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Abstract 
Dehaloperoxidase (DHP) is a multifunctional globin and is the first known globin to 

have a biologically relevant peroxidase function. What makes DHP different from 

other globins is not just its peroxidase function, but its flexible distal histidine that is 

located at the opening of the distal pocket, this is essential to its peroxidase 

function. The main aims of this study are to better understand how and also where 

dehaloperoxidase binds its ligands, demonstrating different binding modes and 

pockets to better understand how it switches between its functions. Using both data 

collected during this project, and processing data from previous experiments, and 

comparisons of structures obtained from literature, binding modes of different 

ligands with the isoform dehaloperoxidase-B were explored. Another important 

question explored in this thesis, is the use of both room-temperature (serial) and 

cryogenic (single) data collection, to compare whether these two methods produce 

significantly different results.  

 

Single crystal data were obtained from Diamond Light Source (DLS) and Swiss Light 

Source, or from the protein data bank. Crystals were grown using the hanging-drop 

vapour diffusion method, soaked in cryoprotectant and measured at synchrotron 

sources. Serial data was collected using microcrystals at SACLA, Japan and from DLS. 

The structures were solved using both CCP4i2 suite and Phenix. The structures 

displayed different binding modes and pockets present in DHP-B, making bonds with 

multiple different amino acids present in the binding pocket. The distal histidine 

(His55) always plays a role in binding due its flexibility. The presence of a 

hemichrome species is also observed in almost all the structures in this study, 

including in room temperature, damage-free X-ray Free-Electron Laser (XFEL) 

structures, ruling out the possibility of the hemichrome species being from the use 

of cryoprotectant. More research needs to be done to determine whether the 

hemichrome species has any biological relevance. Comparisons of serial and single 

crystal studies do show some differences, indicating that temperature measured 

does have an effect on the structure.  
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Chapter 1 – Introduction 
1.1 Introduction to Haem Proteins 
Haem proteins are among the most studied families of proteins (Reedy, Elvekrog 

and Gibney, 2008). They are a vast family of metalloproteins with a large range of 

functions. The haem group present in these proteins gives rise to their function and 

allows the protein to carry out reactions that are vital for cellular processes and 

other ligand binding properties. The most well-known haem proteins are myoglobin 

and haemoglobin, both known for their oxygen storage and transportation, and 

were also the first proteins to be crystallised. Haem proteins have a characteristic 

red or brown colour, depending on the oxidation state of the cofactor, due to their 

haem chromophore.   

 

The functional versatility of haem groups is due to the protein’s ability to tune haem 

reactivity, based on the number of protein-donated axial ligands to iron, the nature 

of these ligands, where the haem is located in the protein which therefore dictates 

its accessibility to external ligands, as well as a number of other properties of the 

haem-binding site (Paoli, Marles-Wright and Smith, 2002).  

 

1.1.1 The Haem Cofactor 

The haem cofactor is a prosthetic group and an aromatic polycyclic molecule. The 

haem cofactor is also known as protoporphyrin IX. This is made up of a central iron, 

either ferric or ferrous in resting state, and ferryl in reactions, non-covalently bound 

to the protein, surrounded by four pyrrole molecules (forming the backbone). These 

are joined together by methylene bridges forming a so-called tetrapyrrole ring 

(Schneider et al., 2007) Haem is considered an iron-bound porphyrin, as when the 

tetrapyrrole binds to a metal it is considered a porphyrin. 

 

There are many types of haem prosthetic groups, with haem b and c being the most 

common. There is also a, d, f and o type haems (shown in Figure 1.1). Each different 

type of haem has different substituents in the outer ring, giving them their unique 
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functional roles including key cellular process and their ability to act as an enzyme in 

catalysis (Reedy, Elvekrog and Gibney, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 Functions of Haem Proteins  

The different haem prosthetic groups allow haem proteins to have a vast array of 

functions. When the iron is in a ferrous redox state, it can reversibly bind gaseous 

ligands enabling the protein to perform roles of oxygen storage and transport, such 

as in haemoglobin and myoglobin. Cytochromes a, b, and c are haem proteins that 

perform an electron transfer function and are found in electron transport chains. 

Haem proteins also have roles as gas sensors for gases such as oxygen and nitric 

oxide and cell redox state, as well as regulating circadian rhythms (Girvan and 

Munro, 2013)They can also function as enzymes for catalysis, such as cytochrome 

p450s, cytochrome c oxidase and peroxidases (Ortiz de Montellano, 1987) 

 

A widespread role of iron in haem proteins in biological systems is producing iron 

Figure 1.1: structures of the different types of haem groups, labelled a to d (Liu et al 
2014). Each different haem group has unique functional roles, including in catalysis 
and key cellular processes. 
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intermediates, known as the ferryl haem species. Haem enzymes that use this 

include all cytochrome p450s and haem peroxidases. Despite peroxidases versatility, 

they all perform catalysis in the peroxidase cycle in a similar way. There are two 

ferryl intermediates produced, known as compound l and compound ll (Moody and 

Raven, 2018)The most well-studied peroxidase, horseradish peroxidase, has a 

different compound l species, containing a ferryl haem species as well as a porphyrin 

p-cation radical. Other peroxidases compound l contain just a porphyrin p-cation 

radical (Morita et al., 1988) 

 

1.1.3 Peroxidases 
In the absence of exogenous electron donors, peroxidases can slowly degrade 

hydrogen peroxide by a pseudo-catalase cycle which involves several redox 

intermediates known as compounds l, ll and lll (Vlasits et al., 2010). In the first step, 

peroxide removes one electron from the iron, and a second from the porphyrin to 

generate porphyrin p cation radical (Dophin et al 1971). This has a green colour, with 

distinct spectral characteristics very different to the brown-red colour of the resting 

haem enzyme. In the second step, a substrate molecule moves one electron to 

compound l, reducing the porphyrin cation radical giving the red colour of 

compound ll. In the last step, a second substrate reduces Fe4+ back to Fe3+. The role 

of the peroxidase determines the nature of the substrate. The structures of the 

different intermediates and spectra for the different intermediates are shown in 

Figure 1.2 and 1.3. 
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Peroxidases are divided into two main families, haem and non-haem peroxidases 

depending on whether they contain an iron cofactor. Haem peroxidases are split 

into four superfamilies, Peroxidase-Catalase, Peroxidase Cyclooxygenase, 

Peroxidase-chlorite dismutase, and Peroxidase-peroxygenase. These are shown in 

Figure 1.4 (Neyadi, Rauf and Ashraf, 2018). These enzymes are single polypeptide 

chains of ≈30,000–40,000 Da, with a single haem group attached to the protein via 

iron ligation to a His residue (Poulos, 2014). All of the peroxidases crystal structures 

show that the overall core helical and active site structures are well conserved 

(Sivaraja et al., 1989). 

 

 

 

Figure 1.3: UV-Vis Spectra of the three intermediates in 
HRP Catalysis (Dunford 2010). 

Figure 1.2: The catalytic cycle of Horseradish Peroxidase, 
showing the structures of Compound l, Compound ll and 
native state (Longu et al 2004) 
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The haloperoxidase family of peroxidases are abundant mainly in fungi. There are 

two different groups of haloperoxidase family, ones with prosthetic haem groups 

and nonhaem haloperoxidases. These two groups are phylogenetically unrelated, 

and form two different gene families. Haem-thiolate haloperoxidases have a 

protoporphyrin IX prosthetic group, and catalyse the oxidative degradation of 

chloroperoxidases (Osborne et al., 2006) 

 

1.2. Dehaloperoxidase 

Dehaloperoxidase (DHP) is a haem-containing peroxidase, globin and the coelomic 

haemoglobin of Amphitrite ornata, a marine annelid found in Cobscook Bay, the Gulf 

Figure 1.4: The four haem-peroxidase superfamily classification and their subfamilies. (Neyadi et al 
2018). Each family arose differently through evolution, and have different overall folds, active site 
architecture and enzymatic activities.  
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of Maine and in the north west Atlantic Ocean (Lebioda et al., 1999). DHP is the first 

globin to have an identified, biologically relevant peroxidase function (de Serrano et 

al., 2007). DHP is multifunctional, functioning as a peroxidase, haemoglobin, 

peroxygenase, oxidase and oxygenase. This is highly unusual and unique, as haem-

proteins tend to only have one key function, with many having only ‘moonlighting’ 

alternative functions. Peroxidase activity in DHP can be initiated from both ferric and 

oxyferrous oxidation states, binding molecular oxygen in ferrous state.  

 

 

1.2.1. Physiological Roles of DHP 

Amphitrite ornata is a terebellid polychaete found in shallow mud flats and marine 

estuaries.  These ecosystems have many other polychaete worms such as 

Notomastus lobatus, which contaminates the sediments with mono-, di- and 

tribromophenols and hemichodata like Saccoglossus kowalewski, that secrete 

halogenated aromatic compounds that are highly toxic. These organisms all secrete 

these as a repellent for predators as well as preventing attacks by fungi (Lincoln et 

al., 2005). A number of these species also produce brominated phenols, pyrroles, 

and indoles. DHP has evolved to degrade and detoxify these compounds, which 

allows A.ornata to live in these ecosystems (Chen et al., 1991). DHP levels are very 

high, representing 3% of the soluble protein in A.ornata. DHP catalyses the oxidative 

dehalogenation of polyhalogenated phenols in the presence of hydrogen peroxidase 

at a rate 10 times faster than all known halohydrolases of bacterial origin, this 

reaction is shown in Figure 1.5 (LaCount et al., 2000). All of DHP’s functions could 

potentially protect A.ornata from the other organisms in its ecosystem.  
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Genetic analysis shows that DHP is encoded by a gene that has a high sequence 

homology to other globins in the annelid family (Bailly et al., 2007) and shares 

structural characteristics with other peroxidases as well as enzymatic similarities. 

DHP is thought to have evolved from an ancient oxygen transport and storage 

globin, with haemoglobin phylogeny revealing a common ancestry across species 

extending back 1.8 billion years (Hardison, 1998) therefore retaining its oxygen 

carrying function while also being able to act as a peroxidase (Du et al., 2011). DHP 

has two different isoforms, DHP-A and DHP-B with 96% amino acid identity, with 

DHP-B being significantly more reactive.  

 

 

1.2.2. Structure of DHP 

The X-ray crystallographic structure of DHP was first determined at 1.8 Å by LaCount 

et al (2000). This revealed that DHP contains the globin fold, but its haem moiety is 

located 1.5 Å deeper in the protein than in myoglobin. DHP is a homodimer, with 

two identical subunits of ~15.5 kDa in the asymmetric unit, each containing a haem 

protoporphyrin XI cofactor and eight alpha-helices (de Serrano et al 2007). The 

overall structure of the DHP dimer is shown in Figure 1.6. The subunits are 

connected by salt bridges and one hydrogen bond between Asp72 and side chain 

groups of Arg122 and Asn126 (Lebioda et al., 1999) shown in Figure 1.6. There are 

Figure 1.5: Trihalophenols oxidized by hydrogen peroxide 
producing dihaloquinones, catalyzed by DHP 
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hydrophobic interactions between Val74 residues of the two subunits. There is one 

cysteine in DHP, located close to the interface.  The distal cavity in DHP is as 

hydrophobic as in other globins, and does not have the polarising auxiliary arginine 

present in other peroxidases. Peroxidases need this arginine, as it stabilises the 

charge in the distal cavity, that becomes negative when the distal histidine is 

functioning as an acid/base in proton transfer (LaCount et al., 2000).  

 

 

DHP was originally identified as a dimer (Weber et al., 1977). The crystal structures 

of DHP show a dimer in the unit cell, but DHP has a significantly smaller dimer 

interface (450 Å2) than the typical values of 1200-2000 Å2 for other dimers. 

Thompson et al discovered using fast protein liquid chromatography and small-angle 

X-ray scattering, that DHP in fact is found primarily monomeric in solution, with 

some detectable levels of dimer, around 10% (Thompson et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first crystal structure of substrate-bound DHP showed that 4-iodophenol binds 

in the distal pocket of the DHP isoform DHP-A, with no coordination to the haem 

iron. This internal binding site distinguishes DHP from both other globins and haem 

Figure 1.6 Overall structure of DHP-B dimer at 1.58 Å, pdb code 3IXF (de Serrano et al 2010). 
Amino acids involved in salt bridges are labelled, with the bonds shown by yellow dashed lines.  
 

Asp72 

Arg122 

Asn126 
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peroxidases (de Serrano et al., 2007). Para-halogenated phenols can occupy this 

internal binding site. However, most active substrates of DHP 2,4,-di and 2,4,6-

trichlorophenols do not readily enter this distal pocket (de Serrano et al., 2007). This 

suggests this internal binding site is not the active site. There is the potential that 

both external and internal small-molecular-binding sites exist in DHP.  This may 

explain how DHP switches between peroxidase and haemoglobin activities, which is 

currently unknown (Chen et al., 2009). 

