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One sentence summary: Simultaneous stimulation of RuBP regeneration and electron 20 

transport results in improvements in biomass yield in glasshouse and field grown tobacco.  21 

  22 



Nature Plants 
 

2 
 

Abstract  23 

Previous studies have demonstrated that independent stimulation of either electron transport 24 

or RuBP regeneration can increase the rate of photosynthetic carbon assimilation and plant 25 

biomass. In this paper, we present evidence that a multi-gene approach to simultaneously 26 

manipulate these two processes provides a further stimulation of photosynthesis. We report 27 

on the introduction of the cyanobacterial bifunctional enzyme fructose-1, 6-28 

bisphosphatase/sedoheptulose-1,7-bisphosphatase or overexpression of the plant enzyme 29 

sedoheptulose-1,7-bisphosphatase, together with expression of the red algal protein 30 

cytochrome c6, and show that a further increase in biomass accumulation under both 31 

glasshouse and field conditions can be achieved. Furthermore, we provide evidence that 32 

stimulation of both electron transport and RuBP regeneration can lead to enhanced intrinsic 33 

water use efficiency under field conditions.  34 

 35 
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Yield potential of seed crops grown under optimal management practices, and in the 38 

absence of biotic and abiotic stress, is determined by incident solar radiation over the 39 

growing season, the efficiency of light interception, energy conversion efficiency and 40 

partitioning or harvest index. For the major crops, the only component not close to the 41 

theoretical maximum is energy conversion efficiency, which is determined by gross canopy 42 

photosynthesis minus respiration. This highlights photosynthesis as a target for improvement 43 

to raise yield potential in major seed crops1-3.  44 

 45 

Transgenic experiments and modelling studies have provided compelling evidence 46 

that increasing the levels of photosynthetic enzymes in the Calvin Benson (CB) cycle has the 47 

potential to impact photosynthetic rate and yield1,2,4-15. Over-expression of SBPase in 48 

tobacco5,7,8, Arabidopsis9, tomato15 and wheat16 has demonstrated the potential of 49 

manipulating the expression of CB cycle enzymes and specifically the regeneration of RuBP 50 

to increase growth, biomass (30-42%) and even seed yield (10-53%). Similarly, 51 

overexpression of other enzymes including FBPA14, cyanobacterial SBPase, FBPase17 and 52 

the bifunctional fructose-1,6-bisphosphatases/sedoheptulose-1,7-bisphosphatase 53 

(FBP/SBPase4,18,19) in a range of species has shown that increasing photosynthesis increases 54 

yield. In addition to manipulation of CB cycle genes, increasing photosynthetic electron 55 

transport has also been shown to have a beneficial effect on plant growth. Overexpression of 56 

the Rieske FeS protein -a key component of the cytochrome b6f complex- in Arabidopsis, has 57 

previously been shown to lead to increases in electron transport rates, CO2 assimilation, 58 

biomass and seed yield20. Similar results were also observed when the Rieske FeS protein 59 

was over-expressed in the C4 plant Setaria viridis demonstrating that this manipulation has 60 

the potential to have a positive effect in both C3 and C4 species 21. Furthermore, the 61 

introduction of the algal cytochrome c6 protein into Arabidopsis and tobacco resulted in 62 
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increased growth22,23. In cytochrome c6 expressing transgenic plants, the electron transport 63 

rate was increased along with ATP, NADPH, chlorophyll, starch content, and capacity for 64 

CO2 assimilation. Higher plants have been proposed to have lost the cytochrome c6 protein 65 

through evolution, but in green algae and cyanobacteria, which have genes for both 66 

cytochrome c6 and plastocyanin (PC), cytochrome c6 has been shown to replace PC as the 67 

electron transporter connecting the cytochrome b6/f complex with PSI under Cu deficiency 68 

conditions24,25. There is evidence showing that PC can limit electron transfer between 69 

cytochrome b6f complex and PSI26, and in Arabidopsis, it has been shown that introduced 70 

algal cytochrome c6 is a more efficient electron donor to P700 than PC22. This evidence 71 

suggests the introduction of the cytochrome c6 protein in higher plants as a viable strategy for 72 

improving photosynthesis. 73 

This paper aims to test the hypothesis that combining an increase in the activity of a 74 

CB cycle enzyme, specifically enhancing RuBP regeneration, together with stimulation of the 75 

electron transport chain can boost photosynthesis and yield above that observed when these 76 

processes are targeted individually. Nicotiana tabacum plants expressing the cyanobacterial 77 

FBP/SBPase or the higher plant SBPase, and the algal cytochrome c6 were generated using 78 

two different tobacco cultivars. The analysis presented here demonstrates that the 79 

simultaneous stimulation of electron transport and RuBP regeneration leads to a significant 80 

increase in photosynthetic carbon assimilation, and results in increased biomass and yield 81 

under both glasshouse and field conditions.  82 

  83 
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Production and Selection of Tobacco Transformants  84 

Previous differences observed in the biomass accumulation between Arabidopsis and 85 

tobacco overexpressing SBPase and SBPase plus FBPA8,9 led us to explore the effect of 86 

similar manipulations (RuBP regeneration by overexpression of SBPase or introduction of 87 

the cyanobacterial FBP/SBPase, together with enhanced electron transport) in two different 88 

tobacco cultivars with different growth habits: N. tabacum cv. Petite Havana, with 89 

indeterminate growth, and N. tabacum cv. Samsun, with determinate growth. Sixty lines of 90 

cv. Petit Havana, and up to fourteen lines of cv. Samsun were generated per construct and T0 91 

and T1 transgenic tobacco were screened by qPCR and immuno-blot analysis to select 92 

independent lines with expression of the transgenes (data not shown).  93 

N. tabacum cv. Petit Havana T2/T3 progeny expressing FBP/SBPase (SB; lines SB03, 94 

SB06, SB21, SB44) or cytochrome c6 (C6; lines C15, C41, C47, C50) and cv. Samsun lines 95 

expressing SBPase + cytochrome c6 (SC6, lines SC1, SC2 and SC3) were produced by 96 

agrobacterium transformation. N. tabacum cv. Petit Havana plants expressing both SB and C6 97 

were generated by crossing SB lines (SB06, SB21, SB44) with C6 lines (C15, C47, C50) to 98 

generate four independent SBC6 lines: SBC1 (SB06 x C47), SBC2 (SB06 x C50), SBC3 (SB44 x 99 

C47) and SBC6 (SB21 x C15). Semi-quantitative RT-PCR was used to detect the presence of 100 

the FBP/SBPase transcript in lines SB and SBC6, cytochrome c6 in lines C6, SBC6 and SC6, and 101 

SBPase in lines S and SC6 (Supplementary Fig. 1). The selected SB and SBC6 lines were 102 

shown to accumulate FBP/SBPase protein, and S and SC6 to overexpress the SBPase protein 103 

by immunoblot analysis (Fig. 1a and Supplementary Fig. 2). In addition to immunoblot 104 

analysis, we analysed total extractable FBPase activity in the leaves of the cv. Petite Havana 105 

