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Abstract—Kinetic modeling of myocardial perfusion imaging
data allows the absolute quantification of myocardial blood
flow (MBF) and can improve the diagnosis and clinical assess-
ment of coronary artery disease (CAD). Positron emission
tomography (PET) imaging is considered the reference stan-
dard technique for absolute quantification, whilst oxygen-15
(15O)-water has been extensively implemented for MBF quantifi-
cation. Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) has also been used for MBF quantification and
showed comparable diagnostic performance against (15O)-water
PET studies. We investigated for the first time the diagnos-
tic performance of two different PET MBF analysis softwares
PMOD and Carimas, for obstructive CAD detection against inva-
sive clinical standard methods in 20 patients with known or sus-
pected CAD. Fermi and distributed parameter modeling-derived
MBF quantification from DCE-MRI was also compared against
(15O)-water PET, in a subgroup of six patients. The sensitivity
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and specificity for PMOD was significantly superior for obstruc-
tive CAD detection in both per vessel (0.83, 0.90) and per patient
(0.86, 0.75) analysis, against Carimas (0.75, 0.65) and (0.81,
0.70), respectively. We showed strong, significant correlations
between MR and PET MBF quantifications (r = 0.83 − 0.92).
However, DP and PMOD analysis demonstrated comparable
and higher hemodynamic differences between obstructive ver-
sus (no, minor, or non)-obstructive CAD, against Fermi and
Carimas analysis. Our MR method assessments against the opti-
mum PET reference standard technique for perfusion analysis
showed promising results in per segment level and can sup-
port further multimodality assessments in larger patient cohorts.
Further MR against PET assessments may help to determine
their comparative diagnostic performance for obstructive CAD
detection.

Index Terms—Coronary artery disease (CAD), dynamic con-
trast enhanced magnetic resonance imaging (DCE-MRI), kinetic
modeling, Oxygen-15 (15O)-water Positron emission tomogra-
phy (PET).

I. INTRODUCTION

MYOCARDIAL ischaemia is an essential prognostic
determinant in coronary artery disease (CAD) and non-

invasive methods for ischaemia assessment are important for
the clinical management of patients with known or suspected
CAD [1]. The current noninvasive clinical standard assess-
ment for myocardial ischaemia is based on visual estimates
from perfusion imaging data which are limited to identify-
ing regional perfusion changes. The diagnostic performance
of visual estimates is particularly compromised in condi-
tions where MBF is diffusely abnormal, such as in multi-
vessel disease, or where microvascular dysfunction may be
present [2]. Kinetic modeling of myocardial perfusion imaging
data can allow the absolute quantification of myocardial blood
flow (MBF), which has the potential to improve the diag-
nosis of CAD, the assessment of coronary microcirculation
and to precisely assess MBF changes following therapeutic
interventions [2], [3].

Positron emission tomography (PET) imaging benefits from
a direct relationship between signal intensity and the radioac-
tivity concentration in the tissue of interest and is considered
the reference standard technique for absolute quantification of
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MBF [4]. In the context of MBF quantification, previous stud-
ies demonstrated the applicability of oxygen-15 (15O)-water
in PET perfusion imaging [4], [5]. For a metabolically inert
freely diffusible tracer such as 15O-water, single-tissue com-
partmental models are commonly used for MBF quantification
without the need for radio-metabolite correction in the arterial
blood [5], [6]. However, additional post-processing techniques
are required to correct for spill-over effects between the left,
right ventricular arterial blood, and myocardial tissue com-
partments and for the low-signal gradient between myocar-
dial tissue and arterial blood [2], [4]–[6]. Perfusion analysis
software implements different methods for spill-over correc-
tion and myocardial tissue delineation [4], [7], [8]. Although
strong correlations in MBF quantification derived from dif-
ferent available PET perfusion analysis software (Carimas
versus Cardiac VUer) have been previously shown [9], there
is no previous work comparing the diagnostic ability of dif-
ferent perfusion analysis softwares to detect hemodynamic
differences in the presence of obstructive CAD.

Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) using gadolinium-based extracellular contrast
agents, has also been used to derive absolute quantifi-
cation of MBF. Quantitative MR studies have previously
shown comparable diagnostic performance for the detection
of obstructive CAD [10]–[12] compared to quantitative 15O-
water PET [13]–[15]. Various MR models have been used
to describe the kinetics of gadolinium-based contrast agents
through the myocardium. Their diagnostic performance in
detecting obstructive CAD has been assessed, with Fermi
deconvolution modeling showing high diagnostic accuracy
and being the most established approach [3], [10], [11]. The
Fermi model is an empirical-mathematical model used to
estimate MBF from MR perfusion data during first-pass
of gadolinium-based extracellular contrast agents [10], [12].
Our group recently demonstrated that distributed parame-
ter (DP) deconvolution modeling showed superior diagnos-
tic performance against Fermi modeling for the detection
of obstructive CAD using 3T MR and our results com-
pared favorably against previous MR studies [12]. The DP
model is based on tracer kinetics analysis and it can pro-
vide MBF quantification and additional information about
coronary vascularity and permeability, such as estimates of
intravascular space, extravascular-extracellular space, extrac-
tion fraction, permeability surface area product, and volume
of distribution [12], [16], [17]. MR-derived MBF has been
assessed against PET-derived MBF quantification in patients
with CAD by using ammonia-13 (13N) and rubidium-82
(82Rb), which showed weak [18] and stronger [19] correla-
tions, respectively. Despite these first multimodality MBF
comparisons, Fermi- and DP modeling-derived MBF quan-
tification from DCE-MR data have not been assessed against
15O-water PET data in patients with CAD.

