EXTREMES OF STATIONARY GAUSSIAN STORAGE MODELS
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Abstract: For the stationary storage process {Q(t),t > 0}, with Q(t) = sup,s, (X(s) — X (t) — c¢(s — t)?) , where
{X(t),t > 0} is a centered Gaussian process with stationary increments, ¢ > 0 and S > 0 is chosen such that Q(t)
is finite a.s., we derive exact asymptotics of P (SUPte[o,Tu] Q(t) > u) and P (infte[O,Tu] Q) > u), as u — o0o. As a
by-product we find conditions under which strong Piterbarg property holds.
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1. INTRODUCTION

Let {X(t),t > 0} be a centered Gaussian process with stationary increments, a.s. continuous sample paths and
variance function o2(t). Given ¢ > 0 and 8 > 0 , consider the stationary storage process {Q(t),t > 0}, with

(1) Qt) = sup (X(s) =X(t) —e(s =1)7), t=0,

where ¢ > 0 and § > 0 is chosen appropriately to guarantee a.s. finiteness of Q(t).

The stimulus to analyze distributional properties of {Q(t),t > 0} stems, for instance, from its straightforward relation
with the theory of reflected Gaussian processes, its applications in widely investigated Gaussian fluid queueing models
and, by duality, its importance in risk theory. In particular, for 3 = 1, by Reich representation [15], Q(¢) describes
the stationary amount of substance in reservoir, where the inflow to the reservoir in time interval [s,t] equals to
X(t) — X (s) and the rate of outflow is c.

Motivated by the above applications, Q(0) has been studied in the literature under different levels of generality,
e.g., [12], [8], [5], [9], [6], [7], [11]. Particularly vast interest has been paid to the analysis of storage models, where
X (t) = Bg(t) is a fractional Brownian motion (fBm) with Hurst index H € (0,1) and 8 = 1, leading to derivation
of exact asymptotics of P (Q(0) > u) as u — oo in [8] and a surprising asymptotic equivalence

(2) P ( sup Q(t) > u) ~P(Q(0) >u) ~ IP( inf Q(t) > u) ,

t€[0,7%] t€[0,T]

as 4 — oo, providing that H > 1/2 and T,, = 0(u2HH_1); see [14], [4]. Property (2) is nowadays referred to as
the strong Piterbarg property. In [2] it was observed that (2) holds also for storage processes with self-similar and

infinitely divisible input without Gaussian component.
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In this contribution we focus on asymptotic properties of

3) () :=P( sup Q(t) > u> 7

L€[0,7]

(@) B0 = (nt Q0> ).,

te[0,Ty]

as u — oo, for wide classes of Gaussian processes X and ranges of T,,. As a result, we extend findings of [6], where
the asymptotics of P (Q(0) > u) was considered. Moreover we generalize [14] and [4] where the exact asymptotics
of 4P (u) and P (u) were studied for fractional Brownian motion model with 3 = 1. As a by-product we find
conditions under which the strong Piterbarg property phenomena (2) holds for general Gaussian X and .

Organization of the paper. Some necessary notation are introduced in Section 2, whereas the main asymptotic
results are presented in Section 3. In Section 4 we apply derived results to the analysis of ¢7.”(u) and an( ) for
X being a sum of independent fractional Brownian motions. The proofs of main results are given in Section 5. The

Appendix contains proofs of some lemmas that are of technical nature.

2. NOTATION

Throughout this paper we assume that {X (¢),¢ > 0} is a centered Gaussian process with stationary increments, a.s.

continuous sample paths, X (0) = 0 and variance function o2(t) satisfying
AL 0%(t) > 0,t > 0 is regularly varying at infinity with index 2a. € (0,2) and twice continuously differen-
tiable on (0, 00). Further, its first derivative 02 and second derivative o2 are both ultimately monotone.

ATIL: 02(t) is regularly varying at 0 with index 2aq € (0,2].

We recall that a measurable function f : Ry — R, is said to be regularly varying at oo with index o € R if

limg, 00 ! f((’\f)) = A\ for any A > 0. Analogously, we say that f is regularly varying at 0 with index a € R if for any
A >0, lim, ! f(()‘;)) = \®. We refer to [3] for properties of regularly varying functions. Function f is ultimately

monotone if there exists a constant M > 0 such that f(¢) is monotone over (M, o). Assumptions AI-AII allow
us to cover models that play important role in Gaussian storage models, including both aggregations of fractional
Brownian motions and integrated stationary Gaussian processes; see, e.g., [12, 8, 6, 5]. AI-AII go in line with [6],

where the exact asymptotics of P (Q(0) > u), as u — oo, was derived.

Recall that fractional Brownian motion By = {Bg(t),t > 0} with Hurst index H € (0,1] is a centered Gaussian
process with continuous sample path and covariance function Cov(Bg(t), Bu(s)) = 5 (|t|*" + |s[* — |t — s|*H) .
For X (t) satisfying AI-AIIL ¢ > 0 and 8 > @ we define the storage process {Q( ),t > 0}, where

Q) :sup(X(s)—X(t)—c(s—t)B), t>0.

s>t

Note that assumption 5 > ao ensures that Q(t) is finite a.s. for any ¢ > 0.
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In order to formulate the main results of this contribution, following [4], let
(5) ®:C(M) =R,

be a continuous functional on the Banach space C'(M) of all continuous functions on compact set M C R% d > 1
with the norm || f|| = supscyy | f(t)], satisfying

F1: 0(f) < supyey (2).

F2: ®(af +b) = a®(f) + b, for any a > 0,b € R.

Then, for a centered continuous Gaussian field V = {V (¢) : t € R?} such that V(0) = 0,

o%(t) + 0% (s) —oh(t — )

(6) Coo(V(#), V(s)) = : ,
we introduce the generalized Pickands’ constant
(7) HE(M) =E (e‘DWV—UQv)) .

We refer to [4] for the finiteness of HE(M). In particular, for M = H?Zl[O,Si] with S; > 0,1 < i < d, and
®(f) = supgerqe 10,5, f(t), we use notation ’HV(H?:l[O, Si]). Further, for d =1, let

. Hy[0,S]
My = Jim, =g

providing that the above limit exists, where Hy [0, S] := Hy ([0, S]). We refer to [13], [5], [6] and [4] for the analysis
of properties of Pickands’-type constants.
We write f,(t) = f(t) for t € D meaning that the convergence is uniform with respect to ¢ in the domain D as

u — 0o. By Q and Q;,7 = 0,1,2,..., we denote some positive constants which may change from line to line. By

% (-) we denote the generalized inverse function to o(-), ¥(-) denotes the tail distribution of the standard Normal

) _

random variable. We write f(u) ~ g(u) if lim, oo gEZ)

3. MAIN RESULTS

In this section, we present the exact asymptotics of w;“p(u) and wiﬁf (u). In further analysis we tacitly assume that

the variance function o2 of X satisfies both AI and AIL
Let
2(,1/8
@ := lim g (u )7

U—00 u

assuming that the limit exists. As it is shown below, according to the value of ¢, the asymptotics of w;'ip(u) takes

1/p
different form. Additionally, we introduce 7% = (ﬁ) and set

/ *
T

1, ifo € (0,00).

