4.3. Tracking global radiation damage in MSS data sets  

As seen in figure 4.7 there is an initial plateau region or lag phase spanning the first 

35 kGy of exposure, before the expected exponential decay in diffracting power seen 
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throughout the rest of the data. This intensity decay could arise from a number of 

factors: it is possible that this is an artefact of exceeding the count rate limit of a single 

photon-counting detector, such as the PILATUS3, resulting in a plateau, though care 

was taken however to ensure count rates were below the maximum of 10 x 106 counts 

per second per pixel, the maximum that PILATUS3 detectors are capable of accurately 

recording. In this instance, the maximum observed counts in a Bragg spot were ~8000, 

or 0.4 x 106 counts per second per pixel, only ~4% of the maximum count rate, with 

the more typical count rates observed ~<4000, or less than 2% of the maximum count 

rate. Furthermore, crystals are not rotated at all during data collection, meaning 

count rates should be steady throughout the time taken to record an image and the 

count-rate correction applied by the detector is extremely accurate. A lag phase can 

result from the outrunning of global radiation damage effects, resulting from the 

effects of phenomena such as beam induced heating. When site specific damage 

dominates in the initial period of data collection, the global intensity decay will 

deviate from an exponential decay (Owen et al., 2014; Sygusch & Allaire, 1988). It has 

also been theorised that Gaussian non-tophat profile beams can affect intensity 

decay, with a non-uniform beam profile contributing to a non-exponential dose 

response, arising from non-uniform illumination of crystals producing non-uniform 

damage; this can lead to initial increases or plateaus of integrated intensities with 

dose, imitating the effect of a delayed onset of damage (Warkentin et al. 2017). 

Additionally, any timing error in chip motion coupling with detector triggering, could 

significantly reduce the diffracting power of the first image. In this experiment, as with 

all chip-based experiments, the beam size is approximately equal to the aperture size, 

due to the availability of different chips that have different aperture sizes and the 
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tuneable beam at I24, that can be used to change the beam size to accommodate 

larger apertures/crystals. Any timing error in chip motion and/or detector triggering 

would result in the beam profile exceeding the aperture limits, therefore reducing the 

intensity incident on the aperture 

 

In terms of the horizontal beam profile, chip aperture and motion only, 68% of the 

beam (FWHM 8 µm) falls within the chip 7 µm aperture assuming the beam and centre 

of the aperture are perfectly aligned and co-centred. However, if the chip aperture is 

offset by only a few µm there can be a significant drop in intensity; if the chip aperture 

is offset by 1, 2, or 3 µm the intensity incident on the aperture falls by 3, 11, or 23%, 

respectively. Consequently, small errors in chip aperture positioning during the initial 

alignment stages of the experiment can result in large errors in the recorded intensity 

at the end of an experiment. Furthermore, as this is evident at the start of the data 

collection, this may be an artefact of chip movement; as the chip decelerates into 

position co-centred with the beam this deceleration may lead to small vibrations the 

induce unwanted movement in the chip. This movement may cause an initial 

fluctuation in incident on the chip aperture due to slight unwanted vibratory 

movement of the chip aperture in and out of the beam. Even though extensive care 

is taken before, between and in the development of experiments to tune the stages 

as to eliminate this as a source of systematic error, it cannot be discounted as a cause 

of this initial lag phase.  
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4.5. Appendices 

4.5.1. Example stills_process input parameters 

spotfinder.lookup.mask=mask.pickle 
#spotfinder.filter.min_spot_size=2 
integration.lookup.mask=mask.pickle 
#significance_filter.enable=True #being tested, check with Danny first 
#significance_filter.isigi_cutoff=1.0 
#refinement.parameterisation.detector.fix = None  
 
 
geometry { 
  detector { 
    panel { 
      fast_axis = 0.9999983227108509, 0.0, -0.001831550022519978 
      slow_axis = -3.4478783685469325e-06, -0.9999982281102588, -
0.0018824888990550894 
      origin = -216.01488427460455, 226.7536585966384, -
308.42815247014596 
      } 
    } 
  } 
 
 
indexing.stills.refine_candidates_with_known_symmetry=True 
 
indexing { 
  known_symmetry { 
    space_group = P213 
    unit_cell = 96.5 96.5 96.5 90 90 90 
  } 
  
  refinement_protocol.n_macro_cycles = 1 
  refinement_protocol.d_min_start=2.5 
  basis_vector_combinations.max_refine=5 
  stills.indexer=stills  
  stills.method_list= ftt1d real_space_grid_search 
  multiple_lattice_search.max_lattices=3 
} 
 
verbosity=10 
integration { 
  integrator=stills 
  profile.fitting=False 
  
  background { 
    simple { 
      outlier { 
        algorithm = null 
      } 
    } 
  } 
} 
profile { 
  gaussian_rs { 
    min_spots.overall = 0 
  } 
} 
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refinement { 
  parameterisation { 
    beam.fix=all 
    detector.hierarchy_level=0 
    auto_reduction { 
      action=fix 
      min_nref_per_parameter=1 
    } 
    treat_single_image_as_still=True 
  } 
  reflections { 
    outlier.algorithm=null 
    weighting_strategy.override=stills 
    weighting_strategy.delpsi_constant=1000000 
  } 
} 

 

4.5.2. Example prime input parameters 

data = ../weezer/int_dats/prime_input_38908_images_dose_1.dat 
run_no = dose_1_all_cells 
title = weezer_dose01  
icering { 
  flag_on = False 
  d_upper = 3.9 
  d_lower = 3.85 
} 
scale { 
  d_min = 1.8 
  d_max = 6.0 
  sigma_min = 1.5 
} 
postref { 
  residual_threshold = 5 
  residual_threshold_xy = 5 
  scale { 
    d_min = 1.8 
    d_max = 6.0 
    sigma_min = 1.5 
    partiality_min = 0.1 
  } 
  crystal_orientation { 
    flag_on = True 
    d_min = 2.0 
    d_max = 45 
    sigma_min = 1.5 
    partiality_min = 0.1 
  } 
  reflecting_range { 
    flag_on = True 
    d_min = 2.0 
    d_max = 45 
    sigma_min = 1.5 
    partiality_min = 0.1 
  } 
  unit_cell { 
    flag_on = True 
    d_min = 2.0 
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    d_max = 45 
    sigma_min = 1.5 
    partiality_min = 0.1 
    uc_tolerance = 3 
  } 
  allparams { 
    flag_on = False 
    d_min = 0.1 
    d_max = 99 
    sigma_min = 1.5 
    partiality_min = 0.1 
    uc_tolerance = 3 
  } 
} 
merge { 
  d_min = 1.48 
  d_max = 30 
  sigma_min = -3 
  partiality_min = 0.1 
  uc_tolerance = 3 
} 
target_unit_cell = 96.9,96.9,96.9,90,90,90 
flag_override_unit_cell = False 
target_space_group = P213 
target_anomalous_flag = False 
flag_weak_anomalous = False 
target_crystal_system = None 
n_residues = 360 
indexing_ambiguity { 
  mode = Auto 
  index_basis_in = /dls/i24/data/2017/nt14493-
63/processing/merged/CuNIR_cryo_rotation_free.mtz 
  assigned_basis = None 
  d_min = 3.0 
  d_max = 10.0 
  sigma_min = 1.5 
  n_sample_frames = 300 
  n_selected_frames = 100 
} 
hklisoin = /dls/i24/data/2017/nt14493-
63/processing/merged/CuNIR_cryo_rotation_free.mtz 
hklrefin = None 
flag_plot = False 
flag_plot_expert = False 
n_postref_cycle = 0 
n_postref_sub_cycle = 1 
n_rejection_cycle = 1 
sigma_rejection = 3 
n_bins = 20 
pixel_size_mm = 0.172 
frame_accept_min_cc = 0.25 
flag_apply_b_by_frame = False 
flag_monte_carlo = False 
b_refine_d_min = 99 
partiality_model = Lorentzian 
flag_LP_correction = True 
flag_volume_correction = True 
flag_beam_divergence = False 
n_processors = 20 
gamma_e = 0.003 
voigt_nu = 0.5 
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polarization_horizontal_fraction = 1.0 
flag_output_verbose = False 
flag_replace_sigI = False 
percent_cone_fraction = 5.0 
isoform_name = None 
flag_hush = False 
timeout_seconds = 300 
queue { 
  mode = None 
  qname = psanaq 
  n_nodes = 12 
} 
isoform_cluster { 
  n_clusters = 2 
  isorefin = None 
  d_min = 3.0 
  d_max = 10.0 
  sigma_min = 1.5 
  n_sample_frames = 300 
  n_selected_frames = 100 
} 
 
 

4.5.1. RADDOSE3D input 

Crystal 
 
Type Cuboid 
Dimensions 8 8 8         
PixelsPerMicron 0.5            
AbsCoefCalc  RD3D 
UnitCell  96.8 96.8 96.8 90 90 90   
NumMonomers  12                    
NumResidues  340                     
ProteinHeavyAtoms Cu 2 S 10          
#SolventHeavyConc P 425              
SolventFraction 0.4 
Beam 
 
Type Gaussian              
Flux 3.0e11                  
FWHM 8 8                 
Energy 12.8                
Collimation Rectangular 24 24  
Wedge 0 0                 
ExposureTime 0.02            
# AngularResolution 2      

 

RADDOSE3D Output Data 

Cuboid (Polyhedron) crystal of size [8, 8, 8] um [x, y, z] at a 
resolution of 2.00 microns per voxel edge. 
Simple DDM. 
Gaussian beam, 24.0x24.0 um with 8.00 by 8.00 FWHM (x by y) and 
3.0e+11 photons per second at 12.80 keV. 
Wedge 1: 
Collecting data for a total of 0.0s from phi = 0.0 to 0.0 deg. 
 
Crystal coefficients calculated with RADDOSE-3D.  
Photelectric Coefficient: 2.34e-04 /um. 
Inelastic Coefficient: 2.06e-05 /um. 
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Elastic Coefficient: 1.92e-05 /um. 
Attenuation Coefficient: 2.73e-04 /um. 
Density: 1.24 g/ml. 
 
Average Diffraction Weighted Dose         : 0.011456 MGy 
Elastic Yield                             : 5.15e+05 photons 
Diffraction Efficiency (Elastic Yield/DWD): 4.50e+07 photons/MGy 
Average Dose (Whole Crystal)              : 0.020273 MGy 
Average Dose (Exposed Region)             : 0.020273 MGy 
Max Dose                                  : 0.032066 MGy 
Average Dose (95.0 % of total absorbed energy threshold (0.01 MGy)): 
0.022010 MGy 
Dose Contrast (Max/Threshold Av.)         : 1.46 
Used Volume                               : 100.0% 
Absorbed Energy (this Wedge)              : 1.31e-08 J. 
Dose Inefficiency (Max Dose/mJ Absorbed)  : 2439.8 1/g 
Dose Inefficiency PE (Max Dose/mJ Deposited): 2493.3 1/g 
Final Dose Histogram: 
Bin  1,  0.0 to  0.1 MGy: 100.0 %  
Bin  2,  0.1 to  3.4 MGy:  0.0 %  
Bin  3,  3.4 to  6.7 MGy:  0.0 %  
Bin  4,  6.7 to 10.1 MGy:  0.0 %  
Bin  5, 10.1 to 13.4 MGy:  0.0 %  
Bin  6, 13.4 to 16.7 MGy:  0.0 %  
Bin  7, 16.7 to 20.0 MGy:  0.0 %  
Bin  8, 20.0 to 23.4 MGy:  0.0 %  
Bin  9, 23.4 to 26.7 MGy:  0.0 %  
Bin 10, 26.7 to 30.0 MGy:  0.0 %  
Bin 11, 30.0 MGy upwards:  0.0 % 
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Chapter 5: Estimating zero dose structures: SFX vs SSX 

5.1. Introduction  

Obtaining a functionally relevant three-dimensional model when collecting X-ray data 

from protein crystals is a necessity that underpins X-ray crystallography. These 

structures provide insight into the function of proteins on the atomic level, as well as 

developing our understanding of how they interact with other proteins or with small 

molecules. These biological interpretations are proposed purely on the assumption 

that the structure derived from diffraction data is the true and accurate 

representation of the protein of interest, representative of its native (or ligand bound) 

state and free from artefacts. As covered in detail in section 1.1, global radiation 

damage effects can limit crystal lifetimes when collecting room temperature data 

(Garman, 2010), therefore macromolecular crystallography is typically carried out at 

cryogenic temperatures to mitigate radiation-damage-induced structural 

perturbation (Garman & Owen, 2006; Holton, 2009). 

 

Despite the much faster onset of global radiation damage, there is an increasing 

recognition of the importance of carrying out crystallographic studies at room 

temperature in order to determine a more accurate depiction of structure/function 

relationship, as well as protein dynamics, in-vivo. This was demonstrated in a study 

by Fischer et al. in 2015, whereby data were collected from crystals in a fragment-

based ligand discovery experiment at both cryo and room temperature, revealing 

transient binding sites at room temperature that would be abolished at cryogenic 

temperatures (Fischer, Shoichet, & Fraser, 2015). The importance of collecting room 
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temperature data is further underlined in a recent publication from Keedy et al., 

where use of a multitemperature data collection method allowed the solution of an 

allosteric network by revealing ‘hidden’ low-occupancy conformation states for 

protein and ligands (Keedy et al., 2018).  

 

Although the benefits associated with collecting room temperature data are 

pronounced, structures of peroxidases present a challenge in terms of obtaining an 

intact, undamaged, structure due to their sensitivity to reduction in synchrotron 

experiments (Kekilli et al., 2017). Heme peroxidases catalyse many biologically 

relevant/important reactions, therefore understanding their structural mechanism is 

of high interest, prompting extensive efforts to obtain ‘intact’ peroxidase structures 

at high resolution. However, the Fe III (resting) and Fe IV (intermediate) states are 

phenomenally sensitive to reduction; the absorption of X-ray photons results in the 

ejection of photoelectrons, leading to a cascade of reactions as photoelectrons 

propagate through the crystal, creating hundreds of additional electrons and cations 

(Sutton et al., 2013). When these are absorbed by metal cofactors, a change in 

oxidation state affecting conformation and coordination can be apparent much lower 

than typically used in structure solution (Beitlich et al., 2007). 

 

The high redox potential of peroxidases enables them to utilise Fe(IV) as a potent 

oxidant (Meharenna et al., 2010), however the reduction of the ferryl heme is 

associated with a linear increase in the Fe-O bond length of the water molecule bound 

to the Fe atom, within the extensive H-bonded network associated with the active site 

dynamics of heme peroxidases. It may be possible to mitigate these radiation damage 
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effects via serial femtosecond crystallography at XFELs: detailed in chapter 1.2, the 

ability to collect data before secondary radiation damage effects have time to occur 

is made possible by collecting X-ray data on the femtosecond timescale. It is therefore 

of interest to compare ‘damage free’ data against low dose data collected at a 

synchrotron light source, due to the longer time scales of synchrotron data collection 

techniques and the associated conformational changes of biomolecules (Levantino et 

al., 2015). This has been investigated previously by Keedy et al., 2015: in order to map 

the conformational landscape of enzymes, SFX data were compared against 

multitemperature synchrotron datasets, with XFEL data used to confirm that 

heterogeneity between multitemperature datasets in room temperature synchrotron 

data is not due to radiation damage (Keedy et al., 2015).   

 

The comparison of synchrotron and XFEL data has been performed previously on 

peroxidase enzymes; this has been utilised to identify the aforementioned difference 

in Fe-O bond length, with a damage free bond length of 1.7 Å, and a 0.525 MGy bond 

length of 1.9 Å collected at 65 K in cytochrome c peroxidase (Meharenna et al., 2010). 

This high dose dataset was the final dataset of a dose series data collection, 

comprising 15 total datasets; the first 13 datasets were used to assess how the Fe-O 

bond length changes as a function of X-ray dose in a preliminary study to their XFEL 

data collection. It was possible for Meharenna et al. to plot these bond distances and 

fit a linear function to extrapolate to zero dose, giving an estimated damage free bond 

length of 1.72 Å.  
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As explained in chapter 1.3.2, DtpAa is a DyP family heme peroxidase found in the 

bacterium Streptomyces lividans, and has been studied thoroughly at the University 

of Essex by the Worrall group due to their role in the maturation of copper oxidases 

(Petrus et al., 2016). Due to this being a heme peroxidase, the rapid active site 

alterations associated with radiation damage mentioned above make DtpAa an ideal 

target to investigate methods of collecting damage free datasets at XFELs, and 

comparing this data with synchrotron techniques that aim to estimate radiation 

damage effects, namely whether specific bond lengths could be estimated in SFX 

datasets using SSX. The factor of differentiation in the study compared to that of 

Meharenna et al. however is the use of identical crystal preparations, sample delivery 

method for both synchrotron and XFEL data collections, and completing both at room 

temperature vs 65K (Meharenna et al., 2010). This was achieved by SFX, combined 

with the MSS technique used previously (see chapter 4.2, 4.3). The technique and 

results were further explored by online UV-vis spectrophotometry quantify reduction 

of the heme. 
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5.2. Methods 

Expression, purification of DtpAa were performed and optimised by Dr. Jonathan 

Worrall and Dr. Amanda Chaplin of the Worrall group at the University of Essex, with 

Dr. Tadeo Moreno-Chicano from the Hough group at the University of Essex involved 

in the optimisation of crystallisation. Crystals were obtained by the author and 

subjected to experimental data collection, and subsequent in-depth data processing 

and analysis. Methods of sample preparation are explained below. 

 

5.2.1. Recombinant protein expression, purification, and crystallisation 

5.2.1.1. Molecular biology and recombinant protein expression 

The SLI_2601 gene encoding DtpAa was amplified using polymerase chain reaction 

from the genomic DNA of Streptomyces lividans strain 1326 (S. lividans stock number 

1326, John Innes Centre). The gene was cloned into the NdeI and HindIII sites of a 

pET28a vector (Novagen) to create an N-terminal His6-tagged construct (pET2602) for 

overexpression in E. coli BL21 (DE3) cells.  

 

1.4 L of high-salt LB medium was used to express DtpAa at 37°C, 180 rev min -1 to an 

OD600 of 1.0-1.2. At this point 0.25 mM 5-aminolevulinic acid and 100 µM iron citrate 

(final concentrations) were added for use as a heme precursor and iron supplement, 

respectively. 0.5 mM (final concentration) β-D-thiogalactopyranoside (Melford) was 

added to induce the cultures, and carbon monoxide gas was bubbled through the 

cultures for 30-60 seconds to help stabilise the heme during over-expression. Flasks 

were sealed and incubated at 30°C and 100 rev min -1 for a further 18 hours. Cells 

were harvested via centrifugation at 10000g for 10 minutes at 4°C. 
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5.2.1.2. DtpAa purification 

In preparation for purification via chromatography, harvested cells were resuspended 

in 50 mM Tris-HCl, 500 mM NaCl (Fisher) and 20 mM imidazole (Sigma) pH 8 (buffer 

A), and lysed using an Emulsiflex-C5 cell disruptor (Avestin). Cell debris were cleared 

via centrifugation at 22000g for 30 mins at 4°C, and the clarified supernatant loaded 

onto a 5 mL nickel-nitrilotriacetic acid-sepharose column (GE Healthcare) equilibrated 

with buffer A. A 50 mM Tris-HCl, 500 mM NaCl with 500 mM imidazole buffer (buffer 

B) was used to elute the bound protein via a linear gradient, with the DtpAa peak 

eluting at approximately 30-40% buffer B.  

 

DtpAa was pooled and concentrated using a Centricon (VivaSpin) centrifugal 

concentrator with a 10 kDa cut-off at 4°C, and further purified via size exclusion 

chromatography using an S200 sephadex (GE Healthcare) size exclusion column, 

equilibrated with 20 mM NaPi, 100 mM NaCl, pH 7. A major peak eluted with fractions 

analysed via SDS-PAGE. DtpAa was concentrated, determined by UV-vis spectroscopy 

(Varian Cary 60 UV-vis spectrophotometer) using an extinction coefficient at 280 nm 

of 46075 M -1 cm -1, and stored at -20°C. 

 

5.2.1.3. Crystallisation and crystal size optimisation 

Microcrystal conditions were developed and optimised by Dr. Tadeo Moreno-Chicano 

at the University of Essex by searching potential conditions from initial hits arising 

from commercial crystallisation screens. Hits were identified in the commercial screen 

pHClear in condition D4: 20% PEG 6000, 100mM HEPES pH 7.0. This condition was 

transferred to small volume batches (20 – 50 µl) at first, with microcrystals of an 
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average size of 20 x 20 x 20 µm grown for use in this research (fig. 5.1), in batch 

volumes of 0.4-0.5 ml total volume. This was achieved by mixing a 1:1 ratio of 6.5 

mg/ml DtpAa with a crystallisation buffer containing 20% PEG 6000, 100 mM HEPES 

pH 7.0. 

 

5.2.2. Serial data collection  

5.2.2.1. Sample loading 

DtpAa microcrystals were loaded onto silicon chips at both the Spring-8 Ångstrom 

Free-Electron Laser (SACLA) and Diamond Light Source (DLS) using an identical 

method as explained in detail in section 3.4, and chapter 4. 

 

5.2.2.2. SACLA beamline instrumentation, methods, and parameters 

Instrumentation for the movement of chips through the X-ray beam was mounted on 

beamline BL2 EH3 at SACLA as described in detail in chapter 3.4. Serial femtosecond 

crystallography (SFX) data were measured at SACLA beamline BL2 EH3 using an X-ray 

energy of 10.0 keV. A pulse length of 10 fs with a 1.25 x 1.34 µm beam, and a pulse 

energy of 298 µJ pulse -1 with the beam attenuated to 13% of full flux. The translation 

of the chip between apertures happened during the 33 ms separating the 30 Hz XFEL 

pulses, making it possible to record a single diffraction image from the centre of each 

of the 25,600 apertures on the chip in under 14 minutes, whilst ensuring the chip was 

stationary at the time of data collection. The sample stages, viewing system and 

sample-loaded chip are within a sealed helium chamber in order to minimise air 

scatter, with the SACLA MPCCD detector (Kameshima et al., 2014) outside the 

chamber behind a mylar window (fig. 3.8). A custom entry port allowed rapid exchan- 
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Figure 5.1. DtpAa microcrystals. 

Batch grown DtpAa protein crystals vary in size, with cubic and cuboid crystals between 10 – 

50 µm in diameter commonly seen. 
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ge of chips, with minimal helium loss. The program CHEETAH (Barty et al., 2014) was 

utilised to estimate hit rates on the beamline during data collection. 

 

5.2.2.3. DLS beamline instrumentation, methods, and parameters 

Serial synchrotron crystallography (SSX) data were measured at DLS beamline I24 

using an X-ray energy of 12.8 keV, with no attenuation of the beam. A Pilatus3 6M 

detector was utilised for the collection of diffraction images while in shutterless 

mode, meaning the X-ray shutter was not closed between apertures on the chip, 

remaining open for the duration of the experimental data collection. An MSS method 

(see chapters 3 and 4) was utilised in order to collect serial datasets from chip 

apertures. This MSS method was performed by collecting sequential diffraction 

patterns at each aperture position using an exposure time of 10 ms, with data binned 

into one dataset per dose interval. This method allowed the collection of two dose-

dependent data series, the first of 5 (MSS1) sequential structures, and a second series 

of 10 dose points (MSS2) after preliminary analysis of MSS1 data suggested that 5 

data points were insufficient to establish clear trends. The series of exposures at each 

aperture position were triggered via a Keysight 33500B signal generator which itself 

was triggered by a DeltaTau Geobrick LV-IMS-II stage controller. Beam fluxes for MSS1 

and MSS2 were 3.2 x 1012 and 3.0 x 1012 photons s-1, measured using a silicon PIN 

diode (Owen et al., 2006), with corresponding beam sizes of 7 x 7 and 9 x 8 µm 

(measured using a knife edge scan), respectively. 
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5.2.2.4. Data processing, structure solution and refinement 

Initial hit finding for data measured at SACLA was carried out at the beamline using 

CHEETAH (Barty et al., 2014), with peak-finding, integration and merging all performed 

in CrystFEL (White et al., 2012) thereafter. DLS data were processed in DIALS, with 

dials.stills_process used for indexing and integration with subsequent scaling 

and merging completed using PRIME (Winter et al., 2018).  

 

With data collected from both SACLA and DLS, resolution limits were assessed using 

CC1/2 and Rsplit parameters. Structures were solved using molecular replacement using 

a starting model obtained from small wedges of data using larger DtpAa crystals 

mounted between two 6 µm layers of mylar film (not reported in this thesis). In all 

cases water molecules were removed from the starting model prior to refinement to 

avoid biasing electron density in areas of interest during refinement. 

 

Structures were refined in PHENIX, using phenix.refine (Adams et al., 2010) and 

rebuilt between rounds of refinement using COOT (Paul Emsley & Cowtan, 2004), with 

atoms not well supported by electron density deleted from the model. Validation was 

performed using JCSG QCCheck server (https://smb.slac.stanford.edu/jcsg/QC/), as 

well as tools within PHENIX including the built-in MolProbity (Chen et al., 2010) 

functionality. Error in bond lengths were estimated using the online diffraction 

precision indicator (DPI) server (http://cluster.physics.iisc.ernet.in/dpi/; Kumar et al., 

2015) and calculating bond error between 2 atoms using equation 8: 

!"#$	&'#()ℎ	'++"+ = -./0	1)"2	13 + ./0	1)"2	53  

Equation 8.  
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RADDOSE-3D (Paithankar & Garman, 2010) was used to estimate absorbed doses, with 

dose increments corresponding to the total dose accumulated within the exposure 

time of the first image. 

 

5.2.3. Online UV-vis micro-spectrophotometry  

In situ UV–Vis absorption spectra were collected on beamline I24 at Diamond Light 

Source. Spectra were collected using mirror lenses (Bruker) mounted in an off-axis 

geometry (fig. 5.2) and a deuterium halogen light source (Ocean Optics). Spectra were 

recorded over the wavelength range of 300 – 800 nm using a Shamrock 303 imaging 

spectrograph (Andor). Data were collected using an X-ray energy of 12.8 keV, an X-ray 

beamsize of 30x30 µm (FWHM) and a UV–vis focal spot 40 µm in diameter. Spectra 

were collected using an exposure time of 10 ms, with 2 accumulations per spectrum. 

During the experiment, data were viewed in Andor Solis spectrograph software, 

with data of interest analysed in OriginPro (https://www.originlab.com). 
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Figure 5.2. Online UV-vis spectrophotometry on I24 

(a.) UV-vis mirror lenses mounted in an off-axis geometry on beamline I24 at DLS, with light-

sample interaction highlighted in yellow. (b.) Schematic depiction. A cryostream was not used 

in this study, with collections performed at room temperature (294 K).  
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5.3. Results 

5.3.1. SFX Data collection, processing, and refinement 

Chips were loaded using the methods as described in chapter 3. Data were collected 

from 10 chips (table 5.1) using BL2 EH3 at SACLA, in order to obtain a high enough 

redundancy to account for the partiality of stills data. Initial estimation of hit rate 

using CHEETAH gave an approximate hit rate of 22.8%, with 64,092 indexed patterns 

from a possible 281,600, with diffraction to higher than 2 Å on initial viewing of HDF5 

files (fig. 5.3). The CrystFEL software suite was used for SFX data reduction in this 

thesis. Although this is the first SFX structure described in this body of work, a detailed 

explanation of the method of data processing is available in chapter 3.5, therefore 

only relevant parameters and analysis will be referred to in this section. 

 

Indexing and integration were handled by the indexamajig programme, using 

parameters that were optimised using an initial AcNiR dataset (not reported in this 

thesis), an initial detector geometry refined for this beamtime, and unit cell 

parameters that were defined using a room temperature data collection at I24 prior 

to SFX data collection. This was run against SACLA data (an HDF5 file) for each 

individual chip. The resulting DtpAa.out file was used to define accurate SFX unit cell 

parameters using the cell_explorer program within CrystFEL, providing a 

distribution for the unit cell dimensions of DtpAa, to which a Gaussian function can 

be fitted in order to define the mean values. Updated unit cell dimensions of a = 72.72, 

b = 68.18, c = 74.62, and β = 105.58 Å, space group P21 (fig. 5.4), were added to a new 

unit cell file named DtpAa_refined.cell.  
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Run number Chip name 
Approximate hit 

rate (%) 
Exposure events 

23382 Lisbon 12.96 25700 

23383 Maniwa 6.5 25700 

23384 Nagoya 5.43 25700 

23392 Tehran 9.23 25700* 

23393 Tehran1 11.56 4830 

23394 Urumqi 5.9 25700 

23443 Zagreb 60.9 25700 

23444 Aleppo 31.3 25700 

23445 Banjul 27.1 25700* 

23447 Banjul1 15.83 1205 

23448 Cuenca 5.83 25700 

23449 Durban 90.5 25700 

 

Table 5.1. Chips used to collect ferric DtpAa SFX data 

* Incomplete runs due to loss of beam. Data from missed chip areas were collected on the 

following run. 25700 was the default number of exposure events rather than 25600 (the 

number of apertures on a chip) to allow for translation between chip city blocks (~33 ms). 
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Figure 5.3. DtpAa SFX diffraction  

Example image of DtpAa microcrystal diffraction pattern from the initial DtpAa dataset (run 

number 23383), produced using hdfsee in the CrystFEL suite. Reflections were seen to 

greater than 2 Å resolution, with single lattices indicating that chips were not overloaded.  
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Figure 5.4. DtpAa unit cell distribution showing the refined DtpAa unit cell 

The cell_explorer program in the CrystFEL suite shows an even unit cell distribution of a single unit cell population, with the mean and 

standard deviation of these dimension measured by fitting a Gaussian function to the data. These updated unit cell dimensions of a = 72.72 ± 0.18, b 

= 68.18 ± 0.14, c = 74.62 ± 0.31 Å, a = 90.00 ±  0.17, β = 105.58 ± 0.19, and g = 90.00 ± 0.18°, were used to update unit cell parameters used in indexing 

and integration in order to improve indexing.  
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The detector_shift script was next used to refine the detector geometry by 

updating the beam X, Y, position, using the command: 

 

$ ./detector-shift updated_DtpAa.out 23382-1.geom 

 

This provided an updated geometry file named 23383-1-predrefine.geom, as well 

as a scatter plot detailing the X, Y detector shifts (equivalent to the required beam 

shift) for each pattern (fig. 5.5). 

 

The updated geometry file was added to the indexamajig parameters and the 

process run again for each chip. Indexed reflection data from each chip were 

combined using the command: 

 

$ cat *chip_name*.out *chip_name*.out *chip_name*.out > 

combined.out  

 

From this, it was possible to integrate a total of 73,281 frames. These data were 

subsequently merged in CrystFEL using process_hkl, by feeding combined.out into 

a simple bash script merge.sh (see section 3.5.4). This script produces three output 

files, a combined.hkl file containing all of the merged reflections, as well as 

combined.hkl1 and combined.hkl2, each containing half-datasets. Output files 

combined.hkl1 and combined.hkl2 were used for the generation of data quality 

statistics, using the script stat.sh (see section 3.5.4). 
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Figure 5.5. Detector shift plot. 

Plot generated by the program detector-shift indicating the distribution of measurements for 

every DtpAa crystal. 
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The completeness of the data in different resolution shells could be inspected within 

the shells.dat output file from stat.sh, and was used alongside CC1/2 and Rsplit statistics 

to estimate at what particular resolution limit these data should be cut. In this, it can 

be shown that when using CC1/2 limit of > 0.5 with an Rsplit limit ~50%, these data 

should be cut around 1.88 Å (tables 5.2, 5.3). This resolution limit was added to the 

merge.sh script, and run again against the combined.out file, with the new 

combined.hkl output converted to an mtz using the create-mtz CrystFEL 

executable for subsequent structure refinement. 

 

PhaserMR was utilised for molecular replacement within the PHENIX crystallography 

suite, using a previously solved DtpAa microcrystal structure as the molecular 

replacement model (data not shown). The structure was refined using 

phenix.refine to an Rwork and Rfree of 13.2% and 16.7%, respectively (table 5.4). 

 

5.3.2. DtpAa SFX structure 

The crystal structure of DtpAa reveals two monomers in the asymmetric unit, with a 

ferredoxin-like fold typical of dye decolourising peroxidases (Sugano et al., 2007), 

represented by a mix of a-helix and b-sheet in the secondary structure motif (fig. 

5.6a), with the active site in monomers A and B containing a six-coordinate heme 

group (fig. 5.6b). As shown in figure 5.7a, at the heme in monomer A residue His326 

acts as the proximal ligand with and Fe – N bond length of 2.19 Å. The distal heme 

coordination site is occupied by a full occupancy water molecule (W1) bound to the 

heme Fe, with a bond length of 2.40 Å. A second water, W2, is hydrogen bonded to   
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Shell CC1/2 Rsplit (%) 

10.09 0.9866866 6.52 

5.17 0.9891377 5.96 

4.32 0.9868919 6.1 

3.86 0.9903483 5.87 

3.54 0.9909499 5.79 

3.31 0.9892009 6.27 

3.13 0.9871 6.76 

2.99 0.9881138 6.72 

2.86 0.9877805 7.04 

2.76 0.9865419 7.39 

2.67 0.9876691 7.74 

2.59 0.9857062 8.45 

2.52 0.984854 8.96 

2.45 0.9829514 9.77 

2.4 0.9791849 10.54 

2.34 0.9771465 11.05 

2.29 0.9753589 11.69 

2.25 0.9715545 12.91 

2.21 0.9684627 13.21 

2.17 0.9630742 15.3 

2.13 0.954574 16.84 

2.1 0.9510256 17.78 

2.07 0.9389044 20 

2.04 0.9150496 23.54 

2.01 0.8948828 27.42 

1.98 0.8946519 27.98 

1.96 0.8398976 34.29 

1.94 0.8230546 41.71 

1.91 0.6779935 52.44 

1.89 0.7222474 58.29 

 

Table 5.2. CC1/2  and Rsplit statistics for DtpAa SFX dataset  
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# of reflections Completeness (%) Measurements Redundancy Shell (Å) 

2979 99.97 2927912 982.9 9.16 

2889 100 1861184 644.2 4.51 

2892 100 1585919 548.4 3.78 

2874 100 1361591 473.8 3.37 

2874 100 1155615 402.1 3.09 

2853 100 1099497 385.4 2.89 

2877 100 1082545 376.3 2.74 

2866 100 1037389 362 2.61 

2879 100 1008215 350.2 2.5 

2857 100 970617 339.7 2.41 

2834 100 928805 327.7 2.33 

2880 100 906468 314.7 2.26 

2841 100 854447 300.8 2.2 

2832 100 815446 287.9 2.14 

2852 100 789879 277 2.09 

2839 100 751745 264.8 2.05 

2881 100 730944 253.7 2 

2849 100 690651 242.4 1.97 

2831 100 657737 232.3 1.93 

2872 100 610724 212.6 1.9 

 

Table 5.3. Resolution shell statistics for DtpAa SFX dataset 
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SFX Ferric DtpAa 

Data Collection 

Cumulative dose (kGy) N/A 

Number of images used 72615 

Data processing 

Space Group P21 

Cell dimensions (Å, °) a=72.72, b=68.18, c=74.62, beta=105.58 

Resolution (Å) 41.46-1.88 (1.91-1.88) 

Rsplit (%) 7.22 (58.29) 

CC1/2 99.27 (0.722) 

Multiplicity 380.6 (212.6) 

Completeness (%) 100 (100) 

Refinement 

Number of reflections 57312 

Rwork/Rfree 0.132 / 0.167 

RMSD bond lengths (Å) 0.009 

RMSD bond angles (°) 0.92 

Ramachandran plot 

Most favoured (%) 98.5 

Allowed (%) 1.50 

PDB accession code 6I43 

 

Table 5.4. DtpAa SFX structure data collection, processing, and refinement statistics. 
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Figure 5.6. Overall structure of the ferric DtpAa SFX structure. 

DtpAa is found as a dimer in the asymmetric unit of the SFX structure. (a.) The overall DtpAa 

SFX structure is shown as cartoon, with each monomer coloured by secondary structure (blue 

= alpha helices, red = beta sheets, purple = loop) and individual heme groups represented in 

green. (b.) The chemical structure of the heme group(s). 
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Figure 5.7. Ferric SFX DtpAa active site water network. 

(a.) Bond lengths (Å) for the water network in monomer A, including the heme coordinating proximal His326 residue and Asp239. (b.) 2Fo – Fc electron 

density map for the chain of ordered waters found at the active site (monomer A) of the 1.88 Å resolution DtpAa SFX structure, contoured at 1s. 

Electron density map shows clearly resolved waters and their interaction with Asp239. 
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W1 at a distance of 2.68 Å and also interacts with the charged side chains of Asp239 

(2.92 Å) and Arg342 (2.74 Å), conserved residues within the DyP family of enzymes. 

These waters at the distal site are accompanied by further waters that form a proton 

exchange network, well supported by electron density (fig. 5.7b). Monomer B forms 

a different active site arrangement however, with an extended electron density at the 

W1 site above the heme (fig. 5.8). In this instance it has been modelled as two water 

molecules, and therefore not included in the study of the movement of active site 

water molecules, as is the focus of this chapter. 

 

5.3.3. SSX data collection, processing, and refinement 

Chips were loaded as specified in section 3.3. Serial synchrotron structures from 

DtpAa were collected from beamline I24 at DLS using the same sample delivery 

system used for SFX at SACLA, as discussed in 5.3.1 and 5.3.2. Further, a similar MSS 

data collection protocol as established in chapter 4 was utilised in order to collect 

sequential datasets from apertures of the chip. 

 

Two separate MSS data collections were performed, with both series were carried out 

at an energy of 12.8 KeV using an unattenuated X-ray beam. MSS1 comprised 5 

sequential datasets, while MSS2 comprised 20 sequential datasets. As with dose 

calculations presented in previous chapters, absorbed dose was estimated using 

RADDOSE-3D (ZELDIN 2013), with associated dose increments corresponding to the 

total dose accumulated within the exposure time of the first image. 
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Figure 5.8. Ferric SFX DtpAa heme B. 

2Fo – Fc electron density map for waters found at the heme monomer B of the 1.88 Å resolution 

DtpAa SFX structure, contoured at 1s. Electron density map is ambiguous for bound water in 

this monomer, therefore excluded from study form this point forward.  
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Using the PILATUS3 detector of I24 in shutterless mode allowed twenty successive 10 

ms diffraction patterns to be obtained from a single crystal in an aperture in 200 ms 

(for a twenty dose MSS experiment). After data collection from a crystal, the stages 

translated the chip to the next aperture and the process was repeated, allowing dose-

dependent data to be collected from all crystals on a chip in under 45 minutes. Data 

were indexed and integrated using dials.stills_process in DIALS v1.8.5 on the 

Diamond computing cluster. A detailed outline of this processing method can be 

found in methods section 3.5, though important parameters shall be described in this 

section. 

 

For both MSS series a joint refinement method (methods 3.5.1) was utilised in order 

to optimise the number of hits by updating the detector geometry. This was 

performed on a subset of images, giving an updated geometry for a 310 mm detector 

distance of: 

fast_axis = 0.9999909062487288, 0.0, -0.001423903618435921 

slow_axis = -5.358189844691172e-06, -0.9999929197833288, 

-0.00376302464818867 

origin = -216.72821789476495, 226.31169680726825, -

307.399222175199 

 

Indexing and integration was next performed using the updated detector geometry, 

with diffraction seen past 1.8 Å in MSS1-ds1 (5 dose series) (fig. 5.9). Data for the 5-

dose series were collected from a single chip only, while data for the 20-dose series, 

data were collected from 3 chips to improve data redundancy. For both the 5- and 20-

dose MSS series, cbf files were binned using the get_int_file.py script (see appen-  
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Figure 5.9. DtpAa SSX diffraction from MSS1-ds1  

Example image of DtpAa microcrystal diffraction pattern from the initial DtpAa MSS1-ds1 dataset, 

produced using ADXV. Reflections were seen to greater than 1.8 Å resolution. 
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dices 3.7.5). Numbers of integrated images in dose bins for the 5- and 20-dose series 

are shown in table 5.5. Only the initial 10 dose bins gave enough indexed images to 

allow data processing with acceptable data quality metrics, with fewer than 1500 

integrated files available for MSS2-ds11 – ds20 (table 5.5). The 5-dose DtpAa MSS 

experiment (MSS1) was measured with a 32.8 kGy per increment, while the first 10 

exposures used for the 20-dose series were measured with a slightly increased 

incremental dose of 39.2 kGy measured using RADDOSE-3D (input parameters for dose 

calculations can be found in appendices section 5.5.1, 5.5.2). 

 

Data within each dose bin were then scaled and merged using PRIME to generate mtz 

files for each dose dependent dataset. This merging process was performed initially 

in order to assess relevant data quality metrics including Rsplit, CC1/2, N_obs 

(multiplicity), and completeness, in order to determine a resolution cut-off for each 

dose point. Upon investigation of datasets MSS2-ds9 and MSS2-ds10, the quality of 

the maps around the active site of interest became too low in resolution due to 

radiation damage to accurately place waters with confidence, meaning only the first 

8 datasets of MSS2 were analysed form this point forwards. A CC1/2 of > 0.5, 

completeness of > 97%, and N_obs of > 10 were used to determine the resolution cut-

off, with the resolution range between MSS1-ds1 and MSS2-ds8 of 1.78 – 2.18 Å, with 

examples of pre- and post-cut data statistics for MSS1-ds1 and MSS2-ds1 in 

appendices tables 5.5.3, 5.5.4. 

 

Data were then refined using the methods mentioned previously (chapter 3.5.5), 

though all waters were removed from the molecular replacement model and re-appl- 
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Dataset Dose (kGy) Number of integrated files 

MSS1-ds1 32.8 9751 

MSS1-ds2 65.6 9833 

MSS1-ds3 98.4 10002 

MSS1-ds4 131.2 9801 

MSS1-ds5 164 9243 

MSS2-ds1 39.2 15294 

MSS2-ds2 78.4 14719 

MSS2-ds3 117.6 14032 

MSS2-ds4 156.8 13307 

MSS2-ds5 196 12464 

MSS2-ds6 235.2 11524 

MSS2-ds7 274.4 10058 

MSS2-ds8 313.6 8492 

MSS2-ds9 352.8 7339 

MSS2-ds10 392 6318 

MSS2-ds11 431.2 1425 

MSS2-ds12 470.4 1299 

MSS2-ds13 509.6 1132 

MSS2-ds14 548.8 1051 

MSS2-ds15 588 939 

MSS2-ds16 627.2 833 

MSS2-ds17 666.4 780 

MSS2-ds18 705.6 692 

MSS2-ds19 744.8 679 

MSS2-ds20 784 663 

 

Table 5.5. Dose increments and number of used integrated files for DtpAa MSS 

datasets  
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ied using the find waters tool in COOT during rounds of refinement, in order to remove 

any experimenter bias in water placement (data reduction and refinement statistics 

for both series are given in tables 5.6 and 5.7). The initial MSS1 resolution was 1.78 Å, 

with only a limited loss of resolution during the 50 ms data collection for each 

microcrystal (table 5.6). higher resolution was seen in MSS2-ds1 at 1.70 Å, with the 

series ending at MSS2-ds8 resolution of 2.18 Å (table 5.7). 

 

5.3.4. DtpAa SSX structures 

In MSS1-ds1, electron density reveals as in the SFX structure a six-coordinate heme, 

however the distal heme coordination site occupied by W1 has a bond length to the 

heme Fe of 2.48 Å. As the series continues and dose is accumulated, this trend of an 

increasing Fe-O bond length continues throughout the series (table 5.8a), with the 

final dose at 164.0 kGy presenting an Fe-O bond length of 2.97 Å. 