 

The main difference between DHP and other globins like myoglobin is the distal 

histidine, which is further from the haem iron in DHP. Instead, the distal histidine is 

located at the entrance of the distal cavity, making it more suitable for the 

heterolytic cleavage of hydrogen peroxide and facilitates the movement of the 

histidine out of the distal pocket to make room for organic substrates (Lebioda 

2000), which is more characteristic of peroxidases. While peroxidases tend to have 

at least one polar amino acid participate in activation of bound hydrogen peroxide, 

the distal histidine in DHP is the only polar amino acid in the distal pocket (Plummer, 

Matthew and Franzen, 2013). The distal histidine His55 has been observed to take 

on ‘open’ and ‘closed’ conformations. When in ‘closed’ conformation, His55 points 

inside the distal pocket and interacts with the sixth ligand (water, oxygen) of haem 

iron (Chen et al 2009). The ‘open’ conformation is when His55 is rotated to a 

solvent-exposed position, observed when corresponding 5-coordinate haem iron 

either in deoxyferrous or when inhibitors are present in distal pocket (Francesco et 

al., 2010) 

 

The haem proximal side in DHP is also different from other globins. The proximal 

histidine (His89) is shifted in the sequence by two residues, and consequently the 

main chain loop position differs and the plane of imidazole moiety is rotated when 

compared to myoglobin (LaCount et al 2000). The structural differences between 

the positions of the proximal histidine of DHP and myoglobin are represented in 
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Figure 1.7. 

 

 

 

1.2.3. DHP Isoforms 
There are two isoforms of DHP, DHP-A and DHP-B, both with 137 amino acid 

residues which have 96% amino acid identity, differing by only 5 amino acids around 

its active site, despite these differences they are both able to catalyse the oxidation 

of 2,4,6-trihalogenated phenol in the presence of co-substrate H2O2. The two 

isoforms of dehaloperoxidase are encoded by two sperate genes. Although they 

have a high amino acid identity, there are significant spectroscopic and mechanistic 

differences between them (D’Antonio, J., D’Antonio, E., Thompson, M.K., Bowden, 

E.F., Franzen, S., Smirnova, T. and Ghiladi, 2010), this includes the fact that DHP-B 

has four times higher peroxidase activity than DHP-A for 2,4,6-tribromophenol, 

having highest peroxidase activity of any known naturally occurring haemoglobin 

Figure 1.7: Molscript representation of the least-squares superposition 
optimizing haem overlap, showing the positions of the proximal histidine in 
DHP (green) and myoglobin (red). The main chain with histidine is in a coil 
conformation in DHP, while myoglobin is a helical conformation (Lebioda 
2000) 
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(Franzen et al., 2016). It is also known that DHB forms a compound RH intermediate 

which exhibits different reactivity than DHP-A. DHP-B also has a greater extent of 

substrate inhibition (Feducia et al., 2009). The percentage of each DHP isoform is 

unknown, but current evidence suggests that DHP-A is the more dominant form of 

DHP in A.ornata (LaCount et al 2000).  

 

1.2.4. DHP-B 

Currently, most of the focus on DHP has been on the DHP-A isoform. There has been 

less research into the mechanism or spectroscopic properties of DHP-B compared to 

its other isoform.  DHP-B differs from DHP A at five positions: I9L, R32K, Y34N, N81S 

and S91G.  The crystal structure of DHP-B is shown in Figure 1.8. 

 

 

Figure 1.8: Crystal structure of DHP-B (PDB: 3ixf). The location of the 
residues that are different from DHP-A are labelled as well as the proximal 
(His89) and distal (His55) histidine’s. (D’Antonio et al 2010)  
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As mentioned previously, DHP-B is twofold to fourfold more active than DHP-A, 

depending on the substrate. DHP-B also demonstrates a greater substrate inhibition 

than DHP-A. however, both isoenzymes have the same distal histidine 

conformational flexibility which is key to their peroxidase activity (de Serrano et al., 

2010) 

 

1.2.5. Catalytic Cycle of DHP B  

Dehaloperoxidase has four different kinds of reaction, peroxidase, peroxygenase, 

oxidase and oxygenase (Malewschik et al., 2019). DHP catalyses the oxidative 

degradation of 2,4,6-trihalogenated phenols to 2,6-dihalo-1,4-benzoquinones in the 

presence of hydrogen peroxide, as previously stated. DHP reacts with hydrogen 

peroxide to yield Compound ES, an iron(IV)-oxo haem centre with an amino acid 

radical (Feducia et al 2009). This intermediate has a catalytic role in the oxidising of 

co-substrate 2,4,6-trichlorophenol (TCP). In the absence of co-substrate, compound 

RH is created, unique to dehaloperoxidase. The overall two-electron co-substrate 

oxidation of TCP is thought to be done in one one-electron step, suggesting that co-

substrate binding of DHP occurs in an external binding site (Davis et al 2009). 

 

 

Dichloroquinone (DCQ), the product of trihalophenol dehalogenation, reacts with 

Compound ES leading to oxyferrous DHP. DCQ reacts with ferric DHP, also leading to 

oxyferrous DHP formation. Oxyferrous DHP catalyses the oxidative dehalogenation 

of TCP in the presence of H2O2. 4-bromophenol, a proposed co-substrate, is known 

to bind in the distal cavity of the haem active site, (Lebioda et al., 1999) is an 

inhibitor of 2,4,6-trichlorophenol dehalogenation. This proposed catalytic cycle of 

DHP is outlined in Figure 1.9.  
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1.2.6 DHP ligands 

DHP has multiple substrate binding sites, and it is proposed that the oxidation state 

can affect which ligands bind, and is the hypothesis of this study. 5-bromineindole 

appears to bind in the ferric structure directly above the haem, where the distal 

histidine is ‘swung out’ in the open conformation. 5-nitrophenol is thought to also 

bind in a similar way. Other ligands include 4-bromophenol and 5-bromophenol.  

(a) 

(b) 

(c) 

(d) 

Figure 1.6 Proposed catalytic cycle of DHP 
(a) DCQ (dichloroquinone), the proposed product of triahlophenol dehalogenation, reacts with 
oxidant compound ES leading to oxyferrous DO 
(b) DCQ reacts with ferric DHP also leading to oxyferrous DHP 
(c) oxyferrous DHP catalyses the oxidative dehalogenation of TCP in the presence off hydrogen 
peroxide  
(d) In the absence of cosubstrate, there is the formation of compound RH unique to DHP 
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5-bromoindole binds in the distal pocket and forms a hydrogen bond with the distal 

histidine (Barrios et al., 2014). The distal histidine His55 is in a ‘closed’ conformation, 

allowing the 5BR to bind in the pocket. 5BR does not form any bonds with iron as it’s 

bound higher up in the pocket.  

 

1.3. Radiation Damage  
The creation of intense undulator beamlines from second and third generation 

synchrotron sources has caused a previous problem in crystallography to remerge: 

X-ray radiation damage. This is a problem even at cryogenic temperatures. In room 

temperature experiments, this may mean having to use multiple crystals to obtain a 

complete dataset. The cause of this damage is the energy lost by the beam in the 

crystal, due to either total absorption or inelastic scattering of X-rays as they pass 

though the crystal (Garman, 2010) 

 

1.3.1. Classification of Radiation Damage 

Systemic studies of radiation damage have shown two separate indicators of 

damage as a function of dose: global and specific damage. Global damage results in 

a lowering of measured reflection intensities (especially at high resolution), 

expansion of the unit-cell volume, increasing values of the measure of the internal 

consistency of the data (Rmeas), and increase in the scaling of B factors for the data 

and the atomic B values of the refined structure, rotation of the molecules within 

the unit cell, and sometimes an increase in mosaicity. Some visible differences can 

also be seen, such as colour changes arising from changes in redox state, such as 

bleaching. Follow irradiation, the sample can be warmed and bubbles of hydrogen 

are emitted and the sample may be discoloured (Meents et al., 2010) 

 

Specific damage occurs at far smaller doses than global damage, with the Garman 

limit of dose being 20-40 MGy for useful data (Owen, Rudino-Pinera and Garman, 

2006)Active sites and redox centres are known to be more sensitive to damage by 

photoreduction by x-ray beams (Weik et al 2000). Specific structural damage to 
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covalent bonds can be seen to occur in a specific order in many proteins, changes to 

metal sites occur first, and then disulphide bridges elongate and break, then 

glutamates and aspartic acids are decarboxylated, tyrosine residues lose their 

hydroxyl group and subsequently the carbon-sulphur bonds in methionines are 

cleaved (Ravelli and Garman 2006). These specific damages can be seen in Figure 

1.10. 

 

 

1.3.2. Reducing Radiation Damage 

Initially, a simple solution to radiation damage was to collect cryocooled crystals at 

100K, as radiation damage accumulates slower at lower temperatures, creating an 

almost 100-fold extension of the crystals lifetime, reducing secondary radiation 

damage and usually resulting in higher resolution and better quality data (Garman 

2003).  Diffraction data is now almost always collected at cryogenic temperatures. 

However, cryocooling does not eliminate X-ray damage. 

Figure 1.10: Specific radiation damage inflicted on apoferritin cryocooled 
crystal during sequential data sets. (A) Glu63 after a dose of 2.4MGy. (B) 
Glu63 after 50MGy (C) Met96 after a dose of 2.5 MGy (D) Met96 after 
50MGy (loss of electron density around disordered atoms) (Garman & Owen 
2006) 
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Secondary damage is caused by the highly reactive radiolytic species that propagate 

through the crystal reacting with macromolecules causing further damage, as 

electrons are mobile at 100K while other radicals are not. Manipulating the physical 

and chemical environment of the crystal can reduce the amount of secondary 

damage but is less favorable, such as by collecting data from flash-cooling crystals at 

liquid helium temperatures (<20K) (Chinte et al., 2007). It is also possible to reduce 

secondary damage by using a different cryoprotectant agent. Another option would 

be to incorporate free radical scavengers, such as ascorbate, into the crystal lattice 

by soaking or co-crystallization to reduce the interaction with the protein (Murray 

and Garman, 2002) 

 

1.3.3. Radiation damage and Temperature 

As stated previously, crystallography is almost always performed at cryogenic 

temperatures (100K) to reduce radiation damage when collecting data. However 

there is an increased recognition that collecting X-ray diffraction data at cryogenic 

temperatures could mask alternate conformation states that are accessible to the 

protein at room temperature (Fraser et al 2009). While cryogenic temperatures have 

been shown to obtain high-resolution structures, it does not show the sample’s 

structural distributions or the dynamics present at physiological or room 

temperatures. Therefore, Cryogenic temperatures alter the equilibrium of protein 

conformations, introducing a small amount of bias due to the cryogenic 

temperatures minimally changing the overall protein backbone fold (Fraser et al., 

2009) 

 

With room temperature being favourable, there is a need to ‘outrun’ radiation 

damage to get undamaged data from radiation-sensitive systems. It has recently 

been discovered that radiation damage can be somewhat outrun at synchrotrons at 

room temperature, as the damage response is dose-rate dependent (Warkentin et 
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al., 2013)and damage can be completely avoided with 10fs pulses at XFELs to give 

damage free structures. 
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Chapter 2 - Crystallography Methodologies 

X-ray crystallography is a powerful tool for structural determination of the three-

dimensional structure of proteins at atomic resolutions. There are multiple different 

techniques, such as vapour-diffusion, hanging drop vapour-diffusion, sitting drop, 

batch and dialysis methods (McPherson, 1999). Producing suitable crystals can be 

difficult, with optimal conditions being hard to predict. Many different conditions 

must be tested, making it very time consuming and a rate-limiting step.  

 

 

2.1. Producing Single Crystals  
The first step, as in all crystallography is producing a large enough crystal, with a 

regular structure with minimal imperfections. This is often the most difficult part, 

time consuming part.  

 

The principle of crystallisation is to take a sample of a very high concentration and 

induce it to come out of solution and into the solid phase. If this occurs too quickly, 

precipitation will happen, but under the right conditions crystals will grow (Luft et 

al., 1994) ‘Crystal screens’ are often used, with each one usually containing 50+ 

solutions, often 96 for robotic screening,  varying in precipitant, buffer, pH and salt. 

This is known as a sparse matrix, and can be set up using vapour diffusion, hanging 

drop vapour diffusion and sometimes dialysis, at both 4oC and room temperature 

(Hampel et al., 1968) 

 

To improve crystal size, various techniques can be used. These include seeding, 

altering protein concentration, or altering the temperature. Crystals can be as small 

as 10 microns in size at microfocus beamlines, where the X-ray beam can be reduced 

to 1-5 microns in size (Grimes et al., 2018) 

 

 

2.1.1. Single Crystal Spectroscopy 

Single-crystal x-ray diffraction is the oldest, best established, most precise method 
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of crystallography. It involves a beam of X-rays hitting a single crystal, producing 

scattered beams, which are measured by the detector, creating a diffraction pattern.  

These are recorded at different angles as the crystal is rotated. 

 

Crystals that are big enough and contain the macromolecular subunit of interest are 

mounted in a capillary tube at room temperature or in a small loop in a stream of 

cold nitrogen gas at 100K. Data collection at cryogenic  temperatures reduces 

radiation damage, and a complete data set can be collected from a single crystal.  