(8) Au) :=

S
Il

(0) e p () e we=

— O ﬁ_aoo —CYOO)
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Theorem 3.1. Suppose that ¢ = 0.

i)If AT(TL) — p €[0,00), then

2A7 ul/ Pl (ul/Pr¥) u(1 + ct?)
sup U (inf —————= .
V() ~ oo, [0 PR \ 5 T oAy A (%Izlo o (/1) )

i) If + Al oo and T, = = o(eP (W)Y with By € (0,1/2), then

e [T el (i)
T, (w) (HBao) B “(1+CT*5)A2(U)\P %go a(ul/Pt)

Theorem 3.2. Suppose that ¢ € (0, 00).
i) If T, — p € [0,00), then

2A7 ul/ Pl (ul/Pr¥) u(1 + ct?)
7 (W) ~H e 0, p|H . \/ U (inf ————= | .
¢ ( ) \/51;(:'(:) )foo X[ p] \F1+L(:) )foo X B (1 + CT*B) (}go a(ul/ﬁt) )

2p(T

i) If T, — 0o and T, = o(eP1 (™M™ ()* with By € (0,1/2), then

2 —
> 2A 1/p-1 1/8.-x 1 16
n )~ (H ) x) Ty, o Ty, (inf u(+c)>

Voo (-*)2oe0 B (1 + CT*ﬁ) t>0 J(ul/ﬁt)

Theorem 3.3. Suppose that p = cc.
i)If <2 AGy T PE [0,00), then

; 2A7 ut/ P g (ul/ Br) u(1 + ct?)
sup N .
7., (W) ~Hp, [0,p/Hp, 1/ B (1 +cr ) A v (;gg o Gl 7P1) ) .

i) If % — 00 and Ty, = o(eP (™" (W)*) with By € (0,1/2), then

1/8-1 1/B B
STip(U)N(HB%O)z 247 | u o(ul/Pr )\I!< fu(l—i—ct ))

B ez 2 o wl/PD)

The above trichotomy with respect to the value of ¢ goes in line with findings of Dieker [6], where the asymptotics
of P(Q(0) > u), as u — 0o, was derived.

The following theorem deals with the asymptotic behavior of the tail distribution of 4 (u). We recall that Hintlo, p]

is defined according to (7).
Theorem 3.4. i) If o =0 and % — p € [0,00), then

. n [2A7 u/ P o (uMBr) (a1l +cth)
ORES o 0 1M B (1+cm*8)A(u) q;(t>g o(ul/Bt) )

ii) If p € (0,00) and T,, — p € [0,00), then

; [2A7 u'/P 10(u1/57*) u(1 + ct?)
inf inf :

H . PIH  1iorn U inf ———= 3
T“( ) _lde(r)f X[O’ ] 7ﬂ:<f*)z)foox B (1 +c7*f3) <%>o a(ul/Bt) )

V2 (r7)2%00

ii1) If ¢ = 00 and A( ;=P E [0,00), then

. ~ 2A7 ut/ P g(ul/Pr) u(1 4 ct?)
inf inf :
7 ()~ Hb. 0 s\ T e By A ) (i‘éﬁ o (ul7P1) ) |
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Combination of the above findings straightforwardly leads to the following corollary that deals with the strong

Piterbarg property for @, extending results derived in [4].

Corollary 3.5. Suppose that A( 5 = 0. Then
P () ~ P3P (u) ~ o(u).

Remark 3.6. The relation A( y = 0 in Corollary 3.5 is optimal. Indeed, if -2 Ay P> 0, then comparing Theorems

8.1, 8.2, 8.3 and 3.4, none of the asymptotic relation in Corollary 3.5 holds.

4. APPLICATION TO HETEROGENOUS FLUID QUEUES

Consider the stationary storage model

(9) Q(t) = sup (Z (Bh,(s) = Ba,(t)) — c(s — t)5> ; 120,

szt \j=1

where By, (t),1 < i < n are mutually independent fractional Brownian motions with indexes 1 > H; > Hy >

- > H,_1 > H, > 0 respectively and 8 > H;. It is straightforward to check that o&(¢) := Var (3>_\, By, (t))

Z?:l t?Hi gatisfies AI-AII with oy = H,, and a = Hy, which in the light of Theorems 3.1, 3.2 and 3.3, leads to.

Corollary 4.1. Suppose that 2Hy < 3.

B—2H * =
DI Ty 70~ p (REE) ™ as w— oo, with p € [0,00), then

1-H,
. [A7 (1+¢ T mrisomymmn sme [ u(l 4+ ct?
,—SFup( ) HBH [0 p]HBHn2 2 " B ( (Hl()2 )Hn) u o v (lnf ( )) ;
Hp

() 20 os (ul/71)

B—2H; * 2
i) If Tyu 70 — oo and T, = o1 (W)™) with 81 € (0,1/2), then

2—H.
, we [A7 (1 VYV Hadas—amy ey Hapin 1+ ct?
;“lip(u> ~ (HBw,) 2 B7T( +C(;()47)Hn) Tyu . A LG (inf 771( te >>
( * HTI,

T ) t>0 JE(UI/Bt)

Corollary 4.2. Suppose that 2H; = 3.
i) If T, — p € [0,00), then

, 247 (7)Hr 1wy u(1 + ct?)
SUP (1) o M 0, pIH. 1onion el ARV 2: rul /(1o gk Sl A
oW~ Ry s g, 0P secs o 5, VB T o) i)

i) If T, — 0o and T, = o(eP1 (™M™ ()* with By € (0,1/2), then

2
[2A7  (r*)H 1y _u(l+ ctf)
SR (y) ~ . < T.u?m U f—~———~2.
Tu (u) (H j;"ji)z?ﬁ A BH,i> B (14 cr*8) we tlgo os (ul/ft)

Corollary 4.3. Suppose that 2H, > 3 > H;.

B—2H,

1
F*)2HL\ HY .
i) If Tyu PF0 — p <%) Y with p € [0,00), then

1H1

N me (A (Lt o)) T oongann (a1 et?)
Ty (u) HBH1[0"O]HBH122H1 B (7*)2—H1 u o v tlrzltf) Jg(ul/ﬁt) ’
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B—2H .
it) If T,u A 00 and T, = o(efr(m (“))2) with By € (0,1/2), then
2—-Hy
sup 2, . m=2 [An (1 +c(7%)?) ™™ 26— 3H +HE - pH, . u(l+ct?)
T (W) ~ (Hpy, ) 272 B (r)t Tuu o v %Izlg os(ul/Bt) )

2H{—1 .
Remarks 4.4. Following [4] and [14], ifn =1, Hy > 1/2, 8 =1 and T,, = o(u Eh ), then P (u) ~ YiPf(u). A

straightforward application of Corollary 3.5 to the model considered in this section provides that wﬁp(u) ~ wiﬁf(u)

2H;—8
f07”n21; 2H1>ﬂ>H1 andTu:()(uﬂlT)

5. PROOFS

o(u'/Pt)
1+ctP

In this section we present detailed proofs of the main results of this contribution. Let 7, be the maximizer of
1/8
over t > 0. In Lemma 5.3, we prove that 7, is unique for u large enough and lim, .o 7, — 7* = (ﬁ) .
Following the same line of reasoning as in [14], we write
7 (u) =P ( sup Q(t) > u) =P ( sup  sup Z,(s,t) > m(u))
t€[0,T%] te[0,u—1/8T,] s>t

u(14ct?)
o(ul/Pt) "

: X(u!Ps)—X(u'/Pt 1+c‘r5 .
with Z,(s,t) = ( 1+c)(s_t§ﬁ )a(ul/ﬁru) and m(u) = infy>g
Hereafter, for a given process Y (t), we denote Y (¢) := Y (t) /oy (t). By h, h we mean the first and second derivative of

1/8 2
twice continuously differentiable function h, respectively. To shorten the notation we set 02 (s) = E (%)

WP ) X (ul/Pt) X(ulPs1)— X (ul/Pty)
o (w77 (s=1)) o(ul/P(s1-11))

and 7, (s,t,81,t1) := Cov(Z,(s,1), Zy(s1,t1)) = E (X( ) ,§ > 1,81 >ty

The following lemma slightly extends Lemma 2 in [6], by providing asymptotics for the tail distribution of functionals
introduced in (5) fulfilling F1-F2 instead of sup functional considered in [6]. Following the setting given in [6], let
{K,} be a nondecreasing family of subsets of Z™ with m > 1, and {X®F)(¢t),t € M},u > 0,k € K, be a collection
of centered continuous Gaussian fields on a compact set M C R% such that 0 € M. We assume that the variance of
X (k) (t) equals 1. Let gx, 0k, with k € K,, be such that (see [6])

Pl infrek, gr(u) = 00 as u — oo.

P2 There exists a centered Gaussian field {V(¢),t € RY} with covariance as in (6), satisfying E1, such that
SUPrer, |Ok(u, s,t) — of (t — s)| — 0 for any s,t € M.