 

The initial dataset in the MSS2 series was refined to a resolution of 1.70 Å, with an Fe-

O distance of 2.5 Å. Although 20 data points were collected in this series, only 8 were 

used in analysis as the electron density became too noisy around the W1 site and the 

heme pocket, therefore making the placement of water molecules either unreliable, 

or non-existent. A similar trend of bond length increasing as a function of accumulated 

dose was seen in the MSS2 series (table 5.8b), with an Fe – H2O bond distance of 3.76 

Å in the final dose point of MSS2, with an accumulated dose of 313.6 kGy (fig. 5.10).  
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Dataset SACLA SFX MSS1-ds1 MSS1-ds2 MSS1-ds3 MSS1-ds4 MSS1-ds5 

Data Collection 

Cumulative 

dose / kGy 

N/A 32.8 65.6 98.4 131.2 164.0 

Integrated 

frames 

73281 9751 9833 10002 9801 9243 

Number of 
images used* 

72615 8596 8608 8700 8342 7787 

Data processing 

Space Group P21 

Cell dimensions 
/ Å/deg. 

a=72.72, 
b=68.18, 

c=74.62, 
beta=105.58 

a = 72.95 
(0.33) 

b = 68.30 
(0.13) 

c = 74.78 

(0.43) 
β = 105.65 

(0.21) 

 

a = 72.96 
(0.35) 

b = 68.30 
(0.14) 

c = 74.79 

(0.45) 
β = 105.68 

(0.22) 

 

a = 72.97 
(0.36) 

b = 68.29 
(0.15) 

c = 74.82 

(0.46) 
β = 105.72 

(0.25) 

 

a = 72.99 
(0.39) 

b = 68.29 
(0.17) 

c = 74.86 

(0.49) 
β = 105.76 

(0.28) 

 

a = 73.01 
(0.42) 

b = 68.28 
(0.20) 

c = 74.92 

(0.54) 
β = 105.79 

(0.34) 

 

Resolution / Å 41.46-1.88 44.64 - 

1.78 (1.81 - 

1.78) 

44.63 - 1.78 

(1.81 - 

1.78) 

44.62 - 1.83 

(1.86 - 

1.83) 

44.63 - 1.90 

(1.93 - 

1.90) 

44.64 - 1.98 

(2.01 - 

1.98) 

Rsplit 7.22 (58.29) 18.92 

(47.72) 

18.03 

(51.62) 

16.97 

(56.25) 

16.40 

(61.71) 

16.73 

(62.72) 

CC1/2 99.27 (0.722) 94.43 
(67.71) 

95.34 
(67.20) 

95.99 
(66.77) 

96.63 
(59.07) 

96.94 
(60.18) 

Multiplicity 380.6 (212.6) 27.12 

(11.36) 

28.36 

(10.48) 

32.21 

(10.79) 

34.48 

(10.19) 

35.48 

(9.39) 

Completeness 

(%) 

100 (100) 100 (99.9) 100 (99.9) 100 (99.9) 100 (99.8) 100 (99.8) 

Refinement 

Number of 
reflections 

57312 67891 67896 62551 55953 49512 

Rwork/Rfree 0.132 / 0.167 0.1647 / 

0.2032 

0.1662 / 

0.2114 

0.1668 / 

0.2142 

0.1670 / 

0.2120 

0.1720 / 

0.2322 

RMSD bond 

lengths (Å) 

 

0.009 0.006 0.006 0.006 0.007 0.007 

RMSD bond 

angles (deg) 

0.92 0.81 0.82 0.84 0.87 0.89 

Ramachandran plot 

Most favoured 

(%) 

98.5 98.3 98.2 98.1 97.5 96.9 

Allowed (%) 1.50 1.67 1.81 1.81 2.50 3.06 

PDB accession 
code 

6I43 6I7Z 6I8E 6I8I 6I8J 6I8K 

* Number of merged patterns in CrystFEL 

Table 5.6. Data collection, refinement, and processing statistics for ferric DtpAa SFX 

and MSS1 datasets  
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Dataset 

 

MSS2-1 MSS2-2 MSS2-3 MSS2-4 MSS2-5 MSS2-6 MSS2-7 MSS2-8 

Data Collection 

Cumulative dose / 
kGy 

39.2 78.4 117.6 156.8 196 235.2 274.4 313.6 

Integrated frames 15294 14719 14032 13307 12464 11524 10058 8492 

Number of images 
used 

13024 12513 11889 11121 10210 9070 7678 6221 

Data processing 

Cell dimensions / 
Å 

a = 
72.99 

(0.54) b 

= 68.36 
(0.31) c 

= 74.95 

(0.61) β 
= 

105.63 

(0.43) 

a = 
73.01 

(0.55) b 

= 68.36 
(0.31) c 

= 74.94 

(0.61) β 
= 105.67 

(0.44) 

a = 
73.03 

(0.55) b 

= 68.36 
(0.32) c 

= 74.94 

(0.62) β 
= 105.72 

(0.44) 

a = 73.04 
(0.56) b 

= 68.37 

(0.33) c 
= 74.97 

(0.63) β 

= 105.76 
(0.47) 

a = 
73.06 

(0.59) b 

= 68.37 
(0.35) c 

= 75.03 

(0.66) β 
= 105.81 

(0.52) 

a = 
73.07 

(0.63) b 

= 68.38 
(0.37) c 

= 75.08 

(0.70) β 
= 105.84 

(0.54) 

a = 
73.07 

(0.67) b 

= 68.38 
(0.40) c 

= 75.10 

(0.74) β 
= 105.85 

(0.60) 

a = 
73.07 

(0.73) b 

= 68.39 
(0.45) c 

= 75.06 

(0.80) β 
= 105.82 

(0.65) 

 

Resolution / Å 44.71 - 

1.70 

(1.73 - 
1.70) 

44.69 - 

1.73 

(1.76 - 
1.73) 

44.67 - 

1.74 

(1.77 - 
1.74) 

44.68 - 

1.78 

(1.81 - 
1.78) 

44.70 - 

1.82 

(1.85 - 
1.82) 

44.71 - 

1.93 

(1.96 - 
1.93) 

44.72 - 

2.03 

(2.07 - 
2.03) 

44.71 - 

2.18 

(2.22 - 
2.18) 

Number of 

reflections 

78148 74214 72957 68910 64459 54263 46140 37330 

Rsplit 18.24 

(73.81) 

18.31 

(71.41) 

18.15 

(73.88) 

18.05 

(71.35) 

17.38 

(74.98) 

17.17 

(79.11) 

17.90 

(78.30) 

18.79 

(74.51) 

CC1/2 95.78 
(49.99) 

95.87 
(49.15) 

95.09 
(51.04) 

95.59 
(52.06) 

96.56 
(50.64) 

96.63 
(54.40) 

96.92 
(50.62) 

96.87 
(53.87) 

Multiplicity 52.99 

(12.44) 

51.36 

(13.38) 

48.90 

(11.86) 

47.42 

(11.65) 

45.97 

(10.87) 

46.51 

(12.73) 

44.54 

(11.42) 

41.36 

(11.78) 

Completeness (%) 100 

(99.9) 

100 

(100) 

100 

(99.8) 

100 

(99.8) 

100 

(99.5) 

100 

(99.8) 

100 

(99.6) 

100 

(99.5) 

Refinement 

Number of 
reflections 

78148 74203 72955 68181 63833 53667 46136 37329 

Rwork/Rfree 0.1805 

/ 
0.2346 

0.1774 / 

0.2337 

0.1780 / 

0.2304 

0.1784 / 

0.2321 

0.1798 / 

0.2359 

0.1803 / 

0.2355 

0.1816 / 

0.2492 

0.1778 / 

0.2555 

RMSD bond 

lengths (Å) 

0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 

RMSD bond 

angles (deg) 

0.85 0.84 0.85 0.85 0.86 0.91 0.94 0.98 

Ramachandran plot 

Most favoured 

(%) 

97.91 98.05 98.05 97.08 97.22 96.66 96.52 94.44 

Allowed (%) 2.09 1.95 1.95 2.78 2.78 3.34 3.34 5.15 

PDB accession 

code 

6I8O 6I8P 6I8Q 6Q31 6Q34 6Q3D 6Q3E 6IBN 

 

Table 5.7. Data collection, refinement, and processing statistics for MSS2 datasets 

used for structural comparison   
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Structure SFX MSS1-1 MSS1-2 MSS1-3 MSS1-4 MSS1-5 

Resolution (Å) 1.88 1.78 1.78 1.83 1.90 1.98 

Fe-His (Å) 2.19 2.24 2.25 2.29 2.25 2.23 

Fe-O (Å) 2.40 2.48 2.70 2.77 2.71 2.97 

PDB accession code 6I43 6I7Z 6I8E 6I8I 6I8J 6I8K 

 

Table 5.8a. Comparison of Fe-His and Fe-O bond lengths in the SFX and MSS1 series 

 

Structure SFX MSS2-1 MSS2-2 MSS2-3 MSS2-4 MSS2-5 MSS2-6 MSS2-7 MSS2-8 

Resolution (Å) 1.88 1.70 1.73 1.74 1.78 1.82 1.93 2.03 2.18 

Fe-His (Å) 2.19 2.27 2.27 2.31 2.30 2.28 2.22 2.13 2.23 

Fe-W1 (Å) 2.40 2.50 2.67 2.64 2.93 2.91 3.16 3.37 3.76 

PDB accession code 6I43 6I8O 6I8P 6I8Q 6Q31 6Q34 6Q3D 6Q3E 6IBN 

 

Table 5.8b. Comparison of Fe-His and Fe-O bond lengths in the SFX and MSS2 series 

  



 185 

 

Figure 5.10. Lengthening of Fe-O bond length as a function of accumulated dose. 

2Fo-Fc electron-density maps contoured at 1s for the heme environment of (a.) the SFX 

structure (green) and (b. – f.) selected structures from both MSS1 and MSS2 series (blue). (g.) 

Superposition of these selected MSS1 and MSS2 structures reveal a dose-dependent migration 

of the proximal W1 water molecule away from the heme Fe.  
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Further structural changes were observed in the heme pocket in the highest dose 

datasets MSS2-ds7 and MSS2-ds8 (274.4 and 313.6 kGy, respectively): a 

rearrangement of nearby waters in the final dose points are shown with a concurrent 

flip of the adjacent heme propionate (fig. 5.11). Further, as seen in section 4.4 

concerning AcNiR, we again note an increase in unit cell volume across the dose series, 

indicative of the onset of global radiation damage resulting from disorder of the 

crystal lattice as dose is accumulated (fig. 5.12).  

 

5.3.5. Characterising photoreduction in DtpAa using online UV-vis 

microspectrophotometry 

Kinetic UV-vis spectra were collected on DtpAa crystals produced in the same batch 

as those used for SACLA and DLS X-ray diffraction experiments detailed above, with 

average dimensions of 20 x 20 x 20 µm. RADDOSE-3D (Paithankar & Garman, 2010) 

was used to estimate the absorbed dose, with an average diffraction weighted dose 

of 10.8 kGy per 20 ms exposure. Spectral changes at 560 nm were investigated, with 

a peak developing rapidly upon irradiation by the X-ray beam, with photoreduction of 

ferric DtpAa (fig. 5.13, dark blue) occurring within the first 40 ms of exposure (fig. 

5.14), or within 21.6 kGy. This indicates photoreduction occurs extremely rapidly and 

within the first dataset of both the MSS1 and MSS2 series (32.8, and 39.2 kGy, 

respectively). 
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Figure 5.11. Superposition of SFX and 313.6 kGy MSS structures heme propionate 

environment 

2Fo-Fc electron density maps contoured at 1s for the heme propionate environment of DtpAa 

in the SFX dataset (blue) and from the MSS2-ds8 (313.6 kGy, red). Structures show a shift in 

corresponding waters located in the propionate environment (P1, P2) between the ‘damage 

free’ and highest dose structure, with rearrangement of water molecules possibly driven by a 

flip in propionate arms, or vice versa. 
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Figure 5.12. Unit cell volume vs. absorbed dose for MSS1 and MSS2 datasets 

Increase in unit cell volume is evident as a function of absorbed dose, indicative of the onset 

of global radiation damage effects.  
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Figure 5.13. Single crystal UV-vis spectra of X-ray photoreduction of DtpAa 

Single crystal UV-vis spectra showing the photoreduction of ferric DtpAa (dark blue) with 

measurements recorded every 20 ms (accumulation of 2 x 10ms exposures). Arrow indicates 

the change in spectra for 560 nm wavelength, with no change in this feature recorded after 

21.6 kGy (40 ms, teal), as shown in timepoints at 32.4 kGy (60 ms, light green) and 43.2 kGy 

(80 ms, dark green).   
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Figure 5.14. Single crystal UV-vis spectra of X-ray photoreduction of DtpAa at 560 nm 

Increase in absorbance spectra for 560 nm wavelength. Photoreduction is complete within the 

first 30 – 35 ms of exposure (inset). 
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5.4. Discussion 

To our knowledge, this is the first reported method that uses an identical sample 

delivery method and microcrystal sample preparation to compare SFX and dose-

resolved SSX structures, at the same temperature, though MSS1 data was initially 

presented and briefly analysed by Dr. Tadeo Moreno-Chicano (Moreno-Chicano, 

2018, PhD thesis). A similar study has been performed, with dose resolved 

crystallographic data collected at 65 K by Meharenna et al., 2010 compared to the SFX 

crystal structure of the same cytochrome c peroxidase enzyme collected at cryogenic 

temperature by Chreifi et al., 2016 (Chreifi et al., 2016; Meharenna et al., 2010). There 

are discrepancies between data collection methods however, such as a large variation 

in crystal size between crystals used for SFX data collection, ranging from 150 µm – 1 

mm, while crystals of ‘similar size’ to one another were used for synchrotron 

structures (exact sizes not reported). Further, a rotation method utilised for 

synchrotron structures, while a helical data collection mode was employed for SFX 

(Chreifi et al., 2016; Meharenna et al., 2010). Though these differences don’t 

completely hinder the presented comparison, the lack of synergy introduces a risk of 

increased error, due to having a greater number of differences between experimental 

variables. Further, the use of room temperature data rather than cryo allows the 

experimenter to view and understand the mechanism of a protein under close-to 

biological temperature. Advantageously, it is therefore possible to draw more 

accurate conclusions when the only differing factor between data collections is the 

light source.  
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Although the SFX structure collected from SACLA was solved to a resolution limit of 

1.88 Å while MSS-ds1 was solved to a slightly higher resolution of 1.78 Å, it is still 

appropriate to draw conclusions when comparing structures due to identical crystal 

batch preparations being used for both data series. Clearly resolved waters are 

identified in these structures, which is important in recognising the effects of 

accumulated X-ray dose at the active site of peroxidases. In the SFX structure the Fe-

O distance is 0.08 Å shorter than that of MSS1-ds1 (2.40 vs 2.48 Å), indicating that 

even at extremely low doses, in this case 32.8 kGy, radiation damage effects can be 

seen at functionally relevant sites. Although this signifies the importance of XFELs as 

tools that can be used to collect highly accurate, “damage free” structural data, such 

a small difference in bond length also highlights the ability of SSX to collect incredibly 

accurate data when low dose data collections at synchrotrons are used in lieu of 

XFELs. We show with this it is still possible to collect data at a high resolution at a 

synchrotron, with over a factor of 7 fewer integrated frames (SFX=73281 integrated 

frames; MSS1-ds1=9751 integrated frames). 

 

Within the rest of the structure, the SFX and MSS1-ds1 models are essentially 

identical, bar an additional glycine residue at the end of monomer B in the SFX 

structure, and a 0.7 Å shift in Lys228 toward the surface of the protein in the SSX 

structure. Both structures exhibit lower than average R-factors when compared to 

structures in the PDB, when using resolutions bins of 1.9 Å and 1.8 Å, respectively (fig. 

5.15).  The active site region, which includes heme A, the proximal ligand His326, and 

conserved dyp side chains Asp239 and Arg342, also remains in the same conformation 

when comparing both structures.   
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Figure 5.15. R-factor distribution and PDB percentile ranks of the SFX and MSS1-ds1 structures 

Both the deposited SFX structure (PDB: 6I43) and deposited MSS1-ds1 structure (PDB: 6I7Z) exhibit lower than average R-factors when compared to 

other structures deposited in the PDB at the same nominal resolution. Both structures also fall within better than average percentile ranks for factors 

including clashscore, Ramachandran outliers, sidechain outliers, RSRZ score. Figures were generated via QC check v3.1 and PDB Validation 

Report, respectively. 
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The MSS1 5 dose series showed the hypothesised trend of an increase in Fe-O bond 

length with accumulated dose, though it was unknown whether the distal water had 

stabilised after the final dose. For this reason, a second MSS dose series (MSS2) of 20 

datasets was collected, allowing a greater range of SSX dose points to draw 

conclusions from. The measured Fe-O distance in the SFX structure is the shortest 

compared to all of the collected SSX structures. Although a relatively low dose was 

used in the MSS1-ds1 dataset, its structure is not identical to the SFX structure 

collected at SACLA. The Fe-O bond length increases as dose is accumulated, as seen 

in previous publications on the water network around the heme of peroxidase 

enzymes. A plot of diffraction weighted dose vs Fe-O distance for both datasets shows 

that this bond length increases almost linearly with accumulated dose (fig. 5.16), with 

the elongation of this bond length well fitted by a linear function. The extrapolation 

of this function to the y intercept gives a value of 2.37 (±0.05) Å, a value extremely 

close to the 2.40 (±0.13) Å of the SFX DtpAa structure. This falls within the estimated 

standard uncertainty in bond length obtained from the DPI value of the Fe and W1 in 

the SFX structure. Additionally, although relatively low dose is used for each initial 

MSS data point, we can assume the heme is reduced within the first MSS exposure, 

as shown by the 21.6 kGy needed to fully reduce ferric DtpAa in the UV-vis data in 

figures 5.13, 5.14. Intriguingly, it is unknown whether the lengthening of the Fe-O 

bond is due to a repulsion event caused by this reduction, meaning a follow-up 

experiment using greater time intervals between MSS datasets could further our 

understanding on the behaviour of peroxidase active site mechanics post X-ray 

irradiation.  
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Figure 5.16. Plot of Fe-O distance as a function of X-ray dose from MSS1 and MSS2 

The SFX DtpAa bond length is plotted as the zero-dose point (magenta), with both MSS1 and 

MSS2 bond lengths plotted in black. A linear function is used to fit the elongation of the Fe-O 

bond (red line) and can be extrapolated back to zero-dose (red line, dashed). This extrapolation 

to zero-dose gives a value of 2.37 (±0.05) Å, within error of the Fe-O bond length of the SFX 

structure (2.40 [±0.13] Å). Error bars shown in this plot were produced using the Diffraction 

Precision Index, and signify estimated standard uncertainty in bond length. 
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The ability to estimate the SFX Fe-O bond length using an MSS method shows that 

MSS using synchrotron radiation is extremely effective if XFEL data collections are out 

of reach. The scarcity of XFEL beamtime is a major limiting factor when the need to 

produce a structure free from the artefacts of radiation damage is of vital importance. 

On a practical level, an MSS method can be used to extract functionally relevant 

features of SFX structures, where MSS data can be used to compare to XFEL 

structures, and/or used as preliminary data for an XFEL data collection application. 

Moreover, although it has become possible to outrun most radiation damage 

processes via the advent of XFEL crystallography, this might not always be the case as 

explored by several experimental studies; Inoue et al., 2016, used thin diamond films 

to investigate the temporal evolution of structural damage in crystalline structures, 

demonstrating a decrease in the intensity of reflections after a time delay of 20 fs, an 

indication of global damage (Inoue et al., 2016). Site specific damage has also been 

shown in XFEL data. Nass et al. used an XFEL pulse duration of 80 fs with a photon 

energy above the absorption edge of iron (the metal atom in the active site) when 

collecting data from ferredoxin crystals; they showed that one of the two 4FE-4S 

clusters in the structure was more damaged than the other, indicating that the local 

environment may play a role in the dynamics of radiation damage at XFELs (Nass, 

2019).  

 

When concerning the hardware on synchrotron beamlines, the scope of MSS at 

synchrotrons will be enhanced by the advancement in hybrid photon counting (HPC) 

detector technology. New HPC detectors such as the EIGER2, as-well-as charge 

integrating HPC detectors such as the JUNGFRAU, both from DECTRIS 
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(www.dectris.com), allow diffraction to be detected within shorter time intervals at 

synchrotrons due to higher frame rates compared to the PILATUS3 6m (Casanas et al., 

2016; Leonarski et al., 2018). Ultimately, this, as well as higher flux densities at 

new/upgraded synchrotrons, will open further possibilities for time- and/or dose-

resolved studies using chips at synchrotron facilities, allowing us to further probe the 

active site mechanics of DtpAa using MSS data collection methods.   
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5.5. Appendices 

5.5.1. MSS1 RADDOSE-3D data 

MSS1 RADDOSE-3D dose calculation input data 

Crystal 
 
Type Cuboid 
Dimensions 20 20 20         
PixelsPerMicron 0.5            
AbsCoefCalc  RD3D 
UnitCell  72.57 68.14 74.8 90 105.5 90   
NumMonomers  4                     
NumResidues  360                     
ProteinHeavyAtoms Fe 1 S 5          
#SolventHeavyConc P 425              
SolventFraction 0.45 
 
 
Beam 
 
Type Gaussian              
Flux 3.0e12                  
FWHM 9 8                 
Energy 12.8                
Collimation Rectangular 24 24  
Wedge 0 0                = 
ExposureTime 0.01            
# AngularResolution 2      
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MSS1 RADDOSE-3D dose calculation output data 

Cuboid (Polyhedron) crystal of size [20, 20, 20] um [x, y, z] at a 
resolution of 2.00 microns per voxel edge. 
Simple DDM. 
Gaussian beam, 24.0x24.0 um with 9.00 by 8.00 FWHM (x by y) and 
3.0e+12 photons per second at 12.80 keV. 
Wedge 1: 
Collecting data for a total of 0.0s from phi = 0.0 to 0.0 deg. 
 
Crystal coefficients calculated with RADDOSE-3D.  
Photelectric Coefficient: 2.02e-04 /um. 
Inelastic Coefficient: 2.00e-05 /um. 
Elastic Coefficient: 1.85e-05 /um. 
Attenuation Coefficient: 2.40e-04 /um. 
Density: 1.20 g/ml. 
 
Average Diffraction Weighted Dose         : 0.032872 MGy 
Elastic Yield                             : 1.10e+07 photons 
Diffraction Efficiency (Elastic Yield/DWD): 3.33e+08 photons/MGy 
Average Dose (Whole Crystal)              : 0.025547 MGy 
Average Dose (Exposed Region)             : 0.025547 MGy 
Max Dose                                  : 0.127374 MGy 
Average Dose (95.0 % of total absorbed energy threshold (0.01 MGy)): 
0.042880 MGy 
Dose Contrast (Max/Threshold Av.)         : 2.97 
Used Volume                               : 100.0% 
Absorbed Energy (this Wedge)              : 2.50e-07 J. 
Dose Inefficiency (Max Dose/mJ Absorbed)  : 508.8 1/g 
Dose Inefficiency PE (Max Dose/mJ Deposited): 519.8 1/g 
Final Dose Histogram: 
Bin  1,  0.0 to  0.1 MGy: 95.0 %  
Bin  2,  0.1 to  3.4 MGy:  5.0 %  
Bin  3,  3.4 to  6.7 MGy:  0.0 %  
Bin  4,  6.7 to 10.1 MGy:  0.0 %  
Bin  5, 10.1 to 13.4 MGy:  0.0 %  
Bin  6, 13.4 to 16.7 MGy:  0.0 %  
Bin  7, 16.7 to 20.0 MGy:  0.0 %  
Bin  8, 20.0 to 23.4 MGy:  0.0 %  
Bin  9, 23.4 to 26.7 MGy:  0.0 %  
Bin 10, 26.7 to 30.0 MGy:  0.0 %  
Bin 11, 30.0 MGy upwards:  0.0 % 
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5.5.2. MSS2 RADDOSE-3D data 

MSS2 RADDOSE-3D dose calculation intput data 

Crystal 
 
Type Cuboid 
Dimensions 20 20 20         
PixelsPerMicron 0.5            
AbsCoefCalc  RD3D 
UnitCell  72.57 68.14 74.8 90 105.5 90   
NumMonomers  4                     
NumResidues  360                     
ProteinHeavyAtoms Fe 1 S 5          
#SolventHeavyConc P 425              
SolventFraction 0.45 
 
 
Beam 
 
Type Gaussian              
Flux 3.2e12                  
FWHM 8 8                 
Energy 12.8                
Collimation Rectangular 24 24  
Wedge 0 0                 
ExposureTime 0.01            
# AngularResolution 2      
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MSS2 RADDOSE-3D dose calculation output data 

Cuboid (Polyhedron) crystal of size [20, 20, 20] um [x, y, z] at a 
resolution of 2.00 microns per voxel edge. 
Simple DDM. 
Gaussian beam, 24.0x24.0 um with 8.00 by 8.00 FWHM (x by y) and 
3.2e+12 photons per second at 12.80 keV. 
Wedge 1: 
Collecting data for a total of 0.0s from phi = 0.0 to 0.0 deg. 
 
Crystal coefficients calculated with RADDOSE-3D.  
Photelectric Coefficient: 2.02e-04 /um. 
Inelastic Coefficient: 2.00e-05 /um. 
Elastic Coefficient: 1.85e-05 /um. 
Attenuation Coefficient: 2.40e-04 /um. 
Density: 1.20 g/ml. 
 
Average Diffraction Weighted Dose         : 0.039158 MGy 
Elastic Yield                             : 1.18e+07 photons 
Diffraction Efficiency (Elastic Yield/DWD): 3.00e+08 photons/MGy 
Average Dose (Whole Crystal)              : 0.027389 MGy 
Average Dose (Exposed Region)             : 0.027389 MGy 
Max Dose                                  : 0.152653 MGy 
Average Dose (95.0 % of total absorbed energy threshold (0.01 MGy)): 
0.049846 MGy 
Dose Contrast (Max/Threshold Av.)         : 3.06 
Used Volume                               : 100.0% 
Absorbed Energy (this Wedge)              : 2.68e-07 J. 
Dose Inefficiency (Max Dose/mJ Absorbed)  : 568.8 1/g 
Dose Inefficiency PE (Max Dose/mJ Deposited): 581.1 1/g 
Final Dose Histogram: 
Bin  1,  0.0 to  0.1 MGy: 91.0 %  
Bin  2,  0.1 to  3.4 MGy:  9.0 %  
Bin  3,  3.4 to  6.7 MGy:  0.0 %  
Bin  4,  6.7 to 10.1 MGy:  0.0 %  
Bin  5, 10.1 to 13.4 MGy:  0.0 %  
Bin  6, 13.4 to 16.7 MGy:  0.0 %  
Bin  7, 16.7 to 20.0 MGy:  0.0 %  
Bin  8, 20.0 to 23.4 MGy:  0.0 %  
Bin  9, 23.4 to 26.7 MGy:  0.0 %  
Bin 10, 26.7 to 30.0 MGy:  0.0 %  
Bin 11, 30.0 MGy upwards:  0.0 % 
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5.5.3. MSS1-ds1 resolution bin statistics 

MSS1-ds1 before resolution cut 

Bin Resolution range Completeness N_obs Rmerge Rsplit CC1/2 N_ind I/sigI I sigI I**2 
1 44.64 4.61 100 4020 4020 57.41 87.37 17.05 91.69 4020 10.51 369.5 30.6 2.1 
2 4.61 3.66 100 3947 3947 42.36 72.53 16.62 90.98 3947 10.42 342.4 28.6 2.04 
3 3.66 3.2 100 3897 3898 37.91 70.44 16.28 92.56 3897 6.75 199.2 26.5 2.06 
4 3.2 2.91 100 3927 3927 36.27 70.22 17.26 92.21 3927 4.1 104.5 23.6 2.04 
5 2.91 2.7 99.9 3886 3888 32.16 69.71 18.92 90.41 3886 3.21 72.3 21.2 1.94 
6 2.7 2.54 100 3905 3906 30.63 70.05 20.31 89.9 3905 2.51 51.6 19.5 1.95 
7 2.54 2.41 100 3888 3888 28.3 69.41 21.61 89.33 3888 2.22 43 18.4 2.04 
8 2.41 2.31 100 3898 3898 27.85 69.63 22.08 88.71 3898 2.01 37.5 17.8 1.96 
9 2.31 2.22 100 3890 3890 25.21 69.8 23.5 88.09 3890 1.83 32.7 17.1 1.97 

10 2.22 2.14 100 3870 3870 24.53 70.14 24.96 85.88 3870 1.67 29.2 16.8 1.95 
11 2.14 2.07 100 3863 3863 22.82 69.72 25.25 86.65 3863 1.53 25.5 16.1 1.96 
12 2.07 2.02 100 3886 3887 20.79 70.77 27.97 85.47 3886 1.36 21 15 2.01 
13 2.02 1.96 100 3894 3894 19.68 71.13 29.3 84.87 3894 1.26 18.1 13.9 2.02 
14 1.96 1.91 100 3867 3867 18.12 72.21 32.63 82.82 3867 1.12 15 13 2.07 
15 1.91 1.87 100 3878 3878 15.56 73.15 37.82 77.3 3878 1 12.4 12.1 2.07 
16 1.87 1.83 100 3894 3894 14.18 74.09 41.97 75.79 3894 0.93 10.9 11.4 2.18 
17 1.83 1.79 100 3882 3883 12.57 75.26 45.45 69.89 3882 0.84 9.3 10.8 2.12 
18 1.79 1.76 99.9 3865 3869 10.16 74.54 51.41 68.46 3865 0.83 8.5 10.1 2.27 
19 1.76 1.73 99.6 3854 3868 7.63 74.25 58.54 64.4 3854 0.78 7.4 9.5 2.42 
20 1.73 1.7 98.7 3796 3845 5.65 73.41 67.23 60.11 3796 0.75 6.8 9.1 2.61 

TOTAL 44.64 1.7 99.9 77807 77880 24.61 77.34 19.43 94.53 77807 2.81 71.7 17.1 6.6 
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MSS1-ds1 after resolution cut 

Bin Resolution range Completeness N_obs Rmerge Rsplit CC1/2 N_ind I/sigI I sigI I**2 
1 44.64 4.83 100 3504 3504 59 88.94 17.02 91.65 3504 10.28 363 30.7 2.11 
2 4.83 3.83 100 3437 3437 43.38 73.04 16.59 91.01 3437 10.95 364.9 28.9 2.04 
3 3.83 3.35 100 3430 3431 39.42 70.85 16.29 92.32 3430 8.07 249.3 27.5 2.05 
4 3.35 3.04 100 3403 3403 36.72 70.34 17.59 91.3 3403 4.93 133.6 24.8 2.05 
5 3.04 2.83 100 3401 3401 34.35 69.99 17.49 91.73 3401 3.69 88.7 22.5 1.95 
6 2.83 2.66 100 3403 3404 32.03 70 19.12 90.54 3403 2.97 65.2 20.7 1.97 
7 2.66 2.53 100 3394 3395 29.97 69.91 20.33 90.19 3394 2.43 49.2 19.3 1.94 
8 2.53 2.42 100 3358 3358 28.35 69.5 21.9 88.99 3358 2.2 42.7 18.4 2.05 
9 2.42 2.32 100 3431 3431 28.04 69.75 21.9 88.99 3431 2 37.3 17.9 1.95 

10 2.32 2.24 100 3378 3378 25.62 69.69 23.32 87.89 3378 1.89 34 17.2 1.99 
11 2.24 2.17 100 3358 3358 24.95 70.11 24.32 87.17 3358 1.72 30.5 17 1.97 
12 2.17 2.11 100 3414 3414 23.65 69.65 25.14 85.57 3414 1.62 27.7 16.4 1.93 
13 2.11 2.05 100 3379 3379 21.75 70.36 26.79 86.16 3379 1.44 23.4 15.7 1.99 
14 2.05 2 100 3372 3373 20.62 70.45 27.69 85.59 3372 1.35 20.4 14.6 1.98 
15 2 1.96 100 3366 3366 19.51 71.42 29.9 84.31 3366 1.23 17.5 13.7 2 
16 1.96 1.92 100 3363 3363 18.19 72.21 32.62 82.82 3363 1.13 15 13 2.09 
17 1.92 1.88 100 3401 3401 15.67 73.2 37.47 77.48 3401 1 12.5 12.2 2.07 
18 1.88 1.84 100 3351 3351 14.63 73.92 40.87 76.34 3351 0.94 11.1 11.6 2.14 
19 1.84 1.81 100 3374 3375 13.24 74.6 43.76 73.94 3374 0.87 9.9 11 2.18 
20 1.81 1.78 99.9 3374 3376 11.36 74.84 47.72 67.71 3374 0.86 9.2 10.5 2.18 

TOTAL 44.64 1.78 100 67891 67898 27.12 77.35 18.92 94.43 67891 3.11 81.2 18.2 5.9 
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5.5.4. MSS2-ds1 resolution bin statistics 

MSS2-ds1 before resolution cut 

Bin Resolution range Completeness N_obs Rmerge Rsplit CC1/2 N_ind I/sigI I sigI I**2 
1 44.71 4.34 99.9 4824 4827 116.41 94.33 14.34 93.97 4824 10.19 413.6 36.1 2.06 
2 4.34 3.45 100 4727 4727 91.59 88.92 15.42 92.74 4727 8.17 312 34.7 2.06 
3 3.45 3.01 100 4712 4714 83.65 88.73 16.77 92.31 4712 4.16 143.2 32.3 2.05 
4 3.01 2.74 100 4683 4683 80 88.99 17.94 91.76 4683 2.54 76.4 28.9 1.97 
5 2.74 2.54 100 4700 4702 68.92 87.36 19.3 90.47 4700 1.97 52.2 25.6 1.9 
6 2.54 2.39 100 4691 4691 66.27 88.49 21.23 89.64 4691 1.57 39.1 24.1 1.97 
7 2.39 2.27 100 4654 4654 56.56 87.83 23.25 87.56 4654 1.45 34.1 22.7 1.93 
8 2.27 2.17 100 4714 4714 55.24 88.18 24.72 85.9 4714 1.26 28.7 22.3 1.95 
9 2.17 2.09 100 4666 4667 48.95 87.69 25.78 85.89 4666 1.16 25 21.1 1.92 

10 2.09 2.02 100 4661 4661 44.3 88.79 29.47 83.25 4661 0.98 19.4 19.5 1.95 
11 2.02 1.95 100 4678 4678 39.31 89.02 31.81 80.3 4678 0.92 16.4 17.4 2 
12 1.95 1.9 100 4667 4667 33.92 90.15 38.6 76.39 4667 0.78 12.9 16.2 2.1 
13 1.9 1.85 100 4648 4649 28.03 90.03 43.15 74.01 4648 0.71 10.5 14.4 2.18 
14 1.85 1.8 100 4712 4713 24.06 89.9 47.15 68.85 4712 0.68 9.2 13.4 2.1 
15 1.8 1.76 100 4638 4638 19.14 90.05 55.23 64.21 4638 0.64 7.8 12.1 2.28 
16 1.76 1.72 100 4648 4649 15.48 90.1 64.68 54.8 4648 0.6 6.8 11.3 2.32 
17 1.72 1.69 99.9 4670 4673 12.37 90.3 75.15 47.87 4670 0.57 6.1 10.6 2.48 
18 1.69 1.66 99.7 4641 4654 9.56 90.43 94.25 43.21 4641 0.5 5.1 10.2 3.16 
19 1.66 1.63 99.1 4578 4621 6.78 120.82 96.78 62.22 4578 1.08 19.9 10.8 79.45 
20 1.63 1.6 96.2 4531 4712 4.79 89.79 153.38 38.02 4531 0.39 3.7 9.8 7.9 

TOTAL 44.71 1.6 99.7 93443 93694 45.57 91.22 20.15 92.16 93443 2.04 63 19.8 8.49 
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MSS2-ds1 after resolution cut 

Bin Resolution range Completeness N_obs Rmerge Rsplit CC1/2 N_ind I/sigI I sigI I**2 
1 44.71 4.61 99.9 4031 4034 120.34 95.1 14.3 94.05 4031 10.11 413.6 36.3 2.1 
2 4.61 3.66 100 3957 3957 94.21 89.07 15.03 92.88 3957 9.31 359.1 34.7 2 
3 3.66 3.2 99.9 3928 3930 86.99 88.67 16.12 92.56 3928 5.51 200.2 33.8 2.03 
4 3.2 2.91 100 3922 3922 80.7 88.96 17.77 91.39 3922 3.19 103.7 30.9 2.02 
5 2.91 2.7 100 3893 3894 78.49 88.61 17.98 91.55 3893 2.38 69.3 28.1 1.93 
6 2.7 2.54 100 3927 3928 67.85 87.34 19.65 90.04 3927 1.91 50.2 25.4 1.89 
7 2.54 2.41 100 3912 3912 67.46 88.48 20.99 89.82 3912 1.58 39.7 24.2 1.98 
8 2.41 2.31 100 3904 3904 57.2 87.82 22.79 88.03 3904 1.51 35.7 22.9 1.95 
9 2.31 2.22 100 3912 3912 56.42 88.12 24.23 86 3912 1.3 30.1 22.6 1.92 

10 2.22 2.14 100 3872 3872 52.81 87.87 24.74 86.35 3872 1.24 27.7 21.7 1.91 
11 2.14 2.07 100 3899 3900 47.37 88.06 27.08 84.87 3899 1.09 23.3 20.9 1.92 
12 2.07 2.02 100 3895 3895 44.23 88.85 29.76 82.87 3895 0.97 19.1 19.3 1.95 
13 2.02 1.96 100 3899 3899 39.53 88.91 31.37 81.1 3899 0.94 16.8 17.5 2.01 
14 1.96 1.91 100 3879 3879 36.33 90.16 36.71 76.58 3879 0.8 13.6 16.6 2.04 
15 1.91 1.87 100 3903 3903 29.12 89.76 40.64 75.73 3903 0.75 11.5 15 2.12 
16 1.87 1.83 100 3886 3887 27 90.08 45.86 71.79 3886 0.69 9.8 14.1 2.2 
17 1.83 1.79 100 3888 3888 22.53 90.01 49.08 66.26 3888 0.66 8.7 13 2.08 
18 1.79 1.76 100 3903 3903 18.77 90.06 56.4 63.29 3903 0.63 7.7 12 2.31 
19 1.76 1.73 100 3903 3904 15.66 90.1 64.66 54.48 3903 0.6 6.9 11.4 2.32 
20 1.73 1.7 99.9 3835 3839 12.44 90.04 73.81 49.99 3835 0.58 6.3 10.7 2.53 

TOTAL 44.71 1.7 100 78148 78162 52.99 91.18 18.24 95.78 78148 2.31 73.6 21.6 7.09 
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5.5.5. UV-vis RADDOSE-3D data 

UV-vis RADDOSE-3D dose calculation intput data 

Crystal 
 
Type Cuboid 
Dimensions 20 20 20         
PixelsPerMicron 0.5            
AbsCoefCalc  RD3D 
UnitCell  72.57 68.14 74.8 90 105.5 90   
NumMonomers  4                     
NumResidues  360                     
ProteinHeavyAtoms Fe 1 S 5          
#SolventHeavyConc P 425              
SolventFraction 0.45 
 
Beam 
 
Type Gaussian              
Flux 3.79e12                  
FWHM 30 30                 
Energy 12.8                
Collimation Rectangular 90 90  
Wedge 0 0                 
ExposureTime 0.02            
# AngularResolution 2      
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UV-vis RADDOSE-3D dose calculation output data 

 
Cuboid (Polyhedron) crystal of size [20, 20, 20] um [x, y, z] at a 
resolution of 2.00 microns per voxel edge. 
Simple DDM. 
Gaussian beam, 90.0x90.0 um with 30.00 by 30.00 FWHM (x by y) and 
3.8e+12 photons per second at 12.80 keV. 
Wedge 1: 
Collecting data for a total of 0.0s from phi = 0.0 to 0.0 deg. 
 
Crystal coefficients calculated with RADDOSE-3D.  
Photelectric Coefficient: 2.02e-04 /um. 
Inelastic Coefficient: 2.00e-05 /um. 
Elastic Coefficient: 1.85e-05 /um. 
Attenuation Coefficient: 2.40e-04 /um. 
Density: 1.20 g/ml. 
 
Average Diffraction Weighted Dose         : 0.010893 MGy 
Elastic Yield                             : 9.01e+06 photons 
Diffraction Efficiency (Elastic Yield/DWD): 8.27e+08 photons/MGy 
Average Dose (Whole Crystal)              : 0.020998 MGy 
Average Dose (Exposed Region)             : 0.020998 MGy 
Max Dose                                  : 0.025714 MGy 
Average Dose (95.0 % of total absorbed energy threshold (0.02 MGy)): 
0.021449 MGy 
Dose Contrast (Max/Threshold Av.)         : 1.20 
Used Volume                               : 100.0% 
Absorbed Energy (this Wedge)              : 2.06e-07 J. 
Dose Inefficiency (Max Dose/mJ Absorbed)  : 125.0 1/g 
Dose Inefficiency PE (Max Dose/mJ Deposited): 127.7 1/g 
Final Dose Histogram: 
Bin  1,  0.0 to  0.1 MGy: 100.0 %  
Bin  2,  0.1 to  3.4 MGy:  0.0 %  
Bin  3,  3.4 to  6.7 MGy:  0.0 %  
Bin  4,  6.7 to 10.1 MGy:  0.0 %  
Bin  5, 10.1 to 13.4 MGy:  0.0 %  
Bin  6, 13.4 to 16.7 MGy:  0.0 %  
Bin  7, 16.7 to 20.0 MGy:  0.0 %  
Bin  8, 20.0 to 23.4 MGy:  0.0 %  
Bin  9, 23.4 to 26.7 MGy:  0.0 %  
Bin 10, 26.7 to 30.0 MGy:  0.0 %  
Bin 11, 30.0 MGy upwards:  0.0 % 
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Chapter 6: Dark progression of radiation damage in MSS 

datasets 

6.1. Introduction 

The data collected from DtpAa crystals using an MSS approach in the previous chapter 

establish that the Fe-O bond distance between the heme Fe and the oxygen of a 

bound water (W1) increases approximately linearly as a function of accumulated 

dose. However, it is unknown whether the increase in bond length a function of 

accumulated dose alone, or a function of both absorbed dose and elapsed time. This 

question is examined in this chapter by increasing the time between MSS datasets 

from tens of milliseconds to many tens of seconds, observing whether the bond length 

still increases with accumulated dose, and how similar these bond lengths are at 

similar dose intervals to those observed in chapter 5, figure 5.10.  

 

It has been shown previously that the ‘dark progression’ of radiation damage in 

crystals is apparent when X-rays are turned off, at temperatures between 180 and 

240 K (Warkentin et al., 2011), while no dark progression of damage has been 

observed at cryogenic temperatures (Holton, 2009). Further, the examples of dark 

progression presented in Warkentin et al., 2011, were observed as changes in global 

radiation damage metrics only, namely as a rise in relative B-factor as a function of 

time: each time the X-rays were shut off (shown as a time interval between data 

points), a rise in B-factor is evident; at each temperature, larger time intervals lead to 

more damage, with evidence of a saturation of damage with dark interval time seen 
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at 240 K (Warkentin et al., 2011). The aim of this preliminary results chapter is that if 

dark progression of radiation damage is apparent when collecting MSS datasets, to 

examine it at both global and site-specific levels. In doing so, the preliminary results 

presented in this chapter examine the dose/time dependence of Fe-O bond length 

change, as to guide future experiments. 
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6.2. Methods 

6.2.1. Recombinant protein expression, purification, and crystallisation 

Identical DtpAa crystals to those subject to experimentation in chapter 5 were 

obtained by the author via a collaboration between the Hough and Worrall groups at 

the University of Essex, and subjected to experimental data collection, and 

subsequent in-depth data processing and analysis. Methods of sample preparation 

including expression, purification, and crystallisation of DtpAa are explained in detail 

in chapter 5 section 2. Microcrystals of an average size of 20 x 20 x 20 µm were used 

in this for the research presented in this chapter (see chapter 5, section 2). 

Microcrystal slurries were achieved by mixing a 1:1 ratio of 6.5 mg/ml DtpAa with a 

crystallisation buffer containing 20% PEG 6000, 100 mM HEPES pH 7.0. 

 

6.2.2. Serial data collection  

6.2.2.1. Sample loading 

DtpAa microcrystals were loaded onto silicon chips at Diamond Light Source (DLS) 

using an identical method as explained in detail in section 3.3.2. 

 

6.2.2.2. DLS beamline instrumentation, methods, and parameters 

Serial synchrotron crystallography (SSX) data were measured at DLS beamline I24 

using an X-ray energy of 12.8 keV, with no attenuation of the beam. An MSS method 

was used to collect sequential datasets from chip apertures, performed by collecting 

sequential diffraction patterns at each aperture position and binning data into one 

dataset per dose intervals (described previously, in detail, in chapters 3.4 and 3.5). 
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The Pilatus3 6M detector at DLS beamline I24 was used in shutterless mode for the 

collection of MSS diffraction images, and set at a detector distance of 320 mm for all 

datasets presented in this chapter. The X-ray shutter was not closed between 

apertures on the chip, remaining open for the duration of the experimental data 

collection, though was closed during long delays (90+ second) between datasets.  