T2/T3 & F3 homozygous progeny lines used to determine chlorophyll fluorescence and 106 

photosynthetic parameters. This analysis showed that these plants (SB and SBC6) had 107 

increased levels of FBPase activity ranging from 34 to 47% more than the control plants (Fig. 108 
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1c). The full set of assays showing the variation in FBPase activities between plants can be 109 

seen in supplemental data (Supplementary Fig. 3). The S and SC6 lines were from the same 110 

generation of transgenic plants used in a previous study and shown to have increased SBPase 111 

activity8. The cytochrome c6 antibody (raised against a peptide from the Porphyra umbilicalis 112 

protein) was unable to detect less than 60 ng of purified cytochrome c6 protein extracted from 113 

E. coli (Supplementary Fig. 4), and immunoblotting of leaf extracts did not result in a 114 

signal. However, when semi-purified extracts from lines C15, C41 and C47 were used, a 115 

band of the expected molecular weight was identified in semi-purified extracts from lines 116 

C15, C41 and C47, providing qualitative confirmation of the presence of cytc6 in the 117 

transgenic tobacco plants (Fig. 1b and Supplementary Fig. 5a). No bands were observed in 118 

semi-purified extracts from control  (CN)  plants. To provide further evidence of the presence 119 

of introduced cytochrome c6 protein a spectral scan was run using the semi-purified protein 120 

extracts of C6 and CN plants; the soret peak at 420 nm demonstrated the presence of the heme 121 

group and was only detectable in the C6 transgenic plants and not in the CN plants. 122 

(Supplementary Fig. 5b). Additionally, a physiological assay probing the response of 123 

photosynthesis during light induction was performed. CN and C6 plants were provided with 124 

saturating light and [CO2] following a period of darkness. The C6 plants were shown to have 125 

both a more rapid response and greater rate of net CO2 assimilation compared with CN plants 126 

(Supplementary Fig. 6a & 6d). The faster increase in A was accompanied by a quicker rise 127 

in the operating efficiency of both PSII (Fq’/Fm’) and PSI (YI) providing evidence that in 128 

these plants electron flow through both photosystems was increased. This increase in electron 129 

transport could contribute to the higher A rates observed by providing the required energy 130 

(ATP) and reductant (NADPH). This response was further accelerated in SBC6 transgenic 131 

plants mostly likely due to the increased sink capacity provided by CB cycle activity 132 

(Supplementary Fig. 6).  133 
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 134 

Chlorophyll fluorescence analysis confirmed that in young plants, the operating 135 

efficiency of photosystem two (PSII) photochemistry Fq’/Fm’ at an irradiance of 600-650 136 

µmol m-2 s-1 was significantly higher in all selected lines compared to either WT or null 137 

segregant controls (Fig. 1d, e). However, the Fq’/Fm’ values of the SBC6 and SC6 lines, were 138 

not significantly different from the Fq’/Fm’ values obtained from the plants expressing 139 

individually FBP/SBPase (SB), cytochrome c6 (C6) or SBPase (S). 140 

 141 

Stimulation of electron transport and RuBP regeneration increases photosynthesis  142 

Transgenic lines selected based on the initial screens described above were grown in 143 

the glasshouse, in natural light supplemented to provide illumination between 400-1000 µmol 144 

m-2 s-1. The rate of net CO2 assimilation (A) and Fq’/Fm’ was determined as a function of 145 

internal CO2 concentration (Ci), in mature and developing leaves of N. tabacum cv. Samsun 146 

(S and SC6) and in mature leaves of N. tabacum cv. Petit Havana (SB, C6 and SBC6) (Fig. 2). 147 

The transgenic plants displayed greater CO2 assimilation rates than those of the control (CN) 148 

plants. A was 15% higher than the controls in the mature leaves of the SC6, at a Ci of 149 

approximately 300 µmol mol-1 (the Ci prevailing at current atmospheric [CO2]) (Fig. 2b). The 150 

developing leaves of the SC6 plants also showed significant increases in PSII operating 151 

efficiency (Fq’/Fm’) and in the PSII efficiency factor (Fq’/Fv’; which is determined by the 152 

ability of the photosynthetic apparatus to maintain QA in the oxidized state and therefore a 153 

measure of photochemical quenching) when compared to control plants (Fig. 2c). 154 

Interestingly, in mature leaves of the cv. Samsun transgenic plants, the differences in 155 

assimilation rates and in the operating efficiency of PSII photochemistry between the 156 

transgenic and the CN plants were smaller than in the developing leaves. Only the S 157 

transgenic plants displayed a higher average value for Fq’/Fm’ and Fq’/Fv’ than the CN plants 158 
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at all CO2 concentrations measured. In contrast, the mature leaves of SC6 plants displayed 159 

Fq’/Fv’ values higher than the control only at Ci levels between 300 and 900 µmol mol-1 (Fig. 160 

2b).  161 

Similar trends were shown for the N. tabacum cv. Petit Havana transgenic plants, 162 

which displayed higher average values of A and Fq’/Fm’ than the CN (Fig. 2a). In the leaves 163 

of the SBC6 plants (cv. Petit Havana) these significant increases were similar to the 164 

developing leaves of the SC6 lines (cv. Samsun). No significant differences in PSII maximum 165 

efficiency (Fv’/Fm’) were observed between the CN and the transgenics in either cultivar. 166 

 The developing leaves of both the S and SC6 plants (cv. Samsun) showed a 167 

significant increase in both the maximum electron transport and RuBP regeneration rate 168 

(Jmax) and maximum assimilation (Amax) when compared the control plants (Table 1). The 169 

mature leaves of the SC6 (cv. Samsun) and SBC6 (cv. Petite Havana) transgenics also 170 

displayed a significantly higher Amax than the CN, and higher average values for Vcmax, and 171 

Jmax were also evident in these leaves. These results showed that simultaneous stimulation of 172 

electron transport and RuBP regeneration by expression of cytochrome c6 in combination 173 

with FBP/SBPase or SBPase has a greater impact on photosynthesis than the single 174 

manipulations in all plants analysed. 175 

  176 

Stimulation of electron transport and RuBP regeneration improves growth  177 

In parallel experiments, plants expressing FBP/SBPase (SB), cytochrome c6 (C6) and 178 

both (SBC6) (N. tabacum cv. Petite Havana) and plants expressing SBPase (S) and SBPase + 179 

cytochrome c6 (SC6) (N. tabacum cv. Samsun) were grown in the glasshouse for four and six 180 

weeks respectively before harvesting. Height, leaf number, total leaf area and above ground 181 

biomass were determined (Fig 3 and Supplementary Fig 7). All of the transgenic plants 182 

analysed here displayed increased height when compared to CN plants. Plants expressing 183 
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cytochrome c6 (C6, SBC6, (cv. Petite Havana) and SC6 (cv. Samsun)) had a significant increase 184 

in leaf area and in stem and leaf biomass compared to their respective controls (Fig.3 and 185 