The objectives of this paper were twofold. We evaluated
the diagnostic performance of two dedicated software pack-
ages, Carimas and PMOD, to detect obstructive CAD against
the current clinical standard assessments of invasive coronary
angiography and fractional flow reserve in a pilot popu-
lation. We also assessed for the first-time Fermi- and DP

modeling-derived MBF quantification from DCE-MRI against
15O-water PET data, acquired in patients with CAD.

II. METHODS

A. Study Population

The study was performed with the approval of the insti-
tutional research ethics committee and in accordance with
the Declaration of Helsinki, as previously described [20].
Following informed consent, 15O-water PET was acquired in
20 patients with history of stable angina and known or sus-
pected CAD. Results are also presented here for a subset of
six subjects who agreed to receive DCE-MRI, prior to stan-
dard clinical invasive CAD assessments (maximum interval
between PET and MR imaging was seven days). All sub-
jects were instructed to abstain from caffeine for 12 h before
PET and MR imaging, which acts as an adenosine recep-
tor antagonist and can otherwise affect adenosine-induced
stress imaging [11], [14]. Exclusion criteria for subject recruit-
ment included history of severely compromised renal function
(serum creatinine greater than 2.26 mg/dL or glomerular fil-
tration rate ≤ 30 mL/min), pregnancy and contraindications
to adenosine or MR imaging. All patients underwent invasive
coronary angiography and fractional flow reserve.

B. Cardiac Positron Emission Tomography

Rest and adenosine stress 15O-water PET was performed
using a hybrid PET-CT scanner (128-multidetector Biograph
mCT, Siemens Medical Systems, Germany), as previously
described [20]. Attenuation correction computed tomography
imaging maps was acquired before rest and stress imaging.
15O-water was produced by an on-site cyclotron (PETtrace
8, GE Healthcare, U.K.) and a radiowater generator (Hydex
Oy, Finland) generated the 15O-water bolus. For rest imaging,
a target of 500 MBq 15O-water bolus was injected intra-
venously over 15 s and the venous line was then flushed for
another 2 min. The dynamic acquisition was performed over
5 min (14 frames × 5 s, 3 frames × 10 s, 3 frames × 20 s,
and 4 frames × 30 s).

Following suitable radioactivity decay (of approxi-
mately 10 min), stress imaging was performed with
intravenously administering adenosine for 4 min (140
μg/kg/min, Adenoscan, Sanofi Aventis) [13], [20]. The
above protocol was then repeated using a further dose of
500 MBq 15O-water bolus. Dynamic emission images were
reconstructed using the standard UltraHD algorithm (Siemens
Medical Systems, Germany) with a zoom of 2.00, matrix
128 × 128, voxels 3.18 × 3.18 × 3 mm.

C. Cardiac Magnetic Resonance Imaging

DCE-MRI imaging was acquired in a 3T Verio imag-
ing system (Siemens, Healthcare Gmbh, Erlangen, Germany)
using electrocardiogram-gating, as previously described [12].
Standard cardiac imaging planes and a short axis stack of left
ventricular cine data were acquired using routine steady state
free precession (TrueFISP) acquisitions. Modified look-locker
inversion recovery (MOLLI) T1 maps were acquired using



the Siemens Works in Progress Package #448, Quantitative
Cardiac Parameter Mapping [21].

Stress imaging was performed by implementing the
same adenosine infusion protocol as described above for
4 min [10], [12]. Fifty dynamic perfusion images were
obtained at diastole across three short-axis view slices, cover-
ing 16 of the standard myocardial segments [22]. For dynamic
imaging, a turbo-fast low angle shot (FLASH) saturation
recovery prepared single-shot gradient echo pulse sequence
was used with imaging parameters: flip angle 12◦, repetition
time/echo time 2.20 ms/1.07 ms, slice thickness 8 mm, prepa-
ration pulse delay to central line of k-space 100 ms, matrix
size 192×108 and FoV 330 mm × 440 mm. Parallel imaging
was performed with the application of GRAPPA (accelera-
tor factor of 3) and partial Fourier acquisition of 0.75, which
led to 48-phase encoding lines for each dynamic frame. An
intravenous bolus of 0.05 mmol/kg of a gadolinium-based con-
trast agent (Gadovist, Bayer Healthcare) followed by 20 mL
of 0.9% saline (Medrad Spectris Solaris, Medrad, USA) was
injected at 4 mL/s using an MR compatible pump injec-
tor (Spectris Solaris, Medrad, Bayer). To allow clearance of
residual contrast agent, rest perfusion imaging was performed
15 min after stress imaging, with the same acquisition protocol
for all six subjects.

D. Invasive Coronary Angiography and Fractional
Flow Reserve

Subjects underwent invasive coronary angiography and frac-
tional flow reserve (clinical reference standard assessments) at
the Royal Infirmary of Edinburgh. Invasive coronary angiogra-
phy was performed via the radial artery as per standard clinical
practice [20], [23]. Fractional flow reserve was assessed for
major epicardial vessels and defined as the ratio between
distal coronary pressure and aortic pressure measured simul-
taneously at maximal adenosine-induced (intravenous 140
μg/kg/min) hyperemia [23]. Obstructive CAD was defined as
luminal stenosis ≥ 70% on invasive coronary angiography
alone, or luminal stenosis ≥ 50% and fractional flow reserve
≤ 0.80 [12], [20]. (No, minor, or non)-obstructive CAD was
defined as luminal stenosis < 50% or luminal stenosis ≥ 50%
and fractional flow reserve > 0.80 [12], [20].