P3 For some 1, -+ ,nq9 > 0,

. ek(uv S, t)
lim sup sup sup  —g;
u—o0o kekK, s, teM,s#t Ei:l |3i — ti i

P4 hmeﬁ() lim SUPy 00 SupkEKu Sup\sft|<e,s,t€M glzc (U)E ((X(U7k) (S) - X(u’k) (t)) X(u7k) (0)) = 0.

Lemma 5.1. Suppose that P1-P4 hold for functions gg, 0k and Gaussian process V. Let ® : C(M) — R be a
continuous functional fulfilling F1 and F2. If

Var (X (t) — X(wk) (s
(10) lim sup sup |gi(u ( ®) () —1| =0,
U0 ke K, s, M, s#£t 20k (u, s, t)
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then
. P(R(X®R) > gi(u))
lim
u—o0 T (gr(u))
provided that P (@(X(“’k)) > gk(u)) > 0 for u large enough, and

= Hy (M)

< 00.

. P (&(X“R) > gp(u))
(11) e o W gk (w)

The proof of Lemma 5.1 goes line-by line the same as the proof of Lemma 2 in [6]; see also proof of Lemma 1 in [4].

We present main steps of the proof in Appendix.

Lemma 5.2. Suppose that 02(t) satisfies AI-AIL. Then there exisit v € (0,2), C; > 0 and Cy > 0 such that
Cit? < o%(t) < Cot?,

holds in a neighbourhood of zero.

Lemma 5.3. For u large enough, o, (T) attains its unique mazimum at 7, € [0,00) so that 7, — 7, as u — oo.

Moreover,

(12)

_ B
where b, — b= 7.

Let E(u) = (Ty — 8, Tu + 8,) with §, = 2imlw),

m(u)
Lemma 5.4. The correlation function r,(s,t,s1,t1) satisfies

1—ru(s,t,s1,t1) 7
o2t/ Bls—s1|)+o>(ul/Blt—t:])
202(ul/Br*)

1| =0.

(13) lim sup
U—00 |t*t1|<6u:5*t751*t1 EE(U)v(S’t)i(Slxtl)

Lemma 5.5. For u large enough and any § > 0, there exists a constant 0 < ag < 1 such that
Tu(sa t7 S1, tl) < as
holds for all |t —t1| > §,5s —t,51 —t1 € E(u). Further,

lim sup ry(s,t,81,t1) =0,
R—=00 41, |>R,s—t,s1—t1 €E(u)

holds uniformly with respect to u for u large enough.

We provide complete proofs of Lemma 5.1, 5.2, 5.3, 5.4 and 5.5 in the Appendix.
The following lemma deals with the asymptotics of supremum of Gaussian field Z,(s,t) over a parameter set that
is away from the neighborhood of the maximizer of the variance of Z,(s,t).

Recall that

& (LY i -
o |—~—F———5—), ifpo=o00o0r0,
A('LL) _ u(14cT*P) f§0

1, if € (0,00).
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Lemma 5.6. Suppose that AI-AII hold and r > 0.
i) If T, = o(u"), then
u1/8
¢ (te[o,;l,lfl/ﬂ] sZt,sS—uth(u) Zuls 1) > m(u)) —° (A(U)m(u)\p(m(u»> .
i) If u"T, — 00, as u — 0o, then
P < sup sup Zy(s,t) > m(u)) =0 (W\I!(m(u))) .
te[0,Tyu—1/8] s>t,s—t¢ E(u) (A(u))?m(u)

Proof. We set 7 = s —t and write
P ( sup sup  Zy(s,t) > m(u)) =P < sup sup Z,(t+T7,t) > m(u)) .
te[0,Tyu=t/F) s—t¢ E(u) te[0,T,u—1/8] T¢ E(u)
Let [0, T,u™P] x ([0,00) \ BE(u)) = S1 4 US2.4, U834, where Sy, = [0, Tyu™ /8] x [0, €], Sao, = [0, Tuu™P] x [T, 00)
and Sz, = [0, T,u=/?] x ([e, T] \ E(u)), for sufficiently small ¢ > 0 and large T € N. Clearly it suffices to find the
asymptotic upper estimates of the analyzed tail probability for each set Sy y, 52,4, S3,. separately.
Ad. S, . Following Potter’s theorem (see, e.g., [3]), for u large enough,

Dorse 42 2
) oo (1+c¢uﬁ> - (1+CTE)2726V00+277*25

2 _
E(Z;(t+T11) = e 2720t

Uz(ul/ﬁT)(l + CTuﬂ)z T
o2(ut/Pr,)(1 + c7mP)2 —

(14) < Qr 2Faco—m)

Tu

where Q is a fixed constant and 0 < 7 < f — as. Note that by AI and Lemma 5.2, we can choose 0 < 1 <

min(7y, 2a,) such that

o’ (t)
thn

(15) 91(t) :=

is a regularly varying function at oo with index 2ao —71 > 0 and bounded in a neighborhood of 0. Therefore it follows
from Uniform Convergence Theorem (UCT) (see, e.g., Theorem 1.5.2 in [3]) that for t,¢; € [I,141] C [0, T,u~"/8 +1],
7,71 € [k, k+ 1] C [T, 00) and u large enough,

E (Zu(t+7,8) = Zults + 71,1))
202(u1/ﬂ|t —t) + WPt T —t; — 1)

- o(ut/Br)o(ul/Br)
gl(u1/6|t—t1\) |t—t1‘ n +4gl(u1/'8|t+7'—t1—7'1|) |t+7’—t1 —T1| M
- g1 (ul/Pk) k g1 (ul/Pk) k

(16)

IN

Qut =t +t+7—t1 —7[") < Qa(|t —ta|" + |7 — 7 |™),

where Q1,Q2 > 0. Combining (14) and (16) with Fernique inequality (see [10]), we have, for u and T large enough,

P sup sup  Zy(t+7,t) > m(u)
te[0,T,u—1/8) T€[T,00)

[Tuu_l/ﬁ]

< Z i P ( sup sup  Zy(t+7,t) > m(u))
k=T

=0 te(l,l+1] T€[k,k+1]
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[Tuu”/?) oo _ PCI—
< P( sup sup  Zy(t+7,t) > m(u) ————
; ,CE::T (te[l,l-‘rl]fe[k,k-&-l] VvQ
[Tuu—l/ﬁ 9
k (B—aco—n)
< Z Z 16 exp ( mz(u)>
1=0 k=T Qs
T 2(B—ace—n)
(17) < (a4 Dexp (gm0
3
with Qg,QT > 0.
Ad. 81 ,. It is convenient to bound
(18) P sup Zyt+7,t)>mu)|] < P sup Zu(t+1,t) (14 cr?) > m(u) | .
te[0,T,u=1/8],7€[0,€] te[0,T,u=1/8],7€[0,¢]

Indeed the same lines of reasoning as above leads for t,¢; € [I,1 + 1] C [0, T,u="? + 1], 7,71 € [0,€] and u large

enough, to

2
E (Zu(t + 7,1 +er?) = Zy(ty + 711, t) (1 + 6716))

1 52 2
ME <X( VB(t 4 7)) — X (uBt) — X (uP(t; + 1)) + X(ul/ﬁtl))
o2(ul/Pr,)

2,1 2,1
< 2(1+075)2J (u /5|t—t1|)+0 (u /B|t+7'—t1 —7l)
o2(ul/Pr,)
91( 1/ﬁ|t7t1|) |t7t1|’}/1 gl(u1/5|t+77t1 77’1|) ‘t+7’*t1 77’1‘71
= 2(1+ec7, ) 1 71 1 on
g1 (u'/Pr,) Tu g1 (ut/B,) T