 

3-dose dark progression series (DPS1) was collected from DtpAa crystals with a ~90 

second delay between datasets. This was achieved by collecting single 10ms 

exposures from a single column on a chip, with ~60 seconds needed for data collection 

from all 3,200 apertures of a single column, and ~30 seconds needed to manually re-

initiate the data collection on the GUI for the second and third passes; this was 

repeated for columns 2-8, with the total data collection performed in < 1 hour (fig 

6.1a). In order to build on the interesting but unclear results of the DPS1 datasets, a 

second DPS series was collected (DPS2), with 5 sequential 10ms exposures collected 

at each aperture, followed by a ~120 second delay, and then another 5 sequential 

10ms exposures collected from the same apertures. The delay between the first and 

second groups of 5 exposures was again achieved manually using the GUI, with ~90 

seconds needed to collect an initial 5-dose series from a half of a chip column, ~30 

seconds needed to re-initiate the data collection on the GUI, with the second 5-dose 

series then collected from the same apertures (fig 6.1b). The series of five 10ms 

exposures at each aperture position were triggered via a Keysight 33500B signal 

generator which itself was triggered by a DeltaTau Geobrick LV-IMS-II stage controller. 

Beam fluxes for DPS1 and DPS2 were 3.97 x 1012 and 3.94 x 1012 photons s-1, measured 

using a silicon PIN diode (Owen et al., 2009), with corresponding beam sizes of 8 x 8  
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Figure 6.1. Schematic representation of the DPS experiment 

(a.) White arrows represent data collection from an entire column of city blocks (aperture A1-1 to aperture H1-400). A single 10 ms diffraction pattern 

is collected from each aperture in a column taking ~60 seconds. The entire column is the subject to a second 10 ms exposure, with a third collected 

once the column is complete. With time taken to restart the collection (~30 seconds), the time delays between dose dependent structures (green, blue, 

orange) are ~90 seconds in DPS1. (b.) White arrows represent data collection from half of a column of city blocks (A1-1 to D1-400). Five sequential 10 

ms exposures are taken at each aperture, with entire collection from a half column taking ~90 seconds. A second set of five sequential 10 ms exposures 

are then taken from the same half column of apertures. By including time taken to restart the collection, the time between the first 5 and second 5 

exposures is ~120 seconds. 
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and 9 x 9 µm used for data collections DPS1 and DPS2 (measured using a knife edge 

scan), respectively. 

 

6.2.2.3. Data processing, structure solution and refinement 

Data were processed in DIALS, indexing and integration was handled using 

dials.stills_process version 1.8.5, with subsequent scaling and merging 

completed using PRIME (Winter et al., 2018). Resolution limits were assessed using 

completeness, CC1/2 and Rsplit parameters. Structures were solved via molecular 

replacement using phaserMR in the PHENIX crystallographic software suite. The 32.8 

kGy room temperature DtpAa SSX structure collected in chapter 2 and subsequently 

deposited to the PDB (PDB:6I7Z) was used as the search model in molecular 

replacement. AutoBuild wizard in PHENIX was used to provide an automated system 

for model building, and used as an initial process for all structures presented in this 

chapter. Structures were further refined using phenix.refine (Adams et al., 2010), 

and rebuilt between rounds of refinement using COOT (Paul Emsley & Cowtan, 2004). 

Atoms not well supported by electron density were deleted from the model, with 

validation performed using the built-in MolProbity (Chen et al., 2010) functionality 

in PHENIX. Error in bond lengths were estimated using the online diffraction precision 

indicator (DPI) server (http://cluster.physics.iisc.ernet.in/dpi/; Kumar et al., 2015). 

RADDOSE-3D was used to estimate absorbed doses, with dose increments 

corresponding to the total dose accumulated within the exposure time of the first 

image (Paithankar & Garman, 2010). 
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6.3. Results 

6.3.1. DPS1 SSX data collection, processing, and refinement 

DPS1 comprised 3 sequential datasets, with dose 1 comprising single 10ms exposures 

collected from all apertures in a single column of a chip (aperture A1-1 – H1-400). 

After data collection from a column was complete the stages translated the chip back 

to the first aperture, allowing data collection from the same chip column to be 

repeated. This allowed collection of a second and third dose dataset from each 

aperture. Data collection from a single column took ~58 seconds, with a further ~30 

seconds required to restart the data collection, giving an estimated delay time 

between datasets of ~1.5 minutes. Data collection from the entire chip therefore took 

~36 minutes. The diffraction weighted dose was estimated to be 48.6 kGy per dataset 

(see appendices for RADDOSE-3D input parameters and output file). 

 

Data were indexed and integrated using dials.stills_process in DIALS on the 

Diamond computing cluster. A detailed outline of this processing method can be 

found in chapter 3.5, though important parameters shall be described in this section. 

For this dose series, data were collected from 2 chips, with 2083 indexed images from 

a possible 51200 for dose 1, equating to a hit rate of 5.5%. 

cctbx.xfel.plot_UC_cloud_from_experiments was used on a subset of 871 

crystals in order to asses unit cell parameters before processing the entirety of the 

data, with DtpAa was found to be in space group P21, with unit cell dimensions of a = 

72.8 ± 0.3, b = 68.3 ± 0.1, c = 74.2 ± 0.4 Å, β = 105.56 ± 0.23 ° (fig. 6.2). 
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Figure 6.2. DtpAa unit cell distribution. 

DIALS cctbx.xfel.plot_UC_cloud_from_experiments shows the unit cell 

distribution from a subset of DtpAa crystals, used to optimise the unit cell for subsequent data 

processing. The unit cell was found in P21, dimensions of a = 72.8 ± 0.3, b = 68.3 ± 0.1, c = 74.2 

± 0.4 Å, β = 105.56 ± 0.23 °. 
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Integrated images were binned via dose using the script get-int-file.py 

(appendices 3.7.5), with subsequent datasets within each dose bin scaled and merged 

using PRIME to generate an mtz file corresponding to each dose dependent dataset. 

Each dataset was initially merged to 1.6 Å in order to assess relevant data quality 

metrics, including Rsplit, CC1/2, N_obs (multiplicity), and completeness, allowing the 

determination of a resolution cut-off for each dose point. As in previous chapters, 

outer shell metrics of CC1/2 of > 0.5, completeness of > 97%, and N_obs of > 10 were 

used as thresholds in determining an appropriate resolution cut-off; using this, DPS1-

ds1 was cut and merged at a resolution of 2 Å, with doses 2 and 3 merged to a 

resolution of 2.1 and 2.3 Å, respectively (tables 6.1, 6.2). AutoBuild was utilised for 

initial structure building, with rounds of refinement subsequently performed in 

phenix.refine using automatic weighting, and COOT. Structures were refined to an 

Rwork/Rfree of 0.171/0.228 for DPS1-ds1, 0.173/0.230 for DPS1-ds2, and 0.177/0.253 

for DPS1-ds3 (table 6.2).  
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Dark 

Progression 

Series (DPS) 

Exposure 

time 

Delay between 

structures 

Number of 

integrated files 

Dose 

(kGy) 

Resolution 

cut-off (Å) 

DPS1-ds1 

10 ms ~90 seconds 

2803 48.6 2.00 

DPS1-ds2 2398 97.2 2.10 

DPS1-ds3 1511 145.8 2.30 

 

Table 6.1. DPS1 dataset collection and data processing parameters 
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Dataset DPS1-ds1 DPS1-ds2 DPS1-ds3 

Data Collection 

Cumulative dose (kGy) 48.6 97.2 145.8 

Number of integrated frames 2803 2398 1511 

Exposure time (milliseconds) 10 10 10 

Time delay between MSS 

(seconds) 

n/a ~90 ~90 

Data processing 

Space Group P21 

Cell dimensions (Å, deg) a = 72.79 (0.44) 

b = 68.35 (0.27) 

c = 74.25 (0.52) 

β = 105.55 (0.35) 

a = 72.76 (0.48) 

b = 68.34 (0.30) 

c = 74.31 (0.58) 

β = 105.60 (0.40) 

a = 72.75 (0.55) 

b = 68.34 (0.35) 

c = 74.41 (0.66) 

β = 105.62 (0.50) 

Resolution (Å) 44.48-2.00 (2.03-

2.00) 

44.48-2.10 (2.14-

2.10) 

44.49-2.30 (2.34-

2.30) 

Rsplit (%) 22.90 (56.65) 23.69 (60.14) 25.15 (64.26) 

CC1/2 (%) 94.76 (59.81) 94.43 (60.90) 93.78 (58.15) 

N_obs 25.04 (8.28) 22.67 (7.59) 19.61 (6.83) 

Completeness (%) 100 (99.7) 99.9 (99.2) 99.9 (98.9) 

Refinement 

Number of reflections 47602 41168 31394 

Rwork/Rfree 0.171 / 0.228 0.173 / 0.230 0.177 / 0.253 

RMSD bond lengths (Å) 0.007 0.007 0.008 

RMSD bond angles (deg) 0.872 0.886 0.921 

Ramachandran plot 

Most favoured (%) 98.75 97.92 97.49 

Allowed (%) 1.22 2.16 2.50 

Diffraction precision index (DPI) 

W1 DPI error (Å) 0.163 0.177 0.386 

Fe DPI error (Å) 0.149 0.178 0.347 

W1-Fe bond length error (Å) 0.221 0.251 0.519 

 

Table 6.2. Data collection, processing, refinement, and DPI statistics for DPS1-ds1-3 
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6.3.2. DtpAa DPS1 structures 

As seen in previous chapters and DtpAa structures, the active site in monomer A 

contains a six-coordinate heme group with a proton exchange network formed by 

waters supported by electron density (fig 6.3a, b); His326 acts as the proximal ligand 

with the bond length of Fe – N 2.28 Å (fig. 6.3c), while electron density reveals the 

distal heme coordination site occupied by a water (W1). The bond length of this water 

to the heme Fe is 2.48 Å. A second water, W2, interacts with the conserved DyP family 

residue Asp239 at a distance of 2.49 Å.  

 

As in chapter 5, the focus of this experiment is assessing the movement of W1 away 

from the Fe in the heme of monomer A as a function of accumulated dose. By using a 

longer time delay between datasets than typically used in MSS experiments (seconds 

rather than milliseconds [chapter 4,5]) however, it should be possible to infer whether 

the movement of W1 is exclusively a function of accumulated dose, or a function of 

both absorbed dose and elapsed time (see chapter 5, section 4). After a time delay 

between dose 1 and dose 2 of ~90 seconds, the DPS1-ds2 bond length was not 

observed to increase; the Fe-O bond length for DPS1-ds2 is shorter, at 2.42 ± 0.25 Å. 

After a further ~90 second time delay, the bond returns to a length similar to that of 

the DPS1-ds1 structure, at 2.49 ± 0.52 Å away from the heme Fe (table 6.3, figure 6.4, 

omit maps fig. 6.5). 
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Figure 6.3. DtpAa DPS1-ds1 active site water network 

(a.) Fo – Fc electron density omit map depicts clear evidence of positive electron density for a 

water network, contoured at 3s. The structure used for omit refinement is shown in light 

orange, with DPS1-ds1 superimposed in pale blue. (b.) 2Fo – Fc electron density map for the 

chain of ordered waters found at the active site of monomer A. Electron density of the 2 Å 

resolution MSS1-ds1 DtpAa structure is contoured at 1s. Electron density map shows clearly 

resolved waters and their interaction with Asp239. (c.) Bond lengths for the water network, 

including the heme coordinating proximal His326 residue and Asp239. The His326-Fe distance 

is 2.28 Å, while the Fe-O distance is 2.48 Å. Interaction of W2 with Asp239 can be seen, with a 

bond distance of 2.49 Å.  

a. 

b. c. 
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Structure DPS1-1 DPS1-2 DPS1-3 

Dose (kGy) 48.6 97.2 145.8 

Resolution (Å) 2.00 2.10 2.30 

Fe-O (Å) 2.48 ± 0.221 2.42 ± 0.251 2.49 ± 0.519 

 

Table 6.3. Comparison of Fe-O bond lengths in DPS1 datasets 
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Figure 6.4. 90 second time delay Fe-O bond length as a function of accumulated dose. 

2Fo-Fc electron-density maps contoured at 1s for the heme environment of (a.) the initial 10 ms exposure 48.6 kGy DPS1-ds1 structure (green), (b.) the 

97.2 kGy DPS1-ds2 structure (blue), and (c.) the 145.8 kGy DPS1-ds3 structure (orange). (d.) Superposition of DPS1-ds1, DPS1-ds2, and DPS1-ds3 90 

second time delay structures reveals little migration of the proximal W1 water molecule away from the heme Fe with accumulated dose. 
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Figure 6.5. DPS1 omit maps. 

Fo-Fc electron-density omit maps contoured at 3s for the heme environment for DPS1. The 

structures used for omit refinement are shown in light orange, with structures utilised for the 

elucidation of Fe-O bond length superimposed in pale blue. Clear positive electron density is 

evident for a single water at dose points of 48.6 and 97.2 kGy, while a second water is evident 

within 145.8 kGy of X-ray exposure.  
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6.3.3. DPS2 SSX data collection, processing, and refinement 

DPS2 comprised 10 sequential 10ms exposures, with a ~120 second delay between 

exposures 5 and 6 used in order to investigate whether the Fe-W1 bond length 

recovers over time when a delay separates an MSS method identical to that of chapter 

5.3.4. The full data collection for one chip took < 1 hour, with a second chip collected 

in order to improve the dataset redundancy. Diffraction weighted dose was estimated 

to be 38.6 kGy per dataset (see appendices for RADDOSE-3D input parameters and 

output file). Data were again indexed and integrated using dials.stills_process 

on the Diamond computing cluster. For this dose series, data were collected from 2 

chips, with 13178 indexed images from a possible 51200 for dose 1, equating to a hit 

rate of 25.7%, with data binned into dose dependent datasets using the get-int-

file.py python script (appendices section 3.7.5). 

 

As before, each dataset was initially merged to 1.6 Å in order to assess relevant data 

quality metrics (Rsplit, CC1/2, N_obs, and completeness), to determine a distinct 

resolution cut-off for each dose point. DPS2-ds1, ds2, and ds3 presented good 

merging statistics at 1.6 Å, though subsequent datasets were cut and merged at 

resolutions with ‘good’ corresponding merging statistics (table 6.4, 6.5). AutoBuild 

was again utilised for initial structure building. Rounds of refinement were performed 

using phenix.refine and COOT in order to accurately place W1 and the surrounding 

water network in the DPS2 datasets. Structures were refined to Rwork/Rfree values 

found in table 6.5.  
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Table 6.4. DPS2 dataset collection and data processing parameters 

  

Dark Progression 

Series (DPS) 

Exposure 

time 

Delay between 

structures 

Number of 

integrated files 

Dose 

(kGy) 

Resolution 

cut-off (Å) 

DPS2-ds1 

10 ms 

10 ms 

13178 38.6 1.60 

DPS2-ds2 12768 77.2 1.60 

DPS2-ds3 12260 115.8 1.60 

DPS2-ds4 11681 154.4 1.70 

DPS2-ds5 10752 193 1.70 

DPS2-ds6 

10 ms* 

6753 231.6 1.85 

DPS2-ds7 6065 270.2 1.90 

DPS2-ds8 5501 308.8 2.00 

DPS2-ds9 5163 347.4 2.05 

DPS2-ds10 4886 386 2.10 

* DPS2-ds6-10 datasets collected ~120 seconds after DPS2-ds1-5 
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Dataset DPS2-
ds1 

DPS2-
ds2 

DPS2-
ds3 

DPS2-
ds4 

DPS2-
ds5 

DPS2-
ds6 

DPS2-
ds7 

DPS2-
ds8 

DPS2-
ds9 

DPS2-
ds10 

Data Collection 
Cumulative 
dose (kGy) 

38.6 77.2 115.8 154.4 193 231.6 270.2 308.8 347.4 386 

Number of 
integrated 

frames 

13178 12768 12260 11681 10752 6753 6065 5501 5163 4886 

Exposure time 
(milliseconds) 

10 

Time MSS 
collected 
(seconds) 

0.01 0.02 0.03 0.04 0.05 120.01 120.02 120.03 120.04 120.05 

Data processing 
Space Group P21 

Cell dimensions 
/ Å/deg. 

a = 73.03 

(0.33) 

b = 68.39 

(0.22) 

c = 75.14 

(0.33) 

β = 

105.66 

(0.32) 

a = 73.04 

(0.34) 

b = 68.38 

(0.23) 

c = 75.14 

(0.34) 

β = 

105.71 

(0.32) 

a = 73.06 

(0.37) 

b = 68.38 

(0.25) 

c = 75.17 

(0.37) 

β = 

105.76 

(0.35) 

a = 73.09 

(0.41) 

b = 68.37 

(0.28) 

c = 75.22 

(0.42) 

β = 

105.81 

(0.40) 

a = 73.12 

(0.44) 

b = 68.37 

(0.30) 

c = 75.29 

(0.46) 

β = 

105.87 

(0.44) 

a = 73.14 

(0.53) 

b = 68.38 

(0.32) 

c = 75.28 

(0.53) 

β = 

105.82 

(0.51) 

a = 73.14 

(0.56) 

b = 68.39 

(0.35) 

c = 75.29 

(0.54) 

β = 

105.85 

(0.53) 

a = 73.16 

(0.58) 

b = 68.39 

(0.37) 

c = 75.31 

(0.56) 

β = 

105.87 

(0.56) 

a = 73.18 

(0.59) 

b = 68.38 

(0.36) 

c = 75.31 

(0.58) 

β = 

105.86 

(0.54) 

a = 73.18 

(0.59) 

b = 68.38 

(0.35) 

c = 75.32 

(0.58) 

β = 

105.87 

(0.56) 

Resolution / Å 44.76-

1.60 

(1.63-

1.60) 

44.75-

1.60 

(1.63-

1.60) 

44.76-

1.60 

(1.63-

1.60) 

44.76-

1.70 

(1.73-

1.70) 

44.76-

1.70 

(1.73-

1.70) 

44.76-

1.85 

(1.88-

1.85) 

44.77-

1.90 

(1.93-

1.90) 

44.78-

2.00 

(2.03-

2.00) 

44.78-

2.05 

(2.09-

2.05) 

44.78-

2.10 

(2.14-

2.10) 

Rsplit (%) 17.28 

(63.23) 

17.15 

(68.45) 

17.07 

(72.38) 

16.56 

(63.04) 

16.71 

(70.40) 

20.60 

(77.40) 

21.88 

(80.33) 

22.51 

(71.13) 

23.01 

(76.50) 

22.95 

(70.51) 

CC1/2 (%) 96.59 

(57.21) 

96.89 

(56.00) 

97.10 

(52.74) 

97.18 

(59.66) 

97.68 

(58.15) 

97.07 

(56.64) 

96.63 

(55.04) 

96.34 

(62.10) 

96.30 

(55.79) 

96.69 

(57.72) 

N_obs 49.56 

(7.69) 

47.53 

(6.67) 

45.05 

(5.08) 

48.74 

(9.73) 

44.16 

(7.33) 

35.42 

(8.07) 

33.90 

(6.91) 

33.21 

(8.14) 

32.40 

(8.66) 

31.29 

(8.93) 

Completeness 
(%) 

99.9 

(99.1) 

99.9 

(98.6) 

99.8 

(97.1) 

99.9 

(99.1) 

99.8 

(96.9) 

99.7 

(95.8) 

99.6 

(94.9) 

99.7 

(96.3) 

99.7 

(96.1) 

99.7 

(97.3) 

Refinement 
Number of 
reflections 

93925 93918 93849 78470 78417 60923 56213 48354 44932 41798 

Rwork/Rfree 0.169 / 

0.201 

0.171 / 

0.196 

0.175 / 

0.198 

0.171 / 

0.214 

0.179 / 

0.218 

0.1836 / 

0.224 

0.186 / 

0.234 

0.186 / 

0.234 

0.187 / 

0.249 

0.189 / 

0.251 

RMSD bond 
lengths (Å) 

0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.008 0.007 0.007 

RMSD bond 
angles (deg) 

0.853 0.840 0.877 0.846 0.852 0.850 0.862 0.887 0.879 0.892 

Ramachandran plot 
Most favoured 

(%) 
98.33 98.06 98.47 98.47 98.47 98.47 97.92 98.19 97.08 97.36 

Allowed (%) 1.54 1.92 1.48 1.47 1.47 1.47 2.04 1.79 2.89 2.56 

Diffraction precision index (DPI) 
W1 DPI error 

(Å) 
0.074 0.078 0.085 0.095 0.104 0.130 0.144 0.168 0.214 0.205 

Fe DPI error (Å) 0.061 0.063 0.067 0.079 0.084 0.118 0.135 0.158 0.191 0.226 

W1-Fe bond 
length error (Å) 

0.096 0.100 0.108 0.124 0.134 0.176 0.197 0.231 0.287 0.305 

 

Table 6.5. Data collection, processing, refinement, and DPI statistics for DPS2-ds1-10 
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6.3.4. DtpAa DPS2 structures 

The Fe-O bond length for DPS2-ds1 is similar to that of DPS1-ds1, at 2.46 ± 0.096 Å, 

however, when collecting a series of 5 sequential dose points a trend becomes clear, 

with the Fe-O bond length increasing from 2.46 ± 0.096 to 2.82 ± 0.134 Å (table 6.6, 

fig. 6.6). After a time delay between dose point 5 and dose point 6 of ~120 seconds, 

the bond length recovers to 2.48 ± 0.176 Å. The bond length is then observed to again 

lengthen to 2.64 ± 0.287 Å by dose 9, similar to the increase in bond length seen from 

doses 1 to 5. Interestingly DPS2-ds10 Fe-O bond length is shorter than that of DPS2-

ds9, however the position of W1 may be influenced by W2 in the DtpAa active site 

water network (fig. 6.7). Omit maps for DPS2 are shown in figure 6.8. 
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Structure 
 

DPS2-
ds1 

DPS2-
ds2 

DPS2-
ds3 

DPS2-
ds4 

DPS2-
ds5 

DPS2-
ds6 

DPS2-
ds7 

DPS2-
ds8 

DPS2-
ds9 

DPS2-
ds10 

Dose 
(kGy) 

38.6 77.2 115.8 154.4 193 231.6 270.2 308.8 347.4 386 

Resolution 
(Å) 

1.60 1.60 1.60 1.70 1.70 1.85 1.90 2.00 2.05 2.10 

Fe-O (Å) 2.46 

± 

0.096 

2.56 

± 

0.100 

2.54 

± 

0.108 

2.68 

± 

0.124 

2.82 

± 

0.134 

2.48 

± 

0.176 

2.49 

± 

0.197 

2.51 

± 

0.231 

2.64 

± 

0.287 

2.55 

± 

0.305 

 

Table 6.6. Comparison of Fe-O bond lengths in DPS2 datasets 
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Figure 6.6. Datasets DPS2-ds1-5 Fe-O bond length as a function of accumulated dose. 

2Fo-Fc electron-density maps contoured at 1s for the heme environment of (a. – e.) the initial MSS2-ds1-5 10 ms exposure structures (38.6, 77.2, 115.8, 

154.4, 193 kGy; green, blue, orange, red, purple), with their associated Fe-O bond lengths shown. (f.) Superposition of MSS2-ds1-5 reveals a progressive 

migration of the proximal W1 water molecule away from the heme Fe with accumulated dose, with little change in the conformation of the heme. 
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Figure 6.7. Datasets DPS2-ds6-10 Fe-O bond length as a function of accumulated dose 

2Fo-Fc electron-density maps contoured at 1s for the heme environment of (a. – e.) MSS2-ds6-10 10 ms exposure structures (231.6, 270.2, 308.8, 

347.4, 386 kGy; green, blue, orange, red, purple), collected after a ~120 second delay after the collection of MSS2-ds5, with associated Fe-O bond 

lengths shown. (f.) Superposition of MSS2-ds6-10 again reveals a progressive migration of the proximal W1 water molecule away from the heme Fe 

with accumulated dose. The MSS2-ds10 Fe-O bond length is seen to be shorter than the bond in the previous dose dependent structure, though the 

water distance relative to the heme Fe may be influenced by the water molecule (W2) in close proximity to W1.  
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Figure 6.8. DPS2 omit maps. 

Fo-Fc electron-density omit maps contoured at 3s for the heme environment for DPS2. The 

structures used for omit refinement are shown in light orange, with structures utilised for the 

elucidation of Fe-O bond length superimposed in pale blue. Positive features for bound water 

electron density are evident throughout the dose series. Datasets f. – j. were collected ~120 

seconds after those shown in figures a. – e.   
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6.4. Discussion 

By performing an MSS series sub-divided by larger time intervals, we have been able 

to demonstrate a new data collection technique that builds on MSS, a new serial 

method we have coined ‘dark progression series’ (DPS). This DPS experiment has been 

successfully used to add context to the results presented in chapter 5, section 3: by 

using long time intervals of 90+ seconds between multiple datasets, it can be shown 

that the Fe-O bond length returns to a distance similar to that of only a single 10 ms 

exposure (fig. 6.4). 10 ms exposures were used for MSS1 and MSS2 series in section 

5.3.4, corresponding to bond lengths of 2.48 and 2.50 Å in MSS1-ds1 and MSS2-ds1 

(chapter 5 section 3.4), compared to 2.48, 2.42, and 2.49 Å in DPS-ds1-3 from 10 ms 

exposure structures that have ~90 second intervals between their collection. 

Additionally, by assessing bond lengths of structures from DPS2 (consisting of two 5-

dose MSS series separated by ~120 seconds), the Fe-O distance returns to 2.48 Å in 

DPS2-ds6 from a length of 2.82 Å in DPS2-ds5, before it again lengthens to 2.55 Å by 

dose 10 (figure 6.9). DPS2 structures clearly show that there is a recovery event 

happening at the heme, where the coordination of the heme is returning to a ‘low 

damage’ state, referred to from this point onward as ‘sawtooth’ recovery due to the 

shape of the plot shown in figure 6.9.  
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Figure 6.9. Plot of DPS2 Fe-O distance as a function of diffraction weighted dose and 

time 

Both DPS2-ds1-5 and DPS2-ds6-10 are plotted in black, with linear functions fitted to the 

individual MSS series. The separation in the time axis signifies a delay period of ~120 seconds. 

Extrapolating the linear function of DPS2-ds1-5 to zero-dose gives a bond length of 2.371 ± 

0.107, while the same for the function fitted to doses 6-10 is 2.298 ± 0.566. The slope of the 

linear function fitted to DPS-ds1-5 is 0.00207, while that of DPS-ds6-10 is 0.00076. Error bars 

in this plot were produced using the Diffraction Precision Index, signifying estimated standard 

uncertainty in bond length.  
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When comparing the first five dose points of the sawtooth dataset with those of MSS1 

and MSS2 from chapter 5, the iron water distances for DPS2-ds1-5 fall within error of 

the bond lengths of the first five dose points of MSS2 (fig. 6.10). Both MSS data series 

were collected at dose intervals very similar to that of DPS2 (MSS2 = 39.2 kGy per 

dataset; DPS2 = 38.6 kGy per dataset). Furthermore, the Y intercept for the linear 

function of all MSS1 and MSS2 dose points plotted in chapter 5 (fig. 5.16) is strikingly 

similar to that of DPS2-ds1-5, with the Y intercept for points plotted in figure 6.10 

2.369 ± 0.050 Å almost identical to the DPS2-ds1-5 Y intercept of 2.371 ± 0.107. The 

similar intercept value that presented in chapter 5 strengthens the effectiveness of 

our method of zero-dose extrapolation being used to estimate damage free data, as 

data for chapters 5 and 6 were collected and processed completely separately from 

one another, validating MSS as both accurate and reliably reproducible. The Y 

intercept for DPS2-ds6-10 is 2.298 ± 0.566. Interestingly the error values for DPS2-

ds1-5 are similar to those of MSS1 and MSS2, though those for DPS2-ds6-10 are higher 

after the time delay. The poor error values for DPS1 can be attributed to low 

resolution and N_obs due to the low numbers of diffraction patterns for those 

datasets (~2000 vs ~13000). Again, where there is a significant jump in DPI between 

DPS2-ds5 and DPS2-ds6, there is also a large reduction in diffraction patterns (~10700 

vs ~6700), N_obs (44 vs 35), and resolution (1.70 vs 1.85 Å). 
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Figure 6.10. Plot of Fe-O distance as a function of X-ray dose from MSS1, MSS2, and 

DPS2 

MSS1 and MSS2 bond distances (black), and DPS2-ds1-5 (red) can be seen to overlap when 

plot on the same axis. The DPS2 plot points fall within error of corresponding MSS plot points 

at similar dose. 
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It is however still possible to show that dark progression of radiation damage is 

apparent: by plotting normalised diffracting power (In / I1) for DPS2 datasets 

processed to the same resolution as DPS2-ds1, 1.6 Å, there is a large jump in loss of 

overall diffraction intensity between DPS2-ds5 and DPS2-ds6 (53.1 vs 39.8) (fig. 

6.11a). Unit cell volume increases with accumulated dose throughout the DPS2 

dataset as expected (Ravelli & McSweeney, 2000), though not between DPS2-ds5 and 

DPS2-ds6 where the X-rays were turned off (fig. 6.11b). Dark progression of radiation 

damage may have an effect on intensities by increasing the non-isomorphism within 

the crystal via cascades of photoelectrons released during secondary radiation 

damage events, though as unit cell increase is not affected by dark progression in this 

instance, this may indicate that it is more due to thermal expansion of the crystal 

lattice when exposed to X-rays than an increase in non-isomorphism. 

 

There are a number of interesting experiments that could build on the data collected 

in this preliminary chapter. Establishing whether the redox state of DtpAa recovers 

after a dark period would be a logical next experiment, establishing whether the 

movement of the water away from the heme Fe is directly related to its reduction by 

the X-ray beam (chapter 5, figures 5.13, 5.14). This could be achieved by using an 

MSOX (Horrell 2016; 2019) or MSS method on DtpAa crystals coupled with online UV-

vis microspectrophotometry, answering whether the bond distance ‘recovery’ is a 

result of reoxidation at the heme. Additionally, using collecting DPS datasets with 

progressively shorter time delays would allow quantification of the shortest amount 

of time needed for the bond length to recover. This could again be coupled with an 

MSOX method coupled with UV-vis online microspectrophotometry. Using an MSOX  
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Figure 6.11. Normalised global radiation damage indicators vs absorbed dose for DPS2 

datasets 

(a.) Decrease in normalised diffracting power can be shown throughout DPS2 datasets when 

processed to the same 1.6 Å resolution cut-off. The distinct drop in diffracting power between 

points 5 and 6, collected ~120 seconds apart, is greater than that seen between any dose 

points separated by 10 ms intervals, indicative of the dark progression of radiation damage. 

Normalised unit cell increases across DPS2, though points 5 and 6 only vary slightly, indicating 

that unit cell expansion may not be driven during dark progression periods. The increase in 

unit cell volume plateaus toward the end of the data collection, with an overall expansion of 

3.3 %.  
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method typically requires very large (> 400 µm) crystals to be grown. Doing this same 

DPS experiment on large crystals, and an MSOX experiment on both large crystals and 

microcrystals, would allow insight into the influence of crystal volume on the dark 

progression of radiation damage, by identifying whether bond length increase 

happens at the same rate in crystals of different size. Importantly, in order to improve 

the ease of performing this experiment is the automation of data collection. Similar 

to how scripts and a GUI were developed to run standard chip and MSS experiments, 

achieving this for the DPS method would allow exact time delays to be established 

between DPS collections. The data collected in this thesis relied on manually resetting 

and running the data collections via the GUI, leading to slightly different time delays 

between DPS1 and DPS2, as data series were collected from either a whole, or half of 

a column. 
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6.5. Appendices 

6.5.1. DPS1 RADDOSE 

Input Data 

Crystal 
 
Type Cuboid 
Dimensions 20 20 20         
PixelsPerMicron 0.5            
AbsCoefCalc  RD3D 
UnitCell  72.6 68.1 74.8 90 105.5 90   
NumMonomers  4                     
NumResidues  360                     
ProteinHeavyAtoms Fe 1 S 5          
#SolventHeavyConc P 425              
SolventFraction 0.45 
 
Beam 
 
Type Gaussian              
Flux 3.97e12                  
FWHM 8 8                 
Energy 12.8                
Collimation Rectangular 24 24  
 
Wedge 0 0                 
ExposureTime 0.01            
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Output Data 

Cuboid (Polyhedron) crystal of size [20, 20, 20] um [x, y, z] at a resolution of 2.00 microns per voxel 
edge. 
Simple DDM. 
Gaussian beam, 24.0x24.0 um with 8.00 by 8.00 FWHM (x by y) and 4.0e+12 photons per second at 
12.80 keV. 
Wedge 1: 
Collecting data for a total of 0.0s from phi = 0.0 to 0.0 deg. 
 
Crystal coefficients calculated with RADDOSE-3D.  
Photelectric Coefficient: 2.02e-04 /um. 
Inelastic Coefficient: 2.00e-05 /um. 
Elastic Coefficient: 1.86e-05 /um. 
Attenuation Coefficient: 2.40e-04 /um. 
Density: 1.20 g/ml. 
 
Average Diffraction Weighted Dose         : 0.048580 MGy 
Elastic Yield                             : 1.46e+07 photons 
Diffraction Efficiency (Elastic Yield/DWD): 3.00e+08 photons/MGy 
Average Dose (Whole Crystal)              : 0.033979 MGy 
Average Dose (Exposed Region)             : 0.033979 MGy 
Max Dose                                  : 0.189382 MGy 
Average Dose (95.0 % of total absorbed energy threshold (0.01 MGy)): 0.061839 MGy 
Dose Contrast (Max/Threshold Av.)         : 3.06 
Used Volume                               : 100.0% 
Absorbed Energy (this Wedge)              : 3.33e-07 J. 
Dose Inefficiency (Max Dose/mJ Absorbed)  : 568.7 1/g 
Dose Inefficiency PE (Max Dose/mJ Deposited): 581.1 1/g 
Final Dose Histogram: 
Bin  1,  0.0 to  0.1 MGy: 91.0 %  
Bin  2,  0.1 to  3.4 MGy:  9.0 %  
Bin  3,  3.4 to  6.7 MGy:  0.0 %  
Bin  4,  6.7 to 10.1 MGy:  0.0 %  
Bin  5, 10.1 to 13.4 MGy:  0.0 %  
Bin  6, 13.4 to 16.7 MGy:  0.0 %  
Bin  7, 16.7 to 20.0 MGy:  0.0 %  
Bin  8, 20.0 to 23.4 MGy:  0.0 %  
Bin  9, 23.4 to 26.7 MGy:  0.0 %  
Bin 10, 26.7 to 30.0 MGy:  0.0 %  
Bin 11, 30.0 MGy upwards:  0.0 % 

  



 242 

6.5.2. DPS2 RADDOSE 

Input Data 

Crystal 
 
Type Cuboid 
Dimensions 20 20 20         
PixelsPerMicron 0.5            
AbsCoefCalc  RD3D 
UnitCell  73.2 68.4 75.3 90 105.8 90   
NumMonomers  4                     
NumResidues  360                     
ProteinHeavyAtoms Fe 1 S 5         
#SolventHeavyConc P 425              
SolventFraction 0.45 
 
Beam 
 
Type Gaussian              
Flux 3.94e12                  
FWHM 9 9                 
Energy 12.8                
Collimation Rectangular 27 27  
 
Wedge 0 0                 
       # Start and End rotational angle of the crystal with Start 
< End 
 
ExposureTime 0.01            
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Output Data 

Cuboid (Polyhedron) crystal of size [20, 20, 20] um [x, y, z] at a resolution of 2.00 microns per voxel 
edge. 
Simple DDM. 
Gaussian beam, 27.0x27.0 um with 9.00 by 9.00 FWHM (x by y) and 3.9e+12 photons per second at 
12.80 keV. 
Wedge 1: 
Collecting data for a total of 0.0s from phi = 0.0 to 0.0 deg. 
 
Crystal coefficients calculated with RADDOSE-3D.  
Photelectric Coefficient: 2.00e-04 /um. 
Inelastic Coefficient: 1.98e-05 /um. 
Elastic Coefficient: 1.84e-05 /um. 
Attenuation Coefficient: 2.38e-04 /um. 
Density: 1.19 g/ml. 
 
Average Diffraction Weighted Dose         : 0.038626 MGy 
Elastic Yield                             : 1.41e+07 photons 
Diffraction Efficiency (Elastic Yield/DWD): 3.66e+08 photons/MGy 
Average Dose (Whole Crystal)              : 0.033355 MGy 
Average Dose (Exposed Region)             : 0.033355 MGy 
Max Dose                                  : 0.148761 MGy 
Average Dose (95.0 % of total absorbed energy threshold (0.01 MGy)): 0.051946 MGy 
Dose Contrast (Max/Threshold Av.)         : 2.86 
Used Volume                               : 100.0% 
Absorbed Energy (this Wedge)              : 3.23e-07 J. 
Dose Inefficiency (Max Dose/mJ Absorbed)  : 460.2 1/g 
Dose Inefficiency PE (Max Dose/mJ Deposited): 470.2 1/g 
Final Dose Histogram: 
Bin  1,  0.0 to  0.1 MGy: 91.0 %  
Bin  2,  0.1 to  3.4 MGy:  9.0 %  
Bin  3,  3.4 to  6.7 MGy:  0.0 %  
Bin  4,  6.7 to 10.1 MGy:  0.0 %  
Bin  5, 10.1 to 13.4 MGy:  0.0 %  
Bin  6, 13.4 to 16.7 MGy:  0.0 %  
Bin  7, 16.7 to 20.0 MGy:  0.0 %  
Bin  8, 20.0 to 23.4 MGy:  0.0 %  
Bin  9, 23.4 to 26.7 MGy:  0.0 %  
Bin 10, 26.7 to 30.0 MGy:  0.0 %  
Bin 11, 30.0 MGy upwards:  0.0 % 
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Chapter 7: Identification of protein-ligand complexes via 

SFX and SSX 

7.1. Introduction 

Advances in crystallographic screening and collections methods have led to the 

development of what we now know as ‘high-throughput’ crystallography. For 

example, sparse matrix screens coupled with laboratory robots make it possible to 

explore many different crystallisation parameters such as pH, precipitant 

concentration, additives etc. whilst exercising relatively minimal effort and skill on the 

part of the researcher. It is now therefore possible to screen more than two orders of 

magnitude more crystallisation conditions from the same amount of sample than was 

possible 25 years ago (McPherson & Gavira, 2014). This has allowed crystallography 

to be widely used as a high-throughput method for industrial drug fragment screening 

purposes, with many industrial laboratories incorporating fragment-based 

approaches from the early 2000s (Davies & Tickle, 2012).  

 

Fragment-based drug discovery (FBDD) entails screening small-molecule libraries 

against a target protein to identify bioactive molecules, with biophysical methods 

such as X-ray crystallography utilised to identify weakly binding fragments (Patel, 

Bauman, & Arnold, 2014). Its popularity is due in part to X-ray crystallography 

remaining one of the most sensitive biophysical techniques within the practical 

constraints of a typical fragment-screening experiment, despite false negatives being 

a possibility due to ligand binding not being tolerated within the crystal environment 

(Collins et al., 2018; Davies & Tickle, 2012). X-ray crystallography has the overarching 
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advantage to being able to see ligand binding interactions, allowing structure-based 

drug design as an outcome from FBDD (Anderson, 2003). This has led to dedicated 

facilities at 3rd generation light sources, such as the XChem facility at Diamond Light 

Source, employing machine-assisted crystal harvesting, automated X-ray diffraction 

data collection and streamlined data processing (Collins et al., 2018). The XChem suite 

is the first of its kind to enable such an experiment, generating thousands of protein-

fragment complexes for academic and industrial collaborators alike, making the 

technique accessible to the non-expert user (Delbart et al., 2018; Harding et al., 2017; 

Keedy et al., 2018; McIntyre et al., 2017). 

 

However, FBDD is a technique typically performed at cryogenic temperatures at 

synchrotrons, introducing the risk of hiding structural ensembles in protein crystals 

by eliminating the packing defects needed for the modelling of functional motions 

(Fraser et al., 2011). Although the only current approach to avoid structure-altering 

radiation damage at room temperature is SFX, an advantage when accurately 

determining the active site of a protein-ligand complex, ligand binding studies at 

XFELs have received little attention. A limited number of studies have sought to 

address the challenge of obtaining damage-free room temperature crystal structures 

of protein-ligand complexes in a manner that is both time and sample efficient. Bublitz 

et al. examined the feasibility of SFX for structure determination of ligand complexes 

of P-type ATPase in membrane proteins at LCLS; although the resolution limits of SFX 

data were slightly lower than those collected at synchrotron sources (3 Å vs 2.5 Å, due 

potentially to microcrystal optimisation being on an experimentally shorter time 

scale), the identification of ligands and their binding sites could still be accomplished. 
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Further, even at low redundancy of 4.2 (outer shell) due to the difficulty in obtaining 

large volumes of membrane protein microcrystals, combined with a poor outer shell 

metrics such as an Rsplit of 538, CC1/2 of 0.03, and signal to noise ratio (!/#(!)) of 0.39, 

the identification of ligands could still be demonstrated (Bublitz et al., 2015). More 

recently, Naitow et al. demonstrated effective SSX protein-ligand complex solution at 

SACLA, using both oil- and water-based crystal carriers to present crystal samples 

successfully to the beam, solving the structure of apo and ligand bound thermolysin 

at 2.1 Å and 2.0 Å, respectively (Naitow et al., 2017). Both Bublitz et al. and Naitow et 

al. suffer from high sample consumption however, with respective crystal slurries 

depleted at rates of 13-30 µl min -1 and 0.48 µl min -1, with the former utilising multiple 

10 minute data collections to form datasets (data collection time not reported in the 

publication from Naitow et al., 2017) (Bublitz et al., 2015; Naitow et al., 2017).  

 

Regrettably, high throughput ligand screening at XFELs has suffered as a consequence 

of high sample consumption typically used in an SFX experiment. Sample delivery 

techniques such as jetting are also not well suited to fast sample changes necessary 

for ligand binding experiments. Furthermore, XFEL beamtime is scarce, with fewer 

than 10 operational XFELs (typically with less than 4 beamlines per facility) available 

out of 50 light sources that are operational or under construction (as of February 

2020). As mentioned in previous chapters, fixed target methods aim to combat this 

by using low volumes of crystal suspension on a solid support. This technique also 

permits fast data collections, with SSX data collected in a short amount of time (< 15 

min) from single chip loaded with < 200 µl of crystal slurry enough to produce highly 

redundant datasets (see chapter 4 sections 3, 4). Limiting SSX crystal consumption on 
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chips has been explored previously by using acoustic waves to dispense crystals onto 

chips, known as acoustic drop ejection (ADE): Davy et al., 2019 compared the 

conventional pipette chip loading method presented in this thesis with chips loaded 

using ADE with a commercially available PolyPico pico-litre dispenser 

(http://www.polypico.com); it was possible to demonstrate an overall reduction in 

sample consumption coupled with an increase in diffraction hits per unit volume of 

dispensed crystal slurry (fig. 7.1a). Further, it was shown that crystals do not assume 

a preferred orientation with either loading method, with data collected from multiple 

protein crystal samples (fig. 7.1b) (Davy et al., 2019). 

 

In this chapter, a time and sample efficient data collection and processing method is 

demonstrated. This provides an effective method of reducing the volume of 

diffraction data which has been used to explore how much data is truly needed to 

unambiguously identify a bound ligand in XFEL data. Moreover, it is possible to 

demonstrate unambiguous ligand discrimination from low redundancy crystal 

datasets using widely available automated ligand-finding methods. This is compared 

to SSX data subject to an identical method of data processing, in order to establish 

the potential difference between necessary data volumes of stills data for ligand 

identification at both XFELs and synchrotrons. 
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Figure 7.1. Effects of reducing sample consumption on diffraction hits and crystal 

orientation using acoustic drop ejection  

(a.) ADE using a PolyPico results in a greater than fivefold increase in diffraction hits per unit 

volume of crystal slurry consumed at all concentrations for lysozyme crystals (HEWL). A tenfold 

increase in diffraction hits per unit volume is evident in AcNiR. (b.) Stereographic projections 

illustrating the crystal orientation of 1000 randomly selected crystals for each loading method 
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and crystal type: (i) pipette-loaded AcNiR, (ii) PolyPico-loaded AcNiR, (iii) pipette-loaded HEWL 

and (iv) PolyPico-loaded HEWL. The beam direction (z) is shown as the central ‘+’ in each plot, 

with each spot representing the relative direction of the 001 hkl of each crystal. 12 o’clock on 

the circular projection represents a 90° rotation of the crystal around the x axis, whereas the 

point at 3 o’clock represents a 90° rotation around y. Despite the randomness of the spots 

indicating no preferred orientation is evident for the majority of the data used for the 

projection, indication of systematic orientation in pipette loaded HEWL (iii) is evident, though 

is likely to depend on sample density on chip, crystal size and morphology (reproduced with 

permission from Davy et al., 2019). 
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7.2 Methods 

7.2.1. Protein expression, purification, and crystallisation 

Recombinant AcNiR was expressed and purified as described in detail in section 3.1.1. 

Batch microcrystals were prepared as mentioned in section 4.2.1. Microcrystals at a 

concentration of 3.7 x 106 crystals ml-1 and sized between 5-15 µm were used for both 

SFX and SSX experimentation. Microcrystal batches at a volume of 150 µl were soaked 

in 100 mM sodium nitrite for approximately 20 minutes prior to loading on the chip. 