 

2.2 Serial Crystallography 

2.2.1 Microcrystallisation 

The issue of growing large crystals for x-ray crystallography experiments can be a 

huge obstacle, as growing suitably large and diffracting crystals can be extremely 

difficult. Radiation damage and crystal size are also linked, with damaging radiation 

depending on dose. When large crystals are not available, the use of multiple small 

crystals is common, with the data sets being scaled and merge into one set. 

Microcrystallography can be carried out at several beamlines at synchrotrons, 

delivering monochromatic beams of 10 microns in diameter, usual with 1012 photos 

s-1 (Smith, Fischetti and Yamamoto, 2012). 

 

A typical microcrystallography experiment is performed by mounting a sample loop 

with one or more crystals. These are centred in the beam to collect partial data sets. 

This can be repeated with multiple sample loops. Microcrystals are also needed for 

serial crystallographic work. 

 

 

2.2.2 Serial Crystallography 

Serial crystallography is when structural information is obtained from small crystals, 

illuminated by either synchrotron or ‘XFEL’s.  Crystal structures of biological 

macromolecules are usually limited by the availability of larger-sized crystals, and by 

the risk of radiation damage during data collection (Gati et al., 2013) Advanced 
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third-generation synchrotrons are able to produce micrometre-sized (less than 10 

micrometres) high-flux X-ray beams which can focus on small crystals, and so can 

determine crystal structures from crystals with volumes less than 1000µm3 (Cusack 

et al., 1998) 

 

When using microcrystals, its often not possible to locate the crystals using optical 

microscopy, due to them being too small, optical distortions or the crystal being 

embedded in an opaque matrix. Single-crystal diffraction patterns are kept, indexed 

and merged to a form a three-dimensional set of reflection intensities. 

 

 

Serial crystallography has different possible sample delivery methods.  The usual 

method for serial femtosecond crystallography (SFX) uses a gas-focused liquid jet of 

the crystal suspension, flowing across the x-ray beam. The jet diameter is low, 

ranging from 500nm to a few micrometres, giving a low background. The detector 

frames after each X-ray pulse. Figure 2.2 illustrates this equipment at Linac Coherent 

Light Source, where they use the LCLS Coherent X-ray Imaging instrument (CXI). It is 

equipped with Cornell-SLAC Pixel Array Detectors (CSPADS). The CSPAD supports the 

120-Hz readout rate needed to measure x-ray pulses from LCLS (Philipp et al 2011). 

This set up is shown in Figure 2.1  

 



 27 

 

 

Figure 2.2: Instrument for fixed target serial crystallography at 
beamline I24 at Diamond Light Source. (Owen et al 2017) The chip is 
mounted to a high-speed, high-precision xyz stage mounted at the 
same position, allowing data collection from all 25,600 positions on a 
chip in less than 10 minutes.  

Figure 2.1: Serial Femtosecond crystallography (SFX) instrument. The diffraction patterns are 
collected on the CSPAD detector. (Boutet et al 2012) 
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Fixed target crystallography offers high hit-rates with a small amount of sample 

consumption. This approach can be used at both synchrotrons and XFELs. The 

samples are pipetted onto silicon nitride ‘chips’, capable of holding >25,000 crystals.  

These chips are mounted on a high-speed, high-precision xyz stage mounted at the 

sample position (Owen et al 2017). This set up is used at Diamond Light Source at 

beamline i24 and is shown in Figure 2.2 

 

 

 

The ‘Chip’ is a silicon nanofabricate crystallography chip, which can hold the 

thousands of protein crystals under ambient conditions at defined positions. These 

chips can host crystals regardless of mother liquor composition or viscosity. The 

crystallography chip has 26500 features per matrix and can easily be made with a 

variety of feature sizes, accommodating different crystal sizes (Mueller et al., 2015). 

Figure 2.3 shows more detail of the chip design. The chips are loaded using a 

vacuum pump in humidity tents. 
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2.2.3 ‘Diffraction before Destruction’  

Extremely short pulses of X-rays at tens of femtoseconds in duration generated by 

free-electron lasers can overcome the issue of dose limitations due to radiation 

damage. These short pulses of X-rays are shorter than the time it takes for atoms to 

move (Neutze et al., 2000). This is known as ‘diffraction before destruction’, where 

the sample is completely vaporized by the intense pulse after giving a diffraction 

pattern. Doses that are thousands of times higher than conventional limits have 

been achieved. This means only a single flash diffraction pattern, without rotation or 

oscillation, can be recorded, giving rise to the ‘serial crystallography’ concept. 

(Chapman, Caleman and Timneanu, 2014). 

 

Figure 2.3: Crystallography chip design. Upper left shows a 20x20mm chip, shown in 
higher magnification. The ‘side view’ shows how the mother liquor is removed using a 
vacuum pump (Mueller et al 2015) 
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2.2.4 Room-Temperature Serial Crystallography 

With the emergence of room-temperature x-ray crystallographic experiments, 

microfocus synchrotrons have been developed to measure crystals in situ.  The 

development of XFELs with intense pulses of femtoseconds in duration means that 

collecting data from room-temperature crystals can be extremely rapid, and means 

collecting data before the rapid onset of disorder, removing all of the issues of 

room-temperature data collection and radiation damage (Boutet et al., 2012) that 

come with much higher doses.  

 

Serial crystallography with non-cryocooled crystals also has technical advantages. 

Firstly, the crystals can be smaller, increasing the likelihood of growing appropriate 

crystals. Secondly, it avoids an increase in crystal mosaicity which can happen during 

cryoprotection and eliminates the need for a cryoprotectant (Guha et al., 2012). The 

use of smaller crystals also may be easier with soaking experiments.  
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Chapter 3 - Methods and Materials 
3.1 Bacterial transformation and DNA extraction 

This project was started using an existing expression plasmid (pET16b) encoding 

tagless DHP-B provided by Dr Tadeo Moreno-Chicano at the University of Essex. 

Heat shock transformation was used to introduce the plasmid into competent BL2-

DE3 strain Escherichia coli cells kept at -80oC in 100µl aliquots until use. A standard 

heat-shock transformation protocol was performed and is outlined in Table 1. Once 

this was performed, the cells were spread on LB agar plates supplemented with 

100µg/ml of Amp and incubated overnight at 37oC, with colonies appearing the next 

day. Single colonies were picked and grown in 10ml of LB with Amp at 220rpm for a 

minimum of 18 hours. The plasmid Genejet Miniprep Kit (Thermo Scientific) was 

used to extract plasmid DNA. The purified plasmids were stored at -20oC until 

needed for future experiments.  

 

 

 

 

3.2 Recombinant Protein Expression 

Cultured cells from 10ml of LB agar were scaled up to 250ml flasks containing 100ml 

of LB media with Amp at 220rpm at 37oC. These cultures were used to inoculate 

large 2 litre flasks with 1 litre of LB, 100µg/ml Amp, 0.1mM hemin chloride and 

0.1mM iron citrate, grown at 37oC at 220 rpm in Innova-43 incubator shakers. When 

OD600» 0.8, assessed with a Cary60 (Agilent) UV-vis spectrophotometer, the flasks 

were induced with 0.5mM IPTG and the conditions changed to 25oC and 200rpm. 

Transformation Stage Conditions 

First incubation on ice 30 minutes 

Heat shock at 42oC 45 seconds 

Second incubation on ice  2 minutes 

Addition of LB media 750µl 

Incubation at 37oC 1 hour 

Table 3.1: Standard heat shock protocol 
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These were left overnight or a minimum of 18 hours.  

 

After, the cells were pelleted at 4000rpm for 20 minutes using a Sorvall Evolution RC 

Centrifuge. The pellets were then resuspended in 100mM potassium phosphate 

buffer (Kpi) at pH8. 

 

3.3 Protein Purification 

The resuspended cell pellet was then lysed using an EmulsiFlex-C5 cell disrupter 

(Avestin), passing through three times to ensure complete breakage of the cell 

membrane. A salt cut was then performed using 50% ammonium sulphate. This was 

centrifuged at 18000 rpm for 20 minutes in the Sorvall Evolution RC Centrifuge. The 

precipitation recovered by this centrifugation was resuspended in 100mM Kpi buffer 

with 2M ammonium sulphate. Hydrophobic interaction chromatography was then 

performed (phenyl sepharose column, Pharmacia Biotech) with a salt gradient using 

an AKTA purification platform. Fractions were collected and pooled based on purity 

determined using UV-Vis and SDS-PAGE. This was followed by size exclusion 

chromatography (G75 column, GE-healthcare) again using an AKTA purification 

platform. As the protein was present in both oxyferrous and ferric states, a UV-vis 

was performed to determine the states of samples.  

 

3.4 UV-vis Spectroscopic Analysis  

A Cary-60 UV-vis spectrophotometer (Agilent) was used to determine the oxidation 

state of the samples as well as the purity. These experiments were carried out at RT, 

with a wavelength of 200-800nm, using a quartz cuvette (Hellma-Analytica) with 

1cm light-path. 

 

Protein concentration was determined using the Beer-Lambert equation (Eq.1) 

 

𝐴 = 𝜀$ 	 ⋅ 𝑙 ⋅ 𝑐	

 

where A is the absorbance of the sample, 𝜀$	the extinction coefficient at a specific 
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wavelength, l is the length of the light-path (fixed to 1cm) and c is the concentration 

of the protein sample. Extinction coefficients at the ferric Soret 𝜀406 obtained from 

literature (de Serrano et al 2007). The purity of the protein was calculated from UV-

vis spectroscopy by obtaining a value for each sample of the RZ= A406/A280 ratio. The 

protein was then concentrated down using Vivaspin-10 devices (Sartorius) until the 

desired concentration (around 15mg/ml for single crystal experiments and 30mg/ml 

for microcrystals) was obtained. 

 

 

3.5 SDS-Page Gel Electrophoresis  

SDS-Page electrophoresis was performed with 15% acrylamide gels after each step 

to check for protein purify and for the selection of fractions from the AKTA 

purification platform for pooling. Gels were run at 120V for 90mins on a Bio-Rad 

electrophoretic system. These gels were stained with Coomassie blue dye for 20-30 

minutes, then destained with a solution containing: 30% methanol, 10% glacial 

acetic acid and 60% RO water. The destain was changed every 30 minutes until 

bands were visible, before being inspected on a lightbox.  

 

 

3.6 Crystallization 

DHP-B was crystallized according to previously established conditions (Zhang et al., 

1996) using the hanging-drop vapour diffusion method with protein concentrations 

of between 12mg/ml and 15mg/ml. The protein sample was in 20mM MES buffer at 

pH6.5. Crystals were manually optimised in 24-well crystallization plates with a 

hanging-drop volume of 4-6µl with a 1:1 or 1:2 volume ratio protein to reservoir, 

with the reservoir containing: 12-20% PEG 4000 and 150-250 mM ammonium 

sulphate. The plates were left at 4°C in the crystallisation fridge, and crystals 

appeared after 2-3 days. Some crystals were cryoprotected by soaking for 10-20 

seconds in 20% glycerol before flash-freezing in liquid nitrogen. Crystals were fished 

and mounted on micro-loops (MiTeGen) and then mounted in pucks and placed in a 
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pre-cooled dewar, to ensure a stable temperature while the dewar is transported.  

 

3.7 Crystal Soaking 

DHP-B crystals were soaked to produce different complexes. The crystals were 

soaked in prepared crystallisation solution (20% PEG-4000 and 20mM ammonium 

sulphate) with 5-10mM of ligand, such as 7-bromoindole and 2,4-dichlorophenol 

(DCP). The crystals were soaked in ligand for 5-10 minutes and cryocooled by liquid 

nitrogen after soaking in glycerol as the cryoprotectant for 10-20 seconds.  

 

3.8 Single-Crystal Measurements 

3.8.1 Conventional Synchrotron Data collection 

Single crystallography data was collected at Diamond Light Source and Swiss Light 

Source. Data was collected and cryogenic temperatures (100K), with X-ray 

wavelengths between 0.8-1Å. Experimental parameters, such as exposure time, % 

transmission and detector distance, were chosen for each experiment and 

controlled using the software already present at each synchrotron beamline. 

Diffraction spots were indexed and integrated using the programme XDS (Kabsch 

2010) at Swiss Light Source and using the processing pipelines available at Diamond 

Light Source. Using XDS, the input file XDS.INO was modified for each crystal. This 

file contained important experimental and sample information, such as detector 

parameters, space group, resolution range, rotation and wavelength. The output 

files from XDS were XDS_ASCII.HKL and were used as input files for Aimless, which 

assess the space group probability and scale and merge the diffraction data, 

producing an mtz file. Aimless also produces a table of data quality statistics such as 

the resolution, CC1/2 and Rmerge. The mtz file was then used for molecular 

replacement and refinement. 
 