< Qut =t +[r—nlm),

where Q4 > 0. Therefore, by Fernique inequality, P (supte[l’lﬂ]ﬁe[o’é] Zy(t+1,t)(1 + etP) > x) < 8exp ( ) for
all [I,1+1] € [0, T,u"? +1] and = > 0. Hence we can find a common a > 0 such that
P (supte[l’lﬂ]’fe[%] Zu(t+1,t)(1 4 c7P) > a) < 1/2, for all [I,1 + 1] C [0, T,u~'/# 4 1]. Moreover, we have, for u

large enough,

2
sup E (Z,(t+7,t)(1 4 ¢m®))” < sup
T€[0,€] ( ( )( )) T€[0,€] 0'2(u1/ﬁ7-u)

Thus, by Borell theorem, we have that for € small enough and u large enough,

P sup Zu(t+1,8) (1 + cm?) > m(u)
te[0,T,u=1/8],7€[0,€]
[T,u~t/?]
< Z P sup Zu(t+7,t)(1 + em?) > m(u)
=0 te[l,l4+1],7€[0,€]
(19) < 2T VP +1)0 _mw)—a_
- Vs ()"

Ad. Ss,,. Similarly as for Sy, we have

E(Zu(t+7,t) — Zu(ts +71,01))> < Qe(lt — 1| + |7 — 7 [),
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for t,t; € [I,1+1] C [0, Tyu="# +1] and 7,7, € [¢, T]. Thus by Piterbarg inequality (Theorem 8.1 in [13]) and (12),

for any € > 0, we have, for u sufficiently large,

P < sup Zy(t+T1,t) > m(u))
(¢,7)€[0,Tur=/B]x ([e, TI\E(u))
- m(u
< P sup th(t+75t) > -, N2
(t,7)€[0,Tyu—1/Bx[e,T) . % (11;:(@8)>
(20) < Qs([Tyu™ Y8+ )T (m(u))* ¥ m(v)

In order to confirm i), suppose that T;, = o(u”). By the fact that m(u) is regularly varying at co with index
1—as > 0, for T sufficiently large and e sufficiently small, terms (17),(19),(20) are o (u= ¥ (m(u))) for any M > 0,
as u — 0o, which implies that i) holds.

Analogously, under u"T, — oo, terms (17),(19),(20) are o (u=T,¥(m(u))) for any M > 0, as u — oo, which

establishes claim ii). O

5.1. Proof of Theorem 3.1. Since

(21) mr, (u) <Y (u) < g, (u) + P sup sup Zy(s,t) >m(u) |,
“ te[0,Tyu—1/8] s>t,s—t¢ E(u)
where
mr, (u) =P sup sup  Zy(s,t) > m(u) |,
te[0,Tyu—1/F] s—teE(u)

and the upper bound of P (Supte[ovTuufl/B] SUDg>¢ s—t¢ B(u) Zu(S,t) > m(u)) is given in Lemma 5.6, then it suffices

_ 2,.1/8
to focus on the asymptotics of 7, (u). Since ;L(lull//;) L (" (Z )) is regularly varying at oo with index

1_1/ﬁ_aoo/ﬁ+2000/(a05)_1/a07 if @207
Y= 1-1/8 —as/B, if ¢ €(0,00),
141/ —ax/B — 1/, if = o0,

and for all ¢ € [0, 00] we have ¥ < 0, then

0 TRy

1-1/8 2(,1/8

which implies that, independently of the value of ¢,

Ly MAwW

U—00 ul/B =0

Let Dy(u) = k2598, (k + 1)284.8], Fi(u) = [r, + 12598, 7 + (1 +1)252.5] and I;(u) = Dy(u) x Fy(u) with

2
S > 0. Moreover, let Ng, = [%] and my§(u) = m(u) <1 +B—¢ ((l —k) Sl(}‘ﬁ) S) ) with b = £Z;.
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Proof of case lim, % = 0.

Upper bound of mr, (u). Clearly, we have

[A{ff)s]Jrl Ns,w+2+k
mr, (u) < Z P sup  Zyu(s,t) > m(u)
k=0 I=—Ns.—1+k (t,8)€X,1(u)
[atasl+l Ns.u+2+k
(22) < Z Z P ( sup  Zy(s,t) > mﬁ(u)) ,
(t,5) ’

— I=—Ng ., —1+k ,8)EX%,1(u)

In order to apply Lemma 5.1, we have to check conditions P1-P4, for appropriately chosen K, gi i, 0%,. Let

o Alw) ., A) - Al) ., A
(u,k,l) R
X0, 5) == Z, (Tu“ g+ s SRS T st

with (s,2) € [0,9)2 and (k,1) € K, := {(k,1),0 < k < [x2z] +1,—Ngy — 1+ k <1 < Ns, + 2+ k}. Then, let

Au)
gk,1(u) :=my j(u) and comparing (10) in Lemma 5.1 and (1
o?(A(u)ls — s1]) + * (At — ta]) _o*(A(u))

(23) Ora(ust, s 1, 81) = o?2(A(u)) 202 (ul/B7+) (m,;j(u)){

S
3) in Lemma 5.4, we introduce
(u

for (t7 5)7 (th 51) € [07 S]2a (k7l) € Ku
Assumption P1 holds straightforwardly. In order to show P2, we observe that, by definition of A(u),

, o*(Au) .
(24) ulgrolo (k,sl;lepKu W(mkl( u))? —1‘ =0

and, by the UCT,

o*(A(u)]s — s1]) + *(Aw)|t — ta)
o?(A(w))

lim
uU—r 00

81|2a0 _ |t _ t1|2a0

=0, (t,s), (tl,sl) S [0,5]2.

—ls—

Therefore using UCT again, we conclude that

lim sup ’9“ u,t, 8, t1,51) — |8 — 51| — |t — t1|2°‘°|
U— 00 (k l)GKU

|2 (A)]s = s1]) + o> (A(u)|t — t1]) 20 2000
S o2 (A(u)) ~lem e =l -]
: a*(A(w) oo a*(A(u)|s = s1]) + o*(A(u)|t — t1])
+ lim (k,b;;lepm, 7202(111/137*)(7”’”(“)) -1 2 (A 0)
|2 (A()]s = s1]) + o> (A(w)|t — t1]) 20 2000
< Jim o2(A(w) s =™ =l =t
a*(A(u))

+ lim  sup Q&2
U0 (k) eK,

— 07 (t,S),(tl,Sl) € [O7S}Za

s (i)~

which implies that P2 is satisfied.
In order to check P3, we have that by UCT, with noting that ¢, (¢) defined in (15) is regularly varying at 0 with

index 2a9 — 1,

lim sup sup 0k7l(uat7$7t1’$l)
—
U— 00 (k,l)EK,, (t,8)#(t1,51)€[0,S]? ‘S — 31|’Y1 + |t _ t1|71
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2Uz(A(u)Ls —s1|) + o2 (Au)|t — t1])

< lim, o sup sup
T ek (he)£(tsneo,s2 o2 (A)(|s — s 4 [t — t1]r)
— a*(A(u)]s = s1]) — o’ (A(w)|t =)
< 2limy, o sup + 2limy, 00 sup
- (t,8)%(t1,51)€]0,5)2 T2 (A(u))|s — s1|m 7 $)#(t1,81)€[0,5]2 T2 (A(w))[t — 1|7
91(A(u)t)

= 4limy_ 0 Sup < 852%™ < o

tefo,s] 91(A(w))

holds with 0 < 71 < 2ap. Next we focus on P4. First, in light of UCT and (24)

lim limy 0o sUp sup |0k 1 (u, t,8,0,0) — Ok 1 (u, t1,51,0,0)]
e=0 (k)€K |(t,5)—(t1,51)|<e,(t,5),(t1,51)€[0,5]2
2(A 2(A —o2(A —o2(A
< 20Ty  sup | o@D TIEWY o (Au)s) —o(AWh)|_,,
=0 s,t,s1,t1€[0,€), g (A(u))

Second, it follows from Lemma 5.4 and and UCT that

'(mki(u))Q(l - Tu(sl(u) + jl(};) s,tk(u) + Al(/ﬁ)t 3l( ) tk(u))) - Qk,l(u,t, s,0, 0)‘

1—ry(si(u) + 289 s, 4y, (u) + 2894, 5,(w), 1y (w))
’ Hk’l(u,t,s,0,0)

-1 9k7l(u, t,s,0,0)

o1 = ru(si(w) + 2% sty (w) + 209, 5 (), t(w))
ek’l(’m t,s,0, 0)

A
©
=)
nn

N
g

-1 =0, u— o0,

with respect to (k,1) € K, and (t, s) € [0, ]2, where s;(u) = 7, 4 [ 1/6 )S and t;(u) = kﬁl%)S.
The above leads to, for |(t,s) — (t1,51)] <,

(mis () ?E (X80 (s5,8) = X80 (51, 0) ) X5 (0,0))

< Joms? = o) + S et + S50 00 (0) ~ atet5,0,0)

+ ‘(m,;j(u))Z(l — ru(sl(u) —+ %Shtk(u) + Al(/b’) t1, Sl( ) tk(u))) — 9k71(u,t1, S1, 0, 0)‘

+ |9k,l(u7t7870a0) - ek,l(u7t17815070)| = 07 U — 00,€ — 0.

with respect to (k,1) € Ky, (t,s), (t1,s1) € [0,5]?, which confirms that P4 is fulfilled.