 

7.2.2. Serial data collection 

7.2.2.1. Sample loading 

Data collected for this chapter utilised the fixed target ‘chip’ method used in chapters 

4 and 5, and is described in detail in chapter 3. AcNiR microcrystals were loaded onto 

silicon chips at both the Spring-8 Ångstrom Free-Electron Laser (SACLA) and Diamond 

Light Source (DLS) using an identical method as explained in detail in section 3.2.2. 

 

7.2.2.2. SACLA beamline instrumentation and parameters 

Sample stages for the movement of chips through the X-ray beam were mounted on 

beamline BL2 EH3 at SACLA as described previously in detail in chapter 3.4. SFX data 

were measured at SACLA beamline BL2/EH3 with a photon energy of 10.0 keV, repeat 

rate 30 Hz and pulse length 10 fs. The beam, of 1.25 x 1.34 µm size and pulse energy 

of 289 µJ pulse-1 was attenuated to 13% of full flux to minimise detector overloads. 

The crystal loaded chip was translated between X-ray pulses so that each aperture 

was exposed only once, with the translation between apertures occurring in the 30ms 

delay between the 30 Hz XFEL pulses, ensuring the chip was stationary whilst the 
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diffraction image was recorded. Measurement from all 25,600 positions on a chip was 

achieved in ~14 minutes. As with previous data collections, the stages and SACLA 

MPCCD detector (Yabashi, Tanaka, & Ishikawa, 2015) was sealed within a helium 

environment in order to minimise air scatter (see chapter 3.4.3.2), assisting in 

removing as much background as possible from diffraction images.  

 

7.2.2.3. DLS beamline instrumentation, methods, and parameters 

Data collected on beamline I24 at Diamond light source for this experiment used a 

beamsize of 8 x 8 µm (FWHM). All data were collected at 12.8 keV using a PILATUS3 

6M detector with a crystal-to-detector distance of 310 mm. Beam flux was 3 x 1012 

photons s-1, measured immediately prior to the experiments using a silicon PIN diode 

(Owen et al., 2009), and attenuated tenfold for the described data collections (3 x 1011 

photons s-1). The diffraction weighted dose absorbed by each crystal was estimated 

using RADDOSE-3D (Paithankar & Garman, 2010). 

 

7.2.2.4. Data processing, structure solution, and refinement 

Initial hit finding for data measured during the SACLA experiment was carried out at 

the beamline using CHEETAH (Barty et al., 2014), with CrystFEL (White et al., 2012) 

utilised for peak-finding, integration, resolution of indexing ambiguity, and merging 

thereafter. SSX data collected at Diamond was also processed in the same way using 

CrystFEL in this chapter. This is in contrast to previous chapters in order to allow 

consistency between SSX and SFX data processing methods. Native and ligand bound 

structure data were assessed using typical data quality metrics such as CC1/2 and Rsplit 

in order to define appropriate resolution limit cut-offs for merging of structures. 
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Refinement was performed using the PHENIX suite (Liebschner et al., 2019), with all 

structures validated using Molprobity (Chen et al., 2010), the JCSG QCcheck server 

(https://smb.slac.stanford.edu/jcsg/QC/) and tools within PHENIX and COOT (Emsley, 

Lohkamp, Scott, & Cowtan, 2010; Emsley & Cowtan, 2004). 

 

7.2.3. Generating data subsets 

In order to explore the minimum number of images needed to determine nitrite 

ligand binding accurately in SFX and SSX AcNiR data, randomly selected images from 

the indexed data file (*.out in CrystFEL) were used to form further datasets with 

varied, defined numbers of images. The script sacla_counter_paper.py (written 

by Martin Appleby, see appendices 7.5.1) was used to generate subsets of SFX data 

from the *.out file using the following command line input; 

 

$ python sacla_counter_paper.py -i chipname.out -o 10000.out -n 

10000 

 

where -i defines the input *.out file from which subsets are generated, -o defines 

the output file, and -n defines the number of images chosen to produce the subset. 

These subsets were scaled and merged in the same manner as the datasets containing 

all images. Subsets were subsequently used in refinement versus the AcNiR model 

determined using all data, from which the ligand had been removed. process_hkl 

was used for merging these data within CrystFEL using the following command line 

input; 
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$ module load CrystFEL 

$ process_hkl -y m-3 --push-res=1.6 --scale -i 10000.out -

o{out}1 -j 20 

 

The output file from merging was then converted to an mtz file using create-mtz in 

CrystFEL (see chapter 3.5.4). Rfree column and F’s were added using truncate in 

the CCP4i suite. Omit maps were generated using torsion based simulated-annealing 

refinement in phenix.refine in order to minimise model bias. As a final validation 

step, selected subsets were refined against the structure of native AcNiR (H2O bound 

to the active site in place of nitrite), using the same procedure described above. As an 

additional validation step, selected subsets were refined against the structure of the 

native enzymes (where the ligands were not present) using the procedure described 

above.  

 

7.2.4. Ligand modelling 

The NO2
- ligand was initially modelled into the all-image datasets based on the mFo-

DFc difference electron density maps, performed using the ‘find ligands’ tool 

inbuilt in the COOT software. Ligand restraints were produced using ACEDRG (Long et 

al., 2017). In order to avoid model bias within data subsets, these data were refined 

by two parallel approaches; firstly, the data were refined against the ‘all images’ 

structures from which the ligands had been removed, using simulated annealing (SA) 

in phenix.refine. As a secondary test that bias was not present, selected structures 

were refined against the native AcNiR structures where the NO2
- ligand was not 

present, replaced by a single water molecule in the active site. SA omit difference 

maps were then generated. As the position of the ligand is known in the ‘all-images’ 
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models, these were then compared to the difference density map generated from 

specific subsets, in order to examine the difference in electron density between the 

all-data models and subset models. In all cases, when using COOT the ligand was 

loaded and the find ligands feature, searching the Fo-Fc simulated annealing omit 

map for suitable hits. 
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7.3. Results  

7.3.1. SFX data collection and processing 

Data were collected from 4 chips for the resting state structure, and 2 chips for the 

nitrite bound structure (table 7.1). Initial estimation of hit rate using CHEETAH gave 

approximate hit rates seen in table 7.1, with diffraction to higher than 2 Å on initial 

viewing of HDF5 files (fig. 7.2). Indexing and integration were handled by indexamajig 

in CrystFEL, using a detector geometry refined for this beamtime, and unit cell 

parameters that were defined using a room temperature data collection at I24 prior 

to SFX data collection (see chapter 3). The bash script index.sh was used for indexing 

and integration of SFX data (chapter 3.5), and run against the SACLA hdf5 file for each 

individual chip to produce a *chip_name*.out file. Chips were initially processed 

individually, with the resulting *chip_name*.out files combined using the command: 

 

$ cat berlin.out canton.out quetta.out rimini.out > BCQR.out  

 

$ cat kansas.out urasoe.out > KU.out  

 

A total of 82918 frames were integrated for the complete native AcNiR dataset 

(BCQR.out) and 41024 frames for the complete ligand bound dataset (KU.out). This 

was used to define accurate SFX unit cell parameters using the cell_explorer 

program within CrystFEL, which generated a unit cell distribution plot for AcNiR that 

allows Gaussian function to be fit in order to define mean unit cell values. Unlike in 

chapter 6, the entirety of the data were used to define unit cell parameters due to the   
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Run number Sample Chip name Approximate 

hit rate (%) 

Exposure 

events 

23368 AcNiR Berlin 50 25700 

23369 AcNiR Canton 60 25700 

23412 AcNiR + NO2
- Kansas 60 25700 

23432 AcNiR Quetta 70 25700 

23436 AcNiR + NO2
- Urasoe 80 25700 

23464 AcNiR Rimini 80 25700 

 

Table 7.1. Chips used to collect AcNiR SFX data with initial approximate hit rate 

measured by CHEETAH (Barty et al., 2014). 
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Figure 7.2. AcNiR SFX diffraction  

Example image of AcNiR microcrystal diffraction pattern from Berlin dataset (run number 

23368), produced using hdfsee in the CrystFEL suite. Reflections were seen to greater 

than 2 Å resolution. 
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prevalence of polymorphic unit cell of AcNiR microcrystals. As in chapter 3, a 

polymorphic unit cell population is evident for both native and ligand-bound samples 

(fig. 7.3), with data again found to be in space group P213. Only a single unit cell 

variant was used for structures in order to prevent ambiguous electron density 

around the active site. The large cell variant was used for AcNiR + NO2
- datasets as 

there was more data available, with the large cell variant selected for native data in 

order to keep unit cell variation to a minimum. Updated unit cell dimensions of a = b 

= c = 97.6 Å, and a = β = g = 90° were used for the ligand bound large unit cell data, 

with unit cell dimensions of a = b = c = 97.7 Å, and a = β = g = 90° used for the native 

large unit cell data. The unit cell was set using specific AcNiR.cell files for the 

indexamajig program (chapter 3.5.3). Unit cell tolerance was limited, defined in the 

input syntax under:  

 

$ --tolerance=1,1,1,1.5  

 

over-riding the default tolerances for reciprocal space axis length and reciprocal space 

angles of 5 and 1.5 percent, respectively.  
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Figure 7.3. SFX native and ligand bound AcNiR unit cell distributions 

The cell_explorer program in the CrystFEL suite indicates a polymorphic unit cell is present within the crystal populations for native and 

ligand bound AcNiR crystals. The distribution in unit cell length is ~1 Å for both native and NO2
- data prior to splitting of unit cell population. The 

respective large unit cell parameters used for AcNiR native and AcNiR NO2
- were a = b = c = 97.7 Å, a = β = g = 90.00°, and a = b = c = 97.6 Å, a = β = g 

= 90.00°. 
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The detector_shift script (chapter 3.5.3) was used in order to check and optimise 

the detector position, using the command: 

 

$ ./detector-shift BCQR.out 23368-1.geom 

 

$ ./detector-shift KU.out 23412-1.geom 

 

This provided an updated geometry file named 23368-1-predrefine.geom for native 

AcNiR and 23412-1-predrefine.geom for NO2- bound AcNiR, as well as a scatter 

plots detailing the X, Y detector shifts (equivalent to the required beam shift) for each 

pattern in each respective dataset (fig.7.4). The indexamajig step was repeated for 

both native and ligand bound AcNiR, producing files called BCQR_all.out and 

KU_AcNiR_large.out. It was possible to integrate a total of 83028 frames for the 

native AcNiR dataset, and 16586 frames for the ligand bound AcNiR large cell dataset. 
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Figure 7.4. Detector shift plot. 

Plot generated by the program detector-shift indicating the distribution of measurements for 

every AcNiR crystal. 
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In order to correct for indexing ambiguity in the space group P213, the CrystFEL 

program Ambigator was run against both *.out files using the indexing ambiguity 

operator k, h, -l, and the bash script ambig.sh (see section 3.5.3). These data were 

subsequently merged in CrystFEL using process_hkl, using the bash script 

merge.sh (see section 3.5.4). Merged output files BCQR_large.hkl and 

KU_large.hkl (all merged reflections) were produced, alongside BCQR_large.hkl1, 

KU_large.hkl1, and BCQR_large.hkl2, KU_large.hkl2 (half-datasets for the 

generation of data quality statistics, using the script stat.sh [see section 3.5.4]). 

Dataset completeness was inspected within the shells.dat output file from stat.sh; 

this was used alongside CC1/2 and Rsplit statistics to estimate at what particular 

resolution limit these data should be merged. Based on this these data were cut at 

1.9 Å for the ligand bound structure, and 1.80 Å for the native structure (table 7.2). 

This resolution limit was added to the merge.sh script, and run again against each 

*.out file, allowing the production of all data mtz files for both structures using the 

create-mtz CrystFEL executable. As in chapters 4, 5, and 6 molecular replacement 

was performed using PhaserMR within the PHENIX crystallography suite. Refinement 

was performed using PHENIX.refine, with a final Rwork and Rfree of 14.3 % and 16.3 % 

for the resting state structure and 13.9 % and 17.4 % for the ligand bound structure, 

respectively (table 7.2). 
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 SFX AcNiR + NO2
- SFX Native AcNiR 

Data Collection 

Cumulative dose (kGy) N/A N/A 

Chips used 2 4 

Images collected 51200 102400 

Number of images used 16586 25119 

Data processing 

Space Group P213 P213 

Cell dimensions (Å, °) a = b = c = 97.6, a = β = g = 90° a = b = c = 97.7, a = β = g = 90 

Resolution (Å) 43.7-1.90 (1.93-1.90) 43.69-1.80 (1.83-1.80) 

Rsplit (%) 9.73 (0.59) 8.2 (75.18) 

CC1/2 0.99 (0.63) 0.99 (0.56) 

Multiplicity 3281.4 (2299.1) 3764.72 (1806.7) 

Completeness (%) 100 (100) 100 (100) 

Refinement 

Number of reflections 24729 29106 

Rwork/Rfree (%) 13.9/17.4 14.3/16.3 

RMSD bond lengths (Å) 0.007 0.006 

RMSD bond angles (°) 0.9 0.887 

Ramachandran plot 

Most favoured (%) 98.8 98.49 

Allowed (%) 1.1 1.5 

PDB accession code 6QWG N/A 

 

Table 7.2. Native and NO2- bound AcNiR SFX structure data collection, processing, and 

refinement statistics. 
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7.3.2. SSX data collection and processing 

Chips were loaded as specified in chapter 3. A single 20 ms exposure was measured 

at each aperture of the chip. A single chip loaded with 100 mM NO2- soaked AcNiR 

crystal slurry was used to collect the dataset, with the total dataset comprising 25600 

images and collected in less than 15 minutes. Diffraction was measured to > 1.6 Å 

toward the corners of the detector (fig. 7.5). Indexing and integration of cbf files was 

handled by indexamajig in CrystFEL (rather than DIALS as used for SSX data in 

chapters 4 and 5) in order to minimise differences between SSX and SFX data 

processing. A geometry file for the PILATUS3 6M was created by Dr. Danny Axford 

from beamline I24 at Diamond Light Source, refined for specifically for this beamtime 

and detector position (appendices 7.5.1). As before a *.out file was produced for 

using the script index.sh (chapter 3.5.3). Again, a unit cell polymorph was evident, 

so data were restricted to a single unit cell that had the greatest number of integrated 

stills available, in this case the small cell variant of AcNiR (fig. 7.6).  

 

Indexing and integration were repeated with an updated cell, restricted to a = b = c = 

96.4 Å, and a = β = g = 90° (space group P213). AcNiR_SSX.out was produced using a 

total of 10386 patterns for a 1.7 Å small cell dataset (~41% hit rate). These data were 

merged in CrystFEL using process_hkl, using the bash script merge.sh (chapter 

3.5.4). Merged output files containing all merged reflections AcNiR_SSX.hkl were 

produced alongside half datasets AcNiR_SSX.hkl1 and AcNiR_SSX.hkl2, for the 

generation of data quality statistics using the script stat.sh. Data were cut at 1.7 Å due 

to the presence of silicon diffraction spots at ~1.69 Å. These are typically masked in 

the processing of SSX data using dials.stills_process, however this was not possi-  
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Figure 7.5. AcNiR + NO2- SSX diffraction 

Clear diffraction can be seen past 2 Å, together with the presence of extremely intense silicon 

spots at ~1.69 Å. 
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Figure 7.6. SSX ligand bound AcNiR unit cell distribution 

The cell_explorer program in the CrystFEL suite indicates a polymorphic unit cell is 

again present within the crystal populations for native AcNiR crystals. The distribution in unit 

cell length is ~1 Å prior to splitting of unit cell population. The unit cell parameters used for 

AcNiR + NO2
- processing were a = b = c = 96.4 Å, a = β = g = 90.00°. 
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ble in CrystFEL (see discussion). stat.sh was again used to assess data quality, using 

the shells.dat output file from stat.sh alongside CC1/2 and Rsplit statistics (table 7.3). A 

resolution limit of 1.7 Å was added to the merge.sh script, and run again against each 

*.out file, allowing the production of all data mtz files for both structures using the 

create-mtz CrystFEL executable. As in previous chapters 4 and 5 molecular 

replacement was performed using PhaserMR within the PHENIX crystallography suite. 

Refinement was performed using PHENIX.refine, with a final Rwork and Rfree of 14.1 

% and 17.5 % for the ligand bound SSX structure (table 7.3). 

 

7.3.3. SFX and SSX structures of ligand bound complexes 

The SFX structure of AcNiR in complex with nitrite was determined to 1.90 Å 

resolution, while the native structure was determined to 1.80 Å. Both structures share 

the same overall fold of alpha helices and beta sheets, shown in figure 7.7a in its 

homotrimeric biological assembly. The position of the ligand-binding site within the 

protein fold of the biological assembly is shown in figure 7.7b. The ligand binding site 

(the type 2 Cu site) displays clear electron density for a bound nitrite molecule in the 

ligand soaked AcNiR crystal structure (fig. 7.7c). A bidentate O-binding geometry is 

apparent as previously described in multiple publications depicting AcNiR structures 

at ambient temperatures (Meyder et al., 2017; Horrell et al., 2016; Horrell et al., 2019) 

and in chapter 4. The native SFX structure exhibits a similar conformation of key 

residues Asp98, His100, His135, and His306 around the T2Cu as the nitrite bound SFX 

structure; however, where nitrite is typically bound in NO2- soaked crystals, native 

AcNiR the has a water bound (fig. 7.7d). 
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SSX AcNiR + NO2
- 

Data Collection 

Cumulative dose (kGy) 11 

Chips used 1 

Images collected 25600 

Number of images used 10386 

Data processing 

Space Group P213 

Cell dimensions (Å, °) a = b = c = 96.4, a = β = g = 90 

Resolution (Å) 34.08-1.70 (1.73-1.70) 

Rsplit (%) 9.66 (41.8) 

CC1/2 0.99 (0.78) 

Multiplicity 876.95 

Completeness (%) 100 (100) 

Refinement 

Number of reflections 33109 

Rwork/Rfree (%) 14.1/17.5 

RMSD bond lengths (Å) 0.006 

RMSD bond angles (°) 0.908 

Ramachandran plot 

Most favoured (%) 98.49 

Allowed (%) 1.5 

 

Table 7.3. AcNiR + NO2- SSX structure data collection, processing, and refinement 

statistics. 
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Figure 7.7. Overall fold and active site regions of native and nitrite bound SFX 

structures 

(a.) Overall fold of native AcNiR represented as a cartoon, with monomers that form the 

biological assembly individually coloured green, cyan, and magenta. Transparent cartoon 

representing the overall fold of nitrite bound structure is shown from the opposite face of the 

protein in order to more easily distinguish the active site. (b.) 2Fo-Fc representation of the 

active site conformation of native SFX AcNiR shows water bound at the T2Cu, while the (c.) 

active site conformation of NO2
- bound SFX AcNiR shows distinct electron density for bound 

nitrite. Maps contoured at 1s. 
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7.3.4. SFX and SSX data subset generation, merging, and refinement 

To test the lower limits of the number of diffraction patterns that would allow the 

identification of bound ligands in high-throughput chip experiments, the data were 

partitioned into subsets of decreasing size to produce independent merged data sets 

containing progressively fewer diffraction patterns. This was achieved using the script 

sacla_counter_paper.py. by using the following command was used to generate 

subsets: 

$ python sacla_counter_paper.py -i KU_AcNiR_large.out -o 

SFX_10000.out -n 10000  

From the 16586 images in the all data SFX dataset, subsets of 10000, 5000, 2000, 

1000, 800, 600, and 500-100 were produced. Merging of subsets was handled by 

process.hkl, and performed initially on the SFX_10000.out subset using a simple 

bash script merge.sh; 

$ inp=SFX_10000.out 

$ out=SFX_10000.hkl 

$ pg="m-3" 

 

$ module load CrystFEL 

 

$ process_hkl -y $pg --push-res=1.6 --scale --odd-only -i $inp 

-o ${out}1 -j 20 & 

$ process_hkl -y $pg --push-res=1.6 --scale --even-only -i $inp 

-o ${out}2 -j 20 & 

$ process_hkl -y $pg --push-res=1.6 --scale -i $inp -o ${out} -

j 20 & 

wait 
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Merging symmetry m-3 was used in this instance in order to merge Friedel pairs. As 

before these data were split into half datasets (sfx_10000.hkl1; SFX_10000.hkl2) 

when merged in order to assess where resolution limits should be set, using a CC1/2 of 

>0.5 as the cut-off. This was performed for all SFX subsets giving the resolution limits 

found in table 7.4. However, as interpretation of merging statistics including CC1/2 and 

Rsplit were unreliable with the small image datasets, the 1000 image subset resolution 

cut-off of 2.11 Å was used as the resolution limit for all subsets below 1000 images. 

Due to SSX data being cut at 1.7 Å due to the issue with silicon spot diffraction, despite 

SSX diffraction to higher resolutions, all SSX subsets were cut to 1.7 Å. All merged 

subset .hkl files were successfully converted to an mtz using the create-mtz 

CrystFEL executable (appendices 3.7.5), giving a total of 19 subset mtzs used (11 SFX, 

8 SSX). An Rfree column was added and intensities converted to structure factor 

amplitudes using the program truncate in CCP4i.  

 

A no ligand-occupancy simulated-annealing (SA) refinement in PHENIX using the 

settings stated in section 7.2.4 was performed for SFX subsets, using the all data 

structure with NO2- atoms omitted from the initial model was used to generate mFo-

DFc SA omit maps for each subset. Weightings for atomic displacement parameters 

and stereochemistry were determined automatically in refinement, with weightings 

auto-optimised and hydrogens added automatically. Despite exhibiting merging 

statistics that would typically be considered poor (table 7.4), features of positive 

electron density were evident even in the SFX_100.mtz subset, featuring only 98 

merged images (fig. 7.8). The ability of COOT to auto find NO2- at the T2Cu active site 

of AcNiR was used as a metric of the information content of electron density maps  
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SFX AcNiR + NO2- subsets 

Structure All data 10000 5000 2000 1000 800 600 500 400 300 200 100 

Scaling and merging 

Images merged 16586 9988 4993 1997 996 795 597 497 398 298 199 98 

Unique reflections 24729 24001 22575 20649 18162 18161 18160 18160 18160 18160 18159 18101 

Resolution (Å) 43.7-1.90 43.7-1.92 43.7-1.96 43.7-2.02 43.7-2.11 43.7-2.11 39.9-

2.11* 

39.9-

2.11* 

39.9-2.11* 39.9-2.11* 39.9-2.11* 39.9-2.11* 

Outer shell (Å) 1.93-1.90 1.99-1.92 2.03-1.96 2.09-2.02 2.15-2.11 2.15-2.11 2.15-2.11 2.15-2.11 2.15-2.11 2.15-2.11 2.15-2.11 2.15-2.11 

Completeness (%) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 99.6 (99.6) 

Multiplicity 3281.4 

(2299.1) 

2198.4 

(1461.9) 

1009.4 

(713.3) 

391.7 

(276.0) 

181.8 

(128.7) 

136.4 

(96.6) 

95.3 

(67.3) 

77.6 

(54.8) 

61.0 (43.0) 42.7 (30.1) 27.1 (19.2) 13.0 (9.3) 

CC1/2 0.99 (0.63) 0.98 (0.62) 0.97 

(0.56) 

0.92 (0.55) 0.92 (0.59) 0.84 (0.55) 0.82 

(0.45) 

0.81 

(0.48) 

0.77 (0.40) 0.71 (0.40) 0.61 (0.38) 0.4 (0.07) 

Rsplit (%) 9.73 (0.59) 12.1 (62.5) 15.8 

(61.8) 

23.2 (70.1) 30.8 (68.9) 33.4 (73.5) 36.9 

(87.7) 

39.5 

(91.0) 

43.5 

(105.1) 

48.9 

(110.0) 

59.7 

(129.5) 

78.3 

(160.1) 

Refinement 

Resolution range (Å) 43.66-1.90 43.66-1.92 43.66-

1.96 

43.66-2.02 43.66-2.11 43.66-2.11 34.5-2.11 34.5-2.11 34.5-2.11 34.5-2.11 34.5-2.11 34.5-2.11 

Outer shell (Å) 2.00-1.90 1.98-1.92 2.05-1.96 2.13-2.02 2.22-2.11 2 2.22-2.11 2 2.22-2.11 

2 

2.22-2.11 

2 

2.22-2.11 2 2.22-2.11 2 2.22-2.11 2 2.22-2.11 2 

Rwork (%) 13.9 (23.9) 14.7 (26.4) 15.4 

(24.3) 

16.3 (24.2) 17.8 (24.1) 18.4 (24.8) 19.2 

(26.1) 

19.9 

(27.0) 

20.7 (27.3) 22.4 (28.3) 24.3 (29.1) 28.6 (32.8) 

Rfree (%) 17.4 (32.0) 18.7 (32) 19.0 

(28.2) 

20.7 (25.9) 23.3 (28.1) 23.3 (27.4) 25.1 

(29.8) 

25.5 

(31.5) 

26.5 (33.4) 28.3 (32.8) 30.2 (33.8) 35.1 (40.0) 

RMSD bond (Å) 0.007 0.009 0.004 0.005 0.005 0.004 0.004 0.004 0.005 0.004 0.006 0.006 

RMSD angle (°) 0.9 0.93 0.76 0.79 0.81 0.77 0.77 0.8 0.8 0.76 0.81 0.84 

Ramachandran favoured 

(%) 

98.8 98.8 98.8 99.8 98.5 98.5 98.8 97.9 97.6 97.6 97.9 95.8 

Table 7.4. AcNiR + NO2- SFX subset structure processing and refinement statistics.
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Figure 7.8. Fo-Fc simulated annealing omit maps from selected data subsets of the SFX 

AcNiR-nitrite structure.  

The type 2 Cu active site region coordinates are shown from the SFX all data structure, where 

the nitrite ligand occupancy was 1. Features of positive electron density are present 

throughout the subsets where the NO2
- ligand typically binds. Positive density also seen for the 

100-image subset, despite the find ligands feature in COOT unable to successfully locate 

a ligand at this position in this subset. Maps were contoured at 3s. 
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obtained. The lowest number SFX subset this was achievable with was the 

SFX_200.mtz subset, despite the aforementioned positive density in the 

SFX_100.mtz subset shown in figure 7.8. Merging and refinement statistics for all SFX 

structures can be found in table 7.4. 

 

The same SA omit refinement was repeated in PHENIX against the SSX subsets. 

Features of positive electron density were evident again in the smallest subset 

SSX_100.mtz, with 98 images merged. In contrast to the SFX data it was possible to 

successfully auto find NO2
- at the active site using find ligands in the SSX_300.mtz 

subset (merging and refinement statistics for all SSX structures can be found in table 

7.5). Again, despite exhibiting merging statistics that would typically be considered 

extremely poor, very clear Fo-Fc simulated annealing omit map features for the ligand 

were evident in subsets of small numbers of diffraction patterns. COOT successfully 

located NO2
- binding at the type 2 Cu active site in subsets of very few crystals. 

Although noisy, positive electron density is again evident in the lowest number 

datasets (fig. 7.9), despite COOT find ligands unsuccessful attempt at determining 

nitrite in subsets 200 and 100. 
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SSX AcNiR + NO2
- subsets 

Structure All data 10000 5000 1000 500 400 300 200 100 

Scaling and merging 

Images merged 10386 9998 4999 999 499 399 298 198 99 

Unique reflections 33109 33109 33109 33109 33108 33108 33106 33088 32291 

Resolution (Å) 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 

Outer shell (Å) 1.73-1.70 1.73-1.70 1.73-1.70 1.73-1.70 1.73-1.70 1.73-1.70 1.73-1.70 1.73-1.70 1.73-1.70 

Completeness (%) 100 (100) 100 (100) 100 (100) 100 (100) 100 (99.9) 100 (99.9) 100 (99.9) 99.9 (99.8) 97.5 (93.4) 

Multiplicity 876.95 841.62 400.21 81.18 (50.4) 46.02 (28.8) 37.02 (23.5) 28.37 (18.1) 16.41 (10.6) 7.43 (4.8) 

CC1/2 0.99 (0.78) 0.98 (0.78) 0.97 (0.70) 0.85 (0.33) 0.75 (0.23) 0.71 (0.19) 0.61 (0.16) 0.51 (0.10) 0.31 (0.16) 

Rsplit (%) 9.66 (41.80) 9.83 (42.59) 14.07 (51.90) 32.73 (106.98) 45.96 (144.30) 51.69 (160.13) 59.50 (170.14) 73.63 (184.31) 97.63 (206.9) 

Refinement 

Resolution range (Å) 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 34.08-1.70 

Outer shell (Å) 1.75-1.70 1.75-1.70 1.75-1.70 1.75-1.70 1.75-1.70 1.75-1.70 1.75-1.70 1.75-1.70 1.75-1.70 

Rwork (%) 14.14 (20.62) 13.33 (18.52) 14.06 (19.24) 18.25 (27.96) 21.44 (30.89) 22.51 (31.84) 23.89 (32.21) 29.94 (33.47) 33.62 (34.52) 

Rfree (%) 17.51 (27.24) 15.74 (22.27) 16.98 (22.85) 21.23 (28.34) 25.34 (33.89) 26.45 (36.80) 28.16 (36.92) 34.79 (35.00) 38.15 (39.35) 

RMSD bond (Å) 0.006 0.012 0.012 0.012 0.014 0.013 0.013 0.017 0.018 

RMSD angle (°) 0.908 1.168 1.307 1.239 1.253 1.307 1.203 1.760 1.659 

Ramachandran favoured (%) 98.49 98.19 97.89 98.19 98.19 97.58 98.19 92.45 96.37 

 

Table 7.5. AcNiR + NO2
- SSX subset structure processing and refinement statistics. 
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Figure 7.9. Fo-Fc simulated annealing omit maps from selected data subsets of the SSX AcNiR-nitrite structure.  

The type 2 Cu active site region coordinates are shown from the SFX all data structure consisting of 10386 images, where the nitrite ligand occupancy 

was 1. Features of positive electron density are present throughout the subsets where the NO2
- ligand typically binds, though almost entirely absent 

in the 100-image subset. Maps were contoured at 3s. 
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In order to validate the electron density in SFX ligand bound structures, selected SFX 

subsets were refined against the corresponding native structures obtained by SFX 

where NO2- was not present in sample preparation. The validity of this data processing 

approach is scrutinised when using AcNiR-nitrite complex as the test sample, due to 

NO2- being such a small ligand at only 3 atoms. This particular case is especially 

challenging as NO2- displaces the water found bound at the active site in native AcNiR, 

which is seen in the native AcNiR SFX structure presented in results section 7.3.3 

(Antonyuk et al., 2005; Kekilli et al., 2014), with the presence of a second water 

molecule also a possibility (chapter 4, section 3). Refinement of AcNiR SFX data and 

subsets versus the native AcNiR SFX structure with water bound at the T2Cu produced 

clear positive difference map features at the type 2 copper centre, where nitrite is 

typically bound in either a top-hat or side-on conformation (fig. 7.10). This was 

repeated with the bound T2Cu water completely removed, again indicating positive 

electron density that is indicative of a molecule that is large that a single bound water 

atom (fig. 7.11).  
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Figure 7.10. Fo-Fc data subset omit maps from SFX AcNiR NO2
- structures versus SFX 

native AcNiR with the T2Cu bound water molecule included in the model. 

The structures from omit refinement are shown in grey, with the superimposed all-data 

structure of the AcNiR-nitrite complex shown in blue. Positive features of electron density are 

present despite water bound to the T2Cu in the native AcNiR SFX structure, indicating an NO2
- 

ligand is present rather than a bound water. 
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Figure 7.11. Fo-Fc data subset omit map from SFX AcNiR NO2
- structures versus SFX 

native AcNiR with the T2Cu bound water removed. 

The structures from omit refinement are shown in grey, with the superimposed all-data 

structure of the AcNiR-nitrite complex shown in blue. Clear and distinct features of electron 

density are present in the maps. Fo-Fc electron density maps become especially noisy at 200 

and fewer images with positive electron density covering the T2Cu as well as part of the 

binding area of NO2
-. The 100-image dataset shows positive electron density at the binding 

site, however with the presence of negative electron density in the same vicinity, it is difficult 

to confidently distinguish this as a bound ligand rather than noise.  
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7.4. Discussion  

By using a fixed target method at XFELs, our results indicate that it is possible to 

achieve high-quality SFX crystal structures that allow unambiguous ligand 

identification. Furthermore, this is possible using extremely small quantities of 

protein microcrystals compared to typical jetting methods (Schlichting, 2015). As well 

as this, with the high throughput nature of using silicon chips allowing a rapid 

switchover between individual samples, it was possible to collect all of the SFX data 

needed for this experiment in around 90 minutes of an allotted 36 hours of SACLA 

beamtime, with < 15 minutes needed to collect data from each of the 6 chips. When 

concerning SSX beamtime, the extremely high redundancy dataset used in this 

experiment was collected in only 15 mins of beamtime at DLS. Although all diffraction 

data used in this experiment were measured in a combined time of < 2 hours, it was 

still possible to confidently model ligands in all data structures as well as in subsets 

unambiguously. The subset data presented in this chapter clearly demonstrate that 

only a fraction of diffraction images collected within a total 36-hour XFEL experiment 

is necessary to confidently locate ligands, demonstrated by the automated location 

of NO2- in the 200 image SFX SA omit map. This 200-image subset is only ~1.2% of the 

total number of images in the full 16586 data set, sufficient to appropriately model 

NO2- whilst ensuring the possibility of model bias is prohibited. In this, it should be 

possible to optimise allotted XFEL beamtime to screen ligands, with data collected 

from a single chip at a 50% hit rate (12800 integrated diffraction patterns) more than 

enough to assess ligand binding, opening opportunities for FBDD experiments at 

XFELs.  
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The overall completeness of AcNiR SFX datasets stays at 100% all the way to the 200-

image subset, and 99.9% in the 100-image subset (table 7.4, figure 7.12a), with outer 

shell completeness of 100% and 99.6%, respectively. SSX data presented similar 

statistics, though 100% overall completeness started to decrease after the 400-image 

subset, to 99.9% in subsets 300 and 200, and 100-image subsets at 97.5% (table 7.5, 

figure 7.12b). Data presented in this chapter strongly suggests that completeness of 

serial datasets is a key metric for assessing the suitability of merged ligand bound 

datasets for further investigation. Metrics of data quality such as CC1/2 and Rsplit are 

extremely poor for SFX and SSX subsets, yet successful ligand characterization is 

possible provided that the data are complete. For AcNiR, with cubic symmetry, the 

data remained essentially complete in all of the subset sizes analysed, with density 

for the nitrite ligand remaining apparent down to <200 indexed images in SFX datasets 

and <400 indexed images in SSX datasets.  
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Figure 7.12. data quality metrics as a function of the number of merged crystals in 

data subsets for SFX and SSX data 

(a.) SFX CC1/2, Rsplit, and completeness data plotted against number of diffraction patterns. (b.) 

SSX CC1/2, Rsplit, and completeness data plotted against number of diffraction patterns. In both 

plots it is possible to see that despite the drop off of CC1/2 and Rsplit metrics, completeness stays 

at 100% for nearly all subsets. 
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Despite NO2- being such a small ligand, crystallisation in P213, a high symmetry space 

group, results in less data being needed for a complete dataset due to the high 

redundancy of data collected (table 7.4, 7.5). The bandwidth of the XFEL beam allows 

complete data to be obtained from fewer crystals than the monochromatic beam 

available at Diamond; typical bandwidths of XFEL pulses are ΔE/E ≈ 2 × 10-3, compared 

to ΔE/E ≈ 10-4 at monochromatic synchrotron beamlines, about 1/20th of the 

bandwidth of XFEL pulses. This effectively allows small degree wedges of diffraction 

to be collected from XFEL pulses compared to monochromatic synchrotron 

diffraction. Though typical XFEL serial experiments utilise tens to hundreds of 

thousands of microcrystals (Schlichting, 2015) the high completeness of small data 

sets parallels the success in forming complete data sets from multiple thin wedges in 

virus crystallography. Fry et al., 1999, show the completeness of the final data set is a 

function of the number of wedges collected and the point group of the crystals used 

(table 7.6) (Fry, Grimes, & Stuart, 1999). In this, it possible to collect almost complete 

(98.6%) data in the point group 23 with only 36° of data, with nearly twice as much 

data needed in point group 2 (fig. 7.13).  
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Completeness (%) 

Point group Number of images (oscillation range) 

5 (2°) 10 (4°) 20 (8°) 40 (16°) 60 (24°) 90 (36°) 

1 2.2 4.4 8.5 16.3 23.4 33 

2 4.3 8.4 16.2 29.4 40.8 54.4 

222 8.2 15.7 29 48.9 63.5 77.8 

4 8.4 16.1 29.6 50.3 64.9 79.2 

422 15.1 28 48.4 72.6 85.5 94.2 

23 22.7 40.2 64 86.2 94.6 98.6 

432 37.6 60.9 83.8 96.8 99.2 99.8 

3 6.5 12.6 23.5 41.3 54.8 69.5 

321 12.3 22.8 40.5 63.5 77.8 89.4 

6 12.5 23.1 41 64.7 78.9 90.2 

622 22.4 39.1 62.6 84.6 93.5 98.1 

 

Table 7.6. Data from randomly oriented images of different point group virus crystals  

The table contains data from Fry et al., 1999, and displays percentage completeness to 3 Å 

resolution, for unique subset for each point group. Data were merged, duplicates removed, 

and the percentage completeness calculated. It is possible to see from this that almost 

complete data can be produced from 30° of crystal oscillation, equating to 90 images at an 

oscillation range of 0.4° (Fry et al., 1999). 
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Figure 7.13. Plot of point group 2, 23, and 222 completeness data from randomly 

oriented images (Fry et al., 1999). 

Plot of data from table 7.6 collected by Fry et al., 1999 shows the rotation range necessary to 

collect complete data in point groups 2, 23, and 222, in degrees. Almost double the amount of 

data is needed to collect complete data in point group 2 compare to point group 23. The point 

groups chosen for this plot correspond to AcNiR (23) and DtpAa (2; chapter 5, 6). 
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For small subsets, or numbers of serial diffraction images to provide complete data 

crystals must be randomly orientated when presented to the X-ray beam, in order to 

fully sample the complete reciprocal lattice. By using ViewHKL in the CCP4i software 

package (Krissinel & Evans, 2012) it is possible to make a comparison between hk0 

intensity-weighted reciprocal lattices of SSX and SFX subsets 400-100. By running the 

mtzs from these subsets though ViewHKL it can be seen that although intensities 

become more sparse as the number of images is reduced, notably toward the edge of 

the plot as a function of resolution, the symmetry remains the same within SSX 

subsets and SFX subsets (fig. 7.14). If crystals were to assume a preferred orientation 

plots would not be symmetrical, as the same areas of the reciprocal lattice would be 

repeatedly sampled leading to groupings of intensities in random sections of the plot 

(Axford et al., 2014). 
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Figure 7.14. Reciprocal lattice plots for the smallest SFX and SSX subsets. 

hk0 intensity-weighted reciprocal lattices of SSX and SFX subsets 400-100 indicate preferred 

orientation of crystals is not apparent in the lowest crystal subsets, shown via symmetrical 

HK0 indices throughout the plots. Preferred orientation would lead to highly-intense non-

symmetrical regions within the plots as a result of repeated collection from the same 

reciprocal lattice points. Indices can be seen to become less abundant as the datasets are cut 

to fewer images. The green border in SFX plots represents the resolution limit of 2.11 Å, while 

the same green border in SSX plots depicts the 1.7 Å resolution limit. Indices become less 

frequent at higher resolution as a function of dataset size more noticeably in SFX data. Images 

were generated by ViewHKL (CCP4; Krissinel & Evans, 2012). 
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Importantly, this method is adaptable to both synchrotron and XFEL beamtime, 

meaning ligand binding experiments such as those explained in this chapter can be 

performed at synchrotrons as a test- or proof-of-theory experiment. These results can 

then go on to support applications for XFEL experimental beamtime, which can be 

difficult to obtain but is advantageous due to the absence of secondary radiation 

damage effects at room temperature. Difficulties arose in this experiment however 

when processing cbf files produced at Diamond in CrystFEL, a program that is 

predominantly designed to handle hdf5 files. SSX data that could have been indexed 

and merged to a higher resolution, shown in CC1/2 and Rsplit statistics presented in 

table 7.5 remaining favourable despite no resolution cut being applied. This was not 

the case in the merging of SFX subsets, with resolution cuts having to be applied (2.11 

Å in SFX subset 1000; 1.70 Å in SFX subset 1000). This was due to the current inability 

of CrystFEL to mask the highly intense silicon diffraction spots located in each 

diffraction pattern at ~1.69 Å (fig. 7.5), leading to fluctuations in merging statistics 

throughout resolution bins indicating that data in both high- and low-resolution shells 

were unreliable (appendices 7.5.3). A repeat of this study using DIALS would therefore 

be interesting as a comparison, allowing insight into the role resolution has in 

confidently auto-finding ligands in low numbers of diffraction patterns.  

 

More broadly, our data clearly show that substantial information content is present 

in noisy and apparently low-quality data sets derived from small numbers of merged 

diffraction patterns with very poor merging and refinement statistics. Importantly, 

refinement of data subsets against native structures unambiguously showed clear 

density for ligands, providing definite evidence that positive electron density 
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described is not owing to model bias from prior knowledge of the binding mode. An 

interesting follow-up experiment would be using PolyPico ADE technology to load 

chips, as discussed in Davy et al., 2019. This could allow specified numbers of crystals 

to be loaded directly onto chips, further decreasing the volume of crystal slurry 

needed for an XFEL experiment. Despite the extremely low numbers of crystals used 

to confidently find ligands in SFX and SSX subsets, SFX and monochromatic SSX still 

require many more crystals than might be required in a wide-bandpass Laue 

experiment, where datasets can be produced from ~50 crystals using polychromatic 

Laue radiation (Meents et al., 2017). An attractive experiment would therefore be 

repeating the experiment performed in this chapter using Laue radiation. In doing this 

it would be possible to discover how few crystals are needed to identify bound ligands 

in data from light sources that provide much wider comparative bandpasses to XFELs 

and Diamond beamline I24. 