Supplementary Fig. 8,9). In the SB transgenic plants (cv. Petite Havana) only the biomass of 186 

the stem was greater than the CN plants. Notably the SBC6 and SC6 transgenics displayed 187 

significantly greater leaf area than the single SB and S transgenic plants respectively. The 188 

total increase in above ground biomass when compared to CN group was 35% in SB, 44% in 189 

C6 and 9% in S, with consistently higher means in the double manipulations SBC6 (52%) and 190 

SC6 (32%) (Fig.3). 191 

 192 

Expression of FBP/SBPase and cytochrome c6 increases growth and water use efficiency 193 

To test whether the increases in biomass observed in these transgenic plants under 194 

glasshouse conditions could be reproduced in a field environment, a subset of lines was 195 

selected for testing in the field. Since the larger percentage increases in biomass were 196 

displayed by the manipulations in N. tabacum cv. Petit Havana, these plants were selected 197 

and tested in three field experiments in two different years (2016 and 2017).  198 

In 2016, a small-scale replicated control experiment was carried out to evaluate 199 

vegetative growth in the field, in the lines expressing single gene constructs for FBP/SBPase 200 

(SB) and cytochrome c6 (C6) (Supplementary Fig. 14a). Plants were germinated and grown 201 

under controlled environment conditions for 25 d before being moved to the field. After 14 d 202 

in the field, plants were harvested at an early vegetative stage and plant height, total leaf area 203 

and above ground biomass were measured (Fig. 4 (a-c) and Supplementary Fig. 10a). These 204 

data revealed that the SB and C6 plants showed an increase in height, leaf area and above 205 

ground biomass of 27%, 35% and 25% respectively for SB and 50%, 41% and 36% 206 

respectively for C6 when compared to CN plants.  207 
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In 2017, two larger scale, randomized block design field experiments were carried out 208 

to evaluate performance in the SB, C6 and SBC6 plants compared to CN plants 209 

(Supplementary Fig.14b). Plants were grown from seed in the glasshouse for 33 d, and then 210 

moved to the field and allowed to grow until the onset of flowering (further 24-33 d), before 211 

harvesting. In Fig. 4d-i it can be seen that the SB and C6 plants harvested after the onset of 212 

flowering did not display any significant increases in height, leaf area or biomass when 213 

compared to CN plants. Interestingly, plants expressing both FBP/SBPase and cytochrome c6 214 

(SBC6), displayed a significant increase in a number of growth parameters; with 13%, 17% 215 

and 27% increases in height, leaf area and above ground biomass respectively when 216 

compared to CN plants. 217 

Additionally, in the 2017 field experiments A as a function of Ci at saturating light 218 

(A/Ci) was determined. In the 2017 Experiment 1 a significant increase in A was observed in 219 

SB and C6 plants without differences in PSII operating efficiency (Fq’/Fm’) (Fig. 5a). 220 

However, in the 2017 Experiment 2, no differences in A or in Fq’/Fm’ values were evident in 221 

the C6 and SBC6 plants when compared to the CN plants (Fig. 5b). Analysis of A as a function 222 

of light (A/Q) showed either small or no significant differences in A between genotypes (Fig. 223 

6a and Supplementary Fig 11a). Interestingly, gs in the SBC6 plants was significantly lower 224 

than for the C6 and CN plants at light intensities above 1000 μmol m-2 s-1 (Fig 6b), resulting 225 

in a significant increase in intrinsic water use efficiency (iWUE) for SBC6 plants (Fig 6d). No 226 

significant differences in iWUE were observed for SB or C6 transgenic plants (Fig 6d and 227 

Supplementary Fig 11d).  228 
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DISCUSSION 229 

In this study, we describe the generation and analysis of transgenic plants with 230 

simultaneous increases in electron transport and improved capacity for RuBP regeneration, in 231 

two different tobacco cultivars. Here we have shown that independent stimulation of electron 232 

transport (by expression of cytochrome c6) and stimulation of RuBP regeneration (by 233 

expression of FBP/SBPase or overexpression of SBPase) increased photosynthesis and 234 

biomass in glasshouse studies. Furthermore, we demonstrated how the targeting of these two 235 

processes simultaneously (in the SBC6 and SC6 plants) had an even greater effect in 236 

stimulating photosynthesis and growth. Additionally, in field studies we demonstrate that 237 

plants with simultaneous stimulation of electron transport and of RuBP regeneration had 238 

increased iWUE with an increase in biomass. 239 

 240 

Under glasshouse conditions, increases in photosynthesis were observed in all of the 241 

transgenic plants analysed here and this was found to be correlated with increased biomass. 242 

Although increases in photosynthesis and biomass have been reported for plants with 243 

stimulation of RuBP regeneration in both model4,5,8,7,27 and crop18,16 species; and electron 244 

transport in Arabidopsis and tobacco20,22,28, the data presented here provides the first report of 245 

increased photosynthesis and biomass by the simultaneous stimulation of electron transport 246 

and RuBP regeneration. Increases in A were observed under glasshouse conditions in the 247 

leaves of all of the different transgenic tobacco plants and in both tobacco cultivars (cv. Petit 248 

Havana and cv. Samsun). Analysis of the A/Ci response curves showed that the average 249 

values for the photosynthetic parameters Vcmax, Jmax and Amax increased by up to 11, 14 and 250 

15% respectively. These results indicated that not only was the maximal rate of electron 251 

transport and RuBP regeneration increased, but the rate of carboxylation by Rubisco was also 252 

increased. Although this may seem counterintuitive in that we have not targeted directly 253 
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Rubisco activity, it is in keeping with a study by Wullschleger29 of over 100 plant species that 254 

showed a linear correlation between Jmax and Vcmax. Furthermore, it has also been shown 255 

previously that overexpression of SBPase leads not only to a significant increase in Jmax but 256 

that an increase in Vcmax and Rubisco activation state5,8.  257 

 258 

Notably, in the greenhouse study, the highest photosynthetic rates were observed in plants 259 

in which both electron transport and RuBP regeneration (SBC6 and SC6) were boosted, 260 

suggesting that the co-expression of these genes results in an additive effect on improving 261 

photosynthesis. In addition to the increases in A, the plants with simultaneous stimulation of 262 

electron transport and RuBP regeneration displayed a significant increase in Fq’/Fm’, 263 

indicating a higher quantum yield of linear electron flux through PSII compared to the control 264 

plants. These results are in keeping with the published data for the introduction of 265 

cytochrome c6 and the overexpression of the Rieske FeS protein in Arabidopsis20,22. In these 266 

studies the plants had a higher quantum yield of PSII and a more oxidised plastoquinone 267 

pool22, suggesting that, although PC is not always limiting under all growth conditions30, 268 

there is scope to stimulate reduction of PSI by using alternative, more efficient electron 269 

donors to PSI like cytochrome c6
22,26. Furthermore, in the SBC6 and SC6 plants the increase in 270 

Fq’/Fm’ was found to be largely driven by the increase in the PSII efficiency factor (Fq’/Fv’). 271 