E. Quantitative 15O-Water PET Analysis
15O-water PET data were analyzed with two dedicated

softwares (Carimas 2.9, www.turkupetcentre.net, Finland and
PMOD 3.7, www.pmod.com, Switzerland), using single-tissue
compartment modeling. The single-tissue compartment model
can be mathematically described by

dCt(t)

dt
= MBF · Ca(t) − MBF

p
Ct(t) (1)

where Ct(t) and Ca(t) are the radioactivity concentrations
extracted by the myocardial tissue and the arterial blood from
the left ventricular blood pool, respectively, and p is the
partition coefficient of 15O-water (i.e., myocardial to blood
radioactivity concentration at equilibrium, when the net tracer
flux between the compartments is zero; a constant value of

0.95 mL/mL for Carimas [7] and of 0.96 mL/mL for PMOD
modeling [24] were used).

Myocardial contours were defined in short axis views,
automatically with manual adjustment on digital subtraction
images in Carimas [7], and semi-automatically with man-
ual adjustment on images generated by factor analysis in
PMOD [24]. In Carimas, digital subtraction images were auto-
matically generated. For factor analysis in PMOD, volumes
of interest were initially outlined within the left and right
lungs, from which an average lung time activity curve was
extracted. By time-shifting this lung time activity curve (auto-
mated time shift of −5 and 5 s for the right and left ventricle,
respectively), approximations of two synthetic time activity
curves in the right and left ventricle were derived. A third syn-
thetic time activity curve corresponding to myocardial uptake
was then calculated by solving the single-tissue compart-
ment model with the shifted lung time activity curve (8 s)
and by using a mean MBF value of 1 mL/min/mL [24]. All
synthetic time activity curves were then used to automati-
cally estimate weighted factors for the myocardium and left-
ventricular blood pool for each dynamic frame, as described
by Hermansen et al. [25] and factor analysis images were
generated.

Carimas and PMOD performed correction for spill-over
fractions from the left [7] and left and right ventricles [24],
respectively. In Carimas post-processing, the measured
radioactivity concentration derived from the images was
expressed as a function of true radioactivity (radioactivity
without the spill-over fractions) in the myocardium and left
ventricular blood pool, as described in the following system
of equations:

Ct(t) = TF · Ctt(t) + Va · Cta(t)

Ca(t) = β · Cta(t) + (1 − β) · Ctt(t) (2)

where TF, Ctt, Va, Cta, and β are the perfusable tissue
fraction and true radioactivity in the myocardial tissue, the
arterial vascular space (including the spill-over from the left
ventricle blood pool), the true radioactivity in the left ven-
tricular blood pool and the recovery coefficient (i.e., the
ratio of measured to known radioactivity, a constant value of
0.93 was used), respectively. MBF quantification in Carimas
was then performed in a 2-step process. Following substi-
tutions in (1) and (2), and integration, the first operational
equation was derived, which is a function of measured radioac-
tivities in the left ventricular blood pool and myocardial
tissue and fitted in a time activity curve extracted from the
whole (nonsegmented) myocardium, using multilinear regres-
sion analysis for model fitting (see Table I) [26]. This first step
allowed the calculation of the true radioactivity concentration
in the left ventricular blood pool Cta. By solving for Ctt(t) in
the former expression of the system equation (2), integrating
and substituting into equation (1), the final operational equa-
tion (second step) was then derived which was expressed as
a function of true radioactivity Cta(t) (measured from step 1) in
the left ventricular blood pool (Table I). From the fitted param-
eters K′

1, k′
2, and V ′

fit of this operational equation MBF, TF,
and Va were calculated and MBF parametric maps (per pixel



analysis) were generated. Mathematical derivations for true tis-
sue radioactivity Ctt, true radioactivity in the left ventricular
blood pool Cta as well as for MBF, TF, and Va calculations
and explicit mathematical processing in Carimas, are further
described in the Turku PET Centre Modeling report website
link (www.turkupetcentre.net/reports/tpcmod0005.pdf).

In PMOD, by numerically integrating equation (1) and
incorporating the spill-over corrections, the operational equa-
tion was derived (Table I) and fitted to the time activity curves
extracted from myocardial tissue regions of interest using
iterative nonlinear least square fitting (1-step process) [24].
In PMOD, the operational equation was expressed in terms of
the fitted parameters TF, VLV, VRV, and CaRV: perfusable tis-
sue fraction in the myocardial tissue, spill-over fraction from
the left ventricle, spill-over fraction from the right ventricle,
and radioactivity concentration in the right ventricle blood
pool, respectively. Spill-over correction from the right ven-
tricle (VRV) was fitted for septal myocardial segments and
was set to zero for nonseptal myocardial areas. Details about
PMOD post-processing are further described in the PMOD
website link (doc.pmod.com/PDF/PKIN.pdf). A list of nota-
tions for all kinetic modeling parameters are summarized in
the supplementary material 1.

F. Quantitative DCE-MRI Analysis

Endocardial and epicardial MR contours were manually
outlined using validated cardiac image analysis software
(QMass, Medis, The Netherlands). Myocardial and arterial
input function signal intensity-time curves were converted to
gadolinium concentration-time curves using the method of
Larsson et al. [27] as previously described [10], [12], [28].
According to this, the longitudinal relaxation rate R1 (1/T1)
changes linearly as a function of contrast agent concentration
influx C(t) in the tissue at time t, multiplied by its relaxivity r1:

�R1 = C(t) · r1 (3)

where �R1 = R1(t) − R1(0) = (1/T1(t)) − (1/T1(0)).
T1(0) is the native longitudinal relaxation rate and T1(t) is

the longitudinal relaxation rate at time t of contrast enhance-
ment. R1(t) can be calculated by adapting the MR signal equa-
tion for the saturation recovery prepared single-shot FLASH
sequence [10], [28]

S(t) = � · f (R1(t), PD, n) (4)

where S(t) is the equilibrium signal intensity at time t, �

is a calibration constant dependent on instrument conditions,
such as the receiver gain, the proton density, and the flip angle
α. PD is the prepulse delay which is the time between satu-
ration pulse and the central line of k-space, n is the number
of applied pulses of flip angle α. � can initially be calculated
from (4) using native T1(0) (measured with MOLLI [21]).
R1(t) at time t of contrast enhancement can then be calculated
from (4), using � and S(t) values extracted from the same
region of interest. Contrast agent concentration-time curves
can then be calculated using (3).