  



 291 

7.5. Appendices  

7.5.1. SACLA counter script 

import re 
import subprocess 
import sys 
import argparse 
 
def print_flush(string): 
    sys.stdout.write('\r%s' % string) 
    sys.stdout.flush() 
 
def file_len(fname): 
    p=subprocess.Popen(['wc', '-l', fname], stdout=subprocess.PIPE, 
stderr=subprocess.PIPE) 
    result,err = p.communicate() 
    if p.returncode: 
       raise IOError(err) 
    return int(result.strip().split()[0]) 
 
def argparser(argv=None): 
    parser = argparse.ArgumentParser(description = 'Unit Cell Counter\n\ 
                                  Creates .dat file contianing the name/path and 
cctbx data of\ 
                                  each int file in a set of directories.\n\ 
                                  EXAMPLE\n ./unit_cell_counter.py 
dir=/dls/i24/data/2017/nt14493-63/ \ 
      p_name=CuNIR chip_name=waylinCD proctype=auto\n 
') 
    parser.add_argument("-i","--input_file", type=str, required=True, 
                     help="input file e.g. /dls/x02-1/data/2017/mx15722-
8/processing/acnir/ali/BCQR/BCQR_reindexed.out", default=None) 
    parser.add_argument("-o","--output_file", type=str, 
                     help="output file e.g. /dls/x02-1/data/2017/mx15722-
8/processing/acnir/ali/BCQR/BCQR_reindexed.out", default='subset.out') 
    parser.add_argument("-n","--number_of_crystals", type=int, 
      help="number of crystals in subset", default=1000) 
    parser.add_argument("-s","--splitter_size", type=int, 
      help="number of crystals in subset", default=1000) 
    parser.add_argument("-sf","--splitter_flag", type=bool, default=False, 
      help="split dataset into subsets of a set size") 
    parser.add_argument("-c","--counter", type=bool, 
                        help="count number of crystals in file", default=False) 
    parser.add_argument("-v", "--verbosity", type=int, choices=[0, 1, 2], 
                     help="increase output verbosity") 
    args = parser.parse_args() 
    return args 
 
#----- Begin geometry file ----- 
geometry_file_start=re.compile(r'-----\s*Begin\s*geometry\s*file\s*-----') 
geometry_file_end=re.compile(r'-----\s*End\s*geometry\s*file\s*-----') 
unit_cell_start=re.compile(r'-----\s*Begin\s*unit\s*cell -----') 
unit_cell_end=re.compile(r'-----\s*End\s*unit\s*cell -----') 
crystal_start=re.compile(r'---\s*Begin\s*crystal') 
crystal_end=re.compile(r'---\s*End\s*crystal') 
p= re.compile(r'Cell 
parameters\s*(\d+\.\d+)\s*(\d+\.\d+)\s*(\d+\.\d+)\s*nm,\s*(\d+\.\d+)\s*(\d+\.\d+)\s*(\
d+\.\d+)\s*deg') 
 
def check_line(line, out_list, counter):  
    cryst_search = crystal_end.search(line) 
    if cryst_search: 
        counter +=1 
    out_list.append(line) 
    return out_list, counter 
 
def crystal_counter(args): 
    input_file_name=args.input_file 
    out_list = [] 
    counter = 0 
    with open(input_file_name, 'r') as input_file: 
        print('seraching for crystals') 
        for line in input_file: 
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            out_list, counter = check_line(line, out_list, counter) 
            s = 'number of crystals = %04d' % (counter) 
            print_flush(s) 
    print('number_of_crystals = %04d'%counter)  
 
 
def file_writer(out_list,output_file_name, meta_list=None): 
    print('outputting data') 
    with open(output_file_name, 'w') as out_file: 
        if meta_list: 
           for item in meta_list: 
               out_file.write("%s" % item) 
        for item in out_list: 
           out_file.write("%s" % item) 
 
def dataset_splitter(args): 
 
    number_of_crystals = args.number_of_crystals 
    subset_size = args.splitter_size 
    input_file_name=args.input_file 
    output_file_name=args.output_file 
    counter = 0 
    out_list = [] 
    meta_list = [] 
    i=0  
    with open(input_file_name, 'r') as input_file: 
        print('searching for crystals') 
        for line in input_file: 
            line_check = line 
            meta_list.append(line) 
            end = unit_cell_end.search(line_check) 
            if end: 
               break 
        for line in input_file: 
            out_list, counter = check_line(line, out_list, counter) 
            s = '%04d:%04d %02d%%  ' % (i+counter, number_of_crystals, 
100*float(i+counter)/number_of_crystals) 
            print_flush(s) 
            if  counter == subset_size: 
               file_name=str(i)+'-'+str(i+counter)+output_file_name 
               file_writer(out_list, file_name, meta_list=meta_list) 
               i +=counter 
               if i == number_of_crystals: 
                  break 
               counter = 0 
               out_list = [] 
     
def main(args): 
    number_of_crystals = args.number_of_crystals 
    input_file_name=args.input_file 
    output_file_name=args.output_file 
    counter = 0 
    out_list = [] 
     
    with open(input_file_name, 'r') as input_file: 
        print('seraching for crystals') 
        for line in input_file: 
            out_list, counter = check_line(line, out_list, counter) 
            s = '%04d:%04d %02d%%  ' % (counter, number_of_crystals, 
100*float(counter)/number_of_crystals) 
            print_flush(s) 
            if counter == number_of_crystals: 
               break            
     
    print('outputting data') 
    with open(output_file_name, 'w') as out_file: 
        for item in out_list: 
           out_file.write("%s" % item) 
 
if __name__ == '__main__': 
   args=argparser() 
   if args.counter: 
      crystal_counter(args) 
   elif args.splitter_flag: 
      dataset_splitter(args) 
   else: 
       main(args) 
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7.5.2. Pilatus detector geometry 

photon_energy = 12800 
adu_per_eV = 0.0001 
clen = 0.310 
coffset = -0.000640  
res = 5814.0  ; 172 micron pixel size 
 
0/min_fs = 0 
0/max_fs = 2462 
0/min_ss = 0 
0/max_ss = 2526 
0/corner_x = -1256.22 
0/corner_y = -1318.18 
0/fs = x 
0/ss = y 
 
bad_beamstop/min_x = -50 
bad_beamstop/max_x = 50 
bad_beamstop/min_y = -50 
bad_beamstop/max_y = 50 
 
bad_v1/min_fs = 487 
bad_v1/max_fs = 493 
bad_v1/min_ss = 0 
bad_v1/max_ss = 2526 
 
bad_v2/min_fs = 981 
bad_v2/max_fs = 987 
bad_v2/min_ss = 0 
bad_v2/max_ss = 2526 
 
bad_v3/min_fs = 1475 
bad_v3/max_fs = 1481 
bad_v3/min_ss = 0 
bad_v3/max_ss = 2526 
 
bad_v4/min_fs = 1969 
bad_v4/max_fs = 1975 
bad_v4/min_ss = 0 
bad_v4/max_ss = 2526 
 
bad_h1/min_ss = 195 
bad_h1/max_ss = 211 
bad_h1/min_fs = 0 
bad_h1/max_fs = 2462 
 
bad_h2/min_ss = 407 
bad_h2/max_ss = 423 
bad_h2/min_fs = 0 
bad_h2/max_fs = 2462 
 
bad_h3/min_ss = 619 
bad_h3/max_ss = 635 
bad_h3/min_fs = 0 
bad_h3/max_fs = 2462 
 
bad_h4/min_ss = 831 
bad_h4/max_ss = 847 
bad_h4/min_fs = 0 
bad_h4/max_fs = 2462 
 
bad_h5/min_ss = 1043 
bad_h5/max_ss = 1059  
bad_h5/min_fs = 0 
bad_h5/max_fs = 2462 
 
bad_h6/min_ss = 1255 
bad_h6/max_ss = 1271  
bad_h6/min_fs = 0 
bad_h6/max_fs = 2462 
 
bad_h7/min_ss = 1467 
bad_h7/max_ss = 1483  
bad_h7/min_fs = 0 
bad_h7/max_fs = 2462 
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bad_h8/min_ss = 1679 
bad_h8/max_ss = 1695  
bad_h8/min_fs = 0 
bad_h8/max_fs = 2462 
 
bad_h9/min_ss = 1891 
bad_h9/max_ss = 1907  
bad_h9/min_fs = 0 
bad_h9/max_fs = 2462 
 
bad_ha/min_ss = 2103 
bad_ha/max_ss = 2119  
bad_ha/min_fs = 0 
bad_ha/max_fs = 2462 
 
bad_hb/min_ss = 2315 
bad_hb/max_ss = 2331  
bad_hb/min_fs = 0 
bad_hb/max_fs = 2462 
 

7.5.3. SSX silicon spot statistics 

  1/d centre       CC       nref      d / A   Min 1/nm    Max 1/nm 
     1.375  0.9618779       2548       7.27      0.293       2.457 
     2.776  0.9613766       2452       3.60      2.457       3.095 
     3.319  0.9628433       2433       3.01      3.095       3.543 
     3.721  0.9573324       2398       2.69      3.543       3.899 
     4.050  0.9514235       2422       2.47      3.899       4.200 
     4.332  0.9547936       2398       2.31      4.200       4.463 
     4.581  0.9478593       2393       2.18      4.463       4.698 
     4.805  0.9353092       2372       2.08      4.698       4.912 
     5.011  0.9289672       2404       2.00      4.912       5.109 
     5.200  0.9244878       2386       1.92      5.109       5.291 
     5.377  0.8971831       2399       1.86      5.291       5.462 
     5.543  0.8476797       2383       1.80      5.462       5.623 
     5.699  0.8106871       2392       1.75      5.623       5.775 
     5.847  0.7918163       2362       1.71      5.775       5.919 
     5.988  0.4943828       2380       1.67      5.919       6.057 
     6.123 -0.0094089       2358       1.63      6.057       6.189 
     6.252  0.5424889       2396       1.60      6.189       6.315 
     6.376  0.4233668       2370       1.57      6.315       6.437 
     6.495  0.3339694       2386       1.54      6.437       6.554 
     6.610  0.2322363       2349       1.51      6.554       6.667 
 
  1/d centre Rsplit/%       nref      d / A   Min 1/nm    Max 1/nm 
     1.375       9.85       2548       7.27      0.293       2.457 
     2.776       9.71       2452       3.60      2.457       3.095 
     3.319      10.08       2433       3.01      3.095       3.543 
     3.721      10.75       2398       2.69      3.543       3.899 
     4.050      11.34       2422       2.47      3.899       4.200 
     4.332      11.32       2398       2.31      4.200       4.463 
     4.581      12.29       2393       2.18      4.463       4.698 
     4.805      13.73       2372       2.08      4.698       4.912 
     5.011      14.54       2404       2.00      4.912       5.109 
     5.200      16.06       2386       1.92      5.109       5.291 
     5.377      18.65       2399       1.86      5.291       5.462 
     5.543      22.67       2383       1.80      5.462       5.623 
     5.699      26.98       2392       1.75      5.623       5.775 
     5.847      30.33       2362       1.71      5.775       5.919 
     5.988      51.08       2380       1.67      5.919       6.057 
     6.123    1895.53       2358       1.63      6.057       6.189 
     6.252      58.63       2396       1.60      6.189       6.315 
     6.376      64.16       2370       1.57      6.315       6.437 
     6.495      73.93       2386       1.54      6.437       6.554 
     6.610      97.58       2349       1.51      6.554       6.667 

Fluctuations in CC1/2 and Rsplit statistics can be seen in shells 1.67 and 1.63 Å due to 

the highly intense silicon diffraction spots. These could not be masked therefore data 

were cut at 1.7 Å.  
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Chapter 8: Closing remarks 

In this thesis, we have demonstrated the capability of SSX and SFX methods to obtain 

room-temperature dose-dependent structures using microcrystals, in a time and 

sample efficient manner. The measurement of room-temperature data is of high 

value due to these structures presenting more accurate structural conformations to 

what would be expected in a biological context. In this we have been able to develop 

and publish a new data collection method using chips, coined multiple serial 

structures (MSS). MSS has allowed us to explore how our target proteins AcNiR and 

DtpAa behave under accumulated X-ray irradiation, by taking snapshots of the 

structure at dose intervals. Interestingly, in chapter 4, although it the catalytic cycle 

of AcNiR was the original focus of the experiment, we were able to show how MSS 

can be used to identify polymorphic unit cells of batch grown microcrystals. The data 

processing methods explored in this thesis permitted the separation of polymorphic 

crystal populations; we were able to show an improvement in data quality, indicated 

by an improvement in crystallographic data metrics. This is in contrast to single crystal 

methods, where polymorphs may only be visible in weak electron density and/or dual 

conformations. 

 

As shown in chapter 5, a major advantage of the chip data collection method is that 

it can be used at either synchrotrons or XFELs, allowing near identical experimental 

conditions where the only difference is the X-ray source. In this, we have shown that 

by comparing the MSS technique to data collected from chips at the SACLA XFEL in 

Japan, MSS can be used to extract functionally relevant features of damage free SFX 
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structures. The scarcity of XFEL beamtime means using MSS may be used as 

estimation in lieu of XFEL beamtime, with the potential for using high value results to 

enhance XFEL experimental beamtime applications. 

 

The diversity of experiments that become available when using chips and an MSS 

method can also be shown in this thesis. In chapter 6 a new technique coined ‘dark 

progression series’ (DPS) allowed us to interrogate questions raised at the end of 

chapter 5, namely whether the elongation of the Fe-O bond in monomer A of DtpAa 

extends as a function of accumulated dose, time, or both. By developing the DPS 

method, we were able to demonstrate that at long enough time intervals this bond 

length ‘recovers’ to a distance seen in low dose DtpAa structures, indicating that the 

elongation is dose dependent, and previously unexplored in peroxidases. The further 

development of this technique is of high interest, as by shortening the time intervals 

between DPS structures we would be able to discover at what point the bond length 

no longer recovers. By coupling this with online UV-vis microspectrophotometry we 

hope to relate what we see in our DPS data collections to peroxidase active site 

chemistry.  

 

A major advantage of these serial methods is the high redundancy of crystallographic 

data. A high redundancy is prerequisite in serial crystallography, as in order to gain 

high quality crystallographic data metrics, many diffraction patterns are needed due 

to the partiality of still data. Despite this, we have been able to show in chapter 7 that 

only a fraction of the data collected in a chip experiment at synchrotrons and XFELs is 

sufficient for unambiguous ligand identification. This demonstrates the feasibility of 
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high-throughput structure determination of protein-ligand complexes at XFELs, and 

sets up an exciting future for XFEL based research into fragment-based drug design. 

 

Although chapters 4, 5, and 6 establish new and exciting techniques, there are many 

caveats that apply when measuring bond distances and/or determining catalytic 

intermediate structures using (serial) crystallography, meaning care and attention 

must be paid during data collection, processing, refinement, and interpretation. For 

example, bond length may be influenced by the experimenters chosen refinement 

strategy, such as using simulated annealing refinement only versus a typical 

maximum-likelihood refinement, or whether specific atoms have been restrained 

during the refinement process. Further, the number of serial diffraction images used 

can also influence the interpretation of electron density; as redundancy decreases 

and accumulated dose increases throughout an MSS series, electron density maps 

increase in noise and present statistics that are more favourable towards poorer 

resolution shells (see section 5.3.3, discussed in section 5.4). Incorporating methods 

that accurately measure bond length such as EXAFS and XANES would be very 

beneficial to assess the accuracy of the data presented in this thesis. Further, 

investigating how bond lengths are interpreted when different refinement strategies 

are applied would be extremely beneficial to the field, and could potentially be 

developed using the data presented in this thesis. 

 

In summary, we have shown that chip techniques involving microcrystals are 

extremely versatile, and the utilisation of serial crystallography methods are pushing 

the boundaries of macromolecular crystallography. The techniques demonstrated in 
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this thesis make a valuable addition to the crystallographer’s toolbox, with the future 

of macromolecular crystallography extremely bright. 
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The ability to determine high-quality, artefact-free structures is a challenge in
micro-crystallography, and the rapid onset of radiation damage and requirement
for a high-brilliance X-ray beam mean that a multi-crystal approach is essential.
However, the combination of crystal-to-crystal variation and X-ray-induced
changes can make the formation of a final complete data set challenging; this is
particularly true in the case of metalloproteins, where X-ray-induced changes
occur rapidly and at the active site. An approach is described that allows the
resolution, separation and structure determination of crystal polymorphs, and
the tracking of radiation damage in microcrystals. Within the microcrystal
population of copper nitrite reductase, two polymorphs with different unit-cell
sizes were successfully separated to determine two independent structures, and
an X-ray-driven change between these polymorphs was followed. This was
achieved through the determination of multiple serial structures from
microcrystals using a high-throughput high-speed fixed-target approach coupled
with robust data processing.

1. Introduction

X-ray crystallography using synchrotron radiation is at the
core of structural biology, providing atomic-level insight into
key biological processes. However, it has long been recognized
that the X-rays that are used to determine structures also
cause changes to the crystal lattice and protein structure, a
phenomenon known as radiation damage. Polymorphism and
non-isomorphism of crystals have been a challenge in protein
crystallography since the earliest days of the field, with an
early example of non-isomorphism being the separation of
lysozyme into type I and type II in the 1960s (described in
detail in Blake et al., 2012) to allow the structure determina-
tion of (type II) lysozyme. The rise of cryo-crystallography in
the 1990s (reviewed by Garman, 1999) made single-crystal
structure determination routine, but the use of more intense
X-ray beams, and the desire to determine structures from ever
smaller crystals, has made multi-crystal structure determina-
tion the norm once more.

Polymorphism can be present even between crystals
harvested from the same crystallization drop, with variations
in unit-cell parameters or even space group being observed.
These differences may be owing to some external process such
as heavy-atom derivatization, dehydration or cryocooling,
where the resulting, unwanted, changes in cell dimensions can
cause structure determination to fail (Crick & Magdoff, 1956).
Differences can also arise from structural variation, where
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small changes in loops (Yogavel et al., 2010) or conformational
flexibility (Redinbo et al., 1999) can result in significant
changes in cell dimensions and space group. Non-isomorphism
can also take more subtle forms deriving from, for example,
weakly bound ligands, only becoming apparent in electron-
density maps following careful cross-comparison of many data
sets (Pearce et al., 2017). In the case of multi-crystal and serial
micro-crystallography data-set formation, however, larger
scale differences are often used as the basis for the formation
of a final data set through brute-force merging or a more
refined approach such as hierarchical cluster analysis (Foadi
et al., 2013; Santoni et al., 2017). Alternatively, statistical
approaches such as the use of a genetic algorithm to optimize
data-quality metrics such as the R value or hI/!(I)i can also be
used to obtain a single high-quality data set from many crys-
tals (Zander et al., 2016), although in the future this could also
be used to identify and separate non-isomorphous groups.

Radiation damage results from energy deposited in crystals
by X-rays and is manifested in two ways. Firstly, global
radiation damage results in changes to the unit cell, increased
disorder and a loss of diffracting power and consequently
resolution [for comprehensive reviews of radiation damage
in macromolecular crystallography, see Holton (2009) and
Garman (2010)]. Secondly, site-specific radiation damage,
which is most commonly observed in the form of disulfide
reduction, the decarboxylation of side chains, and the reduc-
tion of metals and other redox centres. These changes occur
on different dose scales and are temperature-dependent.
Cryocooled (100 K) crystals are considered to no longer give
useful diffraction beyond absorbed doses of 30 MGy (the
Garman limit; Owen et al., 2006). Despite the protection that
cryocooling confers, site-specific changes occur at significantly
lower doses than this, with the reduction of redox centres
occurring at doses as low as 10 kGy in some cases (Kekilli et
al., 2017), some 3000 times lower than the Garman limit, a
dose that can be achieved in a few milliseconds at modern
synchrotron beamlines (Owen & Sherrell, 2016).

The vast majority of protein structures have been deter-
mined at 100 K in order to mitigate the global effects of
radiation damage. The use of low temperatures, and an ‘as low
a dose as practicable per data set’ strategy, mitigates damage
and allows experiments such as multiple structures from one
crystal (MSOX) to be performed in which electron-driven
catalysis outruns electron-driven damage processes (Horrell
et al., 2016). At elevated temperatures both ‘normal’ data
collection and experiments such as MSOX become consider-
ably more challenging as the rates of damage increase.

The drawback of increased rates of damage must be
weighed against the benefits that data collection at higher
temperatures provides: decreased viscosity and increased
thermal motion that allow more functionally relevant changes
to be observed. Protein dynamics and reactivity are consid-
erable within the crystal lattice, but are partly suppressed in
the highly viscous, glassy solvent environment of crystals
cooled to 100 K. Increases in mosaicity from cooling may be
avoided by working at a temperature close to that at which the
protein was crystallized. Increased reactivity within crystals,

additional conformations of side chains and differences in
ligand binding are observed when working at room tempera-
ture (RT; Fraser et al., 2011; Fischer et al., 2015), and there is a
considerable incentive to determine structures at ‘close to
physiological’ temperatures. RT structures may also be more
directly relatable to solution kinetics experiments.

In terms of radiation damage, variable-temperature
experiments have shown that most of the dose-lifetime
extension gained at 100 K remains present at temperatures
as high as 200 K (Warkentin et al., 2012, 2013). Elevated-
temperature crystallography remains a considerable chal-
lenge, however, particularly for small weakly diffracting
crystals, which require a tightly focused intense beam. Despite
these experimental challenges, MSOX series have been
successfully determined at 190 K (where much of the advan-
tage for crystal lifetime of data collection at 100 K is main-
tained but dynamic freedom is increased) and at RT using
macrocrystals (Horrell et al., 2018), revealing the considerable
benefit of working at higher temperatures in that more of the
reaction may be observed in the lifetime of the crystal owing
to the higher dynamic freedom of the crystalline enzyme.

Here, we describe the development of a modified MSOX
approach applied to microcrystals at RT. This approach is no
longer multiple structures from one crystal, but multiple serial
structures from many crystals (MSS). In order to effectively
produce MSS series from microcrystals there are significant
technical and methodological challenges to overcome:
approaches for serial crystallography at synchrotron and
XFELs provide a way forward.

Serial synchrotron crystallography (SSX) is an emerging
area allowing structure determination by recording single
images from many thousands of crystals (Diederichs & Wang,
2017). Typically, the data obtained are merged to provide a
single structure. A number of sample-delivery methods to
realize SSX have been developed, but a particular advantage
of fixed-target approaches is that they can be readily modified
to facilitate the determination of multiple structures.

MSS experiments require the ability to record data from a
large number of crystals at a large number of dose points. The
dose is controlled either by varying the beam intensity or the
time that the crystal spends in the beam, and should be as
similar as possible for all of the crystals studied, for example
by matching aperture and crystal sizes and using a sample in
which the microcrystals are relatively homogeneous in size
and morphology. Other relevant factors include accurate and
consistent stage movement and exposure timing. In order to
follow a reaction, a number of well spaced dose points are
required. In this work, we have examined the feasibility of
measuring multiple data sets in close succession from micro-
crystals using fixed-target SSX. Using this approach, tens of
dose-dependent data sets may be obtained highly efficiently,
with each microcrystal exposed for a total of only a few
hundred milliseconds.

We describe the approach with a detailed case study of MSS
experiments on microcrystals of copper nitrite reductase from
Achromobacter cycloclastes (AcNiR). The nature of the data
gained and the global and site-specific radiation-induced
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changes to the structure are presented. We also describe a
practical approach to separating polymorphs within a popu-
lation of microcrystals and obtaining separate structures of
each form, leading to two separate MSS series collected from a
single batch of crystals.

2. Materials and methods

2.1. Crystallization and crystal loading to fixed targets

Recombinant AcNiR was expressed and purified as
described previously (Horrell et al., 2016). Batch microcrystals
were prepared by rapidly mixing 20 mg ml" 1 AcNiR in 20 mM
Tris pH 7.5 with a solution consisting of 2.5 M ammonium
sulfate, 0.1 M sodium citrate pH 4.5 buffer in a ratio of 1:3 and
mixing by vortexing for 60 s. Microcrystals with a diameter of
5–15 mm grew at room temperature over a period of 4–6 d.
Microcrystal suspensions were centrifuged at 800 rev min" 1

for 30 s to sediment the crystals; the crystallization buffer was
then removed and replaced with a storage buffer consisting of
1.6 M ammonium sulfate, 0.1 M sodium citrate pH 4.5. Crys-
tals were soaked in a solution of mother liquor supplemented
with 100 mM sodium nitrite for a duration of 20 min prior to
loading onto the chip. Serial dilutions were achieved by adding
additional storage-buffer solution.

Silicon nitride fixed targets or ‘chips’ of a new design, but
based on those described previously (Mueller et al., 2015;
Oghbaey et al., 2016), were used for the experiments described
here. These chips follow the funnel-like design of previous

chips but utilize a new higher capacity layout while retaining
approximately the same dimensions (30 # 30 mm). Each chip
comprises 8 # 8 individual ‘city blocks’, with each city block
containing 20 # 20 apertures; the nominal capacity of each
chip is therefore 25 600 (Fig. 1). The apertures are funnel-
shaped, with the smaller end being 7 # 7 mm and the larger
end being 85 # 85 mm.

Chips were prepared by glow-discharge cleaning in a similar
manner to the cleaning of cryo-EM grids. Glow discharging
improved the dispersion of the crystal slurry on the chip
surface, reducing the volume of crystal slurry required to load
a chip, and also resulted in improved drawing of liquid through
the chip apertures. Chips were loaded within a humidity-
control enclosure (Solo Containment, Cheshire, England).
Typically, 100–200 ml of a microcrystal suspension was pipetted
onto the surface of the chip, after which gentle suction was
applied from below to draw microcrystals into the individual
wells. The chip was then sealed between two layers of 6 mm
thick Mylar in the sample holder before transfer to the
beamline (Fig. 1).

2.2. Moving chips/instrumentation and beamline parameters

Instrumentation for the movement of chips through the
X-ray beam was mounted on beamline I24 at Diamond Light
Source as described previously (Owen et al., 2017). An X-ray
beam size of 8 # 8 mm (full width at half maximum; FWHM)
was used. All data were measured at 12.8 keV using a
PILATUS3 6M detector with a crystal-to-detector distance of
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Figure 1
Schematic of chip-loading procedure. (a) The microcrystal suspension is pipetted onto the surface of the glow-discharged chip, with excess liquid being
removed by the application of suction to the opposite surface. (b) Placing chips into the holder: a thin film of Mylar held in place by O-rings seals the chip
and prevents drying out. (c) Loading of the chip and holder assembly onto the beamline sample stage during sample exchange: a kinematic mount
(magenta) holds the chip in place in a precise and reproducible position, with subsequent alignment carried out using fiducial markings on each chip. The
direction of the X-ray beam is indicated as a red arrow, while a schematic of chip movement is shown in green and red stars indicate positions where the
chip is stationary and data are collected.



310 mm. The beam flux of 3.0 # 1012 photons s" 1 was
measured immediately prior to the experiments using a silicon
PIN diode as described previously (Owen et al., 2009) and was
attenuated tenfold for the data collections described below.
The dose absorbed by each crystal was estimated using
RADDOSE-3D (Zeldin, Gerstel et al., 2013). Note that for
the beam parameters described here, a diffraction-weighted
dose (Zeldin, Brockhauser et al., 2013) of 11 kGy corresponds
to a maximum dose (as reported by older versions of
RADDOSE) of 31 kGy. Data-collection parameters are shown
in Table 1. As with all serial experiments, there will be some
crystal-to-crystal variation in absorbed dose and so the
calculated dose represents an average value. The largest
difference in absorbed dose is likely to arise in crystals which
are only partially exposed to X-rays if, for example, they are

not centred in the apertures of the chips. We sought to mini-
mize the variation in absorbed dose by ensuring that the beam
size and intensity remained unchanged over the duration of
the experiment, matching the beam size and chip aperture,
and using crystals of a single morphology and of similar size.

2.3. Data-collection strategies

Rapid data series were measured from each aperture of a
chip, with up to 20 diffraction images recorded at each position
prior to translation to a fresh aperture. Data from each short
series could then be sorted into dose bins and selectively
merged, allowing dose-dependent structures to be obtained.
This movement and dose-binning strategy is shown schem-
atically in Fig. 2. Typically, an exposure period of 10 ms is used
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Table 1
Data-collection, processing and refinement statistics for selected AcNiR structures used for polymorph separation and dose-series data.

Data were either processed together or binned into small-cell and large-cell subsets prior to scaling and merging. Data were collected from a single chip (25 600
positions) with 20 sequential images each of 20 ms per position. The beam size was 8 # 8 mm, with an incident flux of 3 # 1011 photons s" 1 at a wavelength of
0.9686 Å. The space group for all data was P213. The diffraction-weighted dose per data set was 11 kGy.

Small cell, dose 1 Large cell, dose 1 All data, dose 1 Large cell, dose 15

Cumulative dose (kGy) 11 11 11 165
No. of integrated frames 24976 13932 38908 21836
No. of images used 23467 13481 38798 21569
Cell dimension (Å) 96.38 (0.06) 97.75 (0.05) 96.87 (0.66) 97.99 (0.14)
Resolution (Å) 29.21–1.48

(1.51–1.48)
29.21–1.48

(1.51–1.48)
29.21–1.48

(1.51–1.48)
29.54–1.80

(1.83–1.80)
Rmerge (%) 87.73 (96.34) 85.70 (97.74) 94.45 (97.75) 79.52 (99.55)
Rsplit (%) 5.71 (87.73) 7.43 (81.12) 5.15 (54.54) 5.83 (69.07)
CC1/2 99.60 (72.60) 99.46 (48.66) 99.70 (55.42) 99.85 (50.16)
Mean intensity hIi 72.3 (3.5) 65.7 (2.8) 76.8 (3.2) 28.2 (1.4)
Signal-to-noise ratio I/!(I) 1.75 (0.17) 1.57 (0.12) 1.88 (0.15) 0.72 (0.06)
Multiplicity 548.16 (206.50) 357.91 (137.03) 927.03 (301.80) 978.36 (799.19)
Completeness (%) 100 (100) 100 (100) 100 (100) 100 (100)
No. of reflections 49882 51981 50616 29321
R/Rfree 0.186/0.216 0.205/0.227 0.235/0.276 0.167/0.205
R.m.s.d., bond lengths (Å) 0.013 0.012 0.012 0.006
R.m.s.d., bond angles ($) 1.64 1.62 1.58 0.88
Ramachandran plot

Most favoured (%) 97.3 96.4 97.5 99.4
Allowed (%) 2.7 3.6 2.5 0.6

PDB code 6gb8 6gbb 6gby 6gcg

Figure 2
Schematic of MSS data collection and formation of dose series. At each position of the fixed target, multiple images are measured in shutterless mode
using the PILATUS3 6M. In the example shown here, ten sequential exposures of 10 ms are recorded at each position and the translation time between
positions is 9 ms. Images from each dose series are then grouped together in time (dose) bins, allowing dose-dependent structures to be obtained.



for each image, meaning that a ten-frame series (100 ms X-ray
exposure per crystal) can be recorded from an entire chip
(25 600 positions) in 46 min. The image series at each position
was individually triggered using a Keysight 33500B signal
generator, which in turn was triggered by a DeltaTau
Geobrick LV-IMS-II stage controller when each crystal posi-
tion had been reached. The X-ray shutter remained open for
the duration of data collection and was not closed between
apertures on a chip.

2.4. Data processing, structure solution and refinement

Data took the form of sequentially numbered images in
CBF format. All images were indexed using dials.still_process
in DIALS v.1.8.5 (Winter et al., 2018) with subsequent scaling
and merging performed using prime (Uervirojnangkoorn et al.,
2015). As an example of typical data volumes, throughputs and
hit rates, the set of 20 dose points described below comprised
some 500 000 images collected in less than 3 h. Bragg peaks
were observed on 332 272 images, and 589 403 patterns were
indexed (owing to multi-lattice indexing of up to three
patterns per image). Of the indexed patterns, the percentages
with single, double and triple lattices were 36, 36 and 28%,
respectively.

Data were binned into the different dose points to produce
final MTZ files for each MSS data set. The indexing ambiguity
in space group P213 was resolved by the use of a reference
data set collected from a single AcNiR crystal at 100 K. Owing
to the manner in which serial crystallography data are
collected, ‘traditional’ metrics such as Rmerge which compare
individual measurements do not reflect the quality of the data
set. The quantities Rsplit (White et al., 2016), which compares
separately merged halves of the data, and CC1/2 (Karplus &
Diederichs, 2012), which reports on the precision of merged
measurements, were therefore used to assess the quality and
resolution of each data set (Table 1). Both the mean intensity
hIi and signal-to-noise ratio I/!(I) of each data set are also
quoted; comparatively low values of I/!(I) reflect the chal-
lenge of accurately estimating the error of intensities in
monochromatic serial data.

Structures were refined from a starting model of the room-
temperature AcNiR–nitrite complex, from which water and
ligands had been removed (PDB entry 5i6l; Horrell et al.,
2016), using REFMAC5 (Murshudov et al., 2011) in the CCP4i
interface and/or PHENIX (Adams et al., 2010). Structures
were rebuilt in Coot (Emsley et al., 2010) between rounds of
refinement, and validation was performed using tools within
Coot, MolProbity (Chen et al., 2010), the JCSG Quality Control
Check server (https://smb.slac.stanford.edu/jcsg/QC/) and the
PDB validation server (https://validate-rcsb-1.wwpdb.org).
Side-chain atoms that were not supported by electron density
were deleted from the model. Coordinates and structure
factors were deposited in the RCSB Protein Data Bank with
the accession numbers given in Table 1. Surface areas and
volumes were calculated in the 3V volume assessor (Voss &
Gerstein, 2010).

3. Results and discussion

3.1. Discrimination between AcNiR crystal polymorphs in
the microcrystal population

A total of 20 successive images of 20 ms exposure each were
measured at each aperture position of a chip, providing 20
room-temperature data sets at different dose points. Indexing
of individual diffraction patterns (stills) from the first image
measured from each AcNiR microcrystal revealed a bimodal
distribution of unit-cell parameters (Fig. 3). As a consequence,
images were binned into two groups above and below a mid-
peak cutoff of 97.25 Å, which we henceforth refer to as
AcNiR-big (a = b = c = 97.75 Å) and AcNiR-small (a = b = c =
96.38 Å). Data-processing statistics for each group (for data
set 1) compared with those obtained by merging all patterns
are given in Table 1. Separation of the unit-cell polymorphs
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Figure 3
(a) Two-dimensional histogram showing changes in unit-cell dimension
(a = b = c in space group P213) and population across a chip as a function
of absorbed dose. Populations are the numbers of indexed images in unit-
cell bins of width 0.01 Å. The starting unit-cell dimensions of the
polymorphs are 96.38 and 97.75 Å; these increase to 96.56 and 98.04 Å at
220 kGy. (b) Number of integrated images of each polymorph on the chip
as a function of absorbed dose. Images were selectively integrated into
‘small’ or ‘large’ unit-cell groups (details are given in the text).



led to an improvement in data quality, suggesting that this
analysis step is beneficial over simply merging all data
regardless of unit-cell parameter. Refinement of the structure
arising from each polymorph revealed two different structures,
as shown in Fig. 4. The AcNiR-big and AcNiR-small structures
were superimposable with an r.m.s.d. of 0.16 Å (Supplemen-

tary Fig. S1). While the overall AcNiR-big and AcNiR-small
structures were very similar, significant structural differences
were observed at the N- and C-termini and in the loop
structure around residues 187–193 and 201–205 (Fig. 4a).
Examination of the symmetry-generated AcNiR trimer (the
biological assembly) revealed further differences related to
the unit-cell polymorphs (Fig. 4b), whereby the volume of the
AcNiR-big trimer was 157 399 Å3, an increase of some
1901 Å3 over the AcNiR-small volume of 155 498 Å3. The
corresponding increase in surface area was 659 Å2: from
22 998 Å2 for AcNiR-big to 22 339 Å2 for AcNiR small.
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Figure 5
2Fo " Fc electron-density maps for the AcNiR data set 1 structures
derived from (a) all images, (b) the small unit cell only and (c) the large
unit cell only. The maps are contoured at 0.311 e" Å" 3 (all data),
0.368 e" Å" 3 (AcNiR-small) and 0.348 e" Å" 3 (AcNiR-big). Note the
dual conformations in (a) with occupancies (0.3 and 0.7) consistent with
the proportion of large-cell and small-cell images within data set 1. This
figure was prepared using CCP4mg (McNicholas et al., 2011).

Figure 4
(a) Superposition of the data set 1 structures of AcNiR-big and AcNiR-
small coloured by r.m.s.d. between the structures from low values (blue)
to high values (red). (b) Superposition (using monomers A) of trimers
generated by crystal symmetry for data set 1 of AcNiR-small (orange)
and AcNiR-big (cyan). The view is down the threefold axis. While the
structures of individual monomers are very similar, structural changes
across the trimer are larger and are related to the change in unit-cell
volume. The loop regions (residues 186–193) are shown in dark grey.



Without the polymorph-separation procedure, the single
combined data set produced an electron-density map with
dual conformations representing the two polymorph struc-
tures (Fig. 5). Comparison of these structures with earlier
100 K crystal structures (for example PDB entry 2bw4, where
the unit-cell parameter was 95.41 Å; Antonyuk et al., 2005)
revealed a pattern of changes that affect the crystal contacts
between AcNiR monomers. These structural differences
between the two polymorphs are explored further in x3.3.

The reason why two different polymorphs exist within a
single sample of batch-grown AcNiR microcrystals and the
factors determining the proportion of each that is present
remain unclear. Interestingly, different batch crystallizations
of similar age exhibited different proportions of AcNiR-big
and AcNiR-small (data not shown). To investigate possible
causes of the polymorph distribution, a second chip of AcNiR
microcrystals was used in which different dilutions of the
starting microcrystal stock were applied to different ‘city
blocks’ of the chip. A progressive shift with dilution was
observed, from an almost entirely small-cell population in the
undiluted sample to a predominantly large-cell population at
dilutions greater than 15# (Supplementary Fig. S2). The
mechanism by which dilution influences the cell polymorph
remains unclear. We note that as the dilution was achieved by
the addition of further crystal-storage buffer to the micro-
crystal suspension, there were no changes to the pH or the
precipitant concentration in this process.

3.2. Global radiation damage in MSS data sets

As dose was accumulated at a relatively high dose rate of
1.1 MGy s" 1, evidence of global radiation damage was found
in the form of a rapid decrease in diffracting power (Fig. 6).
An initial plateau region or lag phase is apparent spanning the

first three data sets, corresponding to % 20–35 kGy and 20–
30 ms exposure time. The subsequent fall in diffracting power
follows an exponential decay, with a somewhat faster fall-off
with dose for the AcNiR-small population than the AcNiR-big
population. The half-doses for the two polymorphs were 55
and 75 kGy, respectively (as estimated from Fig. 6). The half-
dose for the large-cell polymorph is larger than that for the
small cell owing to the convolution of the decay in diffracting
power with the radiation-driven polymorph switch (Fig. 3b).

Such an intensity decay can arise from a number of sources.
Firstly, exceeding the count-rate limit of a single photon-
counting detector such as the PILATUS3 could result in a
plateau. Care was taken to ensure that count rates were well
below the maximum of 10 # 106 counts per second per pixel
that PILATUS3 detectors are capable of accurately recording.
In the experiments described here the maximum observed
counts in a Bragg spot was % 8000, corresponding to a count-
rate of 0.4 # 106 counts per second per pixel or 4% of the
maximum count rate. More typical maximum counts in a
Bragg spot were <4000, or less than 2% of the maximum.
Further, as the crystals are not rotated at all during data
collection, count rates are likely to be steady throughout the
duration over which an image is recorded: a key assumption in
any count-rate correction that is made during detector
readout. Secondly, a lag phase can result from the outrunning
of global effects such as beam-induced heating. In an initial
period when site-specific damage dominates, the global decay
in intensity will deviate from an exponential decay (Sygusch &
Allaire, 1988, Owen et al., 2014). Thirdly, as the beam size is
approximately equal to the aperture size, any temporal error
in chip motion and detector triggering would mean that the
diffracting power observed in the first image would be
significantly reduced. Considering the horizontal beam profile,
chip aperture and motion only, 68% of the beam intensity
(beam FWHM 8 mm) falls within the 7 mm chip aperture
assuming that they are perfectly co-centred. If the chip aper-
ture is offset by 1, 2 or 3 mm the intensity incident on the
aperture falls by 3, 11 or 23%, respectively. Thus, small errors
in positioning can result in large differences in the recorded
intensity. While extreme care was taken to tune the stages to
eliminate this as a source of systematic error, it cannot be
discounted. Fourthly, the Gaussian non-tophat profile of the
beam can affect intensity decay. Warkentin and coworkers
examined the effect of beam profile and dose rates on the rates
of global radiation damage at room temperature in thaumatin
and lysozyme crystals, showing that a non-uniform beam
profile can result in a non-exponential dose response. All of
these factors may contribute to the intensity-decay profile
observed (Warkentin et al., 2017).

Individual MSS data sets in the series of 20 showed good-
quality merging statistics to a resolution of 1.48 Å (Table 1),
despite a nominal resolution limit of 1.7 Å imposed by the
crystal-to-detector distance (inscribed circle on the detector
surface). This is owing to the extremely high redundancy
achieved with our high hit-rate chip-based serial data collec-
tion. Note that in the case of small-cell AcNiR, in addition to a
global decrease in diffracting power, the decrease in resolution
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Figure 6
Total diffracting power of crystals as a function of accumulated X-ray
dose. Diffracting power was defined as the total Bragg intensity for each
dose point as reported by prime after integration and scaling over the
resolution range 30–1.48 Å.



is significantly affected by the reduction in population
resulting from X-ray-driven transfer from the small-cell to the
large-cell AcNiR polymorph (Table 1). The resulting decrease
in multiplicity significantly impacts the resolution to which
acceptable merging statistics are obtained.

3.3. Changes to polymorph populations with X-ray dose

Monitoring of the mean cell dimension in each polymorph
together with the population distribution reveals intriguing
changes as X-ray dose is accumulated (Fig. 3). The mean cell
dimension within each population undergoes a small,
progressive increase (Supplementary Fig. S3) consistent with
many previous studies showing unit-cell expansion with dose.
While often observed, unit-cell expansion is generally not
regarded as a reliable metric of radiation damage owing to the
lack of reproducibility of the effect between different crystals
of the same protein (Murray & Garman, 2002). Remarkably,
however, in our MSS data an interchange between the unit-
cell polymorph populations throughout the dose series is also
evident (Fig. 3b). The AcNiR-small population rapidly
decreases, with a concomitant increase in the population of
AcNiR-big. It is apparent from Fig. 3(a) that (i) the switch
from small to large cell for any particular microcrystal yields a
cell that is consistent with the ‘damaged large cell’ of a
particular dose rather than the large cell at dose point 1 and
(ii) the lack of overlap between the two populations implies a
specific structural change between polymorphs. Interestingly,
the increase in unit cell for both polymorphs begins immedi-
ately upon irradiation (Fig. 3, Supplementary Fig. S3), while
the switching of polymorphs is minimal within the first 100 ms
before proceeding rapidly. While not conclusive, this could
suggest that expansion of the small cell acts as a trigger or seed
leading to subsequent polymorph swapping.

As structural differences in the loop region around Asp188
were observed between polymorphs, further comparison was
undertaken to seek to understand the mechanism behind the
switching between populations. Multiple single-crystal struc-
tures are available for resting-state AcNiR, primarily
measured at 100 K but also at elevated cryogenic tempera-
tures (Sen et al., 2017). Superposition of this loop region in
AcNiR structures determined at different temperatures
(Supplementary Fig. S4) reveals a progressive shift in the
position of the loop from 100 K (cell length 95.41 Å) to 240 K
(PDB entry 5n8f; 96.13 Å) and RT (PDB entry 5off; 96.23 Å).
The latter is very similar in structure to the AcNiR-small
polymorph (96.38 Å). A further shift then occurs to the
AcNiR-big polymorph (98.21 Å). While further work is
required to prove a link, the apparent correlation of loop
position with cell length suggests that this loop reorganization
may indeed be related to the switching of polymorphs.

The precise mechanism by which the large unit-cell
expansion from AcNiR-small to AcNiR-big occurs upon
irradiation remains unclear, but insights may be gained from
known site-specific radiation-damage phenomena. Decarbox-
ylation of aspartic acid and glutamic acid residues has been
well characterized (Burmeister, 2000; Holton, 2009; Garman,

2010), and notably the dual conformation of the loop region
contains two such residues: Asp188 and Glu189. To examine
this possible cause of the shift between polymorphs, the
structure of data set 15 with the large-cell polymorph was
examined (Table 1, Supplementary Fig. S5). The electron
density for Asp188 remained clear, with no evidence of site-
specific radiation damage, while Glu189 was disordered at
both dose points 1 and 15, and appears to point towards
solvent rather than being involved in crystal contacts. Indeed,
the loop structures and density are highly similar in data set 1
and data set 15 (Supplementary Fig. S6). Notably, by this point
in the dose series the majority of the images arise from crystals
that began with the small cell and subsequently switched to the
large cell. Other possible explanations for the dose-driven
polymorph exchange are related to changes in hydration or
thermodynamic factors, which could arise from heating of the
microcrystal and surrounding mother liquor in the beam or
from the generation of gases by radiolysis.

4. Conclusions and outlook

We have demonstrated the capability to obtain room-
temperature dose-dependent structures from microcrystals in
silicon nitride fixed-target chips in a highly sample- and time-
efficient manner. This approach is termed multiple serial
structures from many crystals (MSS). An important advantage
of the MSS approach is that each data set/structure within
the dose series may be improved by simply repeating the
measurement on additional chips and increasing the number
of merged stills contributing to each dose point. This is in
contrast to single-crystal experiments, in which improvements
in resolution/redundancy must typically be gained at the cost
of a higher dose per data set. The observed resolution of
1.48 Å is comparable to the resolution of 1.40 Å achieved
using a single large room-temperature crystal at a comparable
dose (Horrell et al., 2018). Through the use of a serial
approach, we were able to obtain serial structures at lower
dose points from significantly smaller crystals using a beam
with a flux density more than an order of magnitude greater.

A further advantage is that polymorphs within a batch
crystal population may be separated based on unit-cell
binning, leading to an improvement in data quality together
with the ability to refine structures of the polymorphs inde-
pendently. This is in contrast to single-crystal experiments,
where polymorphs may only be visible in the form of weak
additional density or dual conformations. In the future, this
approach could be expanded to exploit more complex forms of
grouping data, allowing polymorphs with similar unit cells to
be separated, and to complement computational approaches
for revealing structural heterogeneity in proteins (Lang et al.,
2014).