This suggests that the increase in efficiency in these plants is likely due to stimulation of 272 

processes down stream of PSII such as CO2 assimilation.  273 

 274 

To provide further evidence of the applicability of targeting both electron transport and 275 

RuBP regeneration to improve crop yields, we tested these plants in the field. Here we 276 

showed that the expression FBP/SBPase alone led to an increase in growth and biomass in 277 

the 2016 field-grown plants of between 22-40%, when harvested during early vegetative 278 
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growth, prior to the onset of flowing. Interestingly, when these plants were harvested later in 279 

development, after the onset of flowering, in the 2017 field trials, this advantage was no 280 

longer evident and the single FBP/SBPase expressors were indistinguishable from the control 281 

plants. These results are in contrast to the 2016 field data and may be due to the later timing 282 

in development of the harvest in the 2017 experiment. The transgenic plants expressing 283 

cytochrome c6 alone also showed enhanced growth and biomass early development, but as 284 

with the FBPase/SBPase plants, this improvement was no longer evident when plants were 285 

harvested after flowering. This difference in biomass gain between the early and late harvest 286 

was not observed in a parallel experiment, where the overexpression of H-protein was shown 287 

to increase biomass under field conditions in plants harvested in early development and after 288 

the onset of flowering31. These results suggest that the expression of FBP/SBPase or 289 

cytochrome c6 alone, may provide an advantage under particular sets of conditions or at 290 

specific stages of plant development. This might be exploitable for some crops where an 291 

early harvest is desirable (eg. some types of lettuce, spinach and tender greens)18. In contrast 292 

to the results with the single manipulations described above, plants expressing both 293 

cytochrome c6 and FBP/SBPase simultaneously displayed a consistent increase in biomass 294 

after flowering under field conditions.  295 

 296 

In the transgenic lines grown in the field, the correlation between increases in 297 

photosynthesis and increased biomass were less consistent than that observed under 298 

glasshouse conditions. The significant increases in photosynthetic capacity displayed by the 299 

FBP/SBPase and cytochrome c6 expressors in 2017 Experiment 1, provided clear evidence 300 

that these individual manipulations are able to significantly stimulate photosynthetic 301 

performance under field conditions. However, no increase in biomass was evident in these 302 

plants. In contrast, in the 2017 Experiment 2 we did not detect any significant differences in 303 
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photosynthetic capacity in either the cytochrome c6 expressors or the plants with 304 

simultaneous expression of FBP/SBPase + cytochrome c6 expressors, but increased biomass 305 

was evident. At this point we have no explanation for this disparity. However, although not 306 

significantly different, in all experiments, the mean A values of the transgenic plants were 307 

consistently higher than those of the controls. It is known that even small increases in 308 

assimilation throughout the lifetime of a plant will have a cumulative effect, which could 309 

translate into a significant biomass accumulation8, this may in part explain the disparity with 310 

the biomass results presented. Furthermore, the phenotyping experiments carried out on C6 311 

and SBC6 plants (Supplementary Fig 6) showed that there was a more rapid induction of 312 

photosynthesis, particularly in SBC6 plants. This characteristic might also contribute to an 313 

increase in photosynthetic rates and biomass when plants are grown in fluctuating light 314 

conditions, but would not be detectable in the steady-state measurements performed in our 315 

field experiments. 316 

 317 

 318 

An unexpected result that was found in the plants with simultaneous expression of 319 

FBP/SBPase + cytochrome c6 (SBC6), is that these plants had a lower gs and lower Ci at light 320 

intensities above 1000 μmol m-2 s-1, when compared to control plants. Normally, lower Ci 321 

would be expected to lead to a reduction in photosynthesis, but the SBC6 plants were able to 322 

maintain CO2 assimilation rates equal to or higher than control plants resulting in an 323 

improvement in iWUE. A similar improvement in iWUE was seen in plants overexpressing 324 

the NPQ related protein, PsbS32. It was shown that light-induced stomatal opening was 325 

reduced in these plants in which a more oxidized QA pool was found and this has been 326 

proposed to act as a signal in stomatal movement33. This higher iWUE and the fact that a 327 

higher productivity than controls has been reported in field studies for transgenic lines with 328 
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increased RuBP regeneration grown under CO2 enrichment7,18, highlight the potential of 329 

manipulating electron transport and RuBP regeneration in the development of new varieties 330 

able to sustain photosynthesis and yields under climate change scenarios.   331 
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MATERIALS AND METHODS 332 

 333 

Generation of constructs and transgenic plants 334 

Constructs were generated using Golden Gate cloning34,35 or Gateway cloning 335 

technology36. Transgenes were under the control of CaMV35S and FMV constitutive 336 

promoters. Construct detail below and in Supplementary Fig. 12. 337 

For N. tabacum cv. Petit Havana, the codon optimised cyanobacterial bifunctional 338 

fructose-1,6-bisphosphatases/sedoheptulose-1,7-bisphosphatase (FBP/SBPase; slr2094 339 

Synechocystis sp. PCC 7942 4 linked to the geraniol synthase transit peptide 37 and the codon 340 

optimised P. umbilicalis’s cytochrome c6 (AFC39870) with the chlorophyll a-b binding 341 

protein 6 transit peptide from Arabidopsis (AT3G54890) were used to generate Golden 342 

Gate35 over-expression constructs (EC23083 and EC23028) driven by the FMV 38 and CaMV 343 

35S promoters respectively (Supplementary Fig. 12a).  344 

The cytochrome c6 from P. umbilicalis was selected as it is commonly found on the 345 

UK coastline and it shares over 86% identity with previously published P. yeoenzis and Ulva 346 

fasciata used by Chida et al 22 and Yadav et al 23. The level of similarity between these 347 

proteins and the fact that the functional regions are identical, provides confidence that the 348 

cytochrome c6 proteins from these three species function in a similar way (see alignment in 349 

Supplementary Fig. 13). The P. umbilicalis cytochrome c6 was linked to the transit peptide 350 

from the light-harvesting complex I chlorophyll a/b binding protein 6 (At3g54890) to 351 

generate an over-expression construct driven by the CaMV 35S promoter; B2-C6 in the 352 

vector pGWB236 used for N. tabacum cv. Samsun transformation (Supplementary Fig. 12b). 353 

The recombinant plasmid B2-C6, was introduced into SBPase over-expressing tobacco cv. 354 

Samsun5 using Agrobacterium tumefaciens AGL1 via leaf-disc transformation39. Primary 355 

transformants (39) (T0 generation) were regenerated on MS medium containing kanamycin 356 
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(100 mg L-1), hygromycin (30 mg L-1) and augmentin (500 mg L-1). Plants expressing the 357 

integrated transgenes were screened using RT-PCR (data not shown).  358 

Similarly, the recombinant plasmids EC23083, and EC23028 were introduced into 359 

wild type tobacco (Nicotiana tabacum) cv Petit Havana, using A. tumefaciens strain 360 