Thus in view of Lemma 5.1

(25)

— Hy([0,51%) = (Hp,,[0,5))", u— oo

where V (¢,s) = B&lo) (t) + B&? (s), with B&lo) and B&QO) being two independent fBms with index «g. Then, continuing

(22), in view of (11) we have

Aasitl  Nsu+2+k
T, (u)

(., [0, S)* W (my. () (1 + (1))

IA
M

=0 I=—Nsg.—1+k

Ty
[A(u)S]+1 Ng w+3

(o [0, 8)20(m() 3 e CIm0NE) (1 4 o))

0 l=—Ng,,—2

IN
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ey LS\ 2 " ul/B E
< (7)) 00 gy g o |t o)

—o0
u'/PT,

~ 2b—e) AT
G A N

U(m(u)), as u— oo,

with b = £ (see Lemma 5.3). Hence, letting ¢ — 0, we obtain the upper bound for 77, (u).
Lower bound of 7, (u). Set
s ={(k,l,,k1,11) : 0 <k < ky

< [x(sgls [k — k| < Zlfu)s, ~Ngu+k <1<li < Ngutk Ipa(u) N I, g, (u) = 0},

U/
Tso = {(k.L ki, lt) - 0 < k < Ky < [5Bg], [ky — k| < 8805~ N +k <1<y < Now+k, T (u) 0 Iy, g, (w) # 0},
Do = {(hd, ki l1) 10 S & < by < [higl, 8005 < [y — k] < 2% ewios ™) _Ng , 4 k <1< 1 < Ns,, + k),

Dsa = {(k,1 ki, 10) 1 0 < k< hy < [l Ihy — k| > 20 e06 ™) _Ng 4k <1< 1 < Ns,, +k} with as
defined in Lemma 5.5. We have

[A(u)s] Ns,u+k
> Z Z P ( sup  Zyu(s,t) > m(u)) — (Z1(u) + Za(u) + Bz(u) + Z4(u)),

k=0 Il=—Ng o +k (t,8)€Ik,1(u)

Yi(u) = Z P < sup  Zyu(s,t) > m(u) sup Zy(s1,t1) > m(u)) , 1=1,2,3,4.

(k,l,k1,l1)€Ts ; (t;S)EIk,l(u) (t1731)€1k1,l1(u)

The same lines of reasoning, as presented in the proof of the upper bound of 7, (u), give the lower bound for
Ty
Li%zrs] l]\;S;uJSIT'u+k P (sup(t,s)elw(u) Zy(s,t) > m(u)), which asymptotically agrees with the upper bound. Thus
the remaining task is to prove that 3;(u), ¢ = 1,2, 3,4 are asymptotically negligible.
Upper bound of ¥1(u). In light of Lemma 5.4, there exists a positive constant ¢ > 0 such that for u large enough,

all (t78,t1781) € Ik,l(u) X Iklyll(u) with (k,l,kl,ll) € ].—‘5717

1-—- Tu(85t781)t1)

1/2 < o2 (ul/Pls—sq|)+o2(ul/Blt—t1]) <2
202 (ul/Pr*)
Moreover, by UCT, we have

2 <E(Zu(s,t) + Zu(s1,t1))” = 4—2(1—ry(s,t,51,t1))
< o*(u!Pls — s1]) + o (W]t — 1))
- 202 (ul/Br*)
< 4_ |l1 — 87 4 |k — k|7 ST 7
- m?(u)

where 0 < 71 < min(2a0, 7).

Thus
Yi(u) < Z P sup  Zy(s,t) > my, (), sup Zu(s1,t1) > my. Sy, (w)
(k,l,k1,01)€Ts 1 (t,8) €1k, 1(u) (t1,81)€ 1Ky 15 (u)
< Z P ( sup Zu(8,t) + Zy(s1,t1) > 27%,;;),61711(11))
€ls1

(k,Lk1,l1) (t,s,t1,81) €l 1 (w) X Iy 14 (u)
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> = 20 1 ey 1, (W)

< P sup Zu(s’t)+Z Sl’tl 1 =1 15"v1 ki—k|v1S71
1

(k,l,k17l1)€F571 (t751t1751)€Ik,l(u)><lk1,ll (u) \/4 Q ‘1 ‘ m'z"_‘u; ‘

with 7,5 g, (w) = min(my §(u), m 5 (u)).

In order to bound the above sum, we introduce

ralty syt 51,8 8 5) = B ((Zuls ) + Zulsr, 00)) (Zals' ¥) + Za(s1, 1))
and observe that for (¢, s,t1,51), (t',s’,tll,sl) € I (u) x Iy g, (u),
E(Zu(s,t) + Zu(s1,t1) = Zu(s', ) —Zi(si,ti))2
2WE (Zu(s,t) + Z (sl,tl))z\/ﬂi (Zu(s', 1) + Zu(s,17))

E (Zu(s,1) ~ Zu(s. 1)) + B (Za(sr. 1) ~ Zuls, 1)

1_T'u(taSatluslatl78/7t17sl) <

<
- 2
< 1—ru(s,t, s’ t)+1— ru(sl,tl,sll,t/l)
D P e Ol T W Ol Y VB Ol T )
> o2 (ul/Br) o2 (ul/Br)
1/8\ 72 / ’
J(EG) T (s =P = e fsy = sy 4 - 6]
S QdS 2 )
m?(u)

with 0 < 72 < min(2ae,y) and S > 1.
Next we define a centered homogenous Gaussian field {X}(s,t,s1,t1), (s,t,s1,t1) € R*} so that X (s,t,s1,t1) :=
(XL(s)+X2(t)+ X2(s1) + X2(t1))/2 with X! (s),1 <i < 4, being i.i.d. centered stationary Gaussian processes with

1/8 Y2
) e <_8Q352 (i) - l) |

Let r:(s,t,sl,tl,s’,t’,sll,tll) be the covariance function of X (s,t,s1,t1). It is straightforward to check that for

(t,S,t1,81>7 (tlvslatll?s/l) € Ik,l(u) X Ik17l1 (u)’

covariance function

rogr * rogr
ru(s7t5817t1757t781at1)ZTu<57tasl7tl7s7t5817t1)'

In light of Slepian’s inequality ( see, e.g., [1] or [13]) and Lemma 6.1 in [13], we have

21§
Yi(u) < Z P sup X¥(s,t,81,t1) ki b ()
(kL k1 1) €51 (t,5,t1,81)€Xp 1 (w) X Ty 15 () \/4 Qs Illfll“qSW;er(L]j;kaﬁSﬂ
21, S
< Z Q(HB [O Sl] 1 kll'f;"ii(lz k|v1.S71
(k,lk1,011)€T 5,1 \/4 Q2 -t mg_(‘u;_ |
n e _ _ll7 g7 L—k|71 87
< Z 4(HBA,2 [0751]) \I/(mkﬁlykhll(u))e Qa()l1 =171 81 4 |ky —k|71871)
(k,l,kl,ll)GF,;’l
[A(u)s Ns u+k 4
H 0,8 1 g7 4571 g1
< 3 S (el wppst F e

—Ng,u+hk §20,5>0,i4+5>1



EXTREMES OF STATIONARY GAUSSIAN STORAGE MODELS

Hp. [0,5]\* 1/p "
(26) < 8(35[]) b= 2y g S5
1

with S; = (2Q3)?/72 84/ Letting S — 0o, we get that 1 (u) = o(rr, (u)) as u — oc.