3.9 Serial crystallography methods 

3.9.1. Batch crystallization 

For fixed-target serial crystallography, large amounts of microcrystals were needed, 

and so was produced using batch crystallisation according to established procedure 



 35 

(Tadeo Moreno-Chicano et al., 2019). Batch crystallisation was performed by 

growing crystals directing in solution, mixing protein and crystallization conditions. 

Batches were set up in 1.5ml Eppendorf tubes. Microcrystals of 15-35µm in size 

were grown in batches of 400-500µl. These batches were grown at 4oC in the 

crystallization fridge, and crystals would appear within 5-8 days, with the first 

crystals appearing after one day. The batch conditions are outlined in Table 3.2. 

Batches were kept on ice, and vortexed for ~30 seconds. 

 

 

Component Condition 

Protein Concentration ~30mg/ml 

Buffer 20mM MES pH 6.5 

Protein-condition ratio 1:4 or 1:3 

PEG-4000 % 37%-28% 

Ammonium Sulphate concentration 200mM 

 

3.9.2. Fixed target crystallography  

For work carried out at Diamond (SSX) and SACLA (SFX), the ‘Diamond chip’ was 

used, developed at Diamond Light Source (Owen et al., 2017). This is shown in 

Figure 3.1, where a silicon chip is held in a frame holder and sealed with mylar 

sheets. The diamond chip contains 25,000+ apertures, with variable sizes depending 

on the size of the microcrystals being looked at. These chips were specifically 

designed to provide a support for the microcrystals while also keeping background 

to a minimum during diffraction experiments. 

 

 

 

 

 

Table 3.2: Batch conditions for the growth of microcrystals of DHP-B  
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Chips were loaded inside a humidity ‘hood’, with a humidity level of 70%-80%. Chips 

were glow-discharged (Pelco-easyGlow), and a microcrystal solution of 150-200µl 

loaded onto the chip. The excess liquid was removed using a vacuum pump, and the 

chip was then sealed in the frame holders with mylar.  

 

3.9.3. Chip Screening 

Data was collected at Diamond Light Source by moving through the surface of the 

chip, with an automated chip screening routine to ensure fresh microcrystals were 

being hit each time. The chips were mounted and aligned with the help of three 

fiducials in each corner of the chip. Each of the 25,600 positions hit at a frequency of 

30 Hz. Each chip took approximately 14 minutes, unless only the central part of the 

chip was screened (due to lack of crystals or a test run), where screening took half of 

the time.  

 

3.9.4. SFX Data Processing 

During the beamtime at SACLA, the XFEL data was preliminarily indexed and on-the-

fly estimations of hit rates were done using the program Cheetah (Barty et al., 2019). 

Cheetah also selected the frames with protein diffraction, making the volume of 

data smaller.  

 

Figure 3.1 the ‘Diamond Chip’ used at Diamond Light Source at beamline 
i24 for SSX crystallography. This chip is able to hold >25,000 crystals, and is 
mounted on a specific ‘xyz’ stage.  
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SFX data were obtained as h5 files, and processed using CrystFEL (White et al., 

2012). CrystFEL is a software suite containing programs dealing with viewing, 

indexing, integrating, merging and evaluating the quality of the data. All of these 

programs are run from the command line. The usual workflow is indexing then 

scaling and merging.  

 

3.9.4.1 Indexing 

The first step is indexing, which was carried out using indexamajig, part of the 

CrystFEL program suite. The parameters used for this was tested with the ‘test’ 

protein, with known cell parameters and consistent diffraction quality. The 

commandline for indexamajig is and the parameters with their definitions are 

shown in Table 3.3 

 

$ indexamajig -i files.lst --peaks=peakfinder8 -

threshold=300 min-gradient=90000 --min-snr=5 --int-

radius=3,4,7 --indexing asdf -g detector geom -p 

parameters.cell -o testingrun.out -j 20 

 

 

Command Definition 

-I files.lst Path to the input diffraction data 

--peaks=peakfinder9 Peak-finding algorithm peakfinder8 

-threshold=300 Threshold of photon counts for 

detecting diffraction spots 

--min-gradient=9000 Minimum square gradient for detecting 

peaks 

--int-radius=3,4,7 Sets the inner, middle and outer radii 

for three ring integration 

--indexing=asdf Indexing using the asdf CrystFEL 

algorithm 

--min-snr=5 Minimum value for signal to noise ratio 
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-g detector.geom File containing detector geometry 

-p parameters.cell Symmetry information for 

microcrystals  

-o.testrun.out Generates output file 

-j=20 Number of processors with a max value 

of 20 
 

 

Each chip  initially processed this way, creating a ‘stream.out’ file containing indexed 

reflections and the parameters examined using the program cell_explorer, 

generating distribution plots for each parameter. 

 

$ cell_explorer firstRun.out 

 

 

A second run of indexamajig was then run with the optimized cell parameters, 

generating a refined output file ‘secondRun.out’. The detector geometry was also 

refined using detector-shift. 

 

$ detector-shift .out secondRun.out detector.geom 

 

detector shift also plots the disagreement, shown as detector shift in x and y, 

between the location of experimental and predicted spots in every indexed frame. A 

refined geometry file was then produced named ‘refined.geom’. The final file 

‘finalRun.out’ for a different chip with the sample could then be joined to form a 

new file for scaling and merging. The command used to combine the output files: 
 

$ cat chip1.out chip2.out chip3.out > allchips.out 

 

 

3.9.4.2 Merging  

Merging was carried out using the program process_hkl in the CrystFEL suite on the 

recommendation of Dr. Takanori Nakane. Process_hkl  is included in the script 

Table 3.3 Parameters of the indexamajig command  



 39 

merge.sh, which can be run with the reflections from indexamajig as the input file.  
 

3.9.4.3 Data Quality Statistics 

Data quality statistics (CC and Rsplit) were generated using CrystFEL script stat.sh, 

using the output from merging (hkl files). Symmetry information was also needed as 

input for stat.sh.  

Rsplit is used exclusively for serial crystallography to estimate the quality of the 

diffraction data. Data is firstly split into two halves and then merged independently 

and compared. It is normally shown as a percentage, with the closer to 0 the better. 

Estimate guidelines for Rsplit are used: a value of 35% is acceptable, below 20% is 

better and below 10% is excellent. 

 

Correlation coefficient (CC) is equivalent to the CC1/2  statistic used in conventional 

X-ray crystallography (Diederichs and Karplus, 2013). CC compares the similarity 

between the data when split into two halves, the values given are between 1 and 0 

with 1 being identical and 0 being no similarities at all. A CC>0.5 is usually used to 

make the resolution limit.  

 

3.9.4.4 Producing an mtz file for molecular replacement and refinement 

An mtz file is produced using the CrystFEL script ‘create-mtz’. The hkl file from the 

merging processes was used as input, as well as the cell parameters for the crystal. 

The mtz file was then used with the CCP4i2 suite for molecular replacement and 

ultimately refinement of the protein structure. 

 

3.9.5. SSX Data Processing  

SSX data processing was developed at Diamond, with chip aperture and data 

collection parameters (detector distance, exposure time) tailored to the sample 

(Owen et al., 2017) Serial crystallography data was measured at Diamond Light 

Source at beamline I24, and stored in cbf files, processed using dials.stills_process in 

the DIALS programme (Winter et al 2018), carrying out indexing and integrating 

diffraction spots. dials.stills_process was developed specifically for serial data 
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processing, and so no rotation of the crystals are involved like typical synchrotron 

data collection. The integrated data is put into PRIME, where it is scaled and merged 

(Uervirojnangkoorn et al., 2015) generating an mtz file. This mtz file can then be 

used for molecular replacement and refinement. Mtz files were also used to assess 

the quality of the data. 

 

3.10 X-ray data  

X-ray data was collected at Diamond Light Source (DLS) and Swiss Light Source (SLS). 

All x-ray data was collected at 100K and at an X-ray wavelength of 0.8Å. 

Experimental parameters were decided based on each sample and were controlled 

using the in-house software at each synchrotron beamline. The mtz file produced 

was used for molecular replacement and refinement.  

 

3.11 Molecular Replacement and Refinement  

A the structure of  DHP-B has been previously determined, the structures were 

solved using molecular replacement using Phaser within either Ccp4i2 suite or 

Phenix. For SSX data, the mtz with the experimental data were inputted into Phaser 

with the pdb file obtained from the Protein Data Bank (www.pdb.org). For serial 

data, an existing model was provided for DHP at room temperature (Hough and 

Moreno-Chicano 2019). The success of molecular replacement and refinement was 

assessed using the R-value generated, aiming for the R-free and R-work to be close 

together and below 0.2, as well as observing the structure in Coot. Initially, in 

Phenix, the mtz and pdb files were analysed using phenix.xtriage (Zwart, Grozze-

Kunstleve and Adams, 2005) to check for potential twinning and overall 

completeness of the data. 

 

For each structure, multiple rounds of refinement and model building were carried 

out. Refinement was carried out using phenix.refine in Phenix (Afonine et al., 2012) 

or Refmac5 (Murshudov et al., 2011) in the ccp4i2 suite. Manual refinement would 

also be carried out using Coot (Emsley et al., 2010) after automated refinement 

produced an electron density map and a difference map. Manual rebuilding used 
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both these maps to indicate any differences in structures, such as conformational 

inaccuracies. The contour map was visualised at a 1s contour level. After the initial 

refinement, both ‘cartesian’ and ‘torsion angle’ simulated annealing was performed 

to remove model bias, ensuring we have the correction structure. Manual 

refinement was used to check that this had worked, and had not displaced 

important features i.e. the haem centres and the general protein backbone and 

amino acid sidechains.  At this point, water molecules and ions were added. Ligands 

were modelled in at the very end of refinement. Rounds of model refinement were 

then performed until the model could no longer be improved.  
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Chapter 4 – Single Crystal DHP Crystallography 

4.1 Introduction 

As discussed previously, DHP is a multi-functional haem protein of A.ornata that in 

vivo oxidises trihalophenols produced by competing organisms in its ecosystem. DHP 

has it’s main function as a peroxidase, but can also carry out many other additional 

functions, such as an oxidase and a peroxygenase (Malewschik et al., 2019). DHP’s 

main substrates are halogenated compounds. The aim of this study was to compare 

structural differences between DHP-B bound to various ligands to determine the 

functionality of the protein. 

 

 

4.2 Protein Purification 

The first step of protein purification was a salt fractionation, adding ammonium 

sulphate up to 50% (precipitation point for DHP). After centrifuging at 18,000rpm for 

20 minutes to remove the precipitate. This was resuspended in 20mM KPi buffer at 

pH8 with 2M ammonium sulphate. The protein was loaded onto a hydrophobic 

interaction chromatography phenyl-sepharose column on an AKTA-purifier, running 

a salt gradient from 0 to 2M ammonium sulphate. If two bands appeared, both ferric 

and ferrous DHP is present in the sample (Figure 4.1)  and the bands were collected 

separately. UV-vis absorbance spectroscopy was performed on all fractions, with all 

pure fractions pooled. This was then run through a G-75 size exclusion column, with 

all fractions again assessed by UV-vis and all pure fractions pooled. The pure protein 

samples were concentrated using a Viva-spin-10 concentrator with a 10kDa cut-off, 

and the buffer was exchanges to the final 20mM MES buffer at pH 6.5. The protein 

was concentrated until a ~15mg/ml concentration was achieved, with the 

concentration calculated by UV-vis spectroscopy using the extinction coefficient at 

haem absorption maximum DHP-B: e406= 116.4mM-1cm-1  (D’Antonio et al., 2010) 
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4.3. Crystallisation 

DHP-B crystals were grown using hanging-drop vapour diffusion method at 4oC using 

the crystallization conditions outlined in literature (de Serrano et al., 2007). A 

protein concentration of 8-15mg/ml was used and drops of 6µl with a 1:1 volume 

ratio protein to reservoir. These were equilibrated in a 24-well crystallization plates 

against a reservoir containing 20-33% PEG 4000 and 150-250mM ammonium 

sulphate. Crystals would appear after 4 days. The DHP crystals would grow to 50-

400µm.  

 

 

4.4. Crystal Soaking 

DHP-B crystals were soaked in crystallization solutions with 20% PEG and 200mM 

ammonium sulphate with added 5-20mM concentrations of ligand. Ligands used in 

this work include: 7-bromoindole, 5-bromoindole, 4-bromophenol and 2,4-

Figure 4.1: Phenyl-sepharose column with both ferric (top) 
and ferrous (bottom) bands bound during HIC purification. 
The column was then run on an AKTA purifier using a salt 
gradient, and both bands collected separately.  
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dichloropheno (DCP). 5-bromo indole was selected as the ligand appears to bind in 

the ferric structure directly above the haem (tested by Ghiladi group)All are able to 

interact with DHP as it’s main function as a peroxidase means it performs oxidation 

of trihalophenols to dihaloquinones, and its ability to accommodate large aromatic 

ligands. For DCP and 7-bromoindole, stock solutions of 0.5M were prepared in 

water. For 5-bromoindole and 4-bromophenol, stock solutions were prepared in 

ethanol, keeping levels below 2% ethanol to avoid damaging the crystals. Crystals 

were left in the soaking solutions for 5-10 minutes before being transferred into a 

cryoprotectant solution of reservoir solution with 20% glycerol added, before being 

flash cooled in liquid nitrogen.  