LBA4404 via leaf-disc transformation39, and shoots regenerated on MS medium containing, 361 

hygromycin (20 mg L-1) and cefotaxime (400 mg L-1). Hygromycin resistant primary 362 

transformants (T0 generation) with established root systems were transferred to soil and 363 

allowed to self-fertilize.  364 

Between twelve and 60 independent lines were generated per construct and 3-4 lines 365 

taken forward for further analysis. Control (CN) plants used in this study were a combination 366 

of WT and null segregant plants from the transgenic lines, verified by PCR for non-367 

integration of the transgene. 368 

 369 

Plant Growth  370 

Controlled conditions 371 

Wild-type tobacco plants and T1 progeny resulting from self-fertilization of 372 

transgenic plants were grown to seed in soil (Levington F2, Fisons, Ipswich, UK). Lines of 373 

interest were identified by immunoblot and qPCR. For the experiments in the Samsun cv. the 374 

null segregants were selected from transformed lines. For Petit Havana, the null segregants 375 

were selected from the SBC6 lines. For experimental study, T2-T4 and F1-F3 progeny seeds 376 

were germinated on soil in controlled environment chambers at an irradiance of 130 μmol 377 

photons m-2 s-1, 22°C, relative humidity of 60%, in a 16-h photoperiod. Plants were 378 

transferred to individual 8 cm pots and grown for two weeks at 130 μmol photons m-2 s-1, 379 

22°C, relative humidity of 60%, in a 16-h photoperiod. Plants were transferred to 4 L pots 380 

and cultivated in a controlled environment glasshouse (16-h photoperiod, 25°C-30°C 381 
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day/20°C night, and natural light supplemented under low light induced by cloud cover with 382 

high-pressure sodium light bulbs, giving 380-1000 μmol m-2 s-1 (high-light) from the pot 383 

level to the top of the plant, respectively). Positions of the plants were changed 3 times a 384 

week and watered regularly with a nutrient medium40. Plants were positioned such that at 385 

maturity, a near-to-closed canopy was achieved and the temperature range was maintained 386 

similar to the ambient external environment. Four leaf discs (0.8 cm diameter) were taken for 387 

immunoblot analysis and FBPase activity. These disks were taken from the same areas of the 388 

leaf used for photosynthetic measurements, immediately plunged into liquid N2 and stored at 389 

-80°C. 390 

 391 

Field studies 392 

Plants were grown as described in Lopez-Calcagno et al31, and with a methodology 393 

broadly analogous to that used commercially for this crop. The field site was situated at the 394 

University of Illinois Energy Farm (40.11°N, 88.21°W, Urbana, IL). Two different 395 

experimental designs were used in 2 different years.  396 

2016: Replicated control design (Supplementary Fig. 14a). Plants were grown in 397 

rows, spaced 30 cm apart with the outer boundary being a wild-type border. The entire 398 

experiment was surrounded by two rows of wild-type borders. Plants were irrigated when 399 

required using rain towers. T2 seed was germinated and after 11 d were moved to individual 400 

pots (350 mL). The seedlings were grown in the glasshouse for further 15 d before being 401 

moved into the field, and allowed to grow in the field for 14 d before harvest. 402 

2017: Two experiments were carried out two weeks apart. A blocks-within-rows 403 

design was used (Supplementary Fig. 14b) where 1 block holds one line of each of the five 404 

manipulations and each row has all lines. The central 20 plants of each block are divided into 405 

five rows of four plants per genotype. The 2017 Exp.1 contained controls (WT and null 406 
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segregants), FBP/SBPase expressing lines (SB) and cytochrome c6 expressing lines (C6). The 407 

2017 Exp. 2 contained controls (WT and null segregants), cytochrome c6 expressing lines 408 

(C6), and FBP/SBPase + cytochrome c6 expressing lines (SBC6). Seed was germinated and 409 

after 12 d moved to hydroponic trays (Trans-plant Tray GP009 6912 cells; Speedling Inc., 410 

Ruskin, FL), and grown in the glasshouse for 20 d before being moved to the field. The plants 411 

were allowed to grow in the field until flowering (approximately 30 d) before harvest. 412 

The field was prepared in a similar fashion each year as described in Kromdijk et al41. 413 

Light intensity (LI-quantum sensor; LI-COR) and air temperature (Model 109 temperature 414 

probe; Campbell ScientificInc, Logan, UT) were measured nearby on the same field site, and 415 

half-hourly averages were logged using a data logger (CR1000; Campbell Scientific). 416 

 417 

cDNA generation and RT-PCR 418 

Total RNA was extracted from tobacco leaf disks (sampled from glasshouse grown 419 

plants and quickly frozen in liquid nitrogen) using the NucleoSpin® RNA Plant Kit 420 

(Macherey-Nagel, Fisher Scientific, UK). cDNA was synthesized using 1 µg total RNA in 20 421 

µl using the oligo-dT primer according to the protocol in the RevertAid Reverse 422 

Transcriptase kit (Fermentas, Life Sciences, UK). cDNA was diluted 1 in 4 to a final 423 

concentration of 12.5 ng µL-1. For semi quantitative RT-PCR, 2 µL of RT reaction mixture 424 

(100 ng of RNA) in a total volume of 25 µL was used with DreamTaq DNA Polymerase 425 

(Thermo Fisher Scientific, UK) according to manufacturer’s recommendations. PCR products 426 

were fractionated on 1.0% agarose gels. For qPCR, the SensiFAST SYBR No-ROX Kit was 427 

used according to manufacturer’s recommendations (Bioline Reagents Ltd., London, UK). 428 

Primers used for semi quantitative RT-PCR can be seen in Supplementary Table 1.  429 

 430 

Protein Extraction and immunoblot analysis 431 
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Leaf discs sampled as described above, or fresh Porphyra umbilicalis samples, were 432 

ground in dry ice and protein extractions performed as described in Lopez-Calcagno et al.42, 433 

or using the nucleospin RNA/Protein kit (Macherey-Nagel (http://www.mn-net.com/) during 434 

RNA preparations. Protein quantification was performed using the protein quantification Kit 435 

from Macherey-Nagel. Samples were loaded on an equal protein basis, separated using 12% 436 

(w/v) SDS-PAGE, transferred to a nitrocellulose membrane (GE Healthcare Life science, 437 

Germany), and probed using antibodies raised against SBPase and FBP/SBPase. Proteins 438 

were detected using horseradish peroxidase conjugated to the secondary antibody and ECL 439 

chemiluminescence detection reagent (Amersham, Buckinghamshire, UK). SBPase 440 

antibodies are previously characterised5,43. FBP/SBPase antibodies were raised against a 441 

peptide from a conserved region of the protein [C]-DRPRHKELIQEIRNAG-amide, and 442 

cytochrome c6 antibodies were raised against peptide [C]-[Nle]-PDKTLKKDVLEANS-443 

amide (Cambridge Research Biochemicals, Cleveland, UK). In addition to the 444 

aforementioned antibodies, samples were probed using antibodies raised against 445 

transketolase44,45 as loading controls.  446 

 447 

Protein Extraction from plants for cytochrome c6 analysis. 448 

Whole leaves were harvested from 8 week old plants, washed in cold water and then 449 

wiped with a cloth soaked in 80 % ethanol to remove the majority of leaf residue. The leaves 450 

were then washed twice more in cold water, the mid rib was removed and 50 g of the 451 

remaining tissue was placed in a sealed plastic bag and stored overnight in the dark at 4˚C. 452 