The ability to obtain dose series in a sample- and time-
efficient manner at room temperature opens the door to the
routine production of MSS movies of redox-enzyme function.
The approach remains straightforward even when only
microcrystals are available. The ability to collect data and
obtain dose series using the same experimental setup as used
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for zero-dose SFX data collection will be particularly powerful
as fine slicing of dose may allow the extrapolation of
progressive X-ray-induced changes back to zero dose, which
could then be verified by comparison with SFX structures
determined under near-identical conditions. The approach is
also well suited to time-resolved applications, as each crystal
could be optically excited upon reaching the beam position
and the changes then tracked over the duration of an image
series. The ability, provided by a fixed-target approach, to
finely control the dose and the time that each crystal spends in
the X-ray beam while recording multiple slices of data is a
valuable addition to the serial crystallographer’s toolbox.
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An approach is demonstrated to obtain, in a sample- and time-efficient manner,
multiple dose-resolved crystal structures from room-temperature protein
microcrystals using identical fixed-target supports at both synchrotrons and
X-ray free-electron lasers (XFELs). This approach allows direct comparison of
dose-resolved serial synchrotron and damage-free XFEL serial femtosecond
crystallography structures of radiation-sensitive proteins. Specifically, serial
synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced
changes occur at far lower doses than those at which diffraction quality is
compromised (the Garman limit), consistent with previous studies on the
reduction of heme proteins by low X-ray doses. In these structures, a
functionally relevant bond length is shown to vary rapidly as a function of
absorbed dose, with all room-temperature synchrotron structures exhibiting
linear deformation of the active site compared with the XFEL structure. It is
demonstrated that extrapolation of dose-dependent synchrotron structures to
zero dose can closely approximate the damage-free XFEL structure. This
approach is widely applicable to any protein where the crystal structure is
altered by the synchrotron X-ray beam and provides a solution to the urgent
requirement to determine intact structures of such proteins in a high-throughput
and accessible manner.

1. Introduction

Enzymology and structural biology are highly dependent on
the accurate three-dimensional models obtained by X-ray
crystallography. Such structures provide insight into function
and can form a basis for understanding how proteins interact
with each other or with small molecules. Fundamentally, the
structure obtained should be representative of the native state
of the protein. However, macromolecular crystallography is
typically carried out at cryogenic temperatures (100 K) to
minimize radiation-damage-induced structural perturbation
(Garman & Weik, 2017; Holton, 2009). There is an increasing
recognition of the importance of determining structures at
ambient or ‘room’ temperature so as to be more representa-
tive of the structures and dynamics adopted by proteins in vivo
at physiological temperature (Keedy et al., 2018, 2015; Fischer
et al., 2015; Weik & Colletier, 2010). A major challenge in
conventional synchrotron-based X-ray crystallography, parti-
cularly at room temperature, is the extremely rapid onset of
radiation damage, i.e. changes to the structure of the protein
caused by the ionizing effects of the X-ray beam (Garman &

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252519003956&domain=pdf&date_stamp=2019-05-03


Weik, 2017; Holton, 2009). The rapidity of site-specific radia-
tion damage means it is present in differing levels of severity in
almost all crystallographic datasets determined using synchro-
tron radiation, even if great care to avoid it is taken during data
collection by minimizing the absorbed dose; the challenge
becomes even greater if only microcrystals are available. When
collecting data from microcrystals, microbeams of increased
brilliance are required for optimal data collection, though the
use of such beams comes with a concomitant increase in the rate
ofX-rayinducedchanges.It iscritical that thesite-specificeffects
of radiolysis are understood in detail and minimized in order to
produce structures that are accurately representative of radia-
tion-sensitive proteins in vivo. We note however that in some
protein crystals that do not contain metals or other redox
centres, radiation damage, while present, may cause little
change to the observed structure.

It is estimated that approximately one-third of all proteins
require a metal ion, with around half of all enzymes utilizing a
metal for catalytic function (Waldron et al., 2009). Heme
enzymes catalyse many essential reactions in biology and
understanding their structures throughout their reaction
cycles is of high interest, prompting extensive efforts made to
obtain ‘intact’ structures at high resolution (Chreifi et al., 2016;
Casadei et al., 2014; Gumiero et al., 2011; Moody & Raven,
2018). A major challenge is to obtain the higher valence states
of these proteins, for example peroxidases (FeIII resting state
and FeIV intermediate states), as these states are phenomen-
ally sensitive to reduction in synchrotron experiments caused
by the presence of large numbers of solvated electrons or
other radiolytically produced species, generated by the inter-
action of X-rays with the crystal (Kekilli et al., 2017; Beitlich et
al., 2007; Denisov et al., 2007). This site-specific damage is
known to occur at doses much lower than those typically
required to collect a dataset (Garman & Weik, 2017; Holton,
2009). Structures of peroxidases and other redox-sensitive
metalloproteins obtained from synchrotron X-ray crystal-
lography, even at 100 K, are therefore likely to represent a
superposition of resting and damaged states. This site-specific
damage is an extremely pressing problem if mechanistic
conclusions are to be drawn from the structures obtained.

In contrast, X-ray free-electron lasers (XFELs) promise
damage and artefact-free crystallography, provided the pulse
duration is short enough (Schlichting, 2015; Nass et al., 2015;
Lomb et al., 2011). For serial femtosecond crystallography
(SFX), data collection from each microcrystal can be
completed before site-specific and global radiation damage
occurs, but at the expense of longer term crystal destruction,
such that a new crystal must be presented to every pulse.
Radiation-induced changes have been detected in SFX data
with pulse durations as short as 40 fs (Nass et al., 2015) or 70 fs
(Lomb et al., 2011). In contrast, data measured with pulse
durations of 10 fs or shorter are considered to be free of
typical radiation-induced site-specific radiation damage
(Halsted et al., 2018; Andersson et al., 2017). Direct compar-
ison of XFEL and synchrotron structures of the same protein
presents many challenges because of differences between
these methods, such as crystal size, mosaicity, temperature,

cryoprotection, crystallization conditions and resolution. The
epitome of this being that almost all XFEL structures are
obtained from tens of thousands of room-temperature
microcrystals while most synchrotron structures are obtained
from a single crystal held at 100 K.

We report a new method based on a highly efficient fixed-
target silicon nitride chip system (Oghbaey et al., 2016; Mueller
et al., 2015). This system allows for data to be measured at
room temperature from microcrystals in the same manner
using synchrotron or XFEL radiation. Our fixed-target
approach enables time- and sample-efficient data collection by
both SFX and serial synchrotron crystallography (SSX), and
simultaneously minimizes any differences in structure by
eliminating the experimental variables outlined above. It is
also well suited to tracking functionally relevant changes in
redox enzymes as X-ray generated solvated electrons drive the
enzyme along the catalytic pathway in the crystal when
exposed to the X-ray beam. Multiple serial structures (MSS)
can be obtained from a set of crystals on a single fixed target,
as sequential exposure events to each crystal are binned and
processed as individual dose-dependent datasets. This is
analogous to the multiple structures from one crystal (MSOX)
approach (Horrell et al., 2016, 2018), previously applied to the
measurement of repeated datasets from the same exposed
region of a single large crystal to produce a dose series. In
comparison, our new approach exposes each crystal to the
X-ray beam for only a few tens of milliseconds and is well
suited for high-throughput structure solution from micro-
crystals held at room temperature, using XFEL or synchrotron
radiation sources.

Herein, we have chosen to use an extracellular dye-type
heme peroxidase found in Streptomyces lividans and referred
to as DtpAa. Using DtpAa as the exemplar, we describe the
application of our method of combined SFX and MSS
experiments, though the method can be used for any redox-
sensitive system. Starting in the catalytic resting state, our
approach reveals multiple well resolved structural states of the
enzyme, with a low-dose synchrotron MSS structural series
showing clearly resolved changes to the active-site region of
the enzyme within tens of milliseconds. Extrapolation of
varying structural parameters to zero dose produced a close
match to the damage-free structure determined using SFX.
Thus, a low-dose series of synchrotron MSS is anchored by a
damage-free SFX structure, both being determined using the
same fixed-target serial sample-delivery system.

We present this approach as a general method to efficiently
collect both SFX and SSX data under near-identical condi-
tions, characterize subtle site-specific changes caused by
X-rays in proteins and allow direct comparison of, and
extrapolation to, damage-free XFEL structures from low-dose
synchrotron models.

2. Materials and methods

2.1. Sample preparation

The SLI_2602 gene encoding DtpAa was amplified from the
genomic DNA of S. lividans strain 1326 (S. lividans stock
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number 1326, John Innes Centre) by polymerase chain reac-
tion (the primers used for amplification are reported in the
Supporting information). The gene was subsequently cloned
into the NdeI and HindIII sites of a pET28a vector (Novagen)
to create an N-terminal His6-tagged construct (pET2602) for
overexpression in Escherichia coli. The pET2602 vector was
transformed into E. coli BL21 (DE3) cells. Overnight pre-
cultures [low-salt Luria–Bertani (LB) medium; Melford] were
successively used to inoculate 1.4 l of high-salt LB medium
with 50 mg ml"1 kanamycin and were grown at 37#C, 180 rev
min"1. At an OD600 of 1.0–1.2, 5-aminolevulinic acid (0.25 mM
final concentration) and iron citrate (100 mM final concen-
tration) were added consecutively for their use as a heme
precursor and iron supplement, respectively. Cultures were
then induced by adding isopropyl !-d-thiogalactopyranoside
(Melford) to a final concentration of 0.5 mM, and carbon
monoxide gas was bubbled through the culture for 30–60 s.
Flasks were then sealed and incubated for a further 18 h at
30#C and 100 rev min"1. Cells were harvested via centrifuga-
tion (10 000g, 10 min, 4#C) and the cell pellet resuspended in
50 mM Tris–HCl, 500 mM NaCl (Fisher) and 20 mM imidazole
(Sigma) at pH 8 (buffer A). The resuspended cell suspension
was lysed using an EmulsiFlex-C5 cell disrupter (Avestin)
followed by centrifugation (22 000g, 30 min, 4#C). The clar-
ified supernatant was loaded onto a 5 ml nickel–nitrilotriacetic
acid–sepharose column (GE Healthcare) equilibrated with
buffer A and eluted by a linear imidazole gradient using buffer
B (buffer A with 500 mM imidazole). The DtpAa peak eluting
at approximately 30–40% buffer B was pooled and concen-
trated using a Centricon (VivaSpin) with a 10 kDa cut-off at
4#C followed by application to an S200 Sephadex column (GE
Healthcare) equilibrated with 20 mM NaPi, 100 mM NaCl, pH
7. A major peak eluted consistent with a monomeric species
with fractions assessed by SDS–PAGE then concentrated and
stored at "20#C. DtpAa concentrations were determined by
UV–vis spectroscopy (Varian Cary 60 UV–vis spectro-
photometer) using an extinction coefficient at 280 nm of
46 075 M"1 cm"1.

Microcrystals were grown in batch (typically 0.4–0.5 ml total
volume) by mixing in a 1:1 ratio a 6.5 mg ml"1 DtpAa protein
solution with a precipitant solution containing 20% PEG 6000,
100 mM HEPES pH 7.0, to typical dimensions of 15 mm.
Silicon nitride fixed-target chips with either 7, 12, 14 or 37 mm
apertures at their narrowest opening and a nominal capacity
of 25 600 crystals were loaded as previously described
(Ebrahim et al., 2019), with an identical loading protocol used
both at Diamond and the SPring-8 Ångstrom Free Electron
Laser (SACLA) XFEL. In brief, chips were loaded with 100–
200 ml of microcrystal suspension within a humidity enclosure
(Solo Containment, Cheshire, England) and sealed between
two layers of 6 mm thick Mylar.

2.2. Data collection and fixed-target motion

SFX data were measured at SACLA beamline BL2 EH3
using an X-ray energy of 10.0 keV, a pulse length 10 fs and a
repetition rate of 30 Hz, with the beam attenuated to 13% of

full flux. Chips were translated within the interval between
X-ray pulses, ensuring that the chip had stopped at the centre
of each crystal position (the centre of the aperture) and was
exposed only once to X-rays, before moving to the next
position during the next pulse interval. Data were typically
collected from all 25 600 positions on a chip in 14 min using the
SACLA MPCCD detector (Kameshima et al., 2014), with
experiments performed in a helium chamber to minimize air
scatter. A modified custom entry port to the helium chamber
permitted rapid exchange of chips, meaning that measurement
from all positions with subsequent sample exchange and
alignment interval of <5 min between data collections allowed
a sustained data-collection rate of just over 3 chips per hour.
While sufficient data for structure solution and refinement
were obtained from crystals mounted on only 2 chips (ca
13 000 hits), for the structure described here data were
collected from a total of 11 chips, still in under 4 h of beam
time, in order to increase the redundancy of the data and the
quality of the maps obtained.

Data collection at beamline I24, Diamond Light Source was
carried out using an unattenuated X-ray beam of energy
12.8 keV and a Pilatus3 6M detector in shutterless mode. To
form a dose-dependent series of DtpAa structures, 5 (MSS-1)
and 10 (MSS-2) sequential diffraction patterns were measured
at each crystal position each with an exposure time of 10 ms
and subsequently binned into one dataset per dose interval
(Fig. 1). The series of exposures at each chip position was
individually triggered via a Keysight 33500B signal generator
which was itself triggered by a DeltaTau Geobrick LV-IMS-II
stage controller when each desired crystal position had been
attained. The X-ray shutter was not closed between apertures
on a chip and remained open for the duration of the experi-
ment. X-ray fluxes were measured using a silicon PIN diode as
previously described (Owen et al., 2006) and were 3.2 $ 1012

and 3.0$ 1012 photons s"1 for MSS-1 and MSS-2, respectively.
The corresponding beamsizes (measured using a knife-edge
scan) were 7 $ 7 and 9 $ 8 mm, respectively. Absorbed doses
were estimated using RADDOSE-3D (Zeldin et al., 2013),
with dose increments corresponding to the total dose accu-
mulated within the exposure time of the first image, and are
detailed in Table S1 in the Supporting information. We note
that crystals will be subjected to a small additional absorbed
dose during deceleration of the stages prior to the time when
the detector starts recording the first diffraction image. While
challenging to accurately determine, we estimate that an upper
bound for this dose is %3 kGy. These experiments were
carried out using the same fixed-target chips and translation
system as used at SACLA. Details of the datasets are given in
Table S1.

2.3. Data analysis

For data measured at SACLA, initial hit finding at the
beamline was carried out in CHEETAH (Barty et al., 2014).
Peak-finding, integration and merging were all performed in
CrystFEL (White et al., 2016). Data from Diamond beamline
I24 were indexed using DIALS (version 1.8.5) (Winter et al.,
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2018) with subsequent scaling and
merging performed using PRIME
(Uervirojnangkoorn et al., 2015). MSS
data from beamline I24 consisted of cbf
image files numbered sequentially.
These were binned into dose points
using a simple partitioning script.
Multiple lattices were allowed during
indexing.

In both cases resolution limits were
assessed using CC1/2 and Rsplit para-
meters (White et al., 2013, 2016) toge-
ther with behaviour in refinement.
Structures were solved by molecular
replacement using a starting model
obtained from a small number of larger
DtpAa crystals mounted between two
layers of thin film (Axford et al., 2012;
Doak et al., 2018) and used to obtain
rotation wedges. Water molecules were
removed from this model prior to
refinement. Structures were refined
initially using REFMAC5 (Murshudov
et al., 2011) within the CCP4 suite
(Winn et al., 2011) and later in PHENIX
(Adams et al., 2010) and rebuilt between
refinement cycles using Coot (Emsley et
al., 2010). Atoms not well supported by
electron density (primarily surface side
chains) were deleted from the model.
Validation was performed using
MolProbity (Richardson et al., 2018),
QCCheck and tools within Coot and
PHENIX. Estimates of bond-length
error were calculated from the coordinate diffraction preci-
sion index as described (Gurusaran et al., 2014) using the
online diffraction precision indicator (DPI) server (Kumar et
al., 2015).

3. Results

3.1. Sample- and time-efficient serial data collection at
synchrotron microfocus and XFEL beamlines using silicon
nitride fixed-target chips

We used high-capacity silicon nitride fixed targets or ‘chips’
each containing 25 600 apertures based on those described
previously (Oghbaey et al., 2016) to hold the microcrystals
used to determine room-temperature serial crystallography
structures of DtpAa. Importantly, this sample-delivery system
was used in a near-identical manner for both the SFX and the
MSS experiments, (Fig. 1), allowing for a direct comparison of
the resulting structures. Typically hit rates (we define hit rate
as the percentage of frames collected that could be indexed) of
%30% were achieved on each chip allowing structures to be
determined in a highly time- and sample-efficient manner. The
volume of microcrystal suspension required per chip was

typically 100–200 ml. A schematic of the chip setup and
methodological approach is shown in Fig. 1.

3.2. Damage-free DtpAa structure using serial femtosecond
crystallography

To produce an ‘anchor’ structure of DtpAa, i.e. resting state
ferric, free of any effects of the X-ray beam on the structure,
we used the SACLA XFEL (Ishikawa et al., 2012) beamline
BL2 EH3 to perform SFX with an X-ray energy of 10 keV, a
pulse length of 10 fs with a 1.25 $ 1.34 mm beam and a pulse
energy of 289 mJ pulse"1. The chip was translated between
apertures in the 33 ms separating the 30 Hz XFEL pulses, with
a single image recorded at each position. The SFX structure
was determined to a resolution of 1.88 Å from a total of 72 615
indexed and merged diffraction patterns [Fig. 2(a), Table S1].
The overall structure reveals a ferredoxin-like fold typical of
dye decolourizing peroxidases (Sugano, 2009) with two DtpAa
monomers in the crystallographic asymmetric unit. The
structure was of high quality (Table S1) and refined to an Rwork

and Rfree of 13.2% and 16.7%, respectively. The refined model
exhibited a mean-determined B factor of 34.7 Å2.
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Figure 1
Fixed-target instrumentation in place at (a) beamline I24, Diamond Light Source and (b) beamline
BL2 EH3, SACLA. (c) Schematic of fixed target used showing layout of 8 $ 8 ‘city blocks’, each
comprising 20 $ 20 apertures. Shown is a zoomed-in view of a single city block with motion path
followed and chip cross-section. (d) Formation of dose-resolved datasets by collecting multiple
images at each chip aperture. For XFEL data collection, only a single dose point is recorded at each
position.



The heme Fe is six-coordinate with residue His326 acting as
the proximal ligand with an Fe—N bond length of 2.19 Å (we
note here that monomer B appears to be inactive and is
consequently not discussed further). The distal heme coordi-
nation site is occupied by a well defined, full occupancy water
molecule (W1), bound to the Fe at a distance of 2.40 Å. A
number of further, well defined water molecules occupy the
remainder of the heme distal pocket [Fig. 2(a)]. W1 is
hydrogen bonded to a second water, W2, at a distance of
2.68 Å and also interacts with the charged side chains of
Asp239 (2.92 Å) and Arg342 (2.74 Å). Interestingly, the side
chains of these two amino acids are only 3.13 Å apart (Arg N"1

to Asp O#2) suggesting a charge-based interaction.

3.3. DtpAa structures from serial synchrotron
crystallography

Serial synchrotron crystallography was carried out at
Diamond Light Source beamline I24 at an X-ray energy of
12.8 keV using the same chip and translation system as used
for SFX at SACLA. The beam size and flux were measured
immediately prior to each experiment, see Materials and
methods for details, with approximate values of 7 $ 7 mm and
3.1 $ 1012 photons s"1. Following each translation of the chip
to bring a fresh aperture/crystal into the beam, a series of
10 ms exposures were recorded using the PILATUS3 detector
in shutterless mode. This allowed multiple successive snap-
shots of the same microcrystal within 100 ms. Following
exposure of a crystal to the X-ray beam, the chip was trans-
lated to the next aperture position and the process repeated
[shown schematically in Fig. 1(d)]. Using this approach, the
total experimental time per fully loaded chip for ten dose
points is 45 min, but the total exposure (and hence the
absorbed dose) of any individual microcrystal is low and

multiple time- (dose-) resolved struc-
tures are obtained from a single fixed
target. We note here that the 10 ms
minimum exposure time was imposed
by the maximum frame rate of the
current detector available (PILATUS3
6M) and not by limitations arising from
the fixed-target movement or synchro-
nization of the target and the X-ray
beam. Diffraction images were indexed
and integrated independently using
DIALS (dials.stills_process)
(Winter et al., 2018) with a simple
image-binning procedure used to assign
the resulting data to dose bins [Fig.
1(d)]. Data within each dose bin were
then scaled and merged together using
PRIME (Uervirojnangkoorn et al.,
2015) to form dose-resolved datasets.
Using this approach, a complete dataset
for each X-ray dose was formed and the
corresponding structure refined using
the methods described above. The

scaling and refinement statistics for each structure are given in
Table S1. We first describe an MSS experiment series
comprising five dose points with a dose increment of 32.8 kGy
(MSS1). An increase in unit-cell volume and trends in scaling
statistics clearly indicate the onset of global radiation damage
resulting from disorder in the crystalline lattice as dose is
accumulated (Fig. S2). The initial resolution was 1.78 Å with
only a limited loss of diffracting power/resolution during the
50 ms of total exposure for each microcrystal. Dataset 1 of this
series (MSS1-ds1, 32.8 kGy) reveals a six-coordinate heme
with a slightly lengthened Fe—O bond at 2.48 Å compared
with the SFX structure [Fig. 2(b)]. A superposition of MSS1-
ds1 with the SFX structure is shown in Fig. 2(b). With
increasing dose, distinct changes occur around the heme
pocket consistent with reduction of the heme iron by X-ray
generated solvated photoelectrons (Beitlich et al., 2007;
Kekilli et al., 2017). In MSS1-ds2, the Fe—O bond is 2.70 Å
with this continuing to lengthen until the last dataset (MSS1-
ds5, 164.0 kGy) where it reaches a value of 2.97 Å (Table S3).

In order to provide additional dose points and obtain higher
dose SSX structures, a second MSS series was measured with
an increased incremental dose value (MSS2). In this case,
10 $ 10 ms exposures were measured per crystal position
(Table S1 and Fig. S3) with a dose interval of 39.2 kGy. The
initial dataset was refined to a resolution of 1.70 Å with the
resolution remaining as high as 1.93 Å by dose point 6. After
this point (60 ms exposure) the resolution limit decayed, with
structure refinement only carried out to 2.18 Å resolution by
the last dataset (MSS2-ds8). For comparison, dataset 10
reached only 2.7 Å resolution. In this series the first dataset
(MSS2-ds1), associated with a dose of 39.2 kGy, exhibited a
Fe–W1 distance of 2.50 Å. This distance increased in succes-
sive dose point structures, reaching 2.64 Å in ds3, 2.91 Å in
MSS2-ds5 and 3.76 Å in MSS2-ds8 (Fig. 3, Tables S1 and S2).
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Figure 2
(a) 2Fo–Fc electron-density map contoured at 1$ for the damage-free SFX structure of DtpAa at
1.88 Å resolution, showing the clear and well resolved water network within the heme pocket.
Water molecules interact extensively with the pocket residue Asp239 as well as with Arg369
(omitted for clarity). (b) Superposition of the SFX structure (blue) with the 32.8 kGy SSX structure
(red). Small changes to the heme-pocket water network are apparent even at this low dose.



Additional structural changes were evident in the heme
pocket, with rearrangement of water structures and a flip of a
heme propionate as dose was accumulated (Figs. S4 and S5).

The Fe–O distance in all structures from both MSS series is
plotted in Fig. 4 and migration of the water away from the
heme Fe is shown in Fig. 3(g).

It is of considerable interest to compare low-dose
synchrotron structures and damage-free XFEL structures
determined under near-identical experimental conditions, and
to explore if dose-series data may be used to extrapolate back
to the ‘native’ state present prior to X-ray exposure, a so-
called ‘zero-dose extrapolation’. This approach is analogous to
the zero-dose extrapolation of diffraction intensities within
conventional single-crystal datasets that has been described

previously (Diederichs et al., 2003; Dieder-
ichs, 2006; Diederichs & Junk, 2009). In this
way, the SFX structure provides a starting
point from which synchrotron datasets
(inevitably incurring radiation damage and
consequent structural change) may be inter-
preted. A vivid example is shown in a plot of
the Fe–W1 distance in the SFX ‘anchor’
structure and both MSS series, Fig. 4. A near-
linear relationship is observed, demon-
strating that water migration away from the
Fe is dose-dependent under the conditions
used. A linear fit to the data yields an inter-
cept (i.e. extrapolated to zero dose) of 2.37 Å,
which is very close to the value in the SFX
structure (2.40 Å) at comparable resolution
and within the experimental error for this
bond length in the room-temperature struc-
tures. The SFX and MSS datasets were
deposited in the Protein Data Bank with
accession codes as indicated in the supple-
mentary tables in the Supporting informa-
tion.

4. Discussion

To our knowledge, this is the first reported
method for directly comparing dose-resolved
serial synchrotron and XFEL structures of
radiation-sensitive metalloproteins using the
same microcrystal preparations and sample-
delivery system. The resolutions achieved
with each X-ray source are comparable
(1.88 Å SFX and 1.70 Å SSX) allowing the
direct comparison of structural features. The
SSX data collection allowed sequences of 5–
10 MSS dose points to be measured in a time
of tens to hundreds of milliseconds per
microcrystal. The effective resolution
remained high for a substantial proportion of
each series. Interestingly, the MSS structures
of DtpAa showed well resolved water mole-

cules (Figs. 2 and 3) in all structures, indicating that the
progression of reactions within the exposed crystal volume is
relatively uniform.

Determining a sequence of dose-dependent structures from
the same microcrystals allows subtle and relatively rapidly
occurring structural changes to be resolved. In the case of
DtpAa, an elongation of the Fe—water bond and eventual
bond breakage were observed during tens of milliseconds of
exposure to an intense microfocus X-ray beam. By obtaining
MSS throughout the process, sufficient data points were
recorded in order to be able to fit a function with confidence
and allow a zero-dose extrapolation to be made. This provided
a close approximation to the structure determined by SFX,
providing an alternative approach to obtain a good approx-
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Figure 3
2Fo–Fc electron-density maps contoured at 1$ for the heme environment of DtpAa in (a) the
SFX dataset from SACLA and (b–f) selected structures from the two MSS series. (g)
Superposition of selected structures revealing the dose-dependent migration of the water
molecule W1 away from the heme Fe. The SFX structure is shown in green with MSS in blue.



imation of the ‘gold standard’ damage-free structure obtained
using an XFEL.

4.1. How close can we get to the damage-free enzyme
structure using synchrotron radiation?

Despite a relatively low absorbed dose of 32.8 kGy in the
MSS1-ds1 dataset, the structure is not identical to that
determined by SFX [Fig. 2(b)]. Notably, the iron—water bond
in MSS1-ds1, the shortest out of all the SSX structures, is
elongated compared with the SFX structure. A simple linear
fit of the plot of iron—water bond length as a function of dose
allowed an extrapolation of the SSX data to zero dose (y-axis
intercept), yielding a comparable distance to that observed in
the SFX structure (Fig. 4).

While not the main focus of this report, the MSS series we
present reveal a number of structural states populated during
the initial response of DtpAa to X-rays. The elongation of the
iron—water bond is consistent with FeIII to FeII reduction.
This reduction is consistent with the generation of solvated
electrons by the interaction of X-rays with solvent molecules
in the crystal (Kwon et al., 2017; Moody & Raven, 2018). In
contrast to the situation at 100 K, where X-ray generated
radicals are largely immobilized, room-temperature reactions
that involve mass transport may allow such radicals to
contribute to the structural changes that our methods allow to
be resolved. The relevance of these structures to the function
of this class of enzymes will be explored in detail elsewhere.

An additional advantage of our approach is that the same
methodology and sample-delivery system is used at synchro-

tron and XFEL sources/beamlines. This allows for an effective
comparison of the structures produced by each X-ray source,
allowing the use of comparable crystal sizes, temperatures and
sample-delivery methods, factors that might otherwise cause
structural heterogeneity.

In summary, we have shown that microcrystals loaded into
fixed-target silicon nitride chips can be efficiently employed
for data collection at both synchrotron and XFEL sources,
allowing near-identical conditions for experiments. Using this
technology, we have characterized subtle site-specific changes
caused by X-rays in proteins, and directly compared low-dose
synchrotron models with, and extrapolation to, damage-free
SFX structures. Our method has the potential to be applied to
a wide range of enzymes and other proteins especially those
that are highly sensitive to radiation damage, including the
characterization of electron-driven mechanistic steps in detail
through a dose series such as redox reactions in redox
metalloenzymes. On a practical level, our approach can be
used to extract functionally relevant features of damage-free
SFX structures (which require access to scarce beam time at
XFELs), reconstructed from extrapolation of MSS deter-
mined at multiple low-dose points. Notably, the time interval
per MSS structure will be reduced by at least an order of
magnitude with upcoming advances in detectors and
synchrotron brilliance.
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Figure 4
Plot of Fe–W1 distance as a function of X-ray dose from the two
measured MSS series. The SFX structure determined using SACLA is
plotted as the zero-dose point (magenta). The elongation of the bond
length with dose is well fitted by a linear function (red line). The deviation
at higher doses is associated with a dissociation of W1 from the immediate
vicinity of the heme Fe. The extrapolation to zero dose (dashed red line)
gives a value of 2.37 (&0.05) Å which is very close to the 2.40 (&0.13) Å
value of this parameter in the SFX structure. Error bars shown are the
estimated standard uncertainty in bond length obtained from the DPI
value of the Fe and W1 atoms (see Materials and methods).



M022714/1 and J. A. R. Worrall, D. A. Sherrell, D. Axford, R.
L. Owen, M. A. Hough and R. W. Strange acknowledge
support from a BBSRC Japan–UK International Partnering
Award, BB/R021015/1.

References

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W.,
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High-throughput X-ray crystal structures of protein–ligand complexes are
critical to pharmaceutical drug development. However, cryocooling of crystals
and X-ray radiation damage may distort the observed ligand binding. Serial
femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs)
can produce radiation-damage-free room-temperature structures. Ligand-binding
studies using SFX have received only modest attention, partly owing to limited
beamtime availability and the large quantity of sample that is required per
structure determination. Here, a high-throughput approach to determine room-
temperature damage-free structures with excellent sample and time efficiency is
demonstrated, allowing complexes to be characterized rapidly and without
prohibitive sample requirements. This yields high-quality difference density
maps allowing unambiguous ligand placement. Crucially, it is demonstrated that
ligands similar in size or smaller than those used in fragment-based drug design
may be clearly identified in data sets obtained from <1000 diffraction images.
This efficiency in both sample and XFEL beamtime opens the door to true high-
throughput screening of protein–ligand complexes using SFX.

1. Introduction

The accurate determination of the structures of protein–ligand
complexes is essential for drug discovery, enzymology and
biotechnology. Developments in the automation of protein
crystallization, ligand soaking, harvesting, structure determi-
nation, ligand modelling and structural refinement have
allowed the high-throughput screening of soaked crystals at
synchrotron X-ray beamlines (Collins et al., 2018; Pearce,
Krojer, Bradley et al., 2017; Pearce, Krojer & von Delft, 2017).
For important classes of proteins, the binding of ligands may
be affected by X-ray-driven changes either in the oxidation
state of redox centres within the protein or to amino-acid side
chains involved in protein–ligand interactions. In these cases,
there is a premium on structure determination using low-dose
methods. Prime examples of this are heme enzymes, where the
iron centre in resting iron(III) and high-valent iron(IV) states
is exquisitely prone to reduction by solvated photoelectrons
generated by the interaction of synchrotron X-rays with
solvent in the crystal (see, for example, Beitlich et al., 2007;
Kekilli et al., 2017). Heme enzymes, such as the cytochrome
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P450s, are involved in the metabolism/breakdown of
approximately 90% of small-molecule drugs, and are more
generally themselves drug targets in yeast, fungi and tuber-
culosis infections (McLean & Munro, 2017; Guengerich et al.,
2016; Rendic & Guengerich, 2015). Importantly, the deter-
mination of protein–ligand complexes at room temperature is
likely to better reflect in vivo conditions than crystals cryo-
genically cooled to 100 K (for an interesting example, see
Fischer et al., 2015). Indeed, significant differences in binding
have been observed at room temperature (RT) compared with
100 K (Keedy et al., 2018). Furthermore, ligand soaking into
microcrystals (1–20 mm) has the theoretical potential to be
more effective than soaking into larger crystals (>50 mm)
(McPherson, 2019). The distance that a ligand needs to
penetrate into the crystal to reach its centre is proportionately
shorter for smaller crystals, potentially leading to higher
occupancy rates.

These issues in combination place a high value on protein–
ligand complexes determined from microcrystals at RT that
are free of observable effects of radiation damage. The only
current approach that can deliver this is serial femtosecond
crystallography (SFX) at X-ray free-electron lasers (XFELs;
Schlichting, 2015) using short (<20 fs) X-ray pulses (Inoue et
al., 2016; Lomb et al., 2011; Nass et al., 2015; Nass, 2019).
Ligand-binding studies using SFX have received little atten-
tion, largely owing to the scarcity of beamtime and high
sample requirements in typical sample-delivery systems such
as the gas dynamic virtual nozzle (GDVN) injectors
(Schlichting, 2015). The drive to obtain damage-free, RT
structures is balanced against the strong practical driver to
minimize sample consumption per obtained structure, and the
desire to collect data from multiple candidate ligands in a
short time period.

A limited number of studies have sought to address the
challenge of obtaining damage-free, RT crystal structures of
protein–ligand complexes in a manner that is efficient both in
sample and in data-collection time. An early study examined
ligand binding to a P-type ATPase membrane protein in
microcrystals delivered to the beam using a liquid microjet
injector (Bublitz et al., 2015). This work demonstrated the
applicability of SFX to ligand-binding studies, showing that
ligands could be clearly resolved even if the high-resolution
data collected are weak and statistically poor. A more recent
study (Naitow et al., 2017) explored the feasibility of SFX
ligand-binding studies using microcrystals of the model system
thermolysin delivered by a high-viscosity water- or oil-based
injector. The small-molecule ligand was readily resolved in
electron-density maps, with clear differences in binding modes
observed between the room-temperature SFX and 100 K
synchrotron-radiation (SR) structures.

Here, we describe the rapid determination of protein–
ligand complexes at RT. Microcrystals were mounted in silicon
fixed targets or ‘chips’ at the SPring-8 Ångstrom Free Electron
Laser (SACLA), Hyogo, Japan (Ishikawa et al., 2012). The
fixed-target sample-delivery approach minimizes sample
consumption, provides high hit rates and allows multiple high-
quality data sets to be measured in a very short time, an

important advantage given the limited availability of XFEL
beamtime. The chip system also allows rapid switching
experiments in which crystals of different targets are soaked
with different ligands. Moreover, the short time between
soaking, chip loading and the completion of data collection
reduces the need for long-term protein–ligand crystal stability
that is required for a typical injector experiment. This also
ensures that crystals are exposed to the soaked ligand for a
similar length of time.

We have applied this approach to crystals of two heme
peroxidase enzymes: a multifunctional dehaloperoxidase from
the marine annelid Amphitrite ornata (DHP-B; Barrios et al.,
2014; Franzen et al., 2012; McCombs, Moreno-Chicano, et al.,
2017; McCombs, Smirnova et al., 2017) and a dye-decolour-
izing peroxidase (Sugano, 2009) of industrial relevance (Colpa
et al., 2014) from Streptomyces lividans (DtpAa). We also
examine the challenging case of detecting nitrite binding to
copper nitrite reductase from Achromobacter cycloclastes
(AcNiR; Horrell et al., 2017), where the ligand displaces a
water molecule bound in the active site. The enzyme and
crystal systems used are of cubic (high), orthorhombic
(medium) and monoclinic (low) symmetry space groups, as
well as exhibiting full to partial ligand occupancies within the
same crystallographic asymmetric units. The complexes
investigated include ligands directly binding to the heme,
together with those occupying a binding pocket but not bound
to the iron, with ligand sizes of 3–10 non-H atoms (Supple-
mentary Fig. S1). We note that the typical molecular weight of
the fragments used in fragment-based drug design is
approximately 150–250 Da, with a typical size of 200 Da (Price
et al., 2017).

We explore the potential of this approach for rapid SFX
screening of ligands/drug candidates, examining the minimum
number of merged diffraction patterns required to reliably
detect ligand binding and the future potential of this approach
at current and planned XFEL beamlines. We assess several
metrics for ligand fit to electron density with the data sets
presented in the light of the recent debate around ligand
validation (Smart et al., 2018). Remarkably, data sets
comprising of <1000 merged diffraction patterns allowed clear
and unambiguous identification of ligand-binding modes,
despite extremely poor merging and refinement statistics. The
number of crystals required for complete data is lowered by
the bandwidth of the XFEL beam. Our work thus demon-
strates that high-throughput screening is eminently practicable
using SFX, with modest requirements for sample quantity and
experimental time.

2. Materials and methods

2.1. Protein production and crystallization

Dye-type peroxidase Aa (DtpAa) from S. lividans was
expressed and purified as described previously (Ebrahim,
Moreno-Chicano et al., 2019). Crystals were grown in batch
using a modification of the crystallization conditions used for
growing large single crystals, consisting of 25%(w/v) PEG
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1500 and 100 mM MIB buffer (Hampton Research, comprising
MES, boric acid and imidazole pH 8). The final protein
concentration in the batches ranged from 6.5 to 2.1 mg ml"1.
Crystals grew in 1–2 days to approximate dimensions of 20–
30 mm and were transported to SACLA at ambient tempera-
ture (the crystals were transported in hand luggage without
cooling). Dehaloperoxidase B (DHP) from A. ornata was
expressed and purified as described previously (McCombs,
Moreno-Chicano et al., 2017). Batch microcrystallization was
used, mixing 30 mg ml"1 DHP in 20 mM MES pH 6.0 with
40%(w/v) PEG 4000, 200 mM ammonium sulfate in a 1:4 ratio
in a total volume of 250–500 ml. DHP microcrystals grew in 3–
5 days at 4#C to typical dimensions of 20–30 mm and were
transported to SACLA at 4#C. 5-Bromoindole (5BR) and 2,4-
dichlorophenol (DCP) (Sigma) were each dissolved in 100%
DMSO and 20 ml of the resulting solution was added to a
200 ml crystal suspension to yield final ligand concentrations of
5 mM DCP and 50 mM 5BR. Microcrystals were soaked in
batches for 3–5 min immediately prior to loading onto the
silicon chip. AcNiR microcrystals were grown as described
previously (Ebrahim, Appleby et al., 2019) and were soaked in
100 mM potassium nitrite for approximately 20 min prior to
loading onto the chip.

2.2. Data collection and processing

Microcrystals were loaded into fixed-target chips as
described previously (Ebrahim, Appleby et al., 2019; Oghbaey
et al., 2016). The chips were fabricated commercially (South-
ampton Nanofabrication Centre; https://www.southampton-
nanofab.com) using a method based on that described
previously (Oghbaey et al., 2016). Typically, 100–200 ml of
microcrystal suspension was loaded onto a chip containing
25 600 apertures and excess liquid was removed using a weak
vacuum applied to the underside of the chip surface. For DHP
microcrystals around 1.5 mg of protein was loaded in each
chip, requiring around 4.5 mg for a complete data set (three or
four chips), while AcNiR microcrystals were loaded in quan-
tities of around 2 mg for a complete data set (two chips at 1 mg
per chip). In the case of DtpAa even less protein was needed:
only 0.45–6.0 mg per chip and around 1.80 mg for a complete
data set. SFX data were measured on SACLA (Ishikawa et al.,
2012) beamline BL2 EH3 with a photon energy of 10.0 keV, a
repeat rate of 30 Hz and a pulse length of 10 fs. The beam,
with a 1.25$ 1.34 mm spot size (FWHM) and a pulse energy of
289 mJ per pulse (pre-attenuation), was attenuated to 13% of
full flux to minimize detector overloads. The SACLA beam
was in SASE mode, with FWHM bandwidth %70 eV. The
fixed-target chip was translated between X-ray pulses such
that each crystal position was exposed only once, and the
measurement of all 25 600 positions on a chip took 14 min.
The hit rate during data collection was monitored using
Cheetah (Barty et al., 2014), while peak finding, indexing and
merging of data were performed using CrystFEL v.0.6.4
(White et al., 2016). Structures were refined using starting
models of ligand-free structures from which water and other
solvent molecules had been removed. Refinement was initially

carried out in REFMAC5 (Murshudov et al., 2011) within the
CCP4 suite and completed in PHENIX (Adams et al., 2010).
All structures were validated using MolProbity (Williams et
al., 2018), the JCSG Quality Control Check server and tools
within PHENIX (Adams et al., 2010) and Coot (Emsley et al.,
2010).

To explore the limits of ligand identification in SFX data
sets, randomly selected images from the indexed data
(*.stream files from CrystFEL) formed data subsets with
defined, variable numbers of images. These were scaled and
merged in the same manner as the data sets containing all
images and were used in refinement versus the model for the
appropriate complex determined using all data, from which
the ligand had been removed. OMIT maps were generated
using torsion-based simulated-annealing refinement in
phenix.refine (Adams et al., 2010) in order to minimize model
bias. As an additional validation step, selected subsets were
refined against the structure of the native enzymes (where the
ligands were not present) using the procedure described
above.

2.3. Ligand modelling

Ligands were initially modelled into the all-image data sets
based on the mFo " DFc difference electron-density maps. In
all cases, ligand density was unambiguous and ligands were
modelled with near-full occupancy in one of the two subunits
of the homodimeric enzymes (for DHP and DtpAa) or in the
single subunit of AcNiR in the crystallographic asymmetric
unit. The ligands were straightforwardly located in an auto-
mated manner using the ‘Find Ligands’ feature of Coot. The
second monomer in the DHP asymmetric unit contained a
lower occupancy ligand (5BR) or very weak ligand density
(DCP), while in DtpAa the second monomer did not show a
bound exogenous ligand in the active site. Restraints for
nonstandard ligands were produced using ACEDRG (Long et
al., 2017). For the data subsets, the data were refined by two
parallel approaches to avoid model bias. Firstly, the data were
refined against the ‘all-images’ structures, from which the
ligands had been removed, using simulated annealing in
phenix.refine to remove bias. As an additional test that bias
was not present, selected structures were refined against the
native, ligand-free structures of the enzymes and simulated-
annealing (SA) OMIT difference maps were generated. The
known position of the ligand from the ‘all-images’ models was
then compared with the difference density map generated
from that subset. The quality of the fit of modelled ligands to
the electron-density maps was determined using EDIAscorer
(Meyder et al., 2017). The ‘Find Ligands’ feature of Coot was
also used for each subset, in this case searching the mFo"DFc

SA OMIT map for suitable hits.
Fo " Fo isomorphous difference maps between the DHP–

5BR and DHP–DCP data sets were generated in PHENIX
with the native ligand-free DHP structure (see below) used to
phase the data sets (although near-identical results were
generated if either of the above ligand-bound structures were
used for phasing).
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3. Results

3.1. Determination of protein–ligand complex structures by
SFX in a time- and sample-efficient manner

SFX structures for each enzyme–ligand complex were
determined from data measured from either two (AcNiR),
three (DHP–DCP) or four (DHP–5BR and DtpAa–imida-
zole) chips. This took approximately 14 min of data collection
and %16 min of beamtime per chip (sample-change, hutch-
search and alignment time are included). In each case, struc-
ture solution was by molecular replacement and the resolution
and data quality were sufficient to clearly define essentially all
main-chain and most side-chain atoms together with well
defined networks of water molecules. The quality of the data
sets and structures is given in Table 1. For each structure, clear
positive difference density was evident for the ligands, which
were unambiguously located. The chemical structures of the
ligands used in this study are shown in Supplementary Fig. S1.

3.2. SFX structures of ligand-bound complexes

In each DHP structure, clear Fo " Fc electron density was
apparent in the heme pocket consistent with a high-occupancy
bound ligand in one monomer of the dimer and a second lower
occupancy binding site in the other. This difference in occu-
pancy is consistent with previous single-crystal structures of
DHP complexes with a range of different ligands in this space
group (see, for example, McCombs, Moreno-Chicano et al.,
2017). DCP exhibited a binding site that was virtually identical
to those previously observed for the guaiacol substrates 4-
bromoguaiacol (PDB entry 6cke), 4-nitroguaiacol (PDB entry
6ch5) and 4-methoxyguaiacol (PDB entry 6ch6) (McGuire et
al., 2018), while the 5BR complex was consistent with a
computationally hypothesized binding site (Barrios et al.,
2014), with both results together demonstrating that SFX
provides accurate substrate-binding orientations.

The details of the binding modes themselves are beyond the
scope of this manuscript and will be described in detail in a
separate publication. Strong electron-density peaks were
present for the two Cl atoms of DCP and the single Br atom of
5BR, allowing the ligand orientation to be easily confirmed,
although it is important to note that the electron density was
well defined for all atoms of the ligands. For both DHP–ligand
structures one monomer had near-full occupancy, but signifi-
cantly lower occupancy (as refined in PHENIX; Adams et al.,
2010) was observed in the second monomer of the homodimer
[Figs. 1(a) and 1(b)]. This feature allowed us to examine the
effect of ligand occupancy on ligand detectability in maps
derived from SFX data (see below).