 

4.4.1 Ligand Bound Structure of DHP-B with 7-bromoindole  

The first single crystal structure collected to test the soaking conditions was using 

the ligand 7-bromoindole. Ferric DHP crystals were soaked in crystallization 

condition with 5mM of 7-bromoindole for 5-10 minutes before soaking in the 

cryoprotectant (20% glycerol) and flash-cooled in liquid nitrogen. The crystal 

structure was measured at Diamond Light Source (DLS). The diffraction data was 

processed as outlined in Chapter 3, and the data collection and refinement statistics 

are shown in Table 4.1. The overall structure is shown in Figure 4.2   
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The ligand was not present in either haem pockets, so for further soaking 

experiments we used a higher concentration of ligand in the soaking conditions. The 

structures of both haem A and B are shown in Figure 4.3. Note in Figure 4.3 that the 

distal His (His55) is in a ‘closed’ conformation, inside the distal pocket. The His55 

and haem Fe distance at haem A and B is 2.60 Å and 4.09 Å respectively, implying 

that the His55 at haem A is in the ‘closed’ position, while being ‘open’ at haem B.  

 

 

 

 

 

 

Figure 4.2: overall structure of DHP-B structure measured at DLS. Electron density shown as blue 
mesh.  

His55 

His89 

Leu62 
Phe97 

Phe21 

Figure 4.3: Structure of Haem A and Haem B from the structure of DHP crystals. Electron density is shown 
as blue mesh. Contoured to 1s. Measured at beamline i03 at Diamond Light Source (DLS; Didcot, Oxford) 
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His89 
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Phe97 
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Phe35 

2.60Å 4.09Å 
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4.5 DHP-B Crystal Soaking Experiments at SLS  

The crystals were prepared for DHP-B and 4-bromophenol and 7-bromophenol as 

prepared for collection at Swiss Light Source (SLS) at beamline PXII. Originally, the 

plan for this was the collect more ligand soaks, and to produce a ‘before and after’ 

UV-vis spectrum and Resonance Raman. There was also the possibility of a dose 

series. The beam at SLS was 100x100 microns. The beam was set to 1% Flux before 

changing to 10% flux to try to obtain any diffraction. We were unable to measure 

Resonance Raman spectrums as the crystals were too small. Due to a shipping error, 

   

 

 

 

7-bromoindole 

 

 

 

 
 
Space group P212121 

Unit cell (Å) A = 61.01  b= 67.86 

c=68.00    

a=b=g=90° 
 

 
Resolution (Å) 48.04 - 2.36  

Wilson B-factor (Å2) 43.9 

Unique reflections 11728 

I/s (l) 7.7 

CC1/2 1.0 (0.803) 

Completeness (%) 96.84 (99.5) 

Rwork 0.19 (0.27) 

Rfree 0.29 (0.36) 

Reflections for R-free 11725 (1190) 

Rmsd bond lengths (Å) 0.014 (0.002) 

Rmsd bond angles (o) 1.62 (0.36) 

Ramachandran 

favoured 92.22% 

Clashscore 10.33 

Average B-factor 55.14 

  

Table 4.2: Refinement statistics and data collection for DHP-B 7-bromoindole 
complex measured at DLS. Values in brackets represent the stats from the 
highest shell of resolution  
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all usable crystals were too icy to obtain a diffraction pattern, with too many ice 

rings.  

 

4.6 Comparisons from Literature 

This section includes comparing some of the DHP ligand complexes from literature. 

Firstly, the structure of DHP-B with ligand 4-nitrophenol (PDB: 5CHQ), also known as 

PNP, is a phenol used as a fungicide and is considered an organic pollutant. The 

structure of 4-nitrophenol is shown in figure 4.3A. 4-Nitrophenol binds closely to the 

haem cofactor. The ligand is found in both active sites of the dimer in the 

asymmetric unit. His55 (distal His) swings out of the distal pocket to allow 4-

nitrophenol to bind. This is shown in figure 4.3A (McCombs et al., 2016) 

 

 

 

 

 

 

 

 

 

 

The ligand 4-Nitroguaiacol (PDB: 6CH5) is also analysed, chosen due to its presence 

in the environment that A.ornata inhabits, it’s structure is also shown in Figure 4.3B. 

The 4-nitrophenol binds only at one active site (haem A), while at haem B we see a 

hemichrome species with His55 interacting directly with the iron, forming a 

hexacoordinated complex (McGuire et al 2018). At haem A, the ligand is bound in 

the distal pocket but doesn’t form a complex with the haem iron, due to binding 

higher in the pocket and instead forms hydrogen bonds with the aromatic ring of 

Phe60 (Figure 4.3B). The ligand p-nitrocatechol, is also an organic pollutant and a 

phenolic derivative of PNP (PDB: 5CHR), with its structure shown in Figure 4.3C. p-

nitrocatechol binds to both haem A and haem B.  p-nitrocatechol binds in a binding 

A B C D 

Figure 4.3: Structures of the DHP-B ligands. A: 4-nitrophenol B: 4-guaiacol C: p-nitrocatechol D: 4-
iodophenol 
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site in close proximity to the haem cofactor. The distal histidine His55 swings out of 

the distal pocket to allow binding (Figure 4.3C). At haem B, the iron in the haem is 

bound to a O2 molecule present in the binding pocket. p-nitrocatechol complexes 

with the haem iron at haem A (McCombs et al 2016) The last ligand to compare is 4-

iodophenol, with the structure being shown in Figure 4.3D.  4-iodophenol binds in 

the distal pocket (PDB: 1EWA), with the distal histidine swung out (Figure 4.3D).  

Again, the 4-iodophenol binds to a pocket close to the haem cofactor (La Count et al 

2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

His55 

Thr56 

His89 

Leu62 
Phe97 

Phe21 

A B 

C D 

Figure 4.3: Binding modes of the distal pocket with DHP-B. The ligands used were A: 4-nitrophenol B: 
4-guaiacol C: p-nitrocatechol D: 4-iodophenol. Hydrogen bonds are shown as dashed lines and the 
most relevant surround residues named.  
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Complex 
His55-Ligand Distance 

(Å) 

Fe-Ligand Distance 

(Å) 

Hydrogen Bonds (Å) 

Water to 

Ligand 

Ligand to 

Thr56 

Ligand to 

Phe60 

4-nitrophenol  3.82 4.09 - - - 

4-guaiacol 7.55 5.22 3.1 - 1.33 

p-nitrocatechol 3.16 4.18 
 

2.57  

4-iodophenol 4.75 3.56 - - - 

Table 4.2: Bond distances for DHP-B – ligand complexes  

Alternate conformation 

A B 

Figure 4.4: Superposition of the different binding moves around the haem (monomer A) of DHP-B  ligand 
complexes. Ligands have been removed for clarity. (A) shows more clearly the conformational changes of 
His55 depending on the ligand bound. Green: 4-nitrophenol Light Blue: 4-nitroguaiacol Pink: p-nitrocatechol 
Yellow: 4-iodopheno 

His55 

Thr56 

His89 
Leu62 

Phe97 

Phe21 

Table 4.3: Bond and ligand distances for 4-nitrophenol, 4-guaiacol, p-nitrocatechol and 4-iodophenol 
with DHP-B.  
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4.7. Discussion 

DHP has been extensively investigated using single crystallography, with 78 

structures deposited on the protein data bank (Berman et al., 2002). In this chapter, 

the main focus is on the different binding modes of DHP-B, with four structures from 

the PDB, as well testing the ligand soaking conditions for DHP-B single crystals.  

 

The structure of DHP-B soaked with 7-bromoindole was measured at beamline i03 at 

Diamond Light Source, UK. The structure was determined at 2.36 Å, a lower 

resolution to other previously solved structures, this is probably due to the age of 

the crystals being a few months old. The haems (Figure 4.3) show the distal histidine 

in a ‘closed’ conformation. There is no density above or below the haem plane to 

suggest a ligand is bound, and so the ligand soak was unsuccessful. Originally, 5mM 

was used as it was the lower end of the concentrations used in previous ligand 

soaking experiments (Tadeo Moreno-Chicano et al., 2019) however due to no ligand 

being bound in this structure, for future soaks a higher concentration of ligand was 

used.  

 
Comparisons of ligand binding from literature show how varied binding modes can 

be in DHP-B depending on the ligand. In all ligands, the distal histidine is ‘swung out’ 

to allow the large aromatic ligands to bind. His55 is a key residue in binding ligands, 

contributing to whether ligands are allowed to bind (Francesco et al., 2010). P-

nitrocatechol shows two conformations of His55, and has the shortest His-Fe 

distance and is closest to a hydrogen bonding distance, suggesting His55 may be 

acting as a hexacoordinate ligand. P-nitrocatechol also has a relatively short ligand-

Fe distance compared to the other ligands outlined here, however too large to be 

considered a ‘bonding distance’.  
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Chapter 5 - Serial DHP Crystallography 

Serial crystallography using ‘the Oxford chip’ developed at Diamond Light Source. 

DHP microcrystals are mounted on silicon nitride chips (discussed in Chapter 3). 

Serial crystallography was performed at synchrotron and XFEL beamlines. Batch 

crystallography conditions have previously been characterised. Ligand soaking using 

microcrystals were also used, providing damage-free SFX structures of these 

complexes. 
 

5.1 Batch Crystallization  

Production of DHP microcrystals was previously optimized by Dr Tadeo Moreno-

Chicano, and adapted by me. Previously, by Dr Moreno-Chicano, thousands of DHP 

microcrystals of 15-35µm in size in a single batch of 400-500µl. Microcrystals were 

grown at 4oC within 5-8 days. The batch conditions used during this project are 

outlined in Chapter 3, where the outlined conditions were not successful, with the 

results being unpredictable. This may be to do with the purity of each round of 

expression/purification of DHP-B. The trials of attempting to produce microcrystals 

of DHP are outlined in Table 5.1. Fresh PEG-4000 was used for each batch, as when 

older PEG solutions were kept, the solution would precipitate and appear cloudy. 

For the experiments outlined, older crystals from previous experiments  

were used.  
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5.2 Synchrotron Serial Crystallography (SSX) at Diamond Light Source 

DHP microcrystals grown in previous projects were taken to beamline i24 at 

Diamond Light Source (Didcot, Oxford, UK). The microcrystals were measured using 

‘Diamond chips’. ‘Diamond chips’ are made from silicon nitride and contain 25,000+ 

apertures (shown in Chapter 3), obtaining low-dose structures using diffraction data 

from thousands of crystals. The aim was to get SSX data of DHP-B ligand bound 

structures to compare to single crystal cryogenic structures as well as structures 

from our XFEL beamtime at SACLA.  

 

Ligand soaking experiments were performed with microcrystals by making stock 

solutions of ligands used of 500mM and adding these directly to the Eppendorf of 

microcrystals to a concentration of 10-50mM.  

 

Microcrystals were loaded onto chips in a humidity controlled hood (previously 

discussed in Chapter 3). One chip (Balzac) was measured at i24, to test the ligand 

soaking conditions didn’t dissolve the crystals and to also check that the crystals 

  Final concentration in 

Batch 

  
Protein  

(mg/ml) 

Set up 

  

  

  

  
Outcome 

  
% PEG 4000 

AmSO4 

(Mm) 

Ratio Protein: 

Condition 

Total Volume 

(µl) 

  

Condition   

DHP1 36% 200 27 1 to 3 50 No crystals  

DHP2 37% 200 28 1 to 3 50 No crystals  

DHP3 38% 200 29 1 to 3 50 No crystals  

DHP4 36% 200 30 1 to 3 50 Precipitated 

DHP5 37% 200 27 1 to 4 50 No crystals  

DHP6 36% 200 28 1 to 4 50 No crystals  

DHP7 38% 200 30 1 to 4 50 Precipitated 

DHP8 37% 200 30 1 to 3  50 No crystals  

DHP9 38% 200 30 1 to 3  50 No crystals  

Table 5.1: DHP-B screens to produce microcrystals based on previously successful production of 
microcrystals.  
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were diffracting as expected. This chip was DHP-B soaked with 5mM DCP. The next 

chip (Forster) was measured for the structure of DHP-B and 7-bromoindole and 

were screened following the screening protocol also in Chapter 3. However, the first 

run of the chip was saved to the wrong folder, and so the run was stopped. We then 

reran the chip, excluding the column that had already been measured. The 

experimental parameters for these two chips are shown in Table 5.2 

 

 

 

Name of 

Chip 

Beam Size 

(µm2) 

Detector 

Distance 

(mm) 

Exp Time 

(ms) 

Trans 

(%) 

City 

Blocks 

Measured 

Frames 

Indexed 

by Dials 

Hit 

rate 

(%) 

Res 

Crystals ( 

Balzac 7x8 330 10 50 c1-c4 -    

Forster1 7x8 340 10 - Full chip 25600    

Forster2 7x8 340 10 - 7 columns 22400    

 

 

 

5.2.1 Processing of SSX data  

The data from I24 was processed using DIALS (Winter et al 2018) for indexing, and 

PRIME (Uervirojnangkoorn et al., 2015) was used for scaling and merging. DIALS 

contains a program called ‘dials.stills_process’ which is specifically developed to 

index diffraction patterns from many crystals. The integrated and merged files were 

then put into PRIME where an mtz file was generated. This mtz was loaded into 

ccp4i2 and the usual program of Phaser for molecular replacement, Refmac for 

refinement and Coot to build the model.  