Model-dependent deconvolution analysis was implemented
to measure MBF using Fermi and 1-barrier 2-region DP

functions as previously described [12]. Fermi parameteriza-
tion is an empirical 3-parameter model fit in which τ o

defines the width of the initial plateau of the tissue impulse
response before it decays mono-exponentially at a rate given
by the parameter k (see fitted parameters of Fermi function
in Table I) [29]. The Fermi model is fitted to the first-pass
phase of contrast enhancement. This is estimated by setting
the end-point at the contrast agent concentration minimum in
the arterial input function, before the recirculation component
begins (this range varies from patient to patient and is com-
monly in the range between 20 and 35 dynamic frames) [12].
DP parameterization is a 4-parameter model fit based on tracer
kinetics analysis and its tissue impulse response is expressed
in terms of the fitted parameters T, Tc, and Te : T is mean
overall transit time, Tc is mean capillary transit time, and
Te is mean interstitial (i.e., extravascular-extracellular) tran-
sit time (Table I). DP modeling describes the intravascular
space as a plug flow system, whilst assumes no axial indica-
tor transport in the extravascular-extracellular space [16], [17].
The third and fourth fitted parameter for Fermi and DP decon-
volution analysis, respectively, was MBF. DP model fitting
was performed in the Laplace domain to avoid the discontinu-
ities of the time step-function that can be present when fitting
the DP model in the time domain [30]. To account for the
time delay (between the onset of contrast enhancement in the
blood pool and the myocardium), both models were fitted to
the data multiple times from zero to six times the temporal
resolution starting from the onset of contrast enhancement in
the blood pool and the time delay reaching the optimal x2 fit
to the data was used in the analysis.

A standardized American Heart Association (AHA)
16-segment model of the heart was generated across all
modeling applications [22]. In Carimas, the per pixel anal-
ysis was averaged for each of the 16-myocardial segments.
For both 15O-water PET and DCE-MR analysis, myocardial
perfusion reserve (MPR) was also calculated by dividing the
hyperemic by the resting MBF. MBF and MPR were quan-
tified for each of the 16 myocardial segments and were then
averaged per epicardial vessel territory (vessel territories corre-
sponded to the three main coronary vessels, defined according
to the 16 segment model [22]). Mean values for MBF at stress
and MPR were classified accordingly in two groups for per
vessel and per patient based analysis (see classification in the
results section).

G. Statistical Analysis

Blinded and independent analysis of 15O-water PET and
DCE-MRI data was performed using dedicated statistics soft-
ware (R Foundation for statistical computing, Vienna, Austria;
MedCalc Software, Ostend, Belgium). Linear regression and
Pearson’s correlation coefficients were used to investigate
correlations in MBF estimates between different modeling
applications, for both 15O-water PET and DCE-MRI, in
a per segment and per vessel basis. Bland Altman analy-
sis was implemented to investigate systematic bias between
all modeling applications. Hemodynamic differences between
obstructive versus (no, minor, or non)-obstructive CAD and



TABLE I
FITTED PARAMETERS AND OPERATIONAL EQUATIONS FOR CARIMAS (2-STEP PROCESSING), PMOD (15O-WATER PET) ANALYSIS AND TISSUE

IMPULSE RESPONSE FUNCTIONS FOR FERMI, 1-BARRIER 2-REGION DP (DCE-MRI) ANALYSIS ARE SHOWN. FITTED PARAMETERS FOR STEPS 1 AND

2 IN CAR: K1, k2, AND Vfit AND K′
1, k′

2, V ′
fit FROM WHICH MBF, TF, AND Va WERE CALCULATED, RESPECTIVELY. CCAR1 AND CCAR2 ARE THE

OPERATIONAL EQUATIONS (1) AND (2) FOR CARIMAS PROCESSING, RESPECTIVELY. FITTED PARAMETERS FOR PMOD: MBF, TF, VLV, AND VRV.
FITTED PARAMETERS FOR FERMI: MBF, τ0 CHARACTERIZED THE WIDTH OF THE SHOULDER OF THE FERMI FUNCTION AND k DETERMINED THE

DECAY RATE OF THE TISSUE IMPULSE RESPONSE R(t) DUE TO CONTRAST AGENT WASH-OUT, t IS THE TIME VARIABLE. FITTED PARAMETERS FOR

DISTRIBUTED PARAMETER: MBF, T IS MEAN OVERALL TRANSIT TIME, Tc IS MEAN CAPILLARY TRANSIT TIME, Te IS MEAN INTERSTITIAL (I.E.,
EXTRAVASCULAR-EXTRACELLULAR) TRANSIT TIME. CAR: CARIMAS, Ct : THE IMAGE-DERIVED RADIOACTIVITY CONCENTRATION IN THE

MYOCARDIAL TISSUE, Cta : THE TRUE (WITHOUT SPILL-OVER FRACTION FROM THE MYOCARDIAL TISSUE) RADIOACTIVITY CONCENTRATION IN THE