The SFX structure of DtpAa was determined in space group
P21 to 1.88 Å resolution (Table 1). The overall structure of the
enzyme homodimer was highly similar to that of ferric DtpAa
crystallized in a condition that did not contain imidazole
(Ebrahim, Moreno-Chicano et al., 2019). The examination of
Fo" Fc difference maps indicated that an imidazole ligand was
coordinated via an N atom to the distal position of the heme
iron in one monomer of the DtpAa dimer with full occupancy.
The Fe—N (imidazole) bond was 2.2 Å, while imidazole also
formed two hydrogen bonds (2.7 and 2.9 Å) to Asp239 [Fig.
1(c)], and the heme pocket also contains several well ordered
water molecules. Comparison with the ligand-free ferric
DtpAa structure also obtained by SFX (Ebrahim, Moreno-
Chicano et al., 2019) revealed that the imidazole displaces the
distal water molecule from the heme and induces a number of
modest structural rearrangements in the heme pocket
(Supplementary Fig. S2). A second imidazole molecule is
bound to the protein away from the heme pocket, forming a
2.7 Å bond to Thr351 and interacting via a bridging water with
Glu283. In contrast, for monomer A no imidazole ligand was
observed in the distal heme pocket and instead a water
molecule is bound at a distance of 2.4 Å in a similar manner to
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Table 1
Data-collection, processing and refinement statistics for full SFX data sets for enzyme–ligand complexes.

Values in parentheses are for the outermost resolution shell.

Structure DHP–DCP DHP–5BR DtpAa–imidazole AcNiR–nitrite

Data collection and processing
Space group P212121 P212121 P21 P213
Unit-cell parameters (Å, #) a = 60.9, b = 67.2, c = 68.7,

! = " = # = 90
a = 61.0, b = 67.3, c = 68.8,
! = " = # = 90

a = 72.5, b = 68.0, c = 73.5,
! = # = 90, " = 105.6

a = 97.6, b = 97.6, c = 97.6,
! = " = # = 90

Chips used 3 4 4 2
Images collected 76800 102800 102800 51200
Indexed images merged 32618 53662 20316 16586
Unique reflections 24749 24840 56220 24729
Resolution (Å) 37.7–1.85 (1.90–1.85) 45.6–1.85 (1.90–1.85) 70.8–1.88 (1.93–1.88) 43.7–1.90 (1.93–1.90)
Completeness (%) 100 (100) 100 (100) 100 (100) 100 (100)
Multiplicity 579 (340) 907.7 (524.0) 101.6 (64.2) 3281.4 (2299.1)
CC1/2 0.99 (0.66) 1.00 (0.65) 0.96 (0.60) 0.99 (0.63)
Rsplit (%) 6.6 (61.9) 5.5 (66.6) 15.8 (63.9) 9.73 (58.61)

Refinement
Resolution range (Å) 34.4–1.85 45.6–1.85 35.3–1.88 43.7–1.90
Rwork (%) 16.8 16.7 13.9 13.7
Rfree (%) 19.9 18.9 17.6 17.2
R.m.s.d., bond lengths (Å) 0.010 0.005 0.010 0.006
R.m.s.d., bond angles (#) 1.23 0.96 0.87 0.90
Ramachandran most favoured (%) 98.2 98.9 98.5 98.8
PDB code 6i7f 6i6g 6i7c 6qwg



that in the ferric DtpAa structure (Ebrahim, Moreno-Chicano
et al., 2019).

The structure of AcNiR in complex with nitrite was deter-
mined to 1.90 Å resolution (Table 1). The type 2 Cu site, which
is the site of ligand binding, displayed clear electron density
for a bound nitrite molecule with a bidentate O-binding
geometry as previously described in multiple 100 K and room-
temperature structures obtained from single crystals (Meyder
et al., 2017; Horrell et al., 2016) [Fig. 1(d)]. The positions of the
ligand-binding sites within the protein fold for each complex
are shown in Supplementary Fig. S3.

3.3. Ligand density features as a function of the number of
diffraction patterns in a data set

As described above, all three ligands were unambiguously
identified in maps derived from the full data sets, demon-
strating that ample diffraction patterns had been included in
the merged data sets, which had good data-quality metrics
(Table 1). To test the lower limits of the number of diffraction
patterns that would allow us to identify bound ligands in high-
throughput SFX experiments, the data were partitioned into
subsets of decreasing size to produce independent merged
data sets containing progressively fewer diffraction patterns,
(Supplementary Tables S1–S4). OMIT difference maps were

generated by simulated-annealing refinement in PHENIX
(Adams et al., 2010) using the all-data structure with ligand
atoms omitted in the initial model. As expected, the merging
and refinement statistics, and consequently the resolution cut-
off, progressively deteriorated as the number of merged
patterns was reduced (Fig. 2, Supplementary Tables S1–S4,
Supplementary Fig. S4). The OMIT map quality was, as might
be reasonably expected, proportional to the number of images
in the data set. As a simple practical test to emulate a typical
crystallographic workflow, the ‘Find Ligands’ feature of Coot
(Debreczeni & Emsley, 2012; Emsley, 2017) was used to test
whether each ligand could be correctly fitted into the
simulated-annealing Fo " Fc map without bias from the
experimentalist’s prior knowledge of the correct pose.

3.4. 2,4-Dichlorophenol–DHP complex

We first examined the effect of the number of crystals
included in a data set on the resulting electron-density maps
for the complex between DHP and DCP. Very clear Fo " Fc

simulated-annealing OMIT map features for the ligand were
evident in subsets considerably smaller than the ‘full’ data sets.
For example, a subset of 5000 crystals showed merging
statistics that would still be considered acceptable by standard
assessments [Rsplit = 0.17 (0.73), CC1/2 = 0.95 (0.56) to 1.95 Å
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Figure 1
2Fo" Fc electron-density maps, contoured at 1$, showing the complexes of DHP with (a) DCP with the Cl atoms shown in green and (b) 5BR with the Br
atom shown in purple, (c) the complex of DtpAa with imidazole and (d) the complex of AcNiR with nitrite. In each case, the active site of the monomer
with the highest ligand occupancy is shown. The maps in (a)–(d) were generated using the all-image data sets.



resolution] and unsurprisingly
ligand finding was straightfor-
ward. When the data set was
reduced to containing only 1000
crystals the merging statistics
were poor [Rsplit = 0.39 (0.65),
CC1/2 = 0.72 (0.57) to 2.2 Å reso-
lution], and with 500 images these
metrics indicated very poor or
even meaningless data quality
[Rsplit = 0.56 (0.92), CC1/2 = 0.57
(0.42) to 2.2 Å resolution]. The
refinement statistics also deterio-
rated with decreasing data-set
size (Supplementary Table S1).

Remarkably, data sets com-
prising far fewer than 1000
indexed patterns displayed very
clear features in simulated-
annealing OMIT maps of the
distal pocket, covering all atoms
of the best-ordered DCP ligand
(in monomer B). Examples are
shown in Supplementary Fig. S5,
where the Fo " Fc OMIT map
allowed all atoms of the ligand to
be unambiguously modelled,
even when the merging statistics
were very poor and refinement R
factors were high (Supplemen-
tary Table S1). Because of the
poor merging statistics with
<1000 images, it was not possible
to use these metrics to assess the
resolution limit in merging for
these data; however, refinement
using the same resolution limit as
the 1000-image set still allowed
straightforward ligand placement.
For data sets produced from <400 crystals, difference map
quality rapidly deteriorated (Supplementary Fig. S5). This
deterioration of the maps appears to approximately coincide
with a loss of data completeness and redundancy in these data
sets. The lower occupancy ligand present in the second
monomer failed to be located in data-subset OMIT maps of
decreasing size more rapidly than was the case for the fully
occupied ligand (Supplementary Fig. S6). EDIAscorer
(Meyder et al., 2017) electron-density analysis is shown in Fig.
3 and Supplementary Fig. S7, showing the excellent quality of
the difference map for all ligand atoms down to very low
image numbers.

3.5. 5-Bromoindole–DHP complex

Data and map quality followed a similar pattern with
reducing crystal numbers to that described above for DCP
(Table 1, Fig. 2, Supplementary Figs. S8 and S9). In this case,

the lower occupancy of the two 5BR ligands was automatically
found in Coot with a data set from 2000 images, but this step
failed with 1000 images. For the higher occupancy 5BR ligand,
the correct pose was found down to a data set of 800 images,
while in data sets comprising 500, 600 or 700 images an
incorrect pose was found by Coot, although manual re-
orientation was straightforward based on the Fo " Fc map. A
remarkable observation is that even in a data set comprising
only 200 images (with 75.3% data completeness) the heavier
Br atom of the ligand was clearly identified, with OMIT map
peaks of 6.8$ (1.83 e" Å"3) in monomer B and 4.3$
(1.16 e" Å"3) in monomer A at its position (Supplementary
Figs. S8 and S9).

3.6. Imidazole complex of DtpAa

The imidazole ligand provided a more challenging case
owing to its smaller size in comparison to DCP and 5BR and
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Figure 2
Fo " Fc simulated-annealing OMIT maps contoured at 3$ for the heme region from selected data subsets
for (a) DHP–DCP, (b) DHP–5BR, (c) DtpAa–imidazole and (d) AcNiR–nitrite, each superposed on the
refined structure from all data. For (a) and (b) the highest occupancy ligand monomer of the homodimer is
shown. Additional subsets are shown in Supplementary Figs. S5, S6 and S8–S11.



because of the lower symmetry space group (P21) of the
DtpAa crystals. For the latter reason, the merging statistics
deteriorated more rapidly than for DHP (Supplementary
Table S3). In particular, data completeness began to
deteriorate, with the 2000-image data set being essentially
complete, while this was not the case for the 1000-crystal data
set. With subsets of 5000 images or larger, Coot was able to
successfully locate both the heme-coordinated imidazole and
the second imidazole ligand located in the inter-monomer cleft
[Supplementary Fig. S3(c)]. With smaller subsets, the latter
ligand was not found, although the heme-bound imidazole was
located in data sets of as few as 800 images. In these very small
data sets the imidazole ring as positioned by Coot was some-
times rotated around its normal axis while still fitting the
symmetrical electron-density feature well, but this was readily
corrected by applying simple chemical knowledge, i.e. that N
atoms rather than C atoms should be forming the coordination
bond to the Fe atom and be oriented towards the Asp residue
in the heme pocket. Simulated-annealing OMIT maps for the
DtpAa–imidazole complex are shown in Fig. 2 and Supple-
mentary Fig. S10, with electron-density statistics in Fig. 3 and
Supplementary Fig. S7. We note that for all three ligands, even
when automated ligand finding failed, significant ligand
density was present that could allow manual identification in
cases where the binding pocket was known in advance.

3.7. AcNiR complex with nitrite

Although nitrite is the smallest ligand of interest used in this
study, AcNiR has the inherent characteristic of crystallizing in
a high-symmetry space group (P213), resulting in fewer data
being required for a complete data set owing to the high
redundancy of the data collected (Table 1). Again, very clear
Fo " Fc simulated-annealing OMIT map features for the
ligand were evident in subsets of small numbers of diffraction
patterns, despite exhibiting merging statistics that would

typically be considered rather poor (Figs. 2 and 3, Supple-
mentary Table S4 and Supplementary Fig. S11). Coot
successfully located nitrite binding at the type 2 Cu active site
in subsets of very few crystals, with 200 being the lowest
number of crystals that were needed to successfully auto-find
the nitrite ligand. Although Coot was unsuccessful at deter-
mining the ligand in the lowest crystal subset of only 100
crystals, positive electron density is still identifiable at the site
where ligand binding is expected, although this did not allow
for reasonable modelling of a ligand.

3.8. OMIT maps from simulated-annealing refinement
against ligand-free structures of the native enzymes

Although simulated-annealing refinement as described
above would reasonably be expected to remove all model bias,
as an additional validation step selected subsets were refined
against the corresponding native structures obtained by SFX
(Ebrahim, Moreno-Chicano et al., 2019; Moreno-Chicano et
al., manuscript in preparation), where the ligands were not
present. OMIT map generation followed an identical proce-
dure to that described above, with the exception of the input
coordinate file used. The resulting OMIT maps are shown in
Fig. 4 and Supplementary Figs. S12, S13 and S14) for data
subsets of differing sizes. The results of this process corre-
sponded well with the previously described OMIT maps,
suggesting that model bias was not significant in the previous
procedure for any of the complexes. Notably, for the two DHP
ligand structures, in addition to very clear OMIT map density
for the ligands themselves the map features clearly define the
movements of heme-pocket residues that are necessary to
accommodate the ligand (Fig. 4 and Supplementary Fig. S12).
This provides further evidence of the information content
within these data sets, despite the low numbers of diffraction
patterns and extremely poor statistics. Importantly, we used
AcNiR–nitrite as a very challenging case to test the limitations
of our approach as the nitrite ligand contains only three atoms
and also displaces a water molecule upon binding (Antonyuk
et al., 2005). In addition, the water density in the native
structure is disordered, with the presence of a second water
molecule a possibility. Notably, refinement of AcNiR data and
subsets versus the native AcNiR SFX structure produced clear
positive difference map features for the nitrite atoms that are
separated from the water molecule present in the native
structure (Supplementary Fig. S14). For comparison, SA OMIT
maps produced from refinement of the same subsets against
the native AcNiR SFX model with the copper-coordinated
water molecule deleted are shown in Supplementary Fig. S15.

3.9. Detection of differences between ligands from Fo " Fo
isomorphous difference maps

For the DHP case, in which two different ligands bind in a
similar binding pose to the same enzyme pocket, we tested the
ability to distinguish between these ligands using Fo " Fo

isomorphous difference maps. For the full data sets, an
Fo(DHP–5BR) " Fo(DHP–DCP) map is shown in Fig. 5.
Strong positive density (a 32$ peak) is present where the Br
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Figure 3
Real-space correlation coefficient (RSCC) values from EDIAscorer
(Meyder et al., 2017) as a function of the number of images per subset.
Data are shown for the highest occupancy binding site for each complex.
A plot including values for additional binding sites is shown in
Supplementary Fig. S7.



atom of 5BR occupies a similar position to a Cl atom of DCP,
consistent with the larger number of electrons on the Br atom.
A negative feature is present over the second Cl atom of DCP,
consistent with a C atom occupying a similar position in 5BR.
Finally, a positive peak is present for the C5 atom of 5BR
where no equivalent atom is present in DCP. As the number of
crystals in a data subset decreases, the map features become
less prominent, with the C5 feature disappearing in subsets of
1000 crystals or smaller. However, the features corresponding
to the Br and Cl atoms are remarkably still evident, albeit

much weaker, in subsets comprised of as few as 200 crystals
(Fig. 5).

4. Discussion

4.1. High-throughput determination of ligand-bound SFX
structures using fixed targets

Our results indicate that high-quality SFX crystal structures
that allow unambiguous ligand identification may be achieved
using our fixed-target approach. This can be achieved using a

small quantity of enzyme sample with
high throughput and rapid switchover
between different proteins and ligands.
Typical data-collection times for
complexes were 30–60 min using all
data measured, and using these data sets
ligand modelling was clear and unam-
biguous. In comparison to previously
published data for ligand-binding
experiments (Naitow et al., 2017; Bublitz
et al., 2015), the fixed-target approach
allows the high-throughput production
of multiple intact enzyme–ligand
complex structures. In addition, the
soaking and data-collection strategy can
be easily adapted and optimized for a
synchrotron beamline using the same
sample-loading and mounting system.

Our results cover several different
ligand-binding scenarios, such as
coordinate-bond formation to a heme
iron (imidazole) or copper (nitrite) and
noncoordinate ligand binding in a
pocket (DHP ligands), with the latter
being highly relevant to the binding of
ligands to pharmacologically important
proteins such as cytochromes P450. In
each structure, binding sites are present
with different occupancies, allowing a
further test of the ability of the method
to locate high- or low-occupancy
ligands.

The limits of our ability to identify
ligand binding were tested using the
small ligands nitrite (46 Da) and
imidazole (68 Da). Both of these are
much smaller than the fragments used in
fragment-based drug design (FBDD),
where 200 Da is a typical molecular
weight (Price et al., 2017). In the case of
AcNiR, a particular challenge was that
nitrite displaces a water molecule on
binding. In AcNiR structures deter-
mined from single crystals, distin-
guishing between the electron-density
features of active-site waters and nitrite
is challenging and requires high-
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Figure 4
Difference map features produced by simulated-annealing refinement against ligand-free native
structures clearly reveal ligand binding and active-site rearrangements in the absence of the risk of
model bias. Fo " Fc OMIT maps, contoured at 3$, are shown for DCP data subsets refined versus
the native DHP structure. In each case, the native DHP structure from OMIT refinement versus a
particular subset is shown in grey, while the superimposed structure of the ligand complex is shown
in blue. Positive difference map features are shown in green, with negative features in red. Note that
the flips of Phe21 and Phe60 to accommodate ligand binding, together with the ligand density itself,
are very clearly defined in the data set obtained from all data and this is maintained in the 5000-
image subset. Clear OMIT map features are apparent for Phe60 and DCP in data sets with as few as
400 images, while this was no longer the case in the 300-image subset.



resolution data (Antonyuk et al., 2005; Horrell et al., 2018).
Nonetheless, our method allowed the identification of these
ligands in subsets comprising a small fraction of the full data
sets. Our results are therefore strongly indicative that the
ligands used in FBDD will be readily detected using our
approach.

4.2. What is the minimal quantity of data required to identify
ligand-binding modes?

Analysis of simulated-annealing OMIT maps generated
from data subsets containing only a subset of merged
diffraction patterns clearly demonstrates that only a small
fraction of the total data-collection time that we used is in fact
necessary to locate ligands in the correct binding pose. For
example, for the 5BR complex of DHP a subset of just 800
indexed images (%1.5% of the total number of images in the
full data set) was sufficient to correctly model the ligand using
a careful strategy to preclude the possibility of model bias. A
conservative approach of measuring several times this
minimal number would still require only a small proportion of
the 25 600 crystal positions on each chip. Our data also show
that useful information is contained in data sets obtained from
extremely small numbers of microcrystals; for example, the Br
atom of 5BR was identified in a data set of only 200 crystals
(<0.4% of the total data set).

In a lower symmetry space group (DtpAa; P21), the ability
to detect ligand binding in data sets of <2000 images was
compromised by a lack of data completeness at higher

resolution, although ligand finding was still achieved with 800
images. Notably, for the DHP structures in space group
P212121 data completeness remained good in very small data
sets; for example, for the DCP complex the 400-image data set
retained >90% completeness in the highest resolution shell.

The high completeness of data sets formed from (relatively)
small numbers of crystals parallels the success in forming
complete data sets from multiple thin wedges in virus crys-
tallography (Fry et al., 1999). The completeness of the final
data set is a function of the number of wedges collected and
the point group of the crystals used, with the prerequisite for
each approach being that the crystals must be randomly
orientated. The completeness of the data obtained from small
numbers of crystals here illustrates that this is the case for
DtpAa, DHP and AcNiR crystals on silicon chips. The band-
width of the XFEL beam allows complete data to be obtained
from fewer crystals than would be the case with a more
monochromatic beam, yet still requires many more crystals
than might be required in a wide-bandpass Laue experiment
(Meents et al., 2017). Our data strongly suggest that data
completeness is the key metric for assessing the suitability of
data sets for ligand-binding studies and that very poor values
of other typically used metrics of data quality (for example
CC1/2 and Rsplit) still allow successful ligand characterization
provided that the data are complete. For AcNiR, with cubic
symmetry, the data remained essentially complete in all of the
subset sizes analysed, with density for the nitrite ligand
remaining apparent down to <200 indexed images. We note
that substantially more diffraction patterns would be required
to obtain complete data on a monochromatic beamline.

More broadly, our data clearly show that substantial infor-
mation content is present in noisy and apparently low-quality
data sets derived from small numbers of merged diffraction
patterns with very poor merging and refinement statistics. For
example, a data set formed of 200 patterns revealed a very
clear peak for the Br atom of the 5BR ligand (outer shell
completeness 70.9% in DCP). Importantly, refinement of data
subsets against native structures unambiguously showed not
only clear density for ligands, but also any movements of the
active-site residues needed to accommodate ligand binding
(Fig. 4 and Supplementary Fig. S12). This provides conclusive
evidence that the ligand density that we describe is not owing
to model bias from prior knowledge of the binding mode.

4.3. Future potential of the ‘chip-soak’ approach for
high-throughput structure determination of protein–ligand
complexes

In this work, SFX structures were recorded from two
(AcNiR), three (DHP–DCP) or four (DHP–5BR and DtpAa–
imidazole) chips, aiming for 1–2 structures per hour. The
number of chips used for a single structure was subsequently
seen to err significantly on the side of caution, as in all cases
sufficient data for unambiguous ligand identification were
available from significantly less than half a chip. Crucially,
careful data analysis demonstrated that data sets comprising
of no more than a few hundred to a few thousand indexed
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Figure 5
Fo " Fo isomorphous difference maps comparing the 5BR and DCP
ligand complexes of DHP. Maps are Fo(5BR) " Fo(DCP) contoured at
3$. With all data included, the map shows a clear positive peak near to the
position of the Br atom of 5BR (black) and one of the Cl atoms of DCP
(magenta), consistent with the greater number of electrons in bromine. A
negative peak is present at the position of the second Cl atom of DCP,
where the closest atom of 5BR is a carbon. An additional but weaker
positive peak is present close to the C5 atoms of 5BR where no atom is
present in DCP.



images are sufficient to correctly model ligands into clear
difference density features. Thus, without modification of the
approach or changes to the experimental conditions, an
approximately 4–5-fold increased throughput of multiple
protein–ligand structures per hour could easily be realized.
Rapid on-site data analysis should allow on-the-fly decision
making as to whether sufficient data have been collected for a
particular soak and if a ligand is indeed bound. A key
advantage of the fixed-target sample-delivery method is that
switching between samples of different protein–ligand soaks is
no more time-consuming than continuing with a chip of the
same sample. With typical loading rates of approximately
30%, multiple ligand soaks could be carried out on a single
redesigned chip, again drastically increasing throughput. As a
further example, for systems where approximately 1000 hits
would be sufficient, at the latter hit rate some eight ligand
complexes could be characterized on a single chip.

The sample quantity required for our approach (in the
range of 1.35–6.0 mg protein per data set) is less than required
in liquid-jet approaches, although higher than has been
reported for high-viscosity (LCP) injection systems at XFEL
(Weierstall et al., 2014) and synchrotron (Weinert et al., 2017)
beamlines. An additional factor is ligand consumption. In our
case, without optimization to minimize sample consumption,
the typical ligand quantities used were in the range 4–40 mmol.

Our system of work is applicable at other current and future
XFEL sources, such as PAL (60 Hz repetition rate), SwissFEL
(100 Hz) and LCLS (120 Hz), as well as SACLA (30 Hz).
However, XFEL sources with very high repetition rates or
complex pulse patterns (for example EuXFEL and LCLS-II)
may require a modified or different approach. We have
demonstrated that at a source with a modest repetition rate
sufficient data for multiple, unrelated, protein–ligand struc-
tures may be obtained within a couple of hours. Increasing this
level of throughput to %5–20 structures per hour at higher
repetition-rate sources, or collecting fewer images per
complex (see above) as is practical, would allow, for example,
>200 structures to be determined in a single 12 h shift, similar
to dedicated synchrotron beamlines. Fixed targets are also
well suited to time-resolved crystallography of, for example,
protein–ligand complexes using laser pump–probe methods
(Schulz et al., 2018) and it is important to note that in time-
resolved experiments significantly more data may be required
as crystals may contain a mix of states.

Another key advantage is that the chip approach allows us
to test soaking protocols at synchrotron beamlines under
identical conditions to those used at the XFEL in order to
ensure that soaking does not damage crystals and also that
ligands are bound, albeit in a radiation-damaged structure. At
such high rates of sample delivery, automation of chip loading
and robotic sample exchange will of course become increas-
ingly important. Our work demonstrates the feasibility of
high-throughput room-temperature ligand screening by SFX
using microcrystals and is highly applicable to drug-discovery
efforts, including in fragment-based drug design. Our
approach would be of particular importance in cases where
only small weakly diffracting crystals are obtained or when the

enzyme–ligand complexes are radiation-sensitive. We have
demonstrated the ability to identify ligand binding by our
high-throughput approach using ‘conventional’ approaches to
both refinement and ligand finding. Further data-analysis
improvements to the ability to identify in particular low-
occupancy ligands in FBDD could be achieved using a multi-
data-set approach, for example in PanDDa, with subtraction
of the ligand-free ground state (Pearce, Krojer, Bradley et al.,
2017) and with refinement against a composite of the ligand-
free and ligand-bound structures (Pearce, Krojer & von Delft,
2017).

In conclusion, we demonstrate (i) a method to rapidly
measure SFX data sets from protein–ligand complexes and to
rapidly switch between ligands during beamtime, (ii) that data
sets comprised of hundreds to a few thousands of diffraction
patterns can be sufficient for unambiguous ligand identifica-
tion and (iii) that even ligands smaller than those used in
fragment-based drug design may be located using our
approach. These data demonstrate the feasibility of high-
throughput structure determination of protein–ligand
complexes at XFEL sources.
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Debreczeni, J. É. & Emsley, P. (2012). Acta Cryst. D68, 425–430.
Ebrahim, A., Appleby, M. V., Axford, D., Beale, J., Moreno-Chicano,

T., Sherrell, D. A., Strange, R. W., Hough, M. A. & Owen, R. L.
(2019). Acta Cryst. D75, 151–159.

Ebrahim, A., Moreno-Chicano, T., Appleby, M. V., Chaplin, A. K.,
Beale, J. H., Sherrell, D. A., Duyvesteyn, H. M. E., Owada, S., Tono,
K., Sugimoto, H., Strange, R. W., Worrall, J. A. R., Axford, D.,
Owen, R. L. & Hough, M. A. (2019). IUCrJ, 6, 543–551.

Emsley, P. (2017). Acta Cryst. D73, 203–210.
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta

Cryst. D66, 486–501.
Fischer, M., Shoichet, B. K. & Fraser, J. S. (2015). ChemBioChem, 16,

1560–1564.
Franzen, S., Thompson, M. K. & Ghiladi, R. A. (2012). Biochim.

Biophys. Acta, 1824, 578–588.
Fry, E. E., Grimes, J. & Stuart, D. I. (1999). Mol. Biotechnol. 12, 13–23.
Guengerich, F. P., Waterman, M. R. & Egli, M. (2016). Trends

Pharmacol. Sci. 37, 625–640.
Horrell, S., Antonyuk, S. V., Eady, R. R., Hasnain, S. S., Hough, M. A.

& Strange, R. W. (2016). IUCrJ, 3, 271–281.
Horrell, S., Kekilli, D., Sen, K., Owen, R. L., Dworkowski, F. S. N.,

Antonyuk, S. V., Keal, T. W., Yong, C. W., Eady, R. R., Hasnain,
S. S., Strange, R. W. & Hough, M. A. (2018). IUCrJ, 5, 283–292.

Horrell, S., Kekilli, D., Strange, R. W. & Hough, M. A. (2017).
Metallomics, 9, 1470–1482.

Inoue, I., Inubushi, Y., Sato, T., Tono, K., Katayama, T., Kameshima,
T., Ogawa, K., Togashi, T., Owada, S., Amemiya, Y., Tanaka, T.,
Hara, T. & Yabashi, M. (2016). Proc. Natl Acad. Sci. USA, 113,
1492–1497.

Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T.,
Ego, H., Fukami, K., Fukui, T., Furukawa, Y., Goto, S., Hanaki, H.,
Hara, T., Hasegawa, T., Hatsui, T., Higashiya, A., Hirono, T.,
Hosoda, N., Ishii, M., Inagaki, T., Inubushi, Y., Itoga, T., Joti, Y.,
Kago, M., Kameshima, T., Kimura, H., Kirihara, Y., Kiyomichi, A.,
Kobayashi, T., Kondo, C., Kudo, T., Maesaka, H., Marechal, X. M.,
Masuda, T., Matsubara, S., Matsumoto, T., Matsushita, T., Matsui,
S., Nagasono, M., Nariyama, N., Ohashi, H., Ohata, T., Ohshima, T.,
Ono, S., Otake, Y., Saji, C., Sakurai, T., Sato, T., Sawada, K., Seike,
T., Shirasawa, K., Sugimoto, T., Suzuki, S., Takahashi, S., Takebe,
H., Takeshita, K., Tamasaku, K., Tanaka, H., Tanaka, R., Tanaka,
T., Togashi, T., Togawa, K., Tokuhisa, A., Tomizawa, H., Tono, K.,
Wu, S. K., Yabashi, M., Yamaga, M., Yamashita, A., Yanagida, K.,
Zhang, C., Shintake, T., Kitamura, H. & Kumagai, N. (2012). Nat.
Photonics, 6, 540–544.

Keedy, D. A., Hill, Z. B., Biel, J. T., Kang, E., Rettenmaier, T. J.,
Brandao-Neto, J., Pearce, N. M., von Delft, F., Wells, J. A. & Fraser,
J. S. (2018). Elife, 7, e36307.

Kekilli, D., Moreno-Chicano, T., Chaplin, A. K., Horrell, S.,
Dworkowski, F. S. N., Worrall, J. A. R., Strange, R. W. & Hough,
M. A. (2017). IUCrJ, 4, 263–270.

Lomb, L., Barends, T. R. M., Kassemeyer, S., Aquila, A., Epp, S. W.,
Erk, B., Foucar, L., Hartmann, R., Rudek, B., Rolles, D., Rudenko,
A., Shoeman, R. L., Andreasson, J., Bajt, S., Barthelmess, M., Barty,
A., Bogan, M. J., Bostedt, C., Bozek, J. D., Caleman, C., Coffee, R.,
Coppola, N., DePonte, D. P., Doak, R. B., Ekeberg, T., Fleckenstein,
H., Fromme, P., Gebhardt, M., Graafsma, H., Gumprecht, L.,
Hampton, C. Y., Hartmann, A., Hauser, G., Hirsemann, H., Holl, P.,
Holton, J. M., Hunter, M. S., Kabsch, W., Kimmel, N., Kirian, R. A.,
Liang, M. N., Maia, F. R. N. C., Meinhart, A., Marchesini, S., Martin,
A. V., Nass, K., Reich, C., Schulz, J., Seibert, M. M., Sierra, R.,
Soltau, H., Spence, J. C. H., Steinbrener, J., Stellato, F., Stern, S.,
Timneanu, N., Wang, X. Y., Weidenspointner, G., Weierstall, U.,
White, T. A., Wunderer, C., Chapman, H. N., Ullrich, J., Strüder, L.
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Efficient sample delivery is an essential aspect of serial crystallography at both
synchrotrons and X-ray free-electron lasers. Rastering fixed target chips through
the X-ray beam is an efficient method for serial delivery from the perspectives of
both sample consumption and beam time usage. Here, an approach for loading
fixed targets using acoustic drop ejection is presented that does not compromise
crystal quality, can reduce sample consumption by more than an order of
magnitude and allows serial diffraction to be collected from a larger proportion
of the crystals in the slurry.

1. Introduction

Serial femtosecond crystallography (SFX) at X-ray free-elec-
tron lasers (XFELs) has become an important facet of the
crystallographers’ toolbox, allowing both time-resolved and
ground-state measurements of X-ray sensitive samples
(Schlichting, 2015). However, the opportunities that the high
peak brilliance and femtosecond duration of XFEL pulses
provide come with a challenge: the need to provide new
samples at the repetition rate of the X-ray source or detector.
Several approaches have been developed to meet this chal-
lenge ranging from liquid jets to high viscosity extruders, on-
demand droplet injectors coupled to a tape drive, and fixed
targets (Grünbein & Kovacs, 2019; Martiel et al., 2019). This
complementary range of delivery solutions means that an
approach can be chosen and tailored to best suit the experi-
ment at hand.

The success and impact of SFX has inspired the develop-
ment and implementation of serial synchrotron crystal-
lography (SSX), where many of the same sample delivery
techniques are used (Diederichs & Wang, 2017). The subse-
quent success of SSX has now driven the development of
synchrotron beamlines dedicated to serial crystallography,
such as P14.EH2 at PETRA III (http://www.embl-hamburg.de/
services/mx/P14_EH2/index.html), and this illustrates the
desire of structural biologists to exploit serial approaches.

A challenge common to many serial approaches is sample
consumption. The volume of sample consumed is many orders
of magnitude greater than that required for traditional
synchrotron approaches when a complete dataset may be
obtained from a single crystal held at 100 K. Indeed, the
sample requirements for a serial experiment are often an
unwelcome surprise for the first-time user of SFX or SSX, as
usually only a single ‘still’ image is collected from each crystal.
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This is reflected by developments to reduce sample con-
sumption for serial experiments such as flow-focusing for in-
flow SSX (Monteiro et al., 2019).

Recently, we have developed fixed target sample delivery as
a serial approach that works well at both synchrotrons and
XFELs. These are based on thin films (Doak et al., 2018) and,
predominantly for us, silicon nitride ‘chips’ (Ebrahim et al.,
2019). Typically, to load a silicon nitride chip, !100–200 ml of
crystal slurry is required. This slurry is pipetted over a chip
and crystals are drawn to the apertures through use of a weak
vacuum. Sufficient data for structure solution can typically be
obtained from a single chip.

Acoustic dispensing is a technique that uses high-frequency
acoustic waves to dispense small volumes of liquid. The
ejected droplets may contain protein crystals (Soares et al.,
2011; Roessler et al., 2016; Fuller et al., 2017), live cells
(Demirci & Montesano, 2007) or indeed almost any small
molecule (Teplitsky et al., 2015). Commonly referred to as
acoustic drop ejection (ADE), here we use a variant that
makes use of disposable dispensing cartridges allowing rapid
switching between samples (Leen, 2016). Using the commer-
cially available PolyPico pico-litre dispenser (https://www.
polypico.com) synchronized with compact, high-precision xyz
stages (http://www.smaract.com), we demonstrate the use of
ADE to dramatically reduce sample consumption for fixed
target serial crystallography.

2. Methods

The loading of fixed targets using acoustic dispensing is a two-
step process with a calibration step required prior to chip
loading. For convenience we physically separate these steps
[Figs. 1(a) and 1(b)]. The same PolyPico head dispenser was
used for both aspects of the experiment and was mounted on
kinematic mounts allowing transfer between calibration and
loading in a few seconds.

2.1. Drop calibration

For optimal loading of chips, the volume of droplets ejected
by the PolyPico dispenser should be calibrated for each crystal
slurry. Using a pipette and a tip-like adapter, the crystal slurry

is loaded into a cartridge which has a dispensing aperture
ranging from 30 mm to 150 mm in diameter. For the experi-
ments described here, we loaded 10–20 ml of slurry into
cartridges with any slurry not used easily recovered after the
experiment using the same pipette and adapter. The cartridge
aperture size is chosen based on the typical size of the crystals
in the slurry. In practice, we find that an aperture diameter
approximately twice the size of the crystals used works well
as a compromise between minimizing drop size and avoiding
clogging if larger crystals are present. The width, amplitude
and frequency of the acoustic wave applied to the cartridge
base must be tuned until stable droplets are ejected from the
crystal slurry. Ejected droplets are visualized using a high-
resolution camera and stroboscopic LED [Fig. 1(a)] with
image recognition software allowing real-time readback of
the average droplet volume. Typically, when using a 1 kHz
acoustic wave and a cartridge aperture of 100 mm, 80–100 pl
(approximate diameter 60 mm) droplets can be obtained. Once
the optimal parameters for ADE of crystal slurry have been
determined, chips can be loaded.

2.2. Chip loading

The setup for ADE loading of fixed targets is shown in
Figs. 1(b) and 1(c). Chips are mounted on a three-axis stage
and can be viewed through a high-resolution camera which
allows viewing of both fixed targets and droplets ejected by
the dispensing head. The tip of the dispensing head is within
0.5 mm of the surface of the chip. Following alignment of chip
fiducials, chips can be moved as previously described (Sherrell
et al., 2015). In this case the stages act as the ‘master’, sending
a TTL pulse to the dispensing head with droplets ejected on
demand when each aperture is reached. Following the ejection
of a user-defined number of droplets at 1 kHz, the stages move
to the next aperture on the chip. The loading of a chip with
25 600 positions takes less than 4 min and consumes less than
4 ml of slurry. To avoid dehydration, the chip and dispensing
head are enclosed in a high-relative-humidity environment
(>90%) [Fig. 1(b)]. Following loading, the chips are sealed
with a thin film (typically 6 mm) of mylar. Chips with a funnel-
shaped aperture (size of the small end of the funnel: 7 mm)
were used; the volume of each aperture was !160 pl,

and apertures are spaced by 125 mm
(centre-of-aperture to centre-of-aper-
ture distance).

In order to conserve sample and also
minimize the beam time required for
X-ray data collection, only the central
area of chips was acoustically loaded
(6 " 6 ‘city blocks’, 14 400 apertures) in
the experiments described here. In this
case, the time required to load a chip
was 2 min 15 s. In total, the complete
acoustic loading process including
alignment and loading takes approxi-
mately 5 min (full chip), and throughput
is equal to or faster than X-ray data
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Figure 1
Experimental setup for (a) calibration of ejected droplets and (b) chip loading; in each, the direction
of droplet ejection is shown in blue. (c) Schematic of chip loading from a similar viewpoint to (b)
with translation stages hidden and the cartridge highlighted in yellow.



collection. Chips were loaded by both using the ADE
approach described above and also, for comparison, manually
using a pipette.

2.3. Sample preparation

Microcrystals of chicken egg-white lysozyme (HEWL) were
prepared using an adaptation of a previously described
protocol. In brief, high-purity lysozyme powder (Sigma–
Aldrich L6876-5 G) was resuspended in 100 mM sodium
acetate pH 3.0 to a final concentration of 25 mg ml$1 and
mixed with an equal volume of crystallization buffer (16.8%
w/v sodium chloride, 4.8% w/v PEG 6000 and 0.06 M sodium
acetate pH 3.0) at room temperature. The mixture was
vortexed for 10 s and then left for an hour until crystal growth
saturation. Using this method, we obtained homogeneous
rectangular crystals with an average size of 10 mm " 10 mm "
15 mm. Microcrystals of copper nitrite reductase from
Achromobacter cycloclastes (AcNiR) ranging in size from
15 mm to 70 mm were grown using a protocol described
previously (Ebrahim et al., 2019). The concentration of crystals
in each slurry was estimated using a Hemocytometer cell
counter.

2.4. X-ray data collection

Following loading, chips were transferred to Beamline I24,
Diamond Light Source. Diffraction data were collected as
previously described (Owen et al., 2017) though only from the
central region of chips loaded by the PolyPico (14 400 aper-
tures), with data collection taking 4 min 20 s. Data were
collected using an X-ray energy of 12.8 keV, a beam size of
7 mm " 6 mm, 10 ms exposures and a flux attenuated to
8 " 1011 photons s$1.

Hit-rates were obtained using dials.stills_process (Winter et
al., 2018; Brewster et al., 2016, 2018) with up to ten lattices per
image indexed. Subsequent scaling and merging of data was
performed using PRIME (Uervirojnangkoorn et al., 2015). In
all cases the majority of indexed images contained a single
lattice with the percentage of single lattice images being 77%
(HEWL, PolyPico loaded), 81% (HEWL, pipette loaded),
85% (AcNiR PolyPico loaded) and 66% (AcNiR, pipette
loaded). In the following, we define the diffraction hit-rate as
the total number of indexed patterns divided by the number
of collected images.

3. Results

In preparatory experiments, we varied and defined the optimal
number of acoustically ejected droplets. When dispensing two
drops per single chip aperture, we observed higher hit-rates
than when using a single droplet. The dispensing of three or
more drops overflowed the apertures resulting in excess liquid
on the surface of the chip. Therefore, all of the results
presented here were obtained using two droplets per aperture.

Diffraction hit-rates for HEWL crystals loaded manually
and using acoustic dispensing as a function of crystal

concentration are shown in Table 1. As might be expected, in
both cases diffraction hit-rates increase with crystal concen-
tration. Also, for a given concentration, higher diffraction hit-
rates are obtained using pipette loading. However, acoustic
loading requires a significantly lower volume crystal slurry to
achieve these, as illustrated by the number of diffraction hits
obtained per dispensed microlitre of crystal slurry (Fig. 2).

Similar trends are seen for AcNiR crystals (Fig. 2, Table 2),
which significantly differ from HEWL crystals both in shape
and chemical composition of the crystallization conditions,
with an increasing hit-rate for both pipette and acoustically
loaded chips as a function of slurry concentration. Higher
diffraction hit-rates are also seen for pipette loaded chips at
the expense of increased sample consumption.

Using the crystal concentration measured as described
above, the number of crystals used in each experiment, and
hence the fraction from which diffraction was recorded, can be
estimated. We refer to this quantity as the absolute hit-rate
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Figure 2
Diffraction hits per unit volume of dispensed crystal slurry. Acoustic
dispensing results in more than a fivefold increase in hits per unit volume
of slurry consumed at all concentrations for HEWL and a tenfold
increase for AcNiR.

Table 1
HEWL loading parameters and hit-rates.

The diffraction hit-rate (DHR) and absolute hit-rate (AHR) are defined in the
text. Volumes dispensed (V) for the PolyPico are an upper bound: droplet
volumes vary from drop to drop so a conservative average value is used.

Loading
method

Crystal
concentration
(crystals ml$1)

V
(ml)

Calculated
crystals
dispensed

Indexed
patterns

DHR
(%)

AHR
(%)

Pipette 5 " 104 75 3750 2053 14.3 55
Pipette 1 " 105 75 7500 2129 14.8 28
Pipette 5 " 105 75 37500 4850 33.7 13
Pipette 1 " 106 75 75000 10462 72.6 14
PolyPico 5 " 105 3 1500 1311 9.1 87
PolyPico 1 " 106 3 3000 1763 12.2 59
PolyPico 1.5 " 106 3 4500 2883 20.0 64
PolyPico 2 " 106 3 6000 4573 31.8 76
PolyPico 2.5 " 106 3 7500 3355 23.3 45



and it is given for HEWL and AcNiR in Tables 1 and 2,
respectively. For pipette loading, it can be seen that, although
higher diffraction hit-rates are achieved by increasing the
crystal slurry concentration (this could also be achieved by
simply increasing the volume of slurry loaded onto the chip),
this is at the expense of the absolute hit-rate, with diffraction
recorded from a decreasing proportion of the crystals used in
the loading process. Although the diffraction hit-rate may be
lower for acoustically loaded fixed targets, a larger proportion
of the crystals grown produce a diffraction pattern.

Importantly, the loading method does not significantly
affect the quality of diffraction observed (Fig. 3). Both HEWL
and AcNiR crystals exhibit similar Rsplit and CC1/2 for both
acoustic and pipette loading, and in all cases data quality is

high. Differences in quality observed are of the same order as
chip-to-chip variation when using the same loading approach,
thus diffraction quality is not compromised by acoustic
loading.

For both pipette and acoustically loaded chips crystals are
observed to be predominantly randomly orientated on the
chips, illustrated by the stereographic projections in Fig. 4.
To generate these plots data were reindexed in P1 so no
symmetry equivalents are plotted. For more heavily loaded
chips we do see some indication of systematic orientations,
and this starts to become apparent in the case of pipette
loaded HEWL [Fig. 4(c)]. Two orthogonal ellipses with a
width of 70% at the centre of the projection become visible.
These are consistent with loaded crystals lying on the internal
walls of the chip apertures which are chemically etched along
the silicon 111 crystal planes 54.74% from the surface of the
chip (35.26% to the beam direction), with the ellipses remi-
niscent of stereographic projections of silicon etch planes as
illustrated by Seidel et al. (1990). The degree of observed
systematic orientation is likely to be dependent on the density
of sample on the chip, crystal size and morphology, and also
loading method, with acoustic loading less likely to yield
systematic orientations.
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Figure 3
Data merging statistics. Rsplit (solid line) and CC1/2 (dotted line) are
shown for HEWL (black and green) and AcNiR (red and blue) crystals
loaded on the chip with either PolyPico or a pipette. Scaling and merging
have been performed using PRIME on 12 546 and 13 563 integrated
images for HEWL and AcNiR, respectively.

Figure 4
Stereographic projections illustrating the crystal orientation of 1000
randomly selected crystals for each loading method and crystal type: (a)
pipette-loaded AcNiR, (b) PolyPico-loaded AcNiR, (c) pipette-loaded
HEWL and (d) PolyPico-loaded HEWL. The plots represent the
direction of the 001 hkl of each crystal (reindexed in P1) relative to the
beam direction (z) which is shown as the central ‘+’ into the page. A point
at 12 o’clock on the circular projection represents a 90% rotation of the
crystal around x whereas the point at 3 o’clock represents a 90% rotation
around y. Plots were produced using the module dials.stereographic_
projection (Winter et al., 2018).

Table 2
AcNiR loading parameters and hit-rates.

The diffraction hit-rate (DHR) and absolute hit-rate (AHR) are defined in
the text; V is the volume dispensed. Note that for pipette-loaded AcNiR,
diffraction data were collected from a full chip (25 600 apertures) in contrast to
all other data which were collected from 14 400 apertures.