 

‘dials.still_process’  was run from the command line and submitted to the Diamond 

cluster. As an example, SSX data for 7-bromoindole with DHP-B is used as an 

example. To run DIALS, the file ‘dhp.phil’ had to be generated, containing 

information such as space group and cell parameters and ‘chip_name_process.sh’, 

the executable script to run a DIALS job. In Figure 5.1 shows the first portion of the 

Table 5.2: Experimental parameters and statistics for chips loaded at i24, Diamond Light Source (Oxford, UK) 
at 12800 eV energy 
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‘dhp.phil’ script.  

 

 

 

 

The command ‘dials.stills_process’ was then used using: 

 

dials.still_process ../forster/forster0007_000{00..99}.cbf 

../forster/process.phil mp.nproc=20 > dhptest.out  

 

where: 

• ../forster/forster0007_000 specifies the path to the image files 

• nproc=20 specifies the number of processors  

• > dhptest.out is the output file 

 

Once run, indexed and integrated files would appear in the working folder until the 

run had finished.   

 

Figure 5.1. First part of the file ‘dhp.phil’ used for indexing with DIALS of the chip ‘Forster’.   
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5.2.2 SSX Structure of DHP-B in Complex with 7-bromoindole  

DHP microcrystals (grown before I took over the project) were taken to beamline i24 

at Diamond Light Source, Oxford, UK. At this beamtime, the diffraction of the 

crystals and the hit rate were optimized. The measurement at Diamond would help 

to prepare for the XFEL trip to SACLA, as we would be using the same system there.  

 

A stock solution of 500mM 7-bromoindole was added to the batch of microcrystals 

(measuring from 30-50 microns) to give a final solution concentration of 10mM 7-

bromoindole. These microcrystals were left for 15 minutes before being pipetted 

onto a silicon-nitride ‘diamond chip’ in a humidity tent (shown in Chapter 3). The 

experimental set up is shown in Table 5.2 

 

The spots for the dataset ‘forster’ were not strong enough to index, and therefore I 

was unable to continue processing the data.  

 

5.3 Serial Femtosecond Crystallography (SFX) at SACLA 

DHP microcrystals were taken to SACLA (Japan) at the BL2/EH3 beamline. Samples 

were transported in a flask to keep them at 4oC during the travel to SACLA. The data 

for oxyferrous and DHP and peracetic acid were collected on a previous trip before I 

started the project, and an Eppendorf of DHP microcrystals suspended in their 

crystallisation solution were brought to SACLA and were measured. After I took over 

the project in 2019, one chip of DHP soaked with 7-bromoindole was loaded onto 

silicon nitride chips ((Mueller et al., 2015)and mounted in the XFEL hutch. The chip 

names and what they contained as well as the years measure are shown in Table 5.3 
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Chip Name Condition Year Measured 

Endive DHP-PA 2018 

Fostis DHP-PA 2018 

Ginger DHP-PA 2018 

Almond DHP Oxyferrous 2018 

Cockle DHP Oxyferrous 2018 

Zinger DHP Oxyferrous 2018 

Neeson* DHP 7-Br* 2019* 

 

 

5.3.1 Measured SFX Data for DHP -7-bromoindole Complex  

Firstly, some pipetting was needed to detach some of the crystals from the 

Eppendorf tube walls as well as resuspending crystals that had collected at the 

bottom. For the ligand soak, 7-bromoindole was made in a 500mM stock, and 20µl 

added to 1ml Eppendorf of microcrystals. Once added, the batches were mixed and 

left for 5 minutes to soak before being loaded onto the chip. One chip was loaded 

for the ligand soaks, due to only a small amount of crystals being available. 

Previously, and for the oxyferrous data, four chips were needed to obtain the 

structures. For the soak, a six-letter name based on an actor/actress was given to 

the chip. For the parameters used, see Table 5.4. 

 

 

Component Condition 
Energy 10 KeV 

Repetition Rate 30 Hz 

Beamsize 2x2 µm 

FEL pulse length  10 fs pulse 

 

Table 5.3: Chip names, their conditions and the year they were measured at SACLA, Japan. 2018 chips were 
measured previously by Dr Tadeo Moreno-Chicano. (* measured during this project) 

Table 5.4 SFX parameters used at SACLA beamline BL2 EH3 for all chips measured in 2018 
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5.3.2 Processing SFX Data  

Hit finding and estimation of hit rates was carried out using Cheetah (Barty et al 

2014), producing H5 files. The software CrystFEL was used to process all data from 

SACLA, a program specifically developed for processing XFEL data. As previously 

stated in Chapter 3, CrystFEL contains multiple different programs run on the 

command line, following the usual structure of indexing, scaling and then merging. 

All diffraction data was indexed using indexamajig using: 

 

$ indexamajig -i files.lst –-peaks=peakfinder8 --threshold 300 –

min-gradient=90000 –-min-snr=5 –-int-radius=3,4,7 –-indexing=asdf 

-g new_geometry-predrifine.geom -p DHP.cell -o DHP.out -j 20 

 

These parameters are defined in Chapter 3, and every chip was processed in this 

way. A ‘stream.out’ file was produced containing the indexed reflections. To 

demonstrate processing of SFX data, outlined is the processing of the data for DHP 

in complex with Peracetic Acid, measured by Dr Tadeo Moreno-Chicano during the 

2018 SACLA beamtime. The DHP.cell file containing the cell parameters and 

symmetry for DHP, which was made using the CrystFEL template, including the RT 

parameters obtained from a previous SSX beamtime on i24 (DLS, Oxford). This .cell 

file is defined: 

 

CrystFEL unit cell file version 1.0 

 

lattice_type = orthorhombic 

Component Condition 
Energy 11 KeV 

Repetition Rate 30 Hz 

Beamsize 2x2 µm 

FEL pulse length  10 fs pulse 

Table 5.5 SFX parameters used at SACLA beamline BL2 EH3 for all chips measured in 2019 
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centering = P 

a = 61.36 A 

b.= 68.01 A 

c = 102.33 A 

al = 90 deg 

be = 90 deg 

ga = 90 deg 

 

 

An initial indexing run (around 200 crystals) was done to find the parameters for the 

specific microcrystals. After this, the cell parameters were examined using 

cell_explorer from the CrystFEL package. This generated histograms for each cell 

parameter, as well as calculating the mean value and standard deviation (Figure 

5.2). The command to run this is shown here for the chip ‘Fostis’  

 

$ cell_explorer firstRun_fostis.out  
 

 

 

 

 

 

 

 

Figure 5.1 Histograms generated from cell_explorer for chip Fostis containing DHP crystals in complex with 
peracetic acid. The standard deviation and mean were calculated from the range defined by the 
highlighted area 
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The cell parameters were then updated into a new file called DHP_refined.cell. A 

second, full run of indexamajig was then carried out using the new refined cell 

parameters. The output of this run and the geometry file were used to check and 

optimize the detector geometry using detector-shift. This also plots the 

disagreement between the detector shift in x and y, between the location of the 

experimental and calculated spots in every indexed frame. To do this, this command 

was used 

 

$ ./detector-shift DHP-PA-fostis.out new_geometry-

predrefine.geom  

 

 

 

A new geometry file was made, called ‘new_geometry-predefine-predefine’ and a 

final run of indexamajig was done with the new geometry file. Cell explorer was 

Figure 5.2 Detector_shift plot from CrystFEL for chip Fostis. The prediction-
refinement algorithm refines the position of the beam on each frame, shown as a 
scatter plot 
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used to check that the histograms produced were much cleaner than the initial run. 

This is shown in Figure 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After, the out file was checked for detector saturation using the script ‘peakogram-

stream’ the command line for this is 

 

$ ./peakogram-stream -i DHP-PA-fostis2.out  

 

Detectors at FEL facilities have a small dynamic range, and so there is a high 

possibility of ‘saturated reflections’.  The graph produced from ‘peakogram-stream’ 

is shown in Figure 5.3. The vertical axis shows the highest pixel value in each 

reflection and the horizontal axis represents the resolution. Each point represents 

the density points, and there is a colour scale to show the density of points in areas 

that are very concentrated 

 

 

 

 

 

Figure 5.3: Histograms generated by Cell_explorer for chip ‘Foster’ after the final run of indexamajig  
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Due to the ‘cloud’ of density above the red line shown in Figure 5.3, values peaking 

over 12000 detector units are rejected when merging. The ‘cloud’ suggests 

reflections with a higher intensity than could be measured by the detector, and so 

they get clustered around the maximum value.  

 

Next, the out files for all the different chips are joined together into one file ready to 

for scaling and merging. The command for this is: 

 

$ cat DHP-PA-fostis2.out DHP-PA-ginger2.out DHP-PA-endive2.out > 

DHP-PA-all.out 

 

Merging was carried out using the simple, averaging-based ‘Monte Carlo’ method. 

To do this, process_hkl (White et al., 2012) was used. This was given as a script 

Figure 5.3 ‘peakogram-stream’ graph. Each point represents one reflection, with 
the vertical axis showing the highest pixel value and the horizontal axis showing the 
resolution. The colour scale shows the density of points. The red line represents the 
intensity cut off  
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called merge.sh which was run with the output file DHP-PA-all.out, containing the 

outfiles from all indexamajig runs with the three different chips. This merge.sh file is 

shown in Figure 5.4  The point group is also needed in this script, which wold be 222 

as the space group for DHP is P212121. However, with recommendation from 

CrystFEL developers, the point group ‘mmm’ was used to merge the Friedel pairs 

and therefore perform better merging.  

 

Merging using merge.sh produces three output files, a .hkl file with all merged 

reflections, and the two files .hkl1 and hkl2, where the data was split. These split 

files are used to generate the useful figures of merit, CC and Rsplit.  

 

To calculate these figures of merit, the script ‘stat.sh’ was used, written by Danny 

Axford. This requires an input of the symmetry information for DHP (DHP.cell) as 

well as the hkl files. The point group is specified as ‘mmm’ generating the correlation 

coefficient (CC) and Rsplit. The script for stat.sh is 

 

#!/bin/bash 

 

inp=$1 

inp1=${1}1 

inp2=$(1)2 

basename=DHP-PA-all.processhkl 

fom=*R1I R2 Rsplit CC CCstar* 

pdb=DHP.cell 

pg=”mmm” 

highres=”1.85 

 

module load CrystFEL 

 

if ( ! -d “stat” ) then 

       mkdir stat 

 

fi 

 

for mode in $fom  



 63 

do 

     compare_hkl $inp1 $inp2 -y $pg -p $pdb –-fom=$mode –

highres=$highres –-nshells=20 –-shell-file=’stat/${basename-

$mode”.dat 2>>stat/${basename}.log  

done 

check_hkl -p $pdb –-nshells=20 –-highres=$highres -y $pg –shell-

files=”stat/${basename}-shells”.dat $inp 2>>stat/${basename}.log  

 

Each file generated by ‘stat.sh’ were ‘dat’ files. Shells.dat contains information about 

completeness and other data quality statistics in the different resolution shells. DHP 

data was completed using the resolution cut off 1.85 Å (Figure 5.6). The 

completeness did tail off  from ~2.14 Å.  

 

 

 

 

 

 

 

 

 

 

 

 

 

To further look into the quality of this data and to figure out the resolution cut off, 

the stats CC and Rsplit must be looked at. The CC statistics are shown in Figure 5.7 

 

 

 

 

 

Figure 5.6:  shells.dat file for DHP in complex with peracetic acid with a cut off of 1.85 Å 
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The CC for DHP in complex with peracetic acid shows the data quality is good, with a 

CC above 0.9 until ~2Å. The resolution cut off can be still applied at 1.85 Å using the 

general criteria of CC > 0.5 

 

 

The Rsplit was also examined, shown in Figure 5.8. The Rsplit Figures are all below 20%, 

until ~2Å resolution where this exceeds 20%. This could be extended to 1.85 to 

match the CC resolution limit  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7:  shells.dat file for DHP in complex with peracetic acid with a cut off of 1.85 Å 
generated by the Stat.sh script. Correlation coefficient data is shown. 

Figure 5.8:  shells.dat file for DHP in complex with peracetic acid with a cut off of 
1.85 Å generated by the Stat.sh script. Rsplit data is shown. 



 65 

To see if the data improved, partialator, part of the CrystFEL suite was run. 