LEFT VENTRICLE, MBF: MYOCARDIAL BLOOD FLOW, TF: PERFUSABLE TISSUE FRACTION IN THE MYOCARDIAL TISSUE, VLV: SPILL-OVER

FRACTION FROM THE LEFT VENTRICLE, VRV: SPILL-OVER FRACTION FROM THE RIGHT VENTRICLE, DP: DISTRIBUTED PARAMETER MODEL.
s = i · 2 · π · f WHERE f IS THE FREQUENCY VARIABLE IN THE FOURIER TRANSFORMED DATA

between all modeling applications in a per segment basis,
were investigated by implementing two sample t-test (two-
sided P value < 0.05 were considered significant). For the
Carimas versus PMOD comparison, receiver-operating char-
acteristic (ROC) analysis was used on a per vessel and per
patient basis to determine threshold values for absolute MBF
at stress and MPR with the greatest sensitivity and specificity
to detect obstructive versus (no, minor, or non)-obstructive
CAD (group 2 versus group 1, see results). The area under
the curve (AUC) was calculated using trapezoidal numerical
integration and a DeLong et al. [31] nonparametric comparison
was performed to compare the diagnostic performance of 15O-
water PET quantitative methods. The maximal Youden Index
was used to determine the optimal threshold values [10], [12].

III. RESULTS

The baseline characteristics of the full patient cohort are
presented in Table II. Quantitative 15O-water PET analy-
sis was performed in 20 patients, in which the diagnostic
performance of Carimas versus PMOD in detecting obstructive
CAD was investigated. For six of these patients, quantitative
DCE-MRI analysis was also performed and correlations and
agreements in MBF measurements were investigated against
15O-water PET (Fig. 1).

For each subject, MBF quantification across all four
modeling methods was performed for each of the 16 myocar-
dial segments, in per segment analysis. Myocardial segments
with (no, minor, or non)-obstructive and obstructive CAD were
then classified based on the invasive coronary angiography and
fractional flow reserve data, in groups 1 and 2, respectively. In

TABLE II
PATIENT CHARACTERISTICS (N = 20) PRESENTED

per vessel analysis, segmental MBF values were averaged per
epicardial vessel territory (three main coronary vessels, as per
the 16-segment AHA model) [10], [15], [22]. Vessel territo-
ries with (no, minor, or non)-obstructive CAD were classified
in group 1 and vessels with obstructive CAD were classified
in group 2. For per patient analysis, patients with all vessel
territories detected with (no, minor, or non)-obstructive CAD
were classified in group 1, whilst patients with at least one ves-
sel identified with obstructive CAD, were classified in group
2 [12].

A. Carimas Versus PMOD Analysis

Quantitative 15O-water PET analysis was performed in
60 vessel territories in total (20 patients, 3 vessel territories
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Fig. 1. Perfusion images showing myocardial 15O-water PET radioactivity in unprocessed data at the (a)–(c) peak of contrast enhancement and (d)–(f) during
the wash-out phase, from a patient with nonobstructive CAD. Note that the low signal gradient between the myocardial tissue and arterial blood. (g)–(i) Carimas
and (j)–(l) PMOD post-processed images are shown, generated using digital subtraction and factor analysis, respectively, for the same patient data (note that
the two softwares use different color bars to show radioactivity in the images). The entire myocardial wall is well delineated in both Carimas and PMOD.
(m)–(o) DCE-MR images showing peak contrast enhancement in the myocardium from the same patient. (a), (d), (g), (j), and (m) Basal, (b), (e), (h), (k),
and (n) mid-ventricular, and (c), (f), (i), (l), and (o) apical slices are illustrated.

each). Seven patients had at least one vessel identified with
obstructive CAD: 3 patients had 1-vessel disease, 3 had
2-vessel disease, and 1 had 3-vessel disease. Examples of
model fitting and arterial input functions from both modeling
approaches are presented in Fig. 2.

On linear regression and Pearson’s correlation, PMOD and
Carimas-derived MBF showed strong, significant correlations
(P < 0.001), in both per segment (r = 0.88) and per ves-
sel (r = 0.91) analysis. Carimas overestimated PMOD MBF
estimates at stress (P < 0.05), whilst underestimated PMOD
MBF estimates at rest (P < 0.01).

On Bland Altman analysis, the average bias was calculated
as the Carimas-derived estimates minus the PMOD modeling-
derived estimates. The systematic bias was low in both per
segment and per vessel basis: 0.16 (−1.18, 1.50) versus 0.16
(−0.95, 1.28), respectively.

Hemodynamic differences between obstructive versus (no,
minor, or non)-obstructive CAD were initially assessed in
a per segment basis. Significant differences in stress MBF
values between myocardial segments classified in group
1 versus group 2 were higher (4 orders of magnitude) for
PMOD modeling against Carimas modeling, respectively (P <

0.0001).
ROC analysis curves were subsequently investigated in per

vessel and per patient analysis, shown in Fig. 3. Mean (SD)
values for Carimas and PMOD-derived MBF and MPR in
groups 1 and 2 for per vessel analysis are shown in Table III.
All hemodynamic thresholds estimated on ROC analysis are

presented in Table IV. In per vessel ROC analysis, the AUCs
for PMOD were significantly higher compared to Carimas
modeling, for both MBF at stress and MPR (Table IV). The
diagnostic performance of PMOD consistently outperformed
Carimas modeling (Table IV).

Mean (SD) values for Carimas and PMOD-derived MBF
and MPR in groups 1 and 2 for per patient analysis are
presented in Table III. In per patient ROC analysis, the AUCs
for PMOD were significantly higher whilst the diagnostic
performance was consistently superior for PMOD modeling
compared to Carimas modeling, for both MBF at stress and
MPR (Table IV).