Upper bound of 3a(u). We have

1 2
Yo(u) < Z Pl(c z) kot (W) + Z p/(f,l),kl,ll(u)7

(k,l,k1,11)ETs 2 (kylk1,11)€s 2
with

pgl) k1, ll( ) =P Sup ZU(S7t) > m(u) sup Zu(817t1) > m(u)
(t,5)€1k,1(u) (t1,s1)€l} ; (u)

p,(fl) K, ll( u) =P sup  Zy(s,t) > m(u) sup Zy(s1,t1) > m(u) |,
(t,s)€lk,1(u) (t1,s1)€T, ; (w)

where, without loss of generality we assume that k4+1 =%, and, [ =1y or [+ 1 =1; and

A(u) Au) o, Au)
It (w) =[(k+1) 1/55 (k+1) 1/ﬁs+ 7 VS| x F, (u),
Aw) o, Au) A(u)
12,1, () = [(k + ) =728 + =2 VS, (k+2) =725, x i (u).
Following the same argument as given in the proof of ¥ (u), we get
[A,(IZL)S]J’_]‘ Ng w+2+k
> P () < > P sup Zu(s1,t1) > m(u)
(k1k1,11)€Ts k1=0 l1=—Ng.—1+k (t1,s1)€l | (w)

M., [0, VS H g, 0, STU (my (1)) (1 + (1))

(]
M

k=0 I=—Ng,—1+k
2 M, [0,VS] Hp, 0,5 AT,
(27) < — Bao[ } Beg 0, 5] (b— 6)_1/2\/%71; 5 U(m(u)).
VS VS S (A(u))?*m(u)
and, with the same S; as above,
— — 2m; 5 (u)
D O () IR S sup Zu(5.t) + Zu(s1,t1) > Lls/
(k,lk1,01)E€Ts 2 (R k1ln)€Tss  \ (BSt151) €D () X Thy 1y (u) 4- Q370

2 €
< om0 st [ i)

o S1/2
(k.d k1, 11) €T 5 2 4= Q32

[A?f)s] Ns,u+k 4
i H 0,8
< A ( Ba, [0, 51]

k=0 I=—Ng ,+k

(Feald 3 s

ul/BT,
(A(u))*m(u)

Combination of (27) with (28) implies that Xo(u) = o(7r, (u)) as u — co.

(28) <8 U (m(u))Ste= @S
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Upper bound of ¥3(u). The idea of this part of the proof is to apply Borell inequality. For that, without loss of

generality, we fix S = 1. We observe that (similarly as for ¥, (u)), for (t,s,t1,51), (', 8", t1,81) € Iua(u) X I, 1, (u)
with (k,1,k1,11) € Ts 3,

E (Z(s,t) +7u(81,t1))2 =24 2r,(s,t,81,t1) <24+ 2a5 <4
and

— E— — —_— ’ ’ 2
E (Zu(S,t) + Zy(s1,t1) — Zy(s',t') — Zu(sl?t1>)

< A1 —ru(s,t, 8 )+ 4(1 = ru(s1, 81, t1,11))
’Y ! ’
_ o (&) (sl =g - s+ - 12)
- m?(u) '
Thus, by Fernique inequality,
__ I 1 _ 22
P sup Zu(8,8) + Zy(s1,t1) > | < —e” 7,
(t,s,t1,51) €lp, 1 (u) X Tpy 1y (u0) 2

for any (k,l,k1,l1) € I's 3, any > 0 and u large enough. This implies that there exists a common positive constant
a such that for any (k,1,k1,l1) € T's 3 and u large enough
P sup Zu(8,t) + Zu(s1,t1) > a | <1/2.
(t,s,t1,81) €k, 1 (u) X I1ey 1y (w)

The above implies that we can apply Borell inequality to the sum below uniformly

S3(u) < Z P ( sup  Zu(s,t) > m(u), sup Zu(s1,t1) > m(u)) ,
(k,l,k1,l1)€ 5,3

(t,s)EIk,1(u) (t1,51)€T%y 1, (uw)
< Z P ( sup Zu(5,t) + Zy(s1,t1) > 2m(u)>
(kulikr,01)€Ts 3 (t,8,t1,81) €I, 1 (w) X Try 1 ()
1/(2 1 2 e
< o ul/ ) /B Inmy(u) Tue‘;*T‘fémz(u)\I/ 2m(u) — a
- A(u)  m(u)Au) V2 + 2as
u3/(2ﬁ) ln m(u) 2 7m2(u)( l—ags )Jramr(“')
< _ | T,V 1+1a T+a
< o (Sgany ) T e o
ul/PT,
= o u\I/(m(u))) , U — 00.
((A(U))Qm(u)
This implies that 33(u) = o(7r, (u)) as u — oo.

1-2p;
14246

Upper bound of 34(u). Let 0 < e < be given. Then, for u large enough, r,(s,t,s1,t1) < € holds for |t — ;] >

l1—a 2
e5sas™ (W) and s — t,s1 —t1 € E(u). Thus similarly as for ¥3(u), we have

Sa(u) < Q9< T, uUﬁlnm(u))QW(m(u)a)

M i m(u e_(zll%_ﬁl)mz(u”aﬁ(:)
s Qw(mumu)) futrmtw)ye T

— 0 ((A(l;l)/)%\ll(m(u)o . u— oo.
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Hence X3(u) = o(mr, (u)) as u — oo.

Note that if for some T, I's 3 or I'5 4 are empty then the above inequalities are still valid. This completes the proof
of ii).

Proof of case lim,_, % = p € (0,00). The proof of this case is similar to the proof of the previous case. Thus
we focus on the tiny details that differ from the arguments used in the previous case.

For I, (w) = [0, (p £ ) 559] x [ + 15828, 7, + (1 + 1)202.5] we have

Ns,ut1
mr, (u) < P sup  Zyu(s,t) > m(u)
= Newo1 \werfiw
Nsut1
< B s Za(s.t) > my(w
l=—Ng..—1 \(ts)EIF](u)
Ngs,+1
< Y Hp, 0,0+ dHp, [0, S (mg (u))(1+o(1))
l=—N51u—1
Ng o+1 ()
< Hp [0, p+dHp,, 0,81 0mw) 3 e 0TI 255)" (1 + o(1))
l=—Ng,,—1
,1/2 ul/ﬁ o0 712
< Hp,,[0,p+€Hp,, (b—¢) W‘I’(m(u)) © dz(1+o(1))
2 bo o2y
(29) ~ Hp,,[0,p+eHp,, (b—¢) ﬁm (m(u)),
with Ng,, and m, j(u) defined right before (22). Similarly, we have
Ns,u
o, (u) > P sup  Zyu(s,t) > ZZ
I=—Ns,q, (t,s)€ly; (u)
bo o2y e
> 7 o) L 1+ o(1)) —
(30) 2 i, 0,0 s, (0= OV g @) +o(1) - 3 Sl
where
Yi(u) = Z P sup  Zu(s,t) > m(u) sup Zu(s1,t1) >m(u) |, 1=1,2,
Wierr  \(Loel @) (tr.sD)ElyT, (w)

with I} = {(l,11), —Ng.w <1 <li+1<Ng,}and I', = {(l,{1),—Ng, <1 =11 +1 < Ngy}.
Following the same lines of argument as in (26) (see also (27) or (28)), we get that Z?:l Y4 (u) is negligible compared

with the first term in (30). Hence, comparing (29) with (30) and letting € — 0, we obtain that for A Ay PE (0, 00),