Loading
method

Crystal
concentration
(crystals ml$1) V (ml)

Calculated
crystals
dispensed

Indexed
patterns

DHR
(%)

AHR
(%)

Pipette 1.2 " 105 150 18000 1185 4.6 6.6
Pipette 1.8 " 105 150 27000 1687 6.6 6.2
Pipette 2.5 " 105 150 37500 3574 14.0 9.5
Pipette 3.7 " 105 150 55500 4145 16.2 7.5
Pipette 8.5 " 105 150 127500 6223 24.3 4.9
Pipette 1.7 " 106 150 255000 6587 25.7 2.6
Pipette 3.7 " 106 150 555000 13061 51.0 2.4
PolyPico 4.3 " 105 3 1290 332 2.3 25.7
PolyPico 8.6 " 105 3 2580 878 6.1 34.0
PolyPico 1.7 " 106 3 5100 2023 14.1 39.7
PolyPico 2.2 " 106 3 6600 1979 13.7 30.0
PolyPico 4.4 " 106 3 13200 2526 17.5 19.1



4. Discussion

Acoustic dispensing provides a means of reducing sample
consumption for serial crystallography without compromising
crystal quality with high-quality diffraction observed using
both loading approaches. Acoustic dispensing has been
previously exploited in the context of sample delivery,
whereas here it is used for loading fixed targets that are
subsequently passed to the beamline. This decoupling of
acoustic ejection and X-ray data collection is advantageous as
time taken to optimize drop ejection, which varies with the
composition of the crystal slurry, does not impact the beam
time efficiency.

Optimal loading is obtained with crystals less than !50 mm
in size using cartridges with a 100 mm aperture. Increased hit-
rates are obtained as the crystal slurry concentration increases,
though settling of larger crystals or clumping can cause the
PolyPico aperture to clog with time. This may explain why
diffraction hit-rates do not increase as much as expected
at the highest slurry concentration (Fig. 2). At lower crystal
concentrations, we observe that the ejection process visibly
disturbs the crystal slurry within the cartridge, slowing any
settling process and multiple chips can be loaded from the
same cartridge. Any long-term crystal settling can also be
addressed by removing and reinserting the cartridge to
resuspend the crystal slurry. In order to minimize any potential
settling for high slurry concentrations, future loading setups
will either make use of a rocking system or cartridges will be
fed through a capillary fed by a syringe mounted on a rocker
as used by Fuller et al. (2017).

While higher diffraction hit-rates can be obtained using
traditional pipette loading, this is at the expense of increased
sample consumption and the proportion of prepared crystals
from which diffraction data are collected (i.e. the absolute hit-
rate) falls. To obtain a similar number of indexed images,
acoustic dispensing consumes tenfold less crystal slurry
(AcNiR, Fig. 2) than traditional pipette loading at the same
sample concentration. Acoustic loading has the additional
benefit that an increased fraction of the crystals produced for,
and consumed by, the experiment result in diffraction. The
success of acoustic loading is dependent on the chemical
composition and viscosity of the crystal slurry and the para-
meters of the acoustic wave need to be optimized for each
sample. As more viscous media may not be suitable for
acoustic dispensing and the effect of crystal morphology is as
yet unclear, acoustic loading of fixed targets is very much
a complementary technique to pipette loading. We have
demonstrated, however, that if samples are scarce, acoustic
loading can help ensure a larger fraction of crystals see the
X-ray beam and reduce the volume of sample required.
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Serial crystallography, at both synchrotron and X-ray free-electron laser light
sources, is becoming increasingly popular. However, the tools in the majority of
crystallization laboratories are focused on producing large single crystals by
vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron
crystallography. This paper presents several case studies and some ideas and
strategies on how to perform the conversion from a single crystal grown by
vapour diffusion to the many thousands of micro-crystals required for modern
serial crystallography grown by batch crystallization. These case studies aim to
show (i) how vapour diffusion conditions can be converted into batch by
optimizing the length of time crystals take to appear; (ii) how an understanding
of the crystallization phase diagram can act as a guide when designing batch
crystallization protocols; and (iii) an accessible methodology when attempting to
scale batch conditions to larger volumes. These methods are needed to minimize
the sample preparation gap between standard rotation crystallography and
dedicated serial laboratories, ultimately making serial crystallography more
accessible to all crystallographers.

1. Introduction

1.1. Modern serial crystallography

Serial macromolecular crystallography (SMX), the collec-
tion and merging of data from multiple crystals, is not new.
Prior to the widespread adoption of cryo-cooling methods in
the early 1990s, data sets derived from many crystals were the
norm. For certain types of protein crystal, particularly those of
viral capsid proteins, cryo-cooling is not possible and the
merging of multiple small wedge rotations is a necessary and
effective way of acquiring a complete data set (Fry et al., 1999).
The availability of crystals of limited size may also require the
use of a microfocus beamline and a similar multi-crystal–
multi-wedge approach (Evans et al., 2011). However, since the
development of X-ray free-electron laser (XFEL) radiation
sources, the number of Protein Data Bank (PDB; https://
www.rcsb.org/) depositions from SMX methods has increased
[Fig. 1(a)]. The XFEL beam destroys the sample upon inter-
action (Neutze et al., 2000), precluding wedged data collection,
and ultimately takes serial data collection to its logical
extreme, i.e. one image per crystal. This necessitates the need
for the delivery of a steady stream of hundreds or thousands of
micro-crystals into the path of the X-ray beam in order to
sample reciprocal space appropriately.
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The sample requirements of modern
SMX delivery approaches are, there-
fore, radically different from those of
the single-crystal or conventional multi-
crystal experiments, and so are the
delivery approaches that have been
devised to handle them. Broadly, four
sample-delivery methods exist for SMX
at XFELs and synchrotrons: jets
(DePonte et al., 2008; Sierra et al., 2016;
Weierstall et al., 2012; Oberthuer et al.,
2017), extruders (Weierstall et al., 2014;
Botha et al., 2015; Martin-Garcia et al.,
2017; Weinert et al., 2017), acoustic
drop ejectors (ADE) (Roessler et al.,
2013, 2016; Fuller et al., 2017) and fixed
targets (Frank et al., 2014; Feld et al.,
2015; Hunter et al., 2015; Murray et al.,
2015; Sherrell et al., 2015; Roedig et al.,
2017). These categories are both broad
and rapidly evolving due to the relative
youth of modern SMX. This means
there is a lack of standardization across
facilities and laboratories, presenting a
confusing picture to crystallographers
wanting to practise SMX. This lack of
standardization also makes direct
comparisons challenging [see Grünbein
& Nass Kovacs (2019) for a thorough
overview]. However, all have different
ideal sample requirements. The aim of
the experiment should dictate the type
of approach used. Therefore, this will
also dictate the sample requirements.
The delivery method and sample should
then be combined with the optimum
source to ensure acceptable hit rates for the experiment to be
completed within the allocated beamtime. For example, if the
investigation is a time-resolved study of a light-activated
enzyme–substrate complex, a fixed-target approach could be
used at a low-repetition-rate source, e.g. SACLA, Japan
(Ishikawa et al., 2012) or SwissFEL, Switzerland (Milne et al.,
2017). The fixed targets developed at Diamond Light Source,
UK, are best loaded with 10–30 mm crystals at a concentration
of 5–10 ! 105 crystals ml"1 and require 100–150 ml of slurry
per load (Davy et al., 2019), but how can such a sample be
created? What is the total sample volume that will be required
during the experiment? The investigator wanting to perform
this, or any, SMX experiment must grapple with these sample
requirements, and it is these requirements that remain a
serious impediment to the broader application of serial
methods.

1.2. The re-emergence of batch methods

The large volumes of micro-crystalline samples required for
SMX experiments also dictate the type of crystallization

method to be used. Fig. 1(b) compares the relative abundance
of different crystallization strategies over the same period for
single-crystal crystallography and SMX. Vapour diffusion
methods are significantly less popular for SMX than for single-
crystal methods. SMX studies still use vapour diffusion
methods but at a reduced frequency. Their place has princi-
pally been filled by batch methods, but also lipid cubic phase
(LCP) and in vivo methods. The reason for the dominance of
batch methods is perhaps not surprising, given an under-
standing of the crystallization process. The crystallization
phase diagram [see Reis-Kautt & Ducruix (1992) and Rupp
(2015) for in-depth descriptions of the kinetics and thermo-
dynamics] highlights the problem with methods such as vapour
diffusion [see Fig. 2(a)]. All crystallization methods apart from
the batch approach rely upon a transition phase where the
crystallization component concentrations must be ‘driven’ to
the nucleation region by some process [Fig. 2(b)], e.g. drop
equilibration (vapour diffusion).

This transition phase has several disadvantages, best
exemplified by considering a vapour diffusion experiment.
Firstly, the exact trajectory of the experiment is difficult to
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Figure 1
A summary of PDB depositions and crystallization methods from SMX experiments. (a) The
frequency, plotted by year, of PDB depositions from serial experiments collected at XFEL and
synchrotron light sources. PDB entries for this figure were selected on the basis of the number of
reported crystals (>10), the reported radiation source and the indexing software used. The asterisk
(*) indicates that the data from 2018 are not complete. (b) A comparison of the crystallization
methods used in the PDB as a whole (left) with the serial experiments identified in panel (a) (right)
over the same time period.



ascertain. The starting point (protein and reservoir concen-
trations) and finishing point (appearance of crystals) can be
inferred, but not the journey between the two, i.e. the exact
conditions that gave rise to nucleation and subsequent crystal
growth are not easy to determine. Secondly, as the component
concentrations within the drop mixture have to ‘move’ into the
nucleation zone, it can be difficult, though not impossible,1 to
penetrate the nucleation zone deeply [see blue dotted lines in
Figs. 2(a) and 2(b)]. Transitionary phase micro-crystallization
therefore requires a high rate of nucleation at the edge of the
nucleation region. Finally, a successful condition in a small
volume can be difficult to scale to a large volume. The exact
kinetics within the drop might be essential for successful
crystallization. Therefore, when scaling the experiment up to
larger volumes, one must consider the additional challenge of
maintaining the respective volumes of the reservoir, drop and
space between.

In contrast with vapour diffusion, a batch experiment
attempts to hit the nucleation zone immediately upon mixing
of the protein and reservoir solutions (McPherson, 1982). The
combination should create a supersaturated solution of
protein which nucleates immediately. Possible batch crystal-
lization trajectories are plotted in Fig. 2(c). Unlike vapour
diffusion, the entire nucleation zone can be exploited in the
experiment, potentially resulting in more nucleation. Scaling
of the experiment is also simpler, since larger volumes of the
reservoir and protein solution should produce similar results
when mixed. A variant of the batch method, here called
‘seeded batch’, uses seeds (see Appendix A1 in the supporting
information for a discussion of different types of seeds) as
nucleants [Fig. 2(d)]. If the phase diagram is known, different
regions of the metastable zone can be targeted to achieve
different results. There are still questions as to the exact
conditions that give rise to crystals in a batch experiment, such
as how the protein and reservoir components interact in the
pre-mixing time. However, these micro-scale effects will most
likely be protein-condition specific and resolved naturally
during the process of optimization.

The literature is not devoid of micro-crystallization exam-
ples, but a complete description of a method to make the
transition from vapour diffusion to batch crystallization is
currently lacking. Several papers have described techniques to
identify micro-crystallization conditions using vapour diffu-
sion. Luft et al. (2015) and Lee et al. (2018) both showed how
nonlinear optics could be used to identify conditions which
favour micro- (and nano-)crystalline growth in 96-well sitting-
drop plates. Lee et al. (2018) also showed how adapting the
vapour diffusion protocol using a ‘controlled evaporation’
approach increases the propensity for micro-crystallization.
Both of these studies effectively focused on re-screening
crystallization cocktails to find new conditions which yielded
micro-crystals but did not suggest how then to scale these
conditions for practical SMX. Other studies have focused on

how to scale methods once a suitable condition has been
identified. Ibrahim et al. (2015), using the case of Photosystem
II, showed how different protein seed preparations and an
understanding of the phase diagram could be used to find an
optimum seeding protocol, whereas Kupitz et al. (2014)
described practical large-scale methods, such as batch tech-
niques and a novel adaptation of free-interface diffusion
(FID). Darmanin et al. (2016) demonstrated how dynamic
light scattering and powder diffraction can help test crystals
prior to SMX beamtime and help ensure the sample is well
optimized for the technique. However, a complete description
of a method to make the transition from an initial vapour
diffusion crystallization condition to a large-scale batch crys-
tallization condition is still lacking.

This paper endeavours to shed light on how to perform this
transition from nanolitre vapour diffusion crystallization to
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Figure 2
Examples of crystallization trajectories plotted onto phase diagrams.
Protein concentration and a reservoir component ‘variable’ concentra-
tion are plotted on the y and x axes, respectively. The ‘variable’ could be
any factor which may influence the crystallization experiment, e.g. PEG,
salt or buffer concentration. The purple lines show the boundary of
protein supersaturation [adapted from Chayen et al. (1992)]. The red
circles and arrows denote the starting and finishing points of a
crystallization experiment. The regions of the diagram are labelled in
panel (a): precipitation, nucleation, metastable and undersaturated, and
these are highlighted in pink, green, blue and yellow, respectively. The
blue dotted lines show the theoretical limit of nucleation-zone
penetration for non-batch methods. Potential crystallization trajectories
for the transitionary phase methods of free-interface diffusion (i), dialysis
(ii), evaporation (iii) and vapour diffusion (iv) are highlighted. (b)
Highlighting the trajectory of a vapour diffusion experiment. The
components of the drop must transition from outside to inside the
nucleation zone through some process. (c), (d) More diverse examples of
batch and seeded-batch experiments, respectively. Batch experiments
[panel (c)] are not bound by the nucleation-zone limit and can, therefore,
theoretically reach every part of the region. The trajectories v, vi and vii in
panel (d) show potential trajectories for growing large single crystals,
micro-crystals and micro-crystals from a less-concentrated sample,
respectively.

1 It is potentially possible to cross the nucleation limit line using a ‘controlled
evaporation’ approach (Lee et al., 2018) that rapidly shifts the crystallization
drop deeper into the nucleation zone, and can thereby increase the nucleation
rate.



large-scale batch crystallization. This task is split into three
stages: (i) optimizing crystals grown using vapour diffusion
methods towards conditions appropriate for batch crystal-
lization by finding the nucleation zone, (ii) identifying
promising batch crystallization strategies by plotting a phase
diagram and, finally, (iii) demonstrating a practical approach
to scaling batch conditions to create the large volumes
(>100 ml) of micro-crystalline slurries often needed for SMX
experiments. Frequently observed problems during scaling
and other crystallization tips are presented in the supporting
information.

2. Methods

2.1. PDB analysis

2.1.1. Data gathering. The PDB analysis was conducted
using data gathered on 24 July 2019. Experimental crystal-
lization conditions were extracted from the PDB archive
online. Of the 134 321 PDB entries based on crystal diffraction
(X-ray, electron and neutron), 110 858 included information
about how the protein was crystallized. Manual inspection of
the method types led to the division of these methods into 18
broad types: vapour diffusion (sitting and hanging drop),
batch, evaporation, LCP, diffusion, dialysis, counter-diffusion,
in vivo, temperature change, FID, spontaneous growth, dilu-
tion, concentration, connected bilayer, lyophilization, centri-
fugal crystallization and gel acupuncture. In the few cases
where the method was completely ambiguous, the crystal-
lization method was taken from the associated publication.

2.1.2. SMX analysis. A list of PDB IDs was created by
selecting SMX indicators from information contained within
the PDB header. These indicators were (i) the number of
reported crystals used in the experiment (>10 was used as an
arbitrary indication of a serial experiment), (ii) the radiation
source, e.g. SACLA or FREE ELECTRON LASER, and (iii)
the indexing software used, e.g. CrystFEL (White et al., 2016)
or cctbx.xfel (Brewster et al., 2018). Any PDB entry which
fulfilled one or more of these conditions was considered an
SMX experiment. These criteria gave a data set of 409 PDB
IDs, consisting of 248 and 161 from XFEL and synchrotron
light sources, respectively.

2.1.3. Precipitant equilibration time analysis. Precipitant
concentration data were extracted from PDB experimental
crystallization conditions for the precipitants polyethylene
glycol (PEG) 8000, PEG 1000, PEG 400, 2-methyl-2,4-pen-
tanediol (MPD), NaCl and (NH4)2SO4, comprising 5259, 1421,
10 013, 3087, 9049 and 5020 data points, respectively.
Concentrations of <5% w/v or v/v and <0.5 M were considered
likely to be only additives rather than primarily precipitants
and were, therefore, excluded from the analysis. To estimate
the equilibration times (90% of initial reservoir concentration
at 293 K) for the different precipitant concentrations, single-
phase exponential decay curves (Prism 8; GraphPad Software,
San Diego, California, USA) were fitted to the data presented
by Forsythe et al. (2002). Equilibration times for different
precipitants were then extrapolated from the decay curves.

2.2. Protein preparation

2.2.1. UbiX. UbiX protein was produced as previously
described (White et al., 2015). Briefly, BL21 (DE3) Escherichia
coli cells (NEB) transformed with pNic28-Bsa4 containing
Pseudomonas aeruginosa UbiX, codon-optimized for E. coli,
were grown at 310 K in 22 l of Terrific Broth in a fermenter
with constant aeration. The cells were induced with isopropyl
!-d-1-thiogalactopyranoside (IPTG) at OD600 ’ 0.8, at which
point the temperature was reduced to 291 K for 18 h. Cells
were harvested by centrifugation at 6000g for 10 min. A mass
of 200 g of cells was resuspended in 50 mM Tris pH 8.0, 0.5 M
NaCl, supplemented with 0.1 mg ml"1 DNase, 0.1 mg ml"1

RNase and cOmplete protease inhibitor (Sigma–Aldrich),
before homogenization by French Press at 20 kpsi (1 psi ’
6893 Pa). The resultant lysate was clarified by ultra-
centrifugation at 125 000g for 1 h before being loaded onto
50 ml of Ni-NTA agarose (Qiagen) in a gravity flow column.
The resin was washed 2 ! 4 times with lysate buffer containing
10 mM imidazole and then 40 mM imidazole. Bound UbiX
was then eluted from the resin using 50 mM Tris pH 8.0, 0.5 M
NaCl, 0.25 M imidazole, before desalting into 20 mM Tris pH
8.0, 0.2 M NaCl on P-6DG resin (BioRad).

2.2.2. FutA. The FutA gene from Prochlorococcus MED4
was inserted into a pET-24b(+) vector, transformed into E.
coli BL21 (DE3) cells (NEB) and grown at 310 K in 1 l of
lysogeny broth. At OD600 ’ 0.4 the temperature was reduced
to 291 K, and then at OD600 ’ 0.6 cells were induced with
IPTG and incubated for 18 h. Cells were harvested by two
rounds of centrifugation at 5000g.

A mass of 2–4 g of cells was resuspended in IBB buffer
(0.1 M Tris, 0.5 M NaCl, 1% Triton-X, 5 mM MgCl2, 10 mM
!-mercaptoethanol). Cells were lysed by incubation with
50 mg of lysozyme and sonication, and then the inclusion
bodies were washed by three cycles of 20 ml IBB buffer and
centrifugation (40 min at 125 000g and 277 K). The inclusion
bodies were dissolved in 20 ml of 0.2 M Tris pH 9.0, 6 M urea
and 10 mM !-mercaptoethanol, incubated for 1 h at 277 K,
and harvested by centrifugation for 40 min at 125 000g and
277 K.

FutA was refolded by rapidly diluting the supernatant into
2 l of 0.2 M Tris pH 9.0, 0.2 M NaCl, 0.4 M l-Arginine, 0.1 mM
NH4Fe(SO4)2 and incubating at 277 K for 48 h. The refold
solution was concentrated to 150 ml using an Amicon stirred
cell (Merck) and dialysed overnight in 2 l of 100 mM Tris pH
9.0, 50 mM NaCl. The dialysed solution was loaded onto a 5 ml
HiTrap SP XL column (GE Healthcare) equilibrated in 0.1 M
Tris pH 9.0, 50 mM NaCl. The protein was eluted by the
addition of 0.1 M Tris pH 9.0, 1 M NaCl and the resulting
fractions containing FutA were concentrated to 80 mg ml"1.

2.3. Protein crystallization

2.3.1. UbiX. Initial crystallization trials of UbiX used
96-well three-drop SWISSCI plates, with protein at 30, 20 and
10 mg ml"1 supplemented with 0.2 mM flavin mononucleotide
(FMN). UbiX was mixed in a 1:1 ratio with precipitant,
in 600 nl drops. Crystals were grown at 294 K. Multiple
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conditions were found to produce cubic crystals from sparse-
matrix screening of UbiX; of these, 0.1 M MES pH 6.5, 1.6 M
ammonium sulfate was chosen for optimization.

A phase diagram was made over two 96-well three-drop
SWISSCI plates, varying the ammonium sulfate concentration
on the horizontal axis from 0.1 to 3.0 M with constant 0.1 M
MES pH 6.5. The UbiX concentration was varied along the
vertical axis and split over the two plates, starting from
5 mg ml"1 and increasing to 80 mg ml"1 in 5 mg ml"1 incre-
ments. Each concentration of UbiX was supplemented with
0.2 mM FMN prior to crystallization. Two 300 nl drops per
well were set up, one drop containing a 1:1 protein-to-preci-
pitant ratio and the other containing a 3:2:1 ratio of protein to
precipitant to seeds. The seed stock was made from the initial
condition identified in the sparse-matrix screen; crystals from
five drops were added to 50 ml of reservoir solution and
crushed using a Hampton Seed Bead, with 90 s of vortexing.

2.3.2. FutA. To grow seed crystals of FutA, 52 mg ml"1

FutA solution was crystallized in 24-well XRL plates (Mol-
ecular Dimensions) containing 0.2 M NaSCN and varying
concentrations of PEG 3350 from 10 to 20%(w/v). FutA and
precipitant were mixed in a 1:1 ratio in 1 ml drops and the plate
incubated at 294 K. FutA seed stocks were made by pooling
ten 1 ml drops, adding 40 ml of 20% PEG 3350 and vortexing
the solution with a Hampton Seed Bead for 180 s. A phase
diagram was created as described in Section 2.4. The FutA and
precipitant concentrations were varied between 18.75 and
80.00 mg ml"1 in eight steps, and between 5 and 40%(w/v) in
12 steps, respectively, with a constant concentration of 0.2 M
NaSCN applied to all reservoir solutions.

For batch crystallization, FutA (52 mg ml"1), FutA seed
stock and crystallization buffer were mixed in a 1:1.5:1.5 ratio.
Crystallization buffer [38%(w/v) PEG 3350, 0.25 M Tris
pH 7.1] was mixed with FutA solution and vortexed for 3 s.
FutA seeds, diluted 1:100 in 20%(w/v) PEG 3350, were added
to the crystallization solution, which was then vortexed for
10 s. This mixture was incubated at 294 K for approximately 1–
2 h and the micro-crystals were used fresh for any subsequent
experiments.

2.4. Phase diagram crystallization experiments

With the exception of UbiX, all phase diagrams were
generated from Greiner 96-well CrystalQuick X plates by
varying the protein and precipitant concentrations over the
vertical and horizontal axes, respectively. Each well contained
30 ml of the reservoir solution. Two drops of 300 nl were set up
within each well, one drop containing only protein and
precipitant (1:1 ratio) and the other containing protein,
precipitant and seeds in a 3:2:1 ratio. The plates were incu-
bated at 293 K in a ROCK IMAGER (Formulatrix) and
imaged every 3 h for 24 h.

3. Transitioning from vapour diffusion to batch

Modern serial crystallography projects focus predominantly
on proteins where a crystal structure of the protein of interest

is already known [though there are notable exceptions, such as
Sawaya et al. (2014) and Colletier et al. (2016)]. Therefore, the
vast majority of SMX projects are likely to evolve from work
in which crystals can already be grown and most probably in
vapour diffusion plates. This paper will focus on the process of
transitioning from a small-scale (<0.2–2.0 ml) vapour diffusion
experiment to a large-scale ($100 ml) batch protocol. Tech-
niques such as second-order nonlinear imaging of chiral
crystals (SONICC) (Luft et al., 2015; Lee et al., 2018) and
dynamic light scattering (Abdallah et al., 2015), although
extremely useful in identifying conditions with micro-crystals,
are not yet in the standard crystallographers’ toolbox and
have, therefore, been avoided here. The tools that are
described herein were chosen for either their widespread
adoption or their relatively low cost, in the hope that the
methods proposed are translatable to the majority of crystal-
lization laboratories.

3.1. Identifying a batch-like crystallization process in a
vapour diffusion crystallization condition

The equilibration time of a sitting-drop experiment is
dependent upon the composition of both the drop and reser-
voir volumes and on the volume of air in the well (Luft et al.,
1996; Forsythe et al., 2002; Martins et al., 2008). An under-
standing of the effect that drop components have on the drop
equilibration time and knowledge of when crystals appear give
an insight into the major crystallization ‘force’, i.e. the process
that is driving crystallization, within the drop. Does protein
crystallization require the equilibration of the drop compo-
nents to find the nucleation zone (vapour diffusion), or is the
nucleation zone found simply by mixing the drop components,
with crystallization beginning immediately (batch)?

Fig. 3(a) shows the principal precipitant concentrations for
all vapour diffusion experiments that were reported and could
be extracted from PDB entries (for example, https://www.rcsb.
org/pdb/explore/materialsAndMethods.do?structureId=100d)
using either PEG (400, 1000 or 8000) and/or salt-based [NaCl
and (NH4)2SO4] precipitants. Calculated equilibration times
[extrapolated from principal precipitant concentrations using
values calculated by Forsythe et al. (2002)] are shown in
Fig. 3(b). Although these equilibration times are based upon
mono-component solutions where equilibration has been
shown to be longer than in more complex mixtures (Luft &
DeTitta, 1995), the broad trend is still applicable. The fact that
longer equilibration times are observed for PEG precipitants
means that, if crystals appear rapidly (within the first 12–24 h
of a vapour diffusion experiment), then although the drop
equilibrium will already be shifting, the crystallization ‘force’
is still more likely to be ‘batch like’ than pure vapour diffusion.
A batch-like process may also be true for rapidly appearing
crystals under salt-based conditions; however, if crystals
appear after 4–5 days, the drop equilibration is probably
complete, meaning that, again, the crystallization force is more
likely to be batch like.

Knowledge of how crystallization time and drop equilibra-
tion intersect has two implications. Firstly, by limiting (in the
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case of PEG precipitants) or lengthening (generally, in the
case of salt precipitants) the time horizon of a vapour diffusion
experiment, vapour diffusion crystallization conditions can be
screened for batch-like conditions. Secondly, and very practi-
cally, the hunt for batch-like conditions can be done in small-
volume (200 nl) 96-well sitting-drop plates, which are already
widely used and integrated into most crystallization facilities.

At this point, it is also worth mentioning microbatch
methods (Chayen et al., 1990, 1992), which were initially
designed to make batch crystallization more compatible with
robotic methods. This paper focuses on using vapour diffusion
tools to make the conversion into batch as these are generally
more widely used than microbatch, but the conversion could
also be made using microbatch techniques instead (Chayen,
1998). However, successfully growing crystals in microbatch
plates is not necessarily a marker of a batch-like condition, i.e.
hitting the nucleation zone immediately upon mixing protein
and precipitant. This is because evaporation occurs through
the oil covering the microbatch drop, changing the concen-
tration of crystallization solution components (Chayen, 1998).
Indeed, this evaporation can even be exploited to aid crys-
tallization by tailoring the mixture of mineral oils used to
cover the crystallization drop to allow more evaporation
(D’Arcy et al., 2003). Ultimately, this evaporation process
means that crystals grown in a microbatch experiment may
suffer the same transitionary phase problems as described for
vapour diffusion crystallization, making it difficult to pinpoint
the nucleation zone and the exact concentration of compo-

nents in the condition required for crystal nucleation. Never-
theless, crystallization time in microbatch, like in vapour
diffusion, could very likely act as a guide to help identify the
nucleation zone, but it might add a step in the process of
transitioning to true batch crystallization.

3.2. Optimizing for batch crystallization

Upon examination of the crystallization time, if the protein
of interest already crystallizes in a batch-like process, the
nucleation and metastable regions of the condition can be
explored (see Section 4). If the crystallization condition is not
already batch like, the crystallization time can act as a rough
guide as to how far a given condition is from the nucleation
region. Therefore, by varying drop component concentrations
and using either a shorter (PEG-based conditions) or a longer
(salt-based conditions) crystallization time as the optimization
metric, a batch-like condition can be discovered.

In theory, a true vapour diffusion experiment could start
anywhere in the phase diagram. However, given the PEG and
protein concentrations typically used in sparse-matrix
screening, the most likely starting region is as highlighted in
Fig. 3(c). A simple test to assess whether a vapour diffusion
condition begins in the metastable region is to add seeds to the
crystallization experiment. The addition of seeds to a super-
saturated protein solution should produce crystals rapidly and
can therefore act as a further guide in optimization. Some
other potential paths are listed here and an example of the
steps taken to move from vapour diffusion to a batch-like
process is shown in Appendix A2 in the supporting informa-
tion.

(i) Multivariate experimental design. Essentially, instead of
limiting crystallization optimization to a two-dimensional
approach, it is better to explore a wider region of ‘crystal-
lization space’ by varying all components of the crystallization
drop simultaneously [for a full description see Shaw Stewart &
Mueller-Dieckmann (2014)]. The XSTEP package, from
Douglas Instruments, is available to do this.

(ii) Changing the ratio of protein to reservoir volume in the
drop. Most crystallization screening starts at a 1:1 protein-to-
reservoir volume ratio. However, changing this will shift the
starting point on the phase diagram diagonally, exploring
different areas of the diagram.

(iii) Sparse-matrix micro-seeding. If the current condition is
not yielding anything positive, the researcher can look for new
crystallization conditions using seeds as random nucleants
(Ireton & Stoddard, 2004; D’Arcy et al., 2007). This method
can identify novel reservoir conditions which may have a more
batch-like propensity.

4. Exploring the metastable and nucleation regions

Once a batch condition has been discovered, a point in the
nucleation zone has also been discovered. This condition can
then be used as an anchoring point to discover the size and
shape of the nucleation and metastable regions of the phase
diagram. Knowledge of these regions is of great utility when
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Figure 3
Manipulating vapour diffusion crystallization conditions into batch. (a),
(b) Box-and-whisker plots of the submitted PDB precipitant concentra-
tions from vapour diffusion crystallization experiments and their
extrapolated equilibration times (time to 90% reservoir concentration),
respectively. The diffusion times were calculated from data given by
Forsythe et al. (2002). (c) The archetypal phase diagram, showing the
likely area where the majority of vapour diffusion crystallization
experiments begin (dotted line). (d) A design of a crystallization
experiment in a two-drop 96-well sitting-drop plate to determine the
phase diagram of the protein–precipitant mixture. One drop contains
only protein and reservoir solution and the other contains protein,
reservoir and seed solution, allowing the plotting of the nucleation and
metastable zones, respectively.



attempting to scale to larger volumes, since parameters such as
protein concentration, crystal size and nucleation rate can be
factored into the scaling arithmetic, ultimately leading to
better outcomes.

4.1. Designing a phase diagram experiment

Once the parameters of a batch-like experiment have been
identified, it becomes straightforward to generate a phase
diagram. This can be done by taking the precipitant and
protein and varying their concentration to form the x and y
axes of the plot. A two-drop-per-well experiment can be
particularly effective [Fig. 3(d)]. The first drop should
comprise the protein and reservoir mixture, while the second
should contain a mix of protein, reservoir and seeds; a 3:2:1

ratio is a good place to start (Ireton & Stoddard, 2004) (see
Section 2.4). The results from the first drop will effectively plot
the nucleation region, as only protein and precipitant
concentrations that hit the nucleation zone will give rise to
crystals and be observed. In the second drop, drops in the
nucleation and metastable region should both yield crystals, as
the seeds will act as nucleants and allow crystal growth. A
comparison between the two drops should allow all four
regions of the phase diagram to be determined.

4.2. Phase diagram examples

FutA, a periplasmic iron-binding protein associated with an
Fe3+ uptake ABC transporter from Prochlorococcus MED4
(Polyviou et al., 2018), and UbiX, a flavin prenyltransferase
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Figure 4
Phase diagrams for FutA and UbiX. The raw plots for Prochlorococcus MED4 FutA and P. aeruginosa UbiX are shown in panels (a) and (b),
respectively. The plots are based on two vapour diffusion crystallization experiments, with and without protein crystal seeds (see Section 4.1). The size of
each circle corresponds to the approximate number of crystals observed in the crystallization drop. The opaque and shadowed circles show the number of
crystals present from drops with no seeds and seeds, respectively. The red lines refer to the approximate boundaries between the different zones of the
diagram. (c), (d) Representations of the plots shown in panels (a) and (b), respectively: darker shading indicates regions of higher nucleation, grey
hatching shows drops where precipitation was visible, and the pink shading in the UbiX plot [panel (d)] highlights the region where a tetragonal crystal
form appears. The crystallization drop images in panel (c) show the different levels of nucleation observed in both the seeded and un-seeded conditions.
The images in panel (d) show the two different crystal forms of UbiX. The red and blue scale bars in the images denote 600 and 300 mm, respectively.



from P. aeruginosa involved in ubiquinone biosynthesis
(White et al., 2015), make interesting case studies of experi-
mentally determined phase diagrams (two further phase
diagrams are presented in Appendix A3 in the supporting
information). The FutA phase diagram [Figs. 4(a) and 4(c)],
when crystallized in 0.2 M NaSCN and PEG 3350, is striking,
because the nucleation zone does not have the expected bow
shape, illustrating the importance of experimental determi-
nation of the phase boundaries. The nucleation rate was
somewhat proportional to both protein and precipitant
concentrations. However, protein precipitation was observed
when the precipitant was further increased. The basal
nucleation rate was relatively low, so a seeded-batch protocol
was developed (see Section 5.1).

UbiX, when crystallized in ammonium sulfate, produced
two different crystal forms as confirmed by X-ray diffraction:
cubic and tetragonal (data are not shown). The tetragonal
form was associated with poorer quality (lower resolution)
diffraction, so the cubic form was the goal of the crystallization
experiment. Fortunately, the phase diagram showed that the
tetragonal and cubic crystal forms were created from rela-
tively distinct regions of the phase diagram [Figs. 4(b) and
4(d)]. Tetragonal crystals only appeared at very low precipi-
tant concentrations [pink shaded area in Fig. 4(d)], whereas
the cubic form was favoured at higher precipitant concentra-
tions. The barrier between protein precipitation and the
nucleation region was relatively clearly defined: drops
contained either crystals or precipitation, with both rarely
occurring together. Like FutA, the nucleation rate could be
influenced by precipitant concentration, but not greatly, again
suggesting that perhaps a seeded-batch protocol would be
more appropriate. A description of the scaling of UbiX batch
crystallization to larger volumes is given in Appendix A4.

5. Scaling batch conditions to larger volumes

Once an appropriate condition or conditions have been
identified, the next task is to attempt to scale these batch or
seeded-batch conditions, aiming for an eventual final volume
of >50 ml but really as large as is feasible and appropriate.
Scaling can be a daunting and frustrating prospect and not
without reason. Protein volumes and therefore sample
consumption will increase greatly. This paper cannot present
any hard and fast rules, only a collection of ideas and
suggestions. Like a cliff diver, at some point you have to take
the plunge.

5.1. Optimizing crystal size and concentration

Creating a protocol where the final size of the micro-crystals
can be systematically changed is a huge advantage (Dods et al.,
2017). Crystal size can be optimized to the sample-delivery
approach and other experimental factors, such as the required
diffusion time for a ligand or the light penetration depth.
Crystal concentration (crystals per millilitre) will ultimately be
determined by the nucleation rate and is inversely propor-
tional to crystal size. That is to say, the greater the level of

nucleation, the greater the number of crystals that must grow
from the finite amount of protein in the batch condition, so the
smaller the crystals will be. However, whereas crystal
concentration can be manipulated by the removal or addition
of buffer after completion of the crystallization experiment,
size homogeneity has to be tailored at the crystallization step.
Therefore, although crystal concentration is an important
consideration due to its relationship to crystal size, ultimately
crystal size and size homogeneity should be the key heuristics
in the scaling process as these cannot be changed (that said,
see Table 2 in the supporting information for some limited
advice concerning crystal crushing).

A hemocytometer [a small particle counter – Fig. 10(e) in
the supporting information] allows the experimenter to assess
a representative sample of the micro-crystals from a given
crystallization experiment, allowing both their size range and
the concentration to be estimated. Fig. 5 shows how this can be
performed using FutA as an exemplar.

The process is as follows. During a large-scale (>20 ml)
batch experiment, take regular aliquots (2.5–5.0 ml) of the
crystallization experiment and view in a hemocytometer
[Fig. 5(a)]. Ensure the batch crystallization experiment is
homogeneous before taking an aliquot, and make a note of the
number of crystals and their size distribution [Figs. 5(b) and
5(c)]. These data can then be used to compare different batch
conditions and iterate towards an ideal protocol for a given
sample-delivery approach, e.g. probing alterations in precipi-
tant and/or protein concentrations or optimizing the ratios of
components in the crystallization solution. It should also be
noted that it is theoretically possible that the taking of these
aliquots could hinder protein crystallization. However, if such
effects from collecting these aliquots do occur, they have yet
to be observed.

The power of this technique is shown in the case of FutA.
From the initial phase diagram, 52 mg ml"1 of FutA solution,
mixed in a 1:1 ratio with 0.2 M NaSCN, 12.5%(w/v) PEG 3350,
was selected as a starting point for a seeded-batch experiment.
However, as can be seen from Fig. 5 this was not ideal as the
crystals were not sufficiently homogeneous in size. Although
the eventual crystal concentration and size were acceptable
[Figs. 5(a), top panel, 5(b) and 5(c)] for an SMX experiment
(data are not shown), many large crystals (>40 mm) were
formed early (1–2 h) in the experiment. It was only after 3 h
that showers of micro-crystals were observed. This delayed
start created an asymmetric size distribution [Fig. 5(d)], with
two crystal-size populations being observed. Altering the PEG
concentration did not appear to improve the homogeneity in
the crystal size, but the addition of a neutral buffer did. This
change was prompted by the wish to improve the durability of
FutA crystals during ligand-soaking experiments. The NaSCN
was exchanged for 0.1 M Tris pH 7.1 in the crystallization
buffer because the FutA crystals dissolved in the presence of
ligand and NaSCN. The exchange improved the crystal
stability and also reduced the tendency for the crystals to
clump together. In the presence of Tris, the propensity of the
FutA to precipitate at higher PEG concentrations was also
reduced. The PEG concentration could then be increased
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from 12.5 to 38.0%(w/v) PEG 3350. These changes reduced
the size and increased the concentration of the FutA crystals
obtained from the seeded-batch crystallization [Figs. 5(a),
bottom panel, 5(b) and 5(c)].

5.2. Scaling up in volume

The proposed sample-delivery mode in the SMX experi-
ment can also dictate the final volume of the batch crystal-
lization experiment. Some ADE and extruder delivery
systems require only 20 ml of sample per load. Therefore, a
final experimental volume of 100 ml, assuming that a
‘reasonable’ crystal concentration can be achieved, should be
perfectly adequate for these delivery approaches. If larger
volumes are required, pooling of multiple 100 ml experiments
is also possible. This being the case, a step-wise volume
increase from 200 nl to an approximate final volume of 100 ml
could prove safest. If larger volumes of sample are required,
multiple batches of 100 ml can be set up concurrently and
pooled together. However, if a step-wise scale in crystal-
lization volume has proved successful, larger volumes of 1 ml
or more could also be attempted if applicable, feasible and
necessary. An example of such a scaling protocol is described
below. At each step, the user should assess the number of

crystals and range of sizes. If these change, slight alterations
should be attempted in component concentrations and/or
ratios.

(i) Increase the volume in robot-compatible plates. Liquid-
handling robots for 96-well experiments, such as the Mosquito
(TTP Labtech), can aspirate volumes of up to 1.2 ml, giving an
effective limit of 2.4 ml on the drop size, assuming a 1:1
protein-to-reservoir ratio. This drop size can be accommodated
in some 96-well sitting-drop plates, such as the Greiner
CrystalQuick [Fig. 10(a) in the supporting information] or the
SWISSCI MRC 48-well plates. An under-oil experiment at
these volumes could also be attempted, perhaps using SWISSCI
under-oil or Terizaki plates [Figs. 10(b) and 10(c), respec-
tively], the former having a maximum volume of 4 ml. The
advantage of using such plates is that most are still compatible
with commercially available crystallization robots and storage
hotels, thus simplifying standardization and monitoring.

(ii) Increase the drop volume to 10–20 ml. This entails
moving from robot-compatible plates into either 24-well
hanging- or sitting-drop plates, PCR tubes or 0.5 ml centrifuge
tubes. The crystallization experiment should be monitored in
the drop or tube over 1–7 days, taking note of the crystal
number and size.
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Figure 5
Observing a 100 ml FutA batch crystallization over 24 h. (a) The growth of two FutA batch crystallization experiments, the top (blue) in 0.2 M NaSCN,
12.5%(w/v) PEG 3350 and the bottom (red) in 0.1 M Tris pH 7.1, 38.0%(w/v) PEG 3350. The pictures show aliquots viewed in a hemocytometer. The
white boxes in the images have dimensions of 250 ! 250 mm. (b), (c) Demonstrations of how the mean number of crystals and longest dimension change
over time. (d) A histogram of crystal size over 24 h for the 12.5%(w/v) PEG 3350 condition.



(iii) Increase the drop volume to 20–100 ml. This is achieved
by moving into 0.5 ml centrifuge tubes or 96-well chimney-well
plates [Fig. 10(d)]. Aliquots are taken every 3–4 h to measure
the crystal number and size using a hemocytometer [Fig. 10(e),
and described in Section 5.1]. Gentle or even vigorous agita-
tion may now be required, depending on the current vessel;
potential mixers are shown in Figs. 10( f), 10(g) and 10(h).

(iv) Increase the drop volume to 0.5–1.0 ml (if required). If
all the preceding steps are consistent, the user could try to
move to 1.5 ml centrifuge tubes.

(v) Increase the volume to 5–10 ml (if required). The user
should only attempt this if the protein can be easily produced
and the delivery approach requires large (>1 ml) volumes.

5.3. Other tips and ideas

Table 1 in the supporting information shows some recurrent
problems that have been encountered when scaling several
different proteins to large-volume batch crystallization. Some
potential solutions to these problems are suggested in the
table; these are by no means perfect or exhaustive but might
be helpful. Other crystallization tips are listed in Table 2 in the
supporting information.

6. Conclusions

The aim of this paper was to suggest methods and ideas to aid
in converting a vapour diffusion crystallization experiment
into a larger-scale batch experiment. Given what can seem like
the somewhat arbitrary whims of protein crystallization, the
creation and subsequent understanding of a crystallization
phase diagram is perhaps the surest way to approach these
tasks. Vapour diffusion crystallization experiments can be
converted into batch crystallization by understanding the role
the precipitant is playing in the crystallization process and
looking at the timescale of crystal nucleation and growth.
Optimizing a vapour diffusion experiment in this manner
allows the nucleation zone to be found, and hence the
conditions for batch crystallization. Once a batch condition
has been found, a phase diagram can be created. From the
information in the phase diagram, batch or seeded-batch
protocols can be gradually scaled to test the condition in larger
volumes. This approach may ease the burden on the required
protein volume and make the process of transitioning to batch
crystallization more efficient. Ultimately, protein crystal-
lization is fickle and should be assumed to fail randomly.
Given this capricious tendency, the more time spent under-
standing the crystallization process, the greater the chance
that good quality crystals will be obtained when they are
required on a beamline.

7. Related literature

The following additional literature is cited in the supporting
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Rehanek, J., Réhault, J., Reiche, S., Ringele, M., Rittmann, J.,
Rivkin, L., Romann, A., Ruat, M., Ruder, C., Sala, L., Schebacher,
L., Schilcher, T., Schlott, V., Schmidt, T., Schmitt, B., Shi, X.,
Stadler, M., Stingelin, L., Sturzenegger, W., Szlachetko, J., Thattil,
D., Treyer, D., Trisorio, A., Tron, W., Vetter, S., Vicario, C., Voulot,
D., Wang, M., Zamofing, T., Zellweger, C., Zennaro, R., Zimoch, E.,
Abela, R., Patthey, L. & Braun, H. (2017). Appl. Sci. 7, 720.

Murray, T. D., Lyubimov, A. Y., Ogata, C. M., Vo, H., Uervirojnang-
koorn, M., Brunger, A. T. & Berger, J. M. (2015). Acta Cryst. D71,
1987–1997.

Nanev, C. N., Saridakis, E. & Chayen, N. E. (2017). Sci. Rep. 7, 35821.
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J.

(2000). Nature, 406, 752–757.
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