B. DCE-MRI Versus 15O-Water PET

Quantitative 15O-water PET against DCE-MRI analysis was
performed in 18 vessel territories in total (six patients, three
vessel territories each). Mean values (SD) and significant dif-
ferences for all modeling applications, for groups 1 and 2,
are shown in Fig. 4. Significant differences between groups 1
and 2 were equivalent (P values in the same order of magni-
tude) for DP against PMOD modeling (Fig. 4, P < 0.0001).
Significant differences were higher (two orders of magni-
tude) for DP and PMOD modeling against Carimas and Fermi
modeling, respectively (Fig. 4, P < 0.0001). An example
file presenting per segment analysis across all models for
a patient with obstructive CAD is shown in the supplementary
material 2.



(a) (b)

(c) (d)

Fig. 2. Perfusion curves and model fits extracted for all modeling applications from the AHA-myocardial segment 8 of the same patient with nonobstructive
CAD in (a) and (b) PET and (c) and (d) MR. The green, dotted, and solid yellow curves are the arterial input function, myocardial tissue time activity curve,
and model fit in (a) Carimas, the red, squared green, and blue curves are the arterial input function, myocardial tissue time activity curve, and model fit
in (b) PMOD, respectively, for the same myocardial segment. The dashed-dotted, dotted-solid blue, and red curves are the arterial input function, myocardial
tissue Gd concentration-time curve, and models fits for (c) Fermi and (d) DP modeling, respectively, from the same MR myocardial segment.

TABLE III
MEAN (SD) VALUES IN PER VESSEL AND PER PATIENT CLASSIFICATION FOR CARIMAS (CAR) AND PMOD MODELING

There were no significant differences between DP, Carimas,
and PMOD modeling-derived MBF values at stress. Fermi
modeling significantly overestimated MBF compared with all
other modeling applications, both at stress and rest (P < 0.01).
DP and Fermi modeling-derived values overestimated Carimas
and PMOD modeling-derived values at rest (P < 0.001).

On linear regression and Pearson’s correlation analysis,
MBF estimates derived from 15O-water PET and DCE-MRI
data, were initially separately assessed. Carimas versus PMOD
MBF values, as well as DP versus Fermi MBF values, showed
significant correlations in per segment and per vessel analysis
(Table V, P < 0.001).

On Bland Altman analysis, the average bias was calcu-
lated as the Carimas-derived estimates minus the PMOD
modeling-derived estimates for 15O-water PET data; and Fermi
modeling-derived estimates minus the DP modeling-derived
estimates for DCE-MRI data (Table V). The systematic bias

was low, mainly for 15O-water PET data, which was eliminated
in per vessel analysis.

Subsequently, MBF measurements from DP and Fermi
modeling from DCE-MRI data were compared against mea-
surements from Carimas and PMOD modeling from 15O-water
PET data. Similarly, there were significant (P < 0.001) cor-
relations for all comparisons, whilst DP and Fermi modeling
showed consistently better correlations with PMOD modeling
(Fig. 5), compared to Carimas analysis (Table V).

On Bland Altman analysis, the average bias was calculated
as PMOD- and Carimas modeling-derived estimates minus DP
modeling-derived estimates; and the Fermi modeling-derived
estimates minus the PMOD- and Carimas-modeling-derived
estimates (Table V). The lowest systematic bias was observed
between PMOD and DP-modeling derived MBF, although with
broader limits of agreement, compared to Fermi modeling
(Table V, Fig. 5).



TABLE IV
AUCS, DIAGNOSTIC PERFORMANCE, HEMODYNAMIC THRESHOLDS AND AUC DIFFERENCES BETWEEN METHODS ON ROC ANALYSIS, ARE

PRESENTED. CAR, MBF, AND MPR (SIGNIFICANT DIFFERENCES ARE INDICATED WITH *). VALUES INSIDE PARENTHESES SHOW SD

(a) (b)

(c) (d)

Fig. 3. ROC curves demonstrating diagnostic performance for both Carimas and PMOD modeling in (a) and (b) per vessel and (c) and (d) per patient
analysis showing measures of (a) and (c) MBF at stress, and (b) and (d) MPR.

IV. DISCUSSION

The main outcomes of this paper demonstrated that PMOD
showed higher hemodynamic differences between obstructive
versus (no, minor, or non)-obstructive CAD in per segment-
based analysis, as well as consistently outperforming Carimas
modeling in both per vessel and per patient analysis. Beyond
strong, significant correlations across all MR versus PET
comparisons, DP and PMOD analysis showed comparable

and higher hemodynamic differences between obstructive ver-
sus (no, minor, or non)-obstructive CAD, against Fermi and
Carimas analysis.

A. Carimas Versus PMOD

To date, this is the first study assessing diagnostic
performance for the detection of obstructive CAD, using



Fig. 4. Mean MBF (SD) and significant differences between groups 1 (nonob-
structive CAD) and 2 (obstructive CAD), for all modeling applications. All
models showed significant differences between groups 1 and 2 (P < 0.0001).
Significant differences were higher for PMOD and DP modeling, compared to
CAR and Fermi modeling († show two orders of magnitude smaller P values
compared to *).

more than one perfusion analysis software. Our correla-
tion coefficients for Carimas versus PMOD estimates are in
agreement with similar comparisons performed in 15O-water
PET [4] and in 82Rb-rubidium PET [32], which showed good
correlations between different cardiac PET perfusion quantifi-
cation software. Despite the larger patient cohorts previously
analyzed, none of these studies compared the diagnostic ability
of the different software examined in detecting reduced blood
flow in the presence of obstructive CAD. In our pilot cohort,
we assessed hemodynamic differences between obstructive
versus (no, minor, or non)-obstructive CAD in per segment
analysis, as well as performed full diagnostic performance
in per vessel and per patient level on ROC analysis. We
demonstrated that PMOD consistently showed higher hemo-
dynamic differences and superior diagnostic performance in
detecting obstructive CAD, compared with Carimas. These
results indicate that it may be important to fully assess hemo-
dynamic differences and diagnostic performance, beyond just
MBF cross-correlations, when different perfusion softwares
are compared.

