
SOJOURN TIMES OF GAUSSIAN PROCESSES WITH TREND
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Abstract. We derive exact tail asymptotics of sojourn time above the level u ≥ 0

P
(
v(u)

∫ T

0
I(X(t)− ct > u)dt > x

)
, x ≥ 0

as u→∞, where X is a Gaussian process with continuous sample paths, c is some constant, v(u) is a positive function

of u and T ∈ (0,∞]. Additionally, we analyze asymptotic distributional properties of

τu(x) := inf

{
t ≥ 0 : v(u)

∫ t

0
I(X(s)− cs > u)ds > x

}
,

as u→∞, x ≥ 0, where inf ∅ =∞. The findings of this contribution are illustrated by a detailed analysis of a class of

Gaussian processes with stationary increments and a family of self-similar Gaussian processes.
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1. Introduction

Let Y (t), t ∈ R be a centered random process with càdlàg sample paths and let for T > 0∫ T

0

Iu(Y (t))dt(1)

be the sojourn time of Y above the level u ∈ R in interval [0, T ], where Iu(x) = I(x > u). The asymptotic properties

of (1), as u→∞ for Y being a centered Gaussian process has been extensively studied by Berman, see e.g., [1–4]. An

explicit form of the distribution of (1) is known only for very few special processes. In particular, for Y = B1 being a

standard Brownian motion, by the arcsin law of Paul Lévy, we have

P

(∫ T

0

I0(B1(t))dt > x

)
= 1− 2

π
arcsin

(√ x

T

)
, 0 < x < T <∞.(2)

An extension of this arcsin law is obtained in [5] for the case of Y (t) = B1(t)− ct, c 6= 0. For the infinite time horizon,

i.e., T =∞ and c > 0, in view of [6][Eq. (3), p. 255]

P
(∫ ∞

0

I0(B1(t)− ct)dt ∈ dy

)
=

(√
2c
√
πy
e−

c2y
2 − 2c2√

π

∫ ∞
c
√
y√
2

e−v
2

dv

)
dy, y ≥ 0,

which implies that for any x ≥ 0

P
(∫ ∞

0

I0(B1(t)− ct)dt > x

)
= 2(1 + c2x)Ψ(c

√
x)− c

√
2x√
π
e−

c2x
2 ,(3)

where Ψ denotes the tail distribution of a standard normal random variable N(0, 1).

The above result can be extended to the class of spectrally negative Lévy processes with a negative drift and a general

level u. Indeed, let X be a spectrally negative Lévy process. Then for any non-negative λ

E
{
eλX(t)

}
= etψ(λ), t ≥ 0,

with ψ being a strictly convex function such that limλ→∞ ψ(λ) =∞ and ψ′(0+) = E {X(1)}.
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Theorem 1.1. Suppose that X(t), t ≥ 0 is a spectrally negative Lévy process such that E {X(1)} < c for some c > 0.

Then for any u ≥ 0

P
(∫ ∞

0

Iu(X(t)− ct)dt > x

)
= e−αu P

(∫ ∞
0

I0(X(t)− ct)dt > x

)
,(4)

where α > 0 is the unique positive solution to ψ(α) = cα.

In the particular case that X = B1, we have E {B1(1)} = 0 < c and further ψ(α) = α2

2 = cα has the unique positive

solution α = 2c. Consequently, for any x ≥ 0 and u ∈ R Theorem 1.1 combined with (3) implies

P
(∫ ∞

0

Iu(B1(t)− ct)dt > x

)
=

(
2(1 + c2x)Ψ(c

√
x)− c

√
2x√
π
e−

c2x
2

)
e−2cu.(5)

The study of distributional properties of occupation-type functionals for Lévy processes is crucial for many applications

in finance and insurance (e.g. the occupation time in red or the inverse occupation time - the time of cumulative Parisian

ruin), see for instance [5, 7–10]. The number of papers dealing with occupation times (sojourn times) is huge; most

of the articles discuss the derivation of Laplace transform, see the recent contributions [11–14] and references therein.