Partialator performs advanced merging methods, implements scaling and post 

refinement using generalised target function, a choice of partiality models, cross-

validation residuals and partiality plots while ‘process_hkl’ is the simplest way to 

merge intensities, by calculating the average intensity across the entire data set for 

each symmetrically uniqiue reflection (White 2014). Partialator was run using the 

command: 

 

$ partialator -i DHP-PA-all.out -o DHP-PA-all.partialator.hkl -y 

mmm –-iterations=3 –-model=unity –max-adu=7000 -j 20 

 

The figures of merit were then calculated in the same way as previously stated for  

process_hkl. A table with a comparison of the figures of merit of process_hkl vs 

partialator is shown in Table 5.5. With no significant improvement in any of the 

figures of merit, the merging from process_hkl was used.  

 

 

 

 

 

An mtz file was generated using the script ‘create-mtz’ which runs the CCP4 

program f2mtz. The hkl file from merging was used as the input file. The script is 

shown: 

 

#!/bin/sh 

 

OUTFILE= echo $1 | sed -e ‘s/\.hkl$/.mtz/’ 

 

Figure of Merit Process_hkl Partialator  

Rsplit(%) 8.12 9.17 

CC 0.991 0.996 

I/s (l) 11.48 12.9 

Table 5.6: Figures of merit for merging processes process_hkl and partialator  
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echo = Input: $1” 

echo =Output: $OUTFILE” 

if [ -e $OUTFILE ); then 

         echo = The output file already exists 

         echo = -$OUTFILE 

         echo = To confirm that you want to continue, which                               

will DESTROY the” 

         echo = current contents of this file, type y and press 

enter.” 

         read conf 

         if [ $conf !=y] then 

                  echo = “Not confirmed” 

                  exit 1 

          else 

                  echo = “Proceeding” 

           fi 

fi 

 

ex -c /End of reflections/ 

..$d 

w create-mtz.temp.hkl 

q!’ $1 

 

Echo “Running ‘f2mtz’ 

f2mtz HKLIN create-mtz.temp.hkl HKLOUT $OUTFILE > out.html << 

EOF 

TITLE Reflections from CrystFEL 

NAME PROJECT SACLA CRYSTAL DHP-PA DATASET EMILY allchips 

CELL 68.73 69.77 62.15 90 90 90  

SYMM P212121 

SKIP 3 

LABOUT H K L IMEAN SIGIMEAN 

CTYPE H H H J      Q 

FORMAT ‘(3(F4.0.1X),F10.2.10X.F10.2)’ 

EQF 

 

if [ $? -ne 0]; then echo “Failed,”; exit; fi 

rm -f create-mtz.temp.hkl 
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echo “done” 

 

 

 

 

The resulting mtz file contained the space group and experimental parameters 

specified previously for DHP and peracetic acid.  The mtz was then used the same 

way as other datasets, starting with molecular replacement using Phaser, using a 

room-temperature SFX model of Ferric DHP from a previous SACLA trip. Data 

quality statistics for DHP Peracetic acid is shown in Table 5.6 
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5.4 SFX Structure of DHP with Peracetic Acid (formation of Complex l) 

The data for Peracetic acid soak with DHP-B was measured at SACLA, Japan in 2018 

and the data processed by me. This structure was measured using a 10 femtosecond 

XFEL pulse to collect the radiation-damage free structure. The data was processed as 

previously stated, using CrystFEL.  

 

 

 

 

 

 

 

 

 

 

 

 

DHP-Peracetic Acid 

Space group P212121 

Unit cell (Å) 
 

 
a=68.73  b=69.77  c=62.15  

 a=b=g=90o 

 

 

Resolution (Å) 30.55-1.85   

Rsplit (%) 8.12 (59.99) 

Unique reflections 22935 (2429) 

I/s (l) 11.48 (8.94) 

CC 0.991 (0.56) 

Completeness (%) 99.97 (100) 

Rwork 0.23 

Rfree 0.25 

Reflections for R-free 834 (78) 

Rmsd bond lengths (Å) 0.019 

Rmsd bond angles (o) 1.39 

Ramachandran 

Favoured (%) 

 

98.15 

Table 5.7: Refinement statistics and data collection for SFX data measured at SACLA of  
DHP-Peracetic Acid. Values in brackets represent the stats from the highest shell of 
resolution  
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The structure, measured at room temperature, crystallized as a dimer in the 

asymmetric unit (Figure 5.9) with each monomer showing the globin fold as 

expected. The globin fold is formed by seven a-helices per monomer, bundled 

around the haem co-factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complex was solved using molecular replacement using Phaser, and after one 

round of refinement using REFMAC5, a large positive electron-density in the Fo – Fc 

difference map was seen just above the haem plane. Due to this peracetic acid 

soak’s aim of oxidising the haem to compound one, an water molecule was 

modelled in. After refinement, the water was only supported by electron density at 

haem B, and so was removed at haem A.  

 

 

 

 

  

 

Figure 5.9 Overall structure of the DHP dimer made using the SFX structure measured at 
SACLA in 2018. Haem groups are shown as sticks, with monomer A shown on the left, and B 
on the right.  
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Haem A appears to have a hemichrome species, a double conformation of the haem, 

and has previously been observed in other haem proteins (Vergara et al., 2009) 

shown in Figure 5.11 with the electron density map contoured to 4s to show the 

two positions of the iron more clearly.  Due to the data being an XFEL structure, 

radiation damage being the reasoning behind seeing this hemichrome species is 

ruled out. This has been observed in other similar structures, so currently it is unsure 

whether this has any biological relevance or just a crystal artefact.  

 

 

 

 

 

 

 

 

 

Figure 5.11 2Fo-Fc map of Haem A of DHP from the first 
round of refinement contoured to 4s to show the two 
positions of the haem iron in the hemichrome species 
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The B-factor and occupancy data for haem B is shown in Table 5.8. B-factors reflect 

the fluctuations of atoms about their average position, providing details on protein 

dynamics (Yuan, Bailey and Teasdale, 2005) 

 

 

 

 B- factor (Å2) Occupancy (%) 

Water 45.73 70 

Fe 56.61 100 

 

5.4.1 Comparison of Ferric DHP-B and DHP-B and Peracetic Acid 

A comparison of the structure of DHP-B and peracetic acid was compared to the 

ferric state DHP-B structure collected from a previous SACLA trip (Moreno-Chicano 

His89  

His55  

Leu62 

Phe97 
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Leu62 
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Phe21 

A B 

Figure 5.12 Haem A (A) and Haem B (B) electron density contoured to 1s. An water molecule was 
modelled into the electron density above the haem plane in haem B. 

Table 5.8: B-factor and occupancy details for haem B of DHP-B peracetic acid 
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et al 2019) . The structures are extremely similar, with very little differences. At 

haem A, the biggest difference that can be observed is of the distal histidine. In the 

PA soak, the distal histidine is 4.23Å away from the iron of the haem group, whereas 

in the Ferric structure it is 4.04 Å at haemA. Although closer to the haem iron, the 

histidine in the PA soak is much closer to the haem plane itself as seen in Figure 

5.13, while in the Ferric form His55 is directly above the iron. At haem B, the distal 

histidine is slightly closer to the haem iron than in the ferric In haem B, being 0.4 Å 

closer. Also at haem B, the haem plane is in a ‘domed’ position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure His55 – Fe  Distance (Å) Fe – His89 Distance (Å) Phe35 Angle (o) 

Ferric  – haem A 4.04 2.51 80 

Peracetic acid -Haem A 4.23 2.45 114 

Ferric – haem B 4.86 2.48 111 

Peracetic acid – Haem B 4.44 2.88 113 

Table 5.9: Key residue distances for DHP-B SFX structures Ferric and peracetic acid soak 

Figure 5.13 Superstition of SFX structures Haem A (A) and Haem B (B) of DHP-B with Peracetic Acid 
(Green) and Ferric DHP-B (Pink). 
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There is also a Phe35 rotation, as shown by the angles in Table 5.9. Ferric DHP has 

Phe34 at 80 degrees at haem A, while the PA soak is 114 degrees, a 34 degree turn.  

 

5.5 SFX Structure of Oxyferrous DHP 

Oxyferrous DHP-B was generated by incubating ferric DHP with ascorbic acid, and 

microcrystals grown as previously stated in Chapter 3. The oxyferrous data was 

measured at SACLA, Japan in 2018 by Dr Tadeo Moreno-Chicano, and the data 

processed by me. The oxyferrous data was collected using a 10 femtosecond XFEL 

pulse, this ensured a radiation-damage free structure, the same way the peracetic 

acid structure was obtained. The data was processed in the same way as previously 

stated, using CrystFEL following the same workflow as DHP with peracetic acid. The 

chips were indexed with indexamajig using the same parameters as before. The 

diffraction data was joined into a single file, containing 55,431 reflections, with the 

cell parameter distributions shown in Figure 5.10 calculated using cell_explorer  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.12: Histogram plots generated by cell_explorer for DHP-oxyferrous data.  
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The merging processes was performed by partialator and the data quality statistics 

were generated using the script stat.sh. Resolution shells for this complex are shown 

in Figure 5.11, the CC statistics in Figure 5.12 and Rsplit in Figure 5.13.   

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Resolution shells for the merged data for oxyferrous DHP  

Figure 5.14 Values for CC In the different resolution shells for the merged data for oxyferrous 
DHP  
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The data quality/merging statistics are shown in Table 5.5. The structure was initially 

solved using Phenix however the CCP4i2 suite gave a clearer definition of the oxygen 

bound to the haem. This is due to the fact that the crystals were twinned (twin law -

h,l,k) , and REFMAC5 (Murshudov et al., 2011)dealt with twinned data better than in 

Phenix, resulting in clearer maps. The structure was solved by doing an initial 

molecular replacement using PHASER (McCoy et al., 2007) the model built using 

BUCCANEER (Cowtan, 2006) and refined using REFMAC5 as well as manual 

refinement in Coot. Due to the twinned data, the recommended LORESTR 

(Kovalevskiy, Nicholls and Murshudov, 2016) was also used for refinement. 

Figure 5.15 Values for Rsplit In the different resolution shells for the merged data for 
oxyferrous DHP  
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The SFX structure for oxyferrous DHP shows that it crystallised as expected, as a 

dimer in the asymmetric unit, with each monomer adopting the classic globin fold. 

The haem groups can be distinctly seen. After the first round of refinement using 

REFMAC5, an area of positive electron density in the Fo-Fc map was observed above 

both haem A and B in the distal pocket (Figure 5.17), where the oxygen molecules 

were modelled into. After further refinement, the oxygen at haem A was not 

supported by electron density, and so was removed from the model. 

 

 

 

 

 

Figure 5.16 Overall structure of the oxyferrous DHP dimer made using the SFX structure 
measured at SACLA. Haem groups are represented in yellow. 
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Other positive difference electron density clouds in the distal pocket are removed 

after multiple rounds of refinement, as this is noise in the data. Where the oxygen is 

modelled in, this area of electron density is apparent in all rounds of refinement. 

 

 

In haem A, there is the presence of a hemichrome species. The His55 is also 1.34 Å 

closer to the haem group in haem A. To more clearly show the hemichrome species, 

Figure 5.18 shows HaemA with 2Fo-Fc map contoured to 4s, where the two positions 

of the iron can be clearly seen.  

 

 

 

 

Figure 5.17 Haem A (A) and Haem B (B) from the first cycle of refinement. The difference Fo-Fc  contoured 
to 3s and density contoured to 1s. Note the areas of positive density feature above the iron in the haem 
group 
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Figure 5.18 Haem A (A) from the first cycle of refinement in CCP4i2. Fo-Fc map contoured to 4s to show 
the two positions of the haem iron, demonstrating a hemichrome species. 
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Figure 5.19 (A) Haem A of DHP-B, the O2 was removed as the electron-density map did not support it. 
(B) Haem B, with the O2 modelled in after multiple rounds of refinement. Map on both contoured to 1s 
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The bent bonding geometry of the iron bonding to the O2 molecule results in a 

hydrogen bond of length 3.14Å between the second O atom of molecular oxygen 

and the Ne2 of the distal histidine residue His55. 

B-factor and occupancy information is shown in Table 5.9.  