Proteins were extracted as in Hiyama47, with a few modifications. Leaf tissue was 453 

homogenised in 250 ml of chilled chloroplast preparation buffer (50 mM sodium phosphate 454 

buffer, pH 7, 10 mM NaCl) for 30 seconds. The solution was then filtered through 4 layers of 455 

muslin cloth and centrifuged at 10,000 g for 5 minutes. The resulting pellet was then gently 456 
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resuspended in 50 ml of chilled chloroplast preparation buffer and the chlorophyll 457 

concentration was measured and adjusted to approximately 2 mg ml-1. The resultant mixture 458 

was then added to two volumes of preheated (45˚C) solubilisation medium (50 mM Tris-HCl 459 

pH 8.8 and 3% triton X) and incubated at 45˚C for 30 minutes and then chilled in an ice bath 460 

for a further 30 minutes before centrifugation at 12000 g for 30 minutes. The supernatant was 461 

stored at -80˚C for use in the next stage. To purify cytochrome c6 protein a Biorad Econo-Pac 462 

High-Q, 5 ml type wash column was used at a flow rate of 1 ml min-1. First the column was 463 

prepared by washing it with 100 ml of starting buffer (Starting buffer: 10 mM Tris-HCl pH 464 

8.8, 0.2% triton X 100 and 20% sucrose). Then the protein mixture from the previous step 465 

was diluted with an equal volume of chilled starting buffer and passed through the column at 466 

a flow rate of 1 ml min-1. Once all the protein was loaded onto the column it was then washed 467 

with 1000 ml of starting buffer supplemented with 10 mM NaCl. Then 300 ml of starting 468 

buffer supplemented with 50 ml NaCl and finally a linear gradient of starting buffer from 50 469 

to 200 mM NaCl over a period of 4 hours at 1 ml min-1 was performed and aliquots were 470 

collected. For immunoblotting, samples were acetone precipitated and the dried protein pellet 471 

then resuspended in 400 μl of solubilisation buffer (7 M urea, 2 M thiourea, 50 mM DTT, 4 472 

% CHAPS, 0.4 % SDS, 5 mM K2CO3), finally 300 μl loading buffer was added (50% 473 

glycerol, 25% β-mecaptoethanol, 25% EDTA) and the samples heated at 90˚C for 10 minutes 474 

before being loaded on an equal protein basis. Proteins were separated using 18% (w/v) SDS-475 

PAGE, transferred to nitrocellulose membrane, and probed using antibodies raised against a 476 

cytochrome c6 peptide. For identification of soret peak, instead of acetone precipitation, 477 

extracts were concentrated by spinning at 8,000 g and 4˚C over night, using a Vivaspin 20 478 

column (GE 28-9323-59), and a spectral scan was done in a SPECTROstar Omega plate 479 

reader from BMG Labtech. 480 

 481 
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Recombinant cytochrome c6 protein production in E. coli and purification 482 

pEC86 (CCOS Accession: CCOS891) containing E. coli cells were transformed with 483 

a pET28b plasmid containing the sequence for the mature cytochrome c6 and grown in 484 

kanamycin (50 ug/ml) and chloramphenicol (35ug/ml) containing LB media. IPTG (119 µg 485 

ml-1) was added to the culture when OD600 reached 0.5-0.6. Five hours later 330 μl L-1 of 1 M 486 

ferriprotoporphyrin IX chloride was added to the media and 24 hours post IPTG, an metal ion 487 

master mix (2 mM Ni2+, 2 mM Co2+, 10mM Zn2+, 10 mM Mn2+ and 50 mM Fe3+) was added 488 

(1.5 ml L-1). Cells were harvested after 5 days of growth and stored at -20 ˚C. Pellet from 500 489 

ml was resuspended in 3 ml of lysis buffer (50mM Tris HCl pH 7.5, 1mM DTT, 1mM 490 

PMSF), sonicated (11 cycles of 30 sec sonication 30 sec rest, at 4˚C) and then spun twice at 491 

10000 g for 20 min at 4 ˚C. The supernatant was collected and 2 ml  loaded in a 124 ml GE 492 

Hi Load 16/400 Superdex 75 pg (size exclusion) column. Protein was eluted with 0.05 M 493 

Na2PO4 pH 7.2, 0.5 M NaCl buffer, at a 1 ml min-1 speed and samples were collected every 5 494 

ml. Fractions collected between 80-100 min were concentrated by spinning them at 8000 g 495 

over night at 4 ˚C using a Vivaspin 20, (GE 28-9323-59) column. Protein concentration was 496 

determined using Bradford quantification, serial dilutions done with 50 mM Tris HCl pH 7.5 497 

buffer and spectral scans done in a SPECTROstar Omega plate reader from BMG Labtech as 498 

with the semi-purified plant cytochrome c6 samples. 499 

 500 

Determination of FBPase and Transketolase Activities  501 

FBPase activity was determined by phosphate release as described previously for 502 

SBPase with minor modifications8. Leaf discs were isolated from the same leaves and frozen 503 

in liquid nitrogen after photosynthesis measurements were completed. Leaf discs were 504 

ground to a fine powder in liquid nitrogen and immersed in extraction buffer (50 mM 505 

HEPES, pH8.2; 5 mM MgCl; 1 mM EDTA; 1 mM EGTA; 10% glycerol; 0.1% Triton X-506 
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100; 2 mM benzamidine; 2 mM aminocapronic acid; 0.5 mM phenylmethylsulfonylfluoride; 507 

10 mM dithiothreitol), centrifuged 1 min at 14,000 g, 4°C. The resulting supernatant (1 ml) 508 

was desalted through an NAP-10 column (Amersham) and stored in liquid nitrogen. The 509 

assay was carried out as descried in Simkin et al.8. In brief, 20 μl of extract was added to 80 510 

μl of assay buffer (50 mM Tris, pH 8.2; 15 mM MgCl2; 1.5 mM EDTA; 10 mM DTT; 7.5 511 

mM fructose-1,6-bisphosphate) and incubated at 25 °C for 30 min. The reaction was stopped 512 

by the addition of 50 µl of 1 M perchloric acid. 30 µl of samples or standards (PO3-
4 0.125 to 513 

4 nmol) were incubated 30 min at room temperature following the addition of 300 µl of 514 

Biomol Green (Affiniti Research Products, Exeter, UK) and the A620 was measured using a 515 

microplate reader (VERSAmax, Molecular Devices, Sunnyvale, CA). Activities were 516 

normalized to transketolase activity48. For transketolase activity assays 230 µl of pre-517 

prepared assay mix comprising of: 14.4 Mm ribose-5-phosphate, 190 μM NADH, 380 μM 518 