Recent paper [10] derives the density of occupation time for spectrally negative Lévy processes with exponential time

horizon.

In this paper we shall focus on analogues of Theorem 1.1 for a wide class of Gaussian processes. Since the distribution

of (1) is not tractable in the general Gaussian case, our investigation is concerned with the derivation of the exact

asymptotic behavior of

pT (u, x) := P

(
v(u)

∫ T

0

Iu(X(t)− ct)dt > x

)
, x ≥ 0(6)

as u → ∞, where X is a Gaussian process with continuous sample paths, v(u), u > 0 is a positive function (will be

specified below) and T ∈ (0,∞]. In order to avoid trivialities, we suppose that c > 0 if T = ∞, while for T < ∞ we

allow c ∈ R. In contrast to the classical results for centered Gaussian processes X by Berman, see e.g., [1–4], where the

asymptotics of P
(
v(u)

∫ T
0
Iu(X(t))dt > x

)
as u→∞ is given for a.e. x ≥ 0, an important advantage of the technique

used in this contribution allowed us to show that the asymptotics of (6) holds for all x ≥ 0. This is due to continuity

of Berman-type constant which shall be proven in Lemma 4.1.

Additionally, motivated by recent investigations on the ruin time, see e.g., [15] and [16], we shall analyze asymptotic

distributional properties of

τu(x) := inf

{
t ≥ 0 : v(u)

∫ t

0

Iu(X(s)− cs)ds > x

}
,(7)

as u→∞, x ≥ 0, with the convention that inf ∅ =∞. Note that τu(x) is called the cumulative Parisian ruin time in

[9], which is of interest in risk theory; τu(0) is the first passage time of the level u by the process X(t)− ct, which is

referred to as the ruin time in [15]. In Section 3 a distributional approximation, as u→∞, of τ∗u(x1, x2) defined by

τ∗u(x1, x2) := τu(x2)
∣∣∣τu(x1) <∞, 0 ≤ x1 ≤ x2 <∞(8)

is derived.

Brief outline of the paper: In Section 2 we derive an exact approximation of sojourn times for general Gaussian

processes. In Section 3 we apply this result to (6), for X being a centered Gaussian process with stationary increments

and a self-similar Gaussian process. Both scenarios T ∈ (0,∞) and T = ∞ are considered. Section 4 contains some

lemmas that are useful in the proofs of the main results, while the proofs are presented in Section 5.
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2. Main result

In this section we provide a general result preparing us to derive exact asymptotics of (6) for a wide class of centered

Gaussian process X(t), t ∈ R with continuous trajectories. In order to motivate the study of this section write first

for u > 0, x ≥ 0, c > 0 and v(u) representing an arbitrary positive function

p∞(u, x) := P
(
v(u)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
= P

(
v(u)u

∫ ∞
0

I0(X(ut)− cut− u)dt > x

)
= P

(
v(u)u

∫ ∞
0

IM(u)

(
X(ut)

u(1 + ct)
M(u)

)
dt > x

)
,(9)

where M(u) = inft∈[0,∞)
u(1+ct)√
V ar(X(ut))

is assumed to be positive. Then X(ut)
u(1+ct)M(u) is a Gaussian process with mean

0 and supt≥0 V ar
(
X(ut)
u(1+ct)M(u)

)
=1. As it will be proven in Section 5, for δu, a properly chosen function of u with

limu→∞ δu = 0, and tu = arg inft≥0
u(1+ct)√
V ar(X(ut))

for x ≥ 0 we have

p∞(u, x) ∼ P

(
v(u)u

∫
[tu−δu,tu+δu]

IM(u)

(
X(ut)

u(1 + ct)
M(u)

)
dt > x

)

= P

(∫
[−v(u)uδu,v(u)uδu]

IM(u)

(
X(utu + t/v(u))

u(1 + ctu) + ct/v(u)
M(u)

)
dt > x

)
.

A similar transformation for pT (u, x), T ∈ (0,∞) shows that in general the problem to deal with can be reduced to

pT (u, x) ∼ P

(∫
E(u)

In(u)(Zu(t))dt > x

)
, u→∞,(10)

where x ≥ 0, n(u) is a function of u and Zu, u > 0 is a family of centered Gaussian processes with continuous

trajectories defined on the interval E(u) = [a1(u), a2(u)].