The diagnostic performance for PMOD was in agreement
with a previous 15O-water PET study [14], whilst compared
favorably against other findings on a per vessel [33], or per
patient basis [8]. The highest diagnostic performance for the
detection of obstructive CAD was reached by PMOD-derived
MBF at stress in per vessel analysis, which is consistent with
a previous 15O-water study where the PMOD-derived sen-
sitivity and specificity were higher in per vessel compared
to per patient-based analysis [33]. Moreover, the diagnostic
performance of MBF at stress was consistently higher com-
pared to MPR for both Carimas and PMOD, as previously
demonstrated [8], [15], [33]. In this paper, a small pilot cohort
was investigated with a low number of patients with obstruc-
tive and multivessel CAD. Microvascular dysfunction that may
be present in patients with minor or nonobstructive CAD (see

risk factors in Table II: rates for hypertension, hypercholes-
terolemia, ex-smokers, and revascularization [12], [14]), can
also lead to MBF reductions, which in turn can compromise
the specificity for the detection of obstructive CAD-specific
MBF reductions [12]. We showed that Carimas overestimated
PMOD estimates at stress hence, any MBF overestimations in
myocardial segments classified with obstructive CAD could
explain its lower sensitivity versus PMOD, in our data. These
factors together with differences in patient cohorts and acqui-
sition protocols can explain the lower diagnostic performance
detected for the case of Carimas modeling, in comparison with
a previous study which used the same software in a larger
patient cohort (38 out of 104 patients scanned had obstructive
CAD) and higher 15O-water doses (maximum of 1100 MBq
for each 15O-water injection) [13].

Our hemodynamic thresholds on ROC analysis for PMOD
and Carimas-derived MBF (Table V) were consistent with
previous 15O-water PET studies which identified thresholds in
the range between 1.85 and 2.50 mL/min/mL, for both per ves-
sel and per patient-based analyses [8], [13], [14], [33], [34].
Furthermore, these thresholds agree with Fermi (2.49,
2.60 mL/min/mL) and DP (1.75, 2.00 mL/min/mL) modeling-
derived thresholds in per vessel and per patient analysis,
respectively, estimated by our group [12]. Differences in
15O-water doses, PET protocols and scanners, image recon-
struction, post-processing techniques, and angiographic thresh-
olds defining obstructive CAD can explain any hemody-
namic threshold variations between 15O-water PET stud-
ies, including the current work [13], [33]. We also demon-
strated that Carimas overestimated and underestimated
PMOD estimates at stress and rest, respectively, which
can explain the higher threshold values identified for
Carimas-derived MPRs, in both per vessel and per patient
analysis.

Technical disparities between Carimas and PMOD can
interpret the diagnostic performance differences demonstrated.
Although no spill-over correction from the right ventricle in
Carimas means that it would mainly affect MBF measure-
ments in septal myocardial segments (anatomically located
between the left and right ventricle), it also overestimated
PMOD MBF values at stress in nonseptal areas. A consider-
able disparity between Carimas and PMOD post-processing,
is the pixel by pixel-based (using a linear least square
approach described in [26]) versus segment-based (using stan-
dard nonlinear least square fitting) method for model fit-
ting, respectively. Differences between linear versus nonlinear
least square approaches have been assessed using single-
tissue compartmental modeling and demonstrated that linear
least square methods may compromise the accuracy of MBF
quantification [26], [35]. In contrast, other studies showed
that the linear least square and/or generalized linear least
square (designed to reduce estimation bias of the linear least
square method) approaches can provide accurate estimates of
blood flow, compared to the standard nonlinear least square
(segment-based) method [36]–[38]. Boellaard et al. [39] com-
pared different methods for pixel-based MBF analysis and
demonstrated that the basis function method was independent
of the noise level and provided the most accurate perfusion
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(a) (b)

(c) (d)

Fig. 5. (a) and (c) Linear regression, Pearson’s correlation (r) and (b) and (d) Bland Altman plot analysis (values coordinated accordingly to allow positive
average bias) for DP and Fermi versus PMOD modeling-derived MBF, in per vessel analysis.

TABLE V
PEARSON’S COEFFICIENTS AND BLAND ALTMAN ANALYSIS FOR ALL MULTIMODALITY COMPARISONS ARE PRESENTED.

CAR, DP MODEL, MBF, PS: PER SEGMENT, AND PV: PER VESSEL

estimates, compared to the linear least square and general-
ized linear least square approaches. Further work is needed
to elucidate to what degree the linear least square approach
used has affected the diagnostic performance of the Carimas
software. Another important difference in the post-processing
between Carimas and PMOD is the 2-step versus 1-step
mathematical modeling, respectively. This involves fitting dif-
ferent operational equations for the two softwares and thus,
MBF estimations differ: MBF is indirectly estimated through
the fitted parameter K1’ in Carimas (described in methods,
Table I, and Carimas documentation), whilst directly cal-
culated from the fitted parameter MBF in PMOD. These
disparities can suggest that any Carimas-derived MBF overes-
timations may be due to a combination of the above technical

differences, beyond just methodological differences in the
spill-over correction approach.