TPP, 250 U L-1 glycerol-3 phosphate dehydrogenase (G3PDH) and 6500 U L-1 triose 519 

phosphate isomerase was transferred to a 96 well plate (Greiner Bio-One) and placed in a 520 

plate reader which was set at 23 ˚C for 5 minutes to stabilise. The plate was then ejected and 521 

20 µl of each protein sample used for FBPase activity was injected into the wells containing 522 

the assay mix. The plate was then read for absorbance at 340 nm every 5 min for 1 hr. 523 

Activity levels were estimated by subtracting the absorbance value when the reaction 524 

becomes linear from the absorbance value 20 to 30 minutes after the first absorbance reading 525 

depending on the rate of the reaction. 526 

 527 

Chlorophyll fluorescence imaging screening in seedlings 528 

Chlorophyll fluorescence imaging was performed on 2-3 week-old tobacco seedlings 529 

grown in a controlled environment chamber at 130 µmol mol-2 s-1 and ambient (400 μmol 530 

mol-1) CO2. Chlorophyll fluorescence parameters were obtained using a chlorophyll 531 
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fluorescence (CF) imaging system (Technologica, Colchester, UK49,50). The operating 532 

efficiency of photosystem two (PSII) photochemistry, Fq’/Fm’, was calculated from 533 

measurements of steady state fluorescence in the light (F’) and maximum fluorescence (Fm’) 534 

following a saturating 800 ms pulse of 6300 μmol m-2 s-1 PPFD and using the following 535 

equation Fq’/Fm’ = (Fm’-F’)/Fm’. Images of Fq’/Fm’ were taken under stable PPFD of 600 536 

µmol m-2 s-1 for Petite Havana and 650 µmol m-2 s-1 for Samsun51-53.  537 

 538 

Leaf Gas Exchange 539 

Photosynthetic gas-exchange and chlorophyll fluorescence parameters were recorded 540 

using a portable infrared gas analyser (LI-COR 6400; LI-COR, Lincoln, NE, USA) with a 541 

6400-40 fluorometer head unit. Unless stated otherwise, all measurements were taken with 542 

LI-COR 6400 cuvette. For plants grown in the glasshouse conditions were maintained at a 543 

CO2 concentration, leaf temperature and vapour pressure deficit (VPD) of 400 µmol mol-1, 25 544 

˚C and 1 ± 0.2 kPa respectively. The chamber conditions for plants grown under field 545 

conditions had a CO2 concentration of 400 µmol mol-1, block temperature was set to 2 ˚C 546 

above ambient temperature (ambient air temperature was measure before each curve) and 547 

VPD was maintained as close to 1 kPa as feasible possible.  548 

 549 

A/Ci response curves (Photosynthetic capacity) 550 

The response of net photosynthesis (A) to intracellular CO2 concentration (Ci) was 551 

measured at a saturating light intensity of 2000 µmol mol-2 s-1. Illumination was provided by 552 

a red-blue light source attached to the leaf cuvette. Measurements of A were started at 553 

ambient CO2 concentration (Ca) of 400 µmol mol-1, before Ca was decreased step-wise to a 554 

lowest concentration of 50 µmol mol-1 and then increased step-wise to an upper concentration 555 

of 2000 µmol mol-1. To calculate the maximum saturated CO2 assimilation rate (Amax), 556 
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maximum carboxylation rate (Vcmax) and maximum electron transport flow (Jmax), the C3 557 

photosynthesis model54 was fitted to the A/Ci data using a spreadsheet provided by Sharkey et 558 

al.55. Additionally, chlorophyll fluorescence parameters including PSII operating efficiency 559 

(Fq’/Fm’) and the coefficient of photochemical quenching (qP), mathematically identical to 560 

the PSII efficiency factor (Fq’/Fv’) were recorded at each point.  561 

 562 

A/Q response curves  563 

Photosynthesis as a function of light (A/Q response curves) was measured under the 564 

same cuvette conditions as the A/Ci curves mentioned above. Leaves were initially stabilized 565 

at saturating irradiance of 2200 to µmol m-2 s-1, after which A and gs were measured at the 566 

following light levels: 2000, 1650, 1300, 1000, 750, 500, 400, 300, 200, 150, 100, 50 and 0 567 

μmol m-2 s-1). Measurements were recorded after A reached a new steady state (1-3 min) and 568 

before gs changed to the new light levels. Values of A and gs were used to estimate intrinsic 569 

water-use efficiency (iWUE =A/gs)  570 

 571 

Monitoring electron transport and assimilation during light changes. 572 

A DUAL-PAM attached to a GFS-3000 (Walz, Effeltrich, Germany) was used to 573 

monitor the response of the effective photochemical quantum yield of PSII (Fq’/Fm’) and PSI 574 

(Y(I)), and the net CO2 Assimilation (A) to changes in light intensity. To remove stomatal 575 

limitation of A, plants were maintained at constant temperature (24°C), relative humidity 576 

(60%) and high [CO2] (1500 µmol mol-1). Plants were dark adapted and the  577 

induction/relaxation of the photosystems was tested by subjecting plants to a step change in 578 

light intensity from 0 to 1000 µmol m-2 s-1, this intensity was maintained for 5 min before 579 

returning to dark.  580 

 581 



Nature Plants 
 

26 
 

Statistical Analysis  582 

All statistical analyses were done using Sys-stat, University of Essex, UK, and R 583 

(https://www.r-project.org/). For greenhouse and the 2016 field experiment biomass data, 584 

seedling chlorophyll imaging and enzyme activities, analysis of variance and Post hoc Tukey 585 

tests were done. For gas exchange curves, data were compared by linear mixed model 586 

analysis using lmer function and type III anova56. Significant differences between 587 

manipulations were identified using contrasts analysis (lsmeans package). For the 2017 field 588 

experiments, biomass data were compared by linear mixed model analysis using lmer 589 

function and type III anova to account for block effect using four plants/genotype for n=6 590 

blocks. For the analysis of electron transport and assimilation during light changes, the slope 591 

of the activation curves was calculated for each parameter and analysis of variance and post- 592 

hoc Tukey test was done. 593 

 594 

Data availability 595 

The data that support the findings of this study, plant transformation constructs and 596 

seed are available from the corresponding authors on reasonable request.  597 
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Figure Legends  598 

 599 

Fig. 1. Screening of transgenic plants overexpressing FBP/SBPase, SBPase, and 600 

cytochrome c6.  601 

 (a) Immunoblot analysis of protein extracts from mature leaves of evaluated SB , SBC6, S and 602 

SC6 lines compared to wild type and azygous (control, CN) plants, using FBP/SBPase and 603 

SBPase antibodies. Equal amounts of protein were loaded, Transketolase (TK) is the loading 604 

control. Repeated 3 times with similar results. (b) Immunoblot analysis of Cytochrome c6 605 

protein extract from mature leaves of C6 compared to CN plants, ponceau staining was used 606 

as loading control for plant samples only. Additionally, a crude Porphyra sp. protein extract is 607 

presented as confirmation of correct band size for the introduced Cytochrome c6. Repeated 3 608 

times with similar results  (c) FBPase activity in SB (n=16) and SBC6  (n=14) relative to CN 609 