1/8
(31) 71, (u) ~ M, [0 1, b2V

( 5 — p = 0. Clearly, for any € > 0,

770(“) < Ty (u) < ﬂ—A(u)e(u)~
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Hence, by (31), ma(u)e(u) ~ Hp,, [0,€|Hp, b~ 1/2 fA(ulgf(u)\I/(m(u)). Moreover, following [6], we have mo(u) ~
Hp,, bil/Qﬁ%\P(m(u)). Thus, using that lim. o Hp, [0, €] = 1, we arrive at

wl/B
A(u)m(u)

which completes the proof. (Il

mr, (u) ~Hp, b 1/2\f W (m(u)),

5.2. Proof of Theorem 3.2. In view of the proof of Theorem 3.1, using the same notation for mkij(u), gk, (u) and

K, conditions P1-P4 hold with

22 (r7) e (my(u))”

(1 2(]e 2014 _
(32) ak,l(uata s, t1, 81) = (01(‘5 51|) + 0—1(|tL tl‘)) (1 + C(T*)[—})2 20,2(,“1/57_*)’
where o1 (t) = %a(t) Thus, following Lemma 5.1,

P (Sup(t s)€lk,i(u) Zu (s,1) > M, l( )>

2
%Hv([OaS]Q):(HWX[O,SO , U — 00,

‘I’(mk,z(“)) V2o (r*)2000
where V(t,s) := % (XD (t) + X (s)) with X, X2 being independent copies of X
The rest of the proof goes line-by-line the same as the proof of Theorem 3.1. (|

5.3. Proof of Theorem 3.3. Similarly to the proof of Theorem 3.1, P1-P4 hold with

AW =) + AWt B
o2(A(u)) 202 (ul/Br+) Tk ’

O (u,t,s,t1,51) =

for (t,s), (t1,s1) € [0,5]?, (k,1) € K,.

In view of Lemma 5.1

P (Sup(t s)elpi(u) Zuls:t) > mﬁ(u))
(mk l(u))

where V(t,s) = B((Xl) (t) + BY 2 (s) with B((Xlol and B((fol being independent fBms with index . The rest of the

— Hy ([0,5)?) = (Hp,_[0,5))%, u— oo,

proof follows by the same idea as the proof of Theorem 3.1. O

5.4. Proof of Theorem 3.4. Similarly to (21), we have

t€[0,Tuu=P] s—t¢ E(u)

(33) w%lj(u)gwa%f(u)sﬂ%:f(u)ﬂfl’( inf sup  Zy(s,t) > <u>>,
where

w%‘j(u)zﬂ”( inf sup  Zy(s,t) > m(u ))

€0, Tyu=1/8] 5 —teE(u)

Due to Lemma 5.6, we get

IN

IP’( inf sup  Z,(s, )>m(u)>

tE[0,Tuu=P] s t¢ E(u)

P ( sup sup  Z,(s,t) > m(u))

te[0,Tyu=1/F] s—tE E(u)



EXTREMES OF STATIONARY GAUSSIAN STORAGE MODELS 19

Next we focus on the asymptotics of w%luf(u)

inf

Case p = 0 and p € (0,00). In order to get the asymptotics of . (u) we slightly modify arguments used in (29)
and (30). Let D(p £ e,u) = [0,(pxe) ﬁl%)] and Fj(u) = [1, + 1%5, Tw + (I + 1)31%) ]. Note that functional

® := inf sup satisfies F1-F2. Using that P1-P4 have been checked in the proof of Theorem 3.1, following Lemma

5.1, we have

Ng,o+2
inf :
T, (W) < zz_gqu(t@gﬁé’“) S Zu(s,1) >m(U)>
Ng, u+2
< l_NZ&ulP <t€Dt2£€)u) s:zlvlll()u) Zy(s,t) > moJ(u))
Ng,o+2
< ) HEL 0,0+ dHp,, 0,8 (mg ] (uw)(1 + o(1))
l=—Ng,,—1
. Nsut2 Aw) ¢)2
< W 0.0+ U, 0. Wmw) Y. e OIS (14 o))
l=—Ng, ,—1
< Ao _ 172 u'/h < a2
< M0+ P, (00— g b)) [ a1+ 0(1)
. wl/B
~ ’Hgio [O,p+e]’HBQO(b—e)’l/QﬁW\IJ(m(u)),

with Ng, and m, j(u) defined as in the proof of Theorem 3.1. Similarly,

Ns.u 2
) > Y P ( inf  sup Zy(s,t) > m(“)> =D T (w),
=1

=N teD(p—e,u) SEF; (u)

with

Y(u) = P inf sup Zu(s,t) > m(u inf sup  Zy(s1,t1) >m(u) |, i=1,2,
Z( ) (llz: ’ (tED(pe,u)SGFl(u) u( ) ( )tED(pfe,u)sepl () u( ! 1) ( )
JM1)€Ery 1
where I'} = {([,11), —Ngw <1 <li+1< Ng,}and I'y = {(l,l1), —Ngu <1=11 +1 < Ng,}.
Clearly (by the proof of Theorem 3.1)

2

2
ZZQ’(U) < Z Z IP’( sup sup Zy(s,t) >m(u) sup sup Zu(sl,t1)>m(u)>

i=1 i=1 (1,1,)eT t€D(p—e,u) s€F(u) teD(p—e,u) s€F (u)
? k3

and

NS,u . 1/ﬁ
Z P ( inf sup Zyu(s,t) > m(u)) > ’Hgio 0,0 —€lHp,, (b+ 6)_1/2\/7?A(57

I=—Ns.. t€D(p—€,u) s F) (u) )m(u)

Thus, letting € — 0, in view of (33) and (34), we obtain

. . 1/B
(35) TRt (u) ~ H%‘io [0, plH g, b_1/2ﬁA

Ay W)
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Case ¢ =0 and p = 0. The idea of proof is based on the observation that

TR () (W) < T (u) < 70 (w)

holds for any € > 0 and w sufficiently large. Following (35), ﬂi“Af(u)(u) =Hpt [O lHz,, bil/zﬁ%\ﬁ(m(u))(lJr
o(1)) as u — oo. Using that, due to [6], mo(u) = Hp, b~ 1/2 fA l/ﬁ )\I/(m(u))(l + 0(1)) as u — oo and
lim, 7—[%‘20 [0, €] =1, the proof is completed.

Case ¢ € (0,00] with p € [0,00). The proof of this case can be established in a similar way to that of case ¢ = 0

and p € [0, 00). O

6. APPENDIX

In the appendix we present the proofs of Lemma 5.1-5.5.
Proof of Lemma 5.1. Since in large part the proof is the same as the proof of Lemma 2 in [6], we present the steps
that confirm extension to the class of continuous functionals ® that satisfy F1-F2. By the classical transformation,

for any k, € K,, we have

P (@(X(*)) > gy, (u)
! —39e, (W) [ ow ﬁq?wiu) (uk) (uk) w
(36) = me 29k eve TR P [ QX W) >gku(u)’Xo = gk, (u) — dw
V271 gk, R

In light of F2, we have

P (2(X4) > g, ] X = . 0) - 1)
= P (@ (gr () (XI5 =g, (OXE) = 2 @)1 = o, (1) + (1 = T, (8)) > w),

with 7y, (t) = E (Xgu"k“)X(()u"k“)). The reasoning as used in Lemma 2 in [6], in view of (5), F1-F2 and P1-P4 ,
implies that

@ (gr. () (X1 = s, (OXEH) = g (@)1= rup, (B) + 0 (1= 1, (1))

weakly converges to ® (v2V (t) — o2 (t)) . Besides, (10) and P3 lead to, for u large enough,

d
2
g, (E (X5 = 1y, X5 = XER) 17, (9)XEH) QY s

Thus by F1 and Fernique inequality, we derive for u large enough and § € (0,1), w > 0

P (@ (gr, () (X5 = e, (X5 ) = 8, ()1 = P, (0) - w(1 = rue (2))) > w)
< (ﬁ w) (X g, X5 ) = g, () (1= rue, () + w(l = g, (8)) > “’)

< B (s gn. () (X0 = ru OXEH) > (0= 0w - o
teM

< a2€—a3((1—6)w—a1)2
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with a;,4 = 1,2, 3 positive constants. The above gives a function that (uniformly) dominates the probability in (36).
Then using the dominated convergence theorem, we can get the claim. O
Proof of Lemma 5.2. The upper bound follows by the fact that o2 is regularly varying at 0 with index 2aq > 0.
Thus we focus on the proof that o2(t) > C;t? in a neighbourhood of 0. For this we use a slight modification of the
arguments given in [5].