In the rest of this paper we shall impose some standard assumptions on the behaviour of the variance function σu and

the correlation function ru of Zu. In particular, we shall assume that

lim
u→∞

sup
t 6=0,t∈E(u)

∣∣∣∣ 1− σu(t)

w(g(u)|t|)
− 1

∣∣∣∣ = 0,(11)

where w is a positive regularly varying function at 0 with index β > 0, and g(u) satisfies limu→∞ g(u) = 0.

In the following ∆(u), n(u), u > 0 are positive functions such that

lim
u→∞

∆(u) = ϕ ∈ [0,∞], lim
u→∞

n(u) =∞.(12)

For the correlation function of Zu we shall assume that for ∆(u) satisfying (12) we have

lim
u→∞

sup
s6=t,s,t∈E(u)

∣∣∣∣∣∣n
2(u) (1− ru(s, t))
σ2
η(∆(u)|t−s|)
σ2
η(∆(u))

− 1

∣∣∣∣∣∣ = 0,(13)

where η(t), t ∈ R is a centered Gaussian process with continuous trajectories, stationary increments and variance

function σ2
η(t) > 0, t > 0, being regularly varying at 0 and at ∞ with indexes 2α0 ∈ (0, 2] and 2α∞ ∈ (0, 2),

respectively.

Assumptions (11) and (13) are satisfied for large classes of Gaussian processes, see e.g., [17], [18], [19] and [20]. For

example, they are compatible with those in Theorem 3.2 in [21].

Next, for any ϕ ∈ [0,∞] set

ηϕ(t) =


B2α0(t), ϕ = 0
η(ϕt)
ση(ϕ) , ϕ ∈ (0,∞)

B2α∞(t), ϕ =∞ ,
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where Bα is a fractional Brownian motion (fBm) with self-similarity index α/2 ∈ (0, 1] and process η is defined above.

For a random process W (t), t ∈ R with continuous trajectories, x ≥ 0, E a compact subset of R and h a continuous

function on E we define

BhW (x,E) =

∫
R
P
(∫

E

I0(
√

2W (t)− V ar(W (t))− h(t) + z)dt > x

)
e−zdz

and when the limit exists, we set

BhW (x) = lim
S→∞

BhW (x, [0, S])

SI(h=0)
.

Moreover, set below

B̂hBα(x) = lim
S→∞

BhBα(x, [−S, S]) ,

provided that the above limit is finite. For h = 0, we suppress the superscript and write BW (x) or BW (x,E). If

W = Bα with Bα fractional Brownian motion, then BBα(0) is simply the Pickands constant, see e.g.,[22], [18], [19]

and [20].

If h is strictly positive, then BhBα(0) and B̂hBα(0) reduce to Piterbarg constants. We refer to [17–20] for the existence

and properties of Pickands and Piterbarg related constants. All our asymptotic results below hold for all x ≥ 0, which

generalize the results in [1]-[4] and [23], where the asymptotics hold for almost all x ∈ [0,∞).

Throughout this paper,
←−
f stands for the generalized asymptotic (unique) inverse of a regularly varying function f ;

see [24].

Next we present the main result of this contribution.

Theorem 2.1. Let Zu(t), t ∈ E(u) with E(u) := [a1(u), a2(u)] be a family of centered Gaussian processes with

continuous trajectories. Suppose that (11)-(13) hold, θ(u) =←−w (n−2(u))/g(u) and

lim
u→∞

n2(u)w(g(u)) = γ ∈ [0,∞], lim
u→∞

g(u)|ai(u)| = 0, i = 1, 2.(14)

i) If γ = 0 and

lim
u→∞

n2(u)w(g(u)|ai(u)|) = xi, lim
u→∞

n(u)w(g(u)|ai(u)|) = 0, i = 1, 2,

then

P

(∫
E(u)

In(u)(Zu(t))dt > x

)