(n=6) plants.  Chlorophyll fluorescence imaging of plants grown in controlled environmental 610 

conditions was used to determine Fq’/Fm’ (maximum PSII operating efficiency) at 600-650 611 

µmol m-2 s-1, 14 to 21 days after sowing (d) CN (n=20), SB (n= 28), C6 (n=29), SBC6 (n=30), 612 

(e) CN (n=11), S (n=7) and SC6 (n=6). Mean and SE is presented. Statistical tests used 613 

analysis of variance and post-hoc Tukey test.  614 

 615 

Fig 2. Photosynthetic responses of transgenic plants grown in the glasshouse.  616 

Photosynthetic carbon fixation rates, operating efficiency of PSII in the light (Fq’/Fm’), PSII 617 

efficiency factor (Fq’/Fv’) and PSII maximum efficiency (Fv’/Fm’) are presented in (a) mature 618 

leaves CN (n=10), SB (n=7), C6 (n=11), SBC6 (n=9) cv. Petit Havana (b) mature leaves of CN 619 

(n=10), S (n=8), SC6 (n=10) and (c) developing leaves CN (n=6), S (n=6), SC6 (n=9) cv. 620 
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Samsun. Parameters were determined as a function of increasing CO2 concentrations at 621 

saturating-light levels in developing (11-13cm in length) and mature leaves. Plants were 622 

grown in the glasshouse where light levels oscillated between 400 and 1000 µmol m-2 s-1 623 

(supplemental light ensured a minimum of 400 µmol m-2 s-1). Control group (CN) represent 624 

both WT and azygous plants. Asterisks indicate significance between the transgenics and CN 625 

plants, using a linear mixed-effects model and type III ANOVA and contrast analysis, *p < 626 

0.05, exact p value indicated in each plot.  627 

 628 

Figure 3. Increased SBPase or expression of FBP/SBPase and cytochrome c6 increases 629 

biomass in glasshouse grown plants. 630 

Tobacco plants were germinated in growth cabinets and moved to the glasshouse at 10-14 d 631 

post-germination. Forty-day-old (cv. Petit Havana) or fifty-six-day-old (cv. Samsun) plants 632 

were harvested and plant height, leaf area and above-ground biomass (dry weight) 633 

determined. Control group represent both WT and azygous plants (CN). cv. Petite Havana 634 

CN  (n=17), SB (n=21), C6 (n=18), (SBC6 n=18); cv.  Samsun CN (n= 16), S (n=7, SC6 (n= 635 

13). Mean and SE is presented. Statistical analysis was ANOVA with post-hoc Tukey test.  636 

 637 

Figure 4. Simultaneous expression of FBP/SBPase and cytochrome c6 increases biomass 638 

in field grown plants.  639 

(a-c) Forty-day-old (young) 2016 field-grown plants (plants were germinated and grown in 640 

glasshouse conditions for 26 d and then allowed to grow in the field in summer 2016 for 14 641 

d); (d-i) Fifty-seven-day-old or sixty-one-day-old (flowering) 2017 field-grown plants (plants 642 

were germinated and grown in glasshouse conditions for 26 d and grown in the field in 643 

summer 2017 until flowering established, circa 30 d). Plant height, leaf area and total above-644 

ground biomass (dry weight) are shown. 2016 Experiment CN (n=72), SB (n=33), C6 (n=33); 645 
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2017 Experiment 1: CN (n=93), SB (n=71), C6 (n=70); 2017 Experiment 2: (n=97), C6 646 

(n=72), SBC6 (n=47) Mean ± SE presented. Statistical analysis was ANOVA with post-hoc 647 

Tukey test. 648 

 649 

Fig 5. Photosynthetic capacity of field-grown transgenic plants.  650 

Photosynthetic carbon fixation rates and operating efficiency of PSII as a function of 651 

increasing CO2 concentrations at saturating-light levels in mature leaves from CN and 652 

transgenic plants. (a) 2017 experiment 1: CN (n= 21), SB (n=16) and C6 (n=16). (b) 2017 653 

experiment 2: Lines expressing cytochrome CN (n=22) C6 (n=16), SBC6 (n=14). Control 654 

group (CN) represent both WT and azygous plants. Mean ± SE presented. A linear mixed-655 

effects model and type III ANOVA was applied, exact p value indicated in each plot. 656 

 657 

Fig 6. Simultaneous expression of FBP/SBPase and cytochrome c6 can increase water 658 

use efficiency under field conditions. 659 

(a) Net CO2 assimilation rate (A), (b) Stomatal conductance (gs), (c) Intercellular CO2 660 

concentration (Ci), and (d) Intrinsic water-use efficiency (iWUE) as a function of light 661 

(PPFD) in field-grown plants, CN n= 22, C6 n=16, SBC6 n=14. A linear mixed-effects model 662 

and type III ANOVA was applied, exact p value indicated in each plot. 663 

  664 
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Table 1. Maximum electron transport and RuBP regeneration rate (Jmax), maximum 665 

carboxylation rate of Rubisco (Vcmax) and maximum assimilation (Amax) of WT and 666 

transgenic lines. Results were determined from the A/Ci curves in Figure 2 using the 667 

equations published by von Caemmerer and Farquhar57. Significant differences are shown in 668 

boldface (* p<0.05). cv. Samsun Mature leaves  CN (n=10), S (n=8), SC6 (n=10); developing 669 

leaves CN (n=6), S (n=6), SC6 (n=9); cv. Petit Havana Mature leaves: CN (n=10), SB (n=7), 670 

C6 (n=11), SBC6 (n=9)  Mean and SE are shown. 671 

 672 

 A/Ci 

 Leaf Stage 
Line 

 

Vcmax 

(μmol m-2 s-1) 

Jmax 

(μmol m-2 s-1) 

Amax 

(μmol m-2 s-

1) 

Samsun 

Developing 

CN 72.32 ± 5.5 157.51 ± 6.0 29.6 ± 1.1 

S 87.7 ± 4.3 179.8± 4.9* 34.1 ± 0.7* 

SC6 86.5 ± 3.5 181.2 ± 3.6* 33.7 ± 1.1* 

     

Mature 

CN 77.2 ± 3.3 171.0 ± 6.0 31.6 ± 1.0 

S 81.3 ± 6.1 183.5 ± 9.0 32.2 ± 0.7 

SC6 90.3 ± 3.3 193.1 ± 5.4 34.9 ± 1.1* 

Petit 

Havana 
Mature 

CN 69.6 ± 2.0 121.5 ± 1.3 24.6 ± 0.5 

SB 69.0 ± 5.1 128.7 ± 3.8 27.0 ± 0.8 

C6 79.3 ± 7.0 129.9 ± 5.1 25.6 ± 0.5 

SBC6 76.5 ± 4.2 132.0 ± 3.8 27.4 ± 0.8* 

 673 

  674 
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