From AI, there exists Ty > 0 such that for all T > T, we have o(T) > 0 and 62(T) > 0.

Observe that

o(To)o(t) > E(X(Th)X () > 27" (e*(To) — o (|To — t])) .
Thus, by Taylor expansion, with p; € (0,¢) (and ¢ > 0 small), we get

o2(T) — o*(T — t) = 02(T — p)t < 20(T)o(t),

: 2
which implies that o2 (t) > (Z;gg%) t2in a neighbourhood of zero. O
Proof of Lemma 5.3. Recall that o, (7) = #ﬁirﬁ)' By UCT (see, e.g., Theorem 1.5.2 in [3]) we have that
T %00
1. W = —_— =
(37) dm ou(7) = 705 = 9(7)

1/8
holds uniformly on (0, S] for any S > 0. Moreover 7* = (ﬁ) is the unique maximizer of g(7). Further, by
Potter’s theorem in (see, e.g., [3]), for any 0 < € < 8 — ao there exists a constant u, > 0 such that for all 7 > 1 and
Uu > Ue, we have

(1 + €)T@eote

(38) ou(T) < 1+ crB

— 0,

as 7 — oo. Combing (37) with (38) we conclude that there exist S, Sa such that for sufficiently large u the maximum

of o, (7) is attained in [Sy, Sa] with 0 < S; < 7* < Sy < co. Moreover, by Al
(39) ou(7) = g(1), Gu(r)=g(1), 7 €][S1,54]

and g(7*) < 0.
The above implies that, for each sufficiently large w, there exists unique 7, such that 7, — 7* as u — 00, 0 (7,) =0
and J,(7,) < 0. This implies that 7, is the unique maximizer of o,(7), for sufficiently large w.

It is straightforward to check that

gg((;)) S 1 (o)), T
which combined with (37) and (39) yields (12). O

Proof of Lemma 5.4. By direct calculations,

1-—- Tu(85t7 Sl;tl) =

20 (u'/B(s —t))o(u/P(s; —t1)) + o2 (u/P|t — t1]) + o2 (u'/P|s — s1]) — o2 (u/B (s — t1)) — o2 (u/P (51 — 1))
20(ul/B(s —t))o(ul/B(s1 —t1))
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Dq(}) (S, t,s1, tl) — Dq(f)(s, t,s1, tl) + Dq(f) (S, t,s1, tl)
20 (ul/B(s —t))o(ul/B(s1 — t1)) ’

where

DW(s,t,s1,t1) = @Bt —t1]) + > W P|s — s1]),
2
D@ (s,tys1,t1) = (o (s— 1) = o (s — 1))
DB (s,t,s1,t1) = o>@WP(s—1t))+ WP (sy —t1)) — 2 (WP (s — t1)) — o2 (u/P(s1 — t)).

Due to UCT, as u — oo,

o2 (ul/ﬁ)t2

(40) o?(u'/Pt)

= 272 1< (0,5], S>0.

It follows from mean value theorem and (40) that for |t — t1] < §,,s —t,81 — t1 € E(u), with 8 € E(u),

. 2
m DY (s,tosit) (@) (s —si—t+1))" alo?(W!/i0)(s — s —t+ 1)’
DP(s,tonty) | @I 0+ o Pl ) 8 (@ P ) 02w s — )

< 202 0%(u'/P0)((s — s1)> + (t — t1)?)
= (2@ t1]) + o2/ P]s — 1))
202 o (uB0)(s — 51)2 202,02 (uPO)(t — t;)?
0202 (ul/B|s — s1]) 0202 (ul/P|t — t1])

— 0, u— oo.

Using Taylor expansion, we have

. 1 ;
DO (s,t,51,t1) = u’Po2(utP(s—t1))(t; —t) + §u2/502(u1/ﬁ91)(t —1y)?
. 1 ;
+ut/Bo2(utB(sy —t))(t —t1) + §u2/502(u1/502)(t —t)?
1 ; 1 ;
= 5u2/5a2(u1/ﬁel)(t — )% + §u2/602(u1/592)(t —t1)?

+u P2 PO5)(ty — t)(s — 51+t — t1)

IN

1 - 1 - .
u?/? (202@1/%) + 502(1&/692) + 202(u1/593)> (t —t1)?
+2u?/ P52 (1 Ph3) (s — 1),
where 61, 85 and 03 are some positive constants satisfying % <0; < %T*,i =1, 2,3, for u sufficiently large. Similarly,
in the light of (40), for |t — ¢1] < §u, 8 — ¢, 81 — t1 € E(u),

an?)) (Sa ta S1, tl)

(42) —0, u—o0.
D1(41)(87 tv 51, tl)
Hence, the combination of (41) and (42) implies the assertion. O

Proof of Lemma 5.5. Substituting s and s; by ¢t + 7 and t; + 7 respectively yields

Tu(t + T7t7t1 + Tlatl)

ag(ul/ﬁ\t —t1+7|)+ UQ(ul/ﬁ|t1 —t+7|) — ag(ul/ﬁ\t —t1+7—m11|) — 02(u1/5|t —t1])
20 (ut/Br)o(ul/Bry) '
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Now suppose t; >t and t; —t > R with R a large enough positive constant. Using Taylor expansion at point t; — ¢,

we have

o* (WPt —t = 7)) + (Wt —t+ 1)) = Wt —t 1 — 7)) = (W (8 — 1))

= WMt~ 1) — P (11— a7 4 S0~ b+ 6 ()
o2 (P (ty — 1)) + o2 (WP (ty — 1)) uMPry + %U"z(ul/ﬁ(tl bt Oy (u)))u/ P2
- (02@1/ (11— 1)) + 02 (0~ ) — ) L oP 1y — -+ () r>2)
_02(u1/ﬁ(t1 —t))

= SRt — 1 By )P 4 LR (1 — -+ o)/
—5 (0 = 4+ 03 () (=,

where 0;(u),7 = 1,2,3 are some constant satisfying |0;(u)| < 27,7 = 1,2,3 for u large enough. Further, by Al we

have
a2 (Ul Bty —t + 0))u/B(ty —t +6)> o2 (u/P(ty —t +0))
a2(ul/B(ty —t +0)) o(ut/Br)o(ut/Br)(t; —t + 0)2
(tl —t+ 9)2(10@-'1-6
(7*)20cote(ty —t + 6)2

a2(ulP(ty —t + 0))u?/?
o(ut/Br)o(ut/br)

VAN

Q2000|2000 — 1|

Q
(tl —t+ 0)2—2(1x—e )

where Q and Q; are two fixed positive constants, |0] < 27* and 0 < € < 2 — 2a,. Thus we have, as R — oo,

o2(ul Pty — t + 0))u?/?

=0
o(ut/Pr)o(ul/br) ’

which implies that for u large enough, |t — t1| > R, 7,71 € E(u)
Tu(t+T7t,t1+T17t1):>0, R — .

Next we concentrate on the case of |t — ¢;| < R, 7,71 € E(u) with R a positive constant. Applying UCT, we have

[t —t1 + 72¥ + [t —t 4+ 712 — [t =t + 7 — 7|2 — |t — 1>

Tu(t+T,t,t1 +T17t1) =

27 %o Y0
1 t—t, t—t, t—t
:> _ 1 |40 1 D Ao 2 D R 7% — ,
5 (11 S 1 B e — o ) — (o
with \t/;% = z. It is straightforward to check that sup,c(s o [f(z)| <1 for any 6 > 0. This completes the proof. [J
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