 

 

 B-factor (Å2) Occupancy (%) 

Fe 34.51 100 

O2 45.93 50 

Table 5.10: B-factor and occupancy of the iron in the porphyrin and O2 molecule in the 
active site of  B 
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5.5.1 Comparison of DHP Oxyferrous  – Room Temperature (SFX) and 

Cryogenic 

As previously stated, crystallography is almost always performed at cryogenic 

temperatures (100K) to reduce radiation damage. Collecting at cryogenic 

temperatures however can mask alternative conformations that can be seen at 

room temperatures. Comparing the cryogenic structure (Carey et al., 2018)and SFX 

 

 

 

 

 

 

 

 

Oxyferrous 

Space group P212121 

Unit cell 
a = 61.31 Å b= 68.1Å c=68.33 Å  

a=b=g=90o 
 

 

 
Resolution 11.34 – 2.0 Å 

Rsplit (%) 12.03 (59.99) 

Unique reflections 25099 (2653) 

I/s (l) 18.71 (13.12) 

CC  0.975 (0.499)  

Completeness 100% (100%) 

Rwork 0.20 

Rfree 0.22 

Reflections for R-free 997 (144) 

Rmsd bond lengths (Å) 0.024 

Rmsd bond angles (o) 2.07 

Ramachandran 

Favoured (%) 97.78 

Twin law -h,l,k 

Table 5.11: Refinement statistics and data collection for SFX data measured at SACLA of 
Oxyferrous DHP. Values in brackets represent the stats from the highest shell of 
resolution  
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data collected in 2017 at SACLA (Japan). Haem B for both cryogenic and SFX data are 

shown in Figure 5.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparisons of ligand to key residues are shown in Table 5.5. The cryogenic and SFX 

structures are quite similar from the comparisons of the structure shown in Figure 

1.8, however looking at the key residue distances, the oxygen in the SFX structure is 

closer to the haem plane by 0.5 Å . The biggest difference is the distance between 

oxygen and the  iron of the haem, due mainly to the oxygen being modelled in at a 

different angle. There is also a large difference between the angle at which the 

oxygen is bound. In the cryogenic, the oxygen is at a 169o angle to the iron, whereas 

the SFX data has the oxygen at 113o, almost parallel to the haem. Another slight 

difference is the distance between Phe21 and the oxygen. In the cryogenic, the 

Phe21 is closer to the oxygen at 3.35 Å, while in the SFX data, Phe21 is 3.88 Å. The 

structures are extremely similar, with the oxygen angle being the main difference. 

 

 

Figure 5.20 Superposed haem B from DHP-B. SFX data is shown in yellow and cryogenic shown in 
green 
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5.6. Discussion 

5.6.1. DHP Serial Crystallography 

DHP has been investigated using serial crystallography at x-ray sources, such as XFEL 

and synchrotron, and has been proven to be an effective technique. SFX and SSX are 

efficient in many ways, including sample and time. In theory, with each chip 

containing 10,000 microcrystals running for 15 minutes, a complete data set could 

be obtained in around an hour.   

 

This thesis shows the structure of two dehaloperoxidase-B structures, measured 

using SFX. Previously, three more DHP-B room temperature structures have been 

solved. Using room-temperature structures is advantageous, as the protein 

dynamics aren’t suppressed so can show a more relevant model that is more 

biologically accurate. This is due to there being no cryoprotectants and having 

conditions that are closer to the in vivo conditions of DHP.  

 

In dehaloperoxidase B peracetic acid soaked SFX structure, the overall structure is as 

expected, crystallising as a dimer in the asymmetric unit. There is also the globin fold 

formed by seven a-helices per monomer. 

 

Complex 
His55 - Ligand Distance 

(Å) 

Fe - Ligand Distance 

(Å) 

His89 - Ligand 

Distance (Å) 

Cryogenic Oxyferrous 3.41 2.55 4.78 

SFX Oxyferrous 3.24 2.05 4.32 

Table 5.5: Key residue distances for oxyferrous DHP-B complexes for cryogenic and SFX structures 
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At haem B there is a clear positive electron density in the difference (Fo-Fc) map, 

showing full occupancy of a distal oxygen molecule and so could be showing the 

oxidation of the haem to compound one.  

 

At haem A of DHP-B and peracetic acid, there is evidence of a hemichrome species. 

After the first round of refinement, the electron density viewed at 4s showed the 

two possible positions of the haem iron. Further evidence of this is the closeness of 

the distal histidine to the haem plane, which is also a sign of a hemichrome species 

as the flexibility of His55 is what gives DHP the ability to form a hemichrome species 

(Nicoletti et al., 2011) 

 

5.6.2 Comparison between Ferric DHP and Peracetic Acid soaked DHP 

DHP-B microcrystals were soaked in peracetic acid to oxidise the DHP to compound I 

As previously shown in Chapter One, the suggested catalytic cycle of 

dehaloperoxidase shows a single oxygen atom bound to the haem iron as well as 

interacting with the NH of the distal histidine. An overall superposed structure of 

ferric DHP and DHP with a peracetic acid soak can be seen at Figure 5.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.21. Superposition of DHP-B with peracetic acid soak (green) and Ferric 
structure (pink). Monomer A is shown on the left and monomer B on the right. 
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Apart from some differences at the haem group, they adopt almost identical 

conformations. The Rmsd (root-mean-square distance) between the two structures 

are shown in Table 5.6. Rmsd is the measure of the average distance between atoms 

of superimposed proteins. Due to extremely low Rmsd values The largest difference 

can be seen in monomer B, which is to be expected considering the oxygen bound to 

monomer B causing some structural differences. 

 

 

 

 

At haem B, the porphyrin is seen as ‘domed’, and the iron is pulled out of plane, with 

iron being at a 95o angle. Normally, the porphyrin is closer to 180 o. This is due to the 

iron interacting with the NH group of the distal histidine (His55), but this could also 

be due to the bound oxygen interacting with the NH.  This is common in haem 

proteins without ligands bound, but also in the intermediate ‘compound I’, as the 

His55 is pulled closer to the haem plane to interact with the oxygen. 

 

 

5.6.3 Oxyferrous DHP-B 
The data for oxyferrous DHP-B was measured in SACLA, Japan by Dr Tadeo Moreno-

Chicano in 2018. The data was then processed by me in the same way outlined for 

the DHP-B peracetic acid soak outlined in 5.3.2.  

 

The overall SFX structure at 2 Å of oxyferrous DHP appeared as expected, again 

crystallising as a dimer in the asymmetric unit. The globin fold is also apparent, with 

seven a-helices per monomer.  

Measured Value (Å) 

Rmsd Overall 0.006 

Rmsd monomer A 0.001 

Rmsd monomer B 0.024 

Table 5.13 Rmsd values for the differences between peracetic acid and ferric structures of DHP-B 
calculated using ‘align’ on PyMOL (Hart et al 2015) 
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The  Fo-Fc map for oxyferrous DHP (Figure 5.17) shows a clear positive electron 

density above the haem plane in both the monomers. Oxygen molecules were 

modelled in to a small cloud of positive difference density and refined using 

REFMAC5 but only at haem B did the electron density support the oxygen, so was 

removed from haem A.  However, haem A shows a hemichrome species, with a 

double conformation of the haem cofactor. Previously, the existence of a 

hemichrome species was to do with the use of glycerol as a cryoprotectant for 

conventional x-ray crystallography. With these species being present in SFX 

structures, where no cryoprotectant is used, this can be ruled out. However, it could 

be a crystallisation artefact from being in contact with PEG for long periods of time 

(Mao et al., 2013) or have biological relevance. To be able to confirm whether it has 

a biological relevance, further investigation needs to be done.  

 

5.6.4. Comparison between SFX room temperature and cryostructure 

oxyferrous DHP-B  

 

Oxyferrous DHP-B outlined in this report was measured at room temperature, at an 

XFEL site to produce a damage-free structure. Here, there will be a comparison 

made between the cryogenic and room temperature structures. The cryogenic DHP-

B structure was obtained from the pdb (5V5J) at 1.8 Å. An overall superposition of 

both of these structures is shown in Figure 5.23. Comparing the two structures is 

important to see whether the temperature at which the crystals are measured at 

has an effect on the structure. Cryogenic temperatures, although give a higher 

resolution due to reducing radiation damage, could mask the structure in vivo and 

therefore leave out potentially biologically relevant conformations.  
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Figure 5.22. Superposition of DHP-B Oxyferrous measured at room temperature 
(yellow) and cryogenic temperatures (green) Monomer A is shown on the left and 
monomer B on the right. 

Figure 5.23. Superposition of DHP-B Oxyferrous measured at room temperature 
(yellow) and cryogenic temperatures (green). Haems A and B are labelled 
respectively.  
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The structures are very similar, with only some differences in the overall structure 

being visible, close to the haem cofactors mainly in monomer B. The Rmsd values 

between the two structures are shown in Table 5.7.  

 

 

 

 

The Rmsd values agree with the observation that the two structures are similar, as 

they are relatively small Rmsd values. The differences around the haem groups 

could be due to the way in which the oxygen is bound, as the oxygen in the RT 

oxyferrous structure is almost parallel to the haem plane. The cryogenic structure of 

DHP-B haem B has the oxygen bound at an approximate 113o angle, this is close to 

the energetically favourable 115o bond seen in haem proteins, as the oxygen is sp2 

hybridized when bound to haem iron. This suggests that the temperature in which 

the structure is measured has an effect on the way that oxygen binds to DHP-B, the 

reasoning for this would need further investigation. In both the SFX and cryogenic 

structures the oxygen forms hydrogen bonds with the N2 atom of the distal His55, 

with distances of 3.41 Å and 3.24 Å respectively. 

 

 

 

 

 

 

Measured Value (Å) 

Rmsd Overall 0.313 

Rmsd monomer A 0.257 

Rmsd monomer B 0.306 

Table 5.14 Rmsd values for the differences between peracetic acid and ferric structures of DHP-B 
calculated using ‘align’ on PyMOL (Hart et al 2015) 
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Chapter 6 - General Discussion 
6.1 Introduction 

Dehaloperoxidase is a multifunctional globin, functioning as a peroxidase, 

haemoglobin, peroxygenase, oxidase and oxygenase. DHP has two isoforms, DHP-A 

and DHP-B, with DHP-B being the focus of this thesis. DHP-B has 96% amino acid 

identity with its isoform, but has mechanistic differences including having a fourfold 

higher peroxidase reactivity. DHP is highly unusual in that it has so many biologically 

relevant functions, unlike most haem-proteins that have one key function. What 

also sets DHP apart from other globins like myoglobin, is the distal histidine (His55), 

located at the opening of the distal cavity. This histidine is key to DHP’s peroxidase 

function, with an ‘open’ and ‘closed’ conformation. The distal histidine is also the 

only polar amino acid present in the binding pocket, unlike other peroxidases.  

 

His55 is key to ligand binding, being ‘swung out’ of the pocket into its open 

conformation to allow room for organic substrates to bind. When His55 is ‘closed’, it 

can interact with the sixth ligand of the haem iron. In Chapter 3, binding of different 

aromatic ligands are compared from literature and show the ‘open’ conformation of 

His55. All of these ligands bind differently to DHP-B, showing how varied ligand 

binding can be in DHP-B, relating back to DHP’s ability to have many different 

functions, as well as its ability to switch between these different functions, which is 

currently unknown. 

 

One of the ways in which ligand binding to DHP has been investigated in this thesis is 

using serial crystallography. Serial crystallography uses small microcrystals and is 

measured at room temperature. This gives damage-free structures, and also 

potentially removes any bias created from using cryogenic temperatures or using 

cryoprotectants (Fraser et al., 2011) . Serial crystallography was performed at both 

XFEls (SACLA, Japan) and synchrotrons (Diamond Light Source, UK). 
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6.2 Serial Crystallography  

The comparison of room temperature and cryogenic of oxyferrous DHP-B revealed 

some key differences. Cryogenic temperatures, although give a higher resolution, 

can mask the in vivo structure, as well as leaving out biologically relevant 

conformations. With the oxyferous structures being overall quite similar, the main 

focus was on the binding pocket itself. With haem B (from monomer B) for both 

oxyferrous structures having oxygen bound, the focus was mainly on this haem. The 

oxygen bound in the cryogenic temperature structure was at a more energetically 

favoured angle then in the room temperature structure. There were also differences 

in the angle of Phe35, one of the hydrophobic residues in the distal pocket that may 

be important for ligand binding. The oxygen in the room temperature structure 

were also closer, with His55 being even closer to the ligand, supporting the 

previously stated function of His55 to bind to the six-coordinated ligand bound to 

the Fe of the haem. The oxygen is also within binding distance of the iron, being 2Å 

from the iron.  

 

These are some small differences in the structures but show importantly how room 

temperature studies can give different results. More room temperature studies 

would need to be compared to give a better insight to how much temperature can 

affect the structure.  

 

6.3 Limitations of this study 

One major limitation of this study was the production of microcrystals for 

investigation. Large amounts of microcrystals were needed for the serial data 

collections, which was a problem very difficult to overcome. With each protein 

preparation, optimization was needed with many different variables. The production 

of microcrystals was unsuccessful during this project, with this issue being overcome 

with large protein preparations, as well as more time to do the time-consuming 

optimisation task after each prep.  

 

Another limitation was the ligand soaking conditions. Ligand soaks were 
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unsuccessful due to too low concentrations used, due to the limited availability of 

crystals and the possibility of damage to these due to the nature of these soaks. 

More trials would need to be set up, with both single crystal studies and 

microcrystals to find an optimal soaking concentration to be able to see these 

ligands bound in the distal pocket.  

 

The DHP oxyferrous data showed that the microcrystals used were twinned. This 

presented challenges with processing and refining the data. CCP4i2 was used with 

this data, as REFMAC5 worked with the twinned data better. After, the low-

resolution pipeline LORESTR was used. This is recommended for twinned data, and 

automatically determines whether the data is twinned or not and runs 40 cycles of 

refinement, using homologous structures from the pdb to provide external restrains 

(Kovalevskiy, Nicholls and Murshudov, 2016) 
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