B. DCE-MR Versus 15O-Water PET

We demonstrated for the first time strong correla-
tions between DP/Fermi modeling- (from DCE-MRI) ver-
sus Carimas/PMOD modeling-derived values (from 15O-water
PET) in a subgroup of patients with CAD. This is also the first
study comparing DP modeling against PET. In per segment-
based analysis, we showed that hemodynamic differences
between obstructive versus (no, minor, or non)-obstructive
CAD were comparable for DP and PMOD, against Fermi
and Carimas analysis. Due to the small number of subjects



in this subgroup of patients, it was not possible to perform
a full diagnostic performance comparison (ROC analysis) for
obstructive CAD detection across all our MR versus PET com-
parisons. However, our PET findings are consistent with the
higher hemodynamic differences presented in our full cohort
for PMOD in per segment level, for which superior diagnostic
performances were consistently demonstrated against Carimas.
Similarly, our MR findings are also consistent with the higher
hemodynamic differences showed in our previous study for DP
modeling in per segment level [12], for which higher diag-
nostic performances were consistently shown, against Fermi
modeling.

Direct comparisons in correlation coefficients against
previous MR versus PET studies are difficult because
of variations in the image acquisition and analysis
techniques [18], [19], [40]–[42]. However, our correlation
coefficients compare favorably against previous studies com-
paring two-compartmental and Fermi MR-derived MBF
against PET [19], [40] respectively, whilst are in agreement
with other studies that assessed model-independent, model-
independent/Fermi, and single-tissue compartment/Patlak
MR derived MBF against PET [18], [41], [42], respec-
tively. Two studies have previously compared DCE-MRI
against 15O-water PET data in healthy subjects [40], [42].
Pärkkä et al. [40] used 18 healthy volunteers and showed
weaker perfusion correlations compared to our data analy-
sis. Despite the larger healthy volunteer cohort used in this
paper, it was not possible to investigate correlations across
different hemodynamic states (MBF at stress in no, minor,
non-obstructive, obstructive CAD, MBF at rest), assessed
in our pilot cohort. Also for the MR analysis, the param-
eter Ktrans was estimated from which a direct estimate
of MBF is not possible, as its physiological interpretation
reflects a mixture of blood flow and the permeability surface
area product [17]. Our correlation coefficients agree with the
study by Tomiyama et al. [42], which showed strong corre-
lations between single-tissue compartment model (per vessel
analysis across 10 subjects, r = 0.92) and Patlak model (per
vessel analysis across ten subjects, r = 0.80) derived MBF
against an in-house software for 15O-water PET data analysis.

Although PET imaging is considered the reference stan-
dard for MBF quantification and therefore it is impor-
tant for validating MR perfusion, each tracer has its own
limitations [2], [5], [6]. The main limitations for the analysis
of 15O-water are the need to correct for the high 15O-water
activity in the blood pool and for the spill-over from the
left and right ventricles [2], [5]. Our multimodal comparisons
against invasive methods showed that PMOD may be able to
effectively minimize the impact of the above limitations for
MBF quantification compared to Carimas, and that it may be
a useful analysis tool for validating quantitative MR perfusion.

DP modeling did not show significant differences against
Carimas and PMOD estimates for MBF at stress, but sig-
nificantly overestimated MBF at rest [see Fig. 5(b)]. Fermi
modeling showed strong correlations against PMOD and
Carimas, but it significantly overestimated MBF values, com-
pared to all other modeling applications [Table V, Fig. 5(d)].
These MR-derived MBF overestimations are in agreement

with previous studies demonstrating rest [19] and stress-rest
overestimations [41] compared with PET estimates. Further
work needs to be done to assess which methodological
disparities may cause consistent differences in MBF quan-
tification between MR and PET [18], [19], [40]–[43] and to
what degree these can affect the diagnostic performance of
quantitative MR and PET protocols.

C. Study Limitations

Our diagnostic performance comparison between Carimas
and PMOD was performed in a small pilot cohort. However,
this is the first study comparing the diagnostic ability of dif-
ferent PET perfusion analysis software for detecting reduced
MBF in obstructive CAD, which showed considerable dif-
ferences between the two techniques. Any changes in the
acquisition protocol, the 15O-water dose or the reconstruc-
tion technique would necessitate a diagnostic performance
reassessment for both MBF quantification techniques [2], [6].
Our MR versus PET analysis was assessed in a small sub-
group of patients. For DCE-MRI, we used a single bolus
protocol that may be prone to arterial input function satura-
tion effects at the peak of contrast enhancement, which can
lead to MBF overestimations [10], [28]. Arterial input func-
tion saturation could be more pronounced in our 3T data,
compared to perfusion data from 1.5T. Our group previously
demonstrated that DP modeling is less dependent on arte-
rial input function saturation compared to Fermi modeling (at
3T) [12]. Fermi modeling may derive smaller systematic bias
against PET compared to our findings, if either dual bolus
protocols [28] and/or 1.5T [10] would be used for minimizing
signal saturation. Despite any Fermi-derived overestimations
due to arterial input function saturation effects, our findings
are consistent with other studies which showed that Fermi esti-
mates were systematically increased compared to DP modeling
(at 3T) [12], to model-independent, two-compartmental and
Patlak model analysis (mixture of 1.5 and 3T were used) [44]
as well as to uptake model and model-independent analysis
(at 1.5T) [10].

V. CONCLUSION

In conclusion, we demonstrated consistently superior diag-
nostic performance for the detection of obstructive CAD when
PMOD was used versus Carimas in 15O-water PET data.
Although we showed strong, significant cross-correlations
between MR against PET quantitative perfusion analysis,
PMOD and DP analysis detected comparable and higher
hemodynamic differences between obstructive versus (no,
minor, or non)-obstructive CAD, compared to Carimas and
Fermi analysis.

Our MR method assessments against the optimum PET
reference standard technique for perfusion analysis showed
promising results in per segment level and can support
further multimodality assessments in larger patient cohorts.
Further MR versus PET assessments may help to determine
the comparative diagnostic performance of both quantitative
methodologies for obstructive CAD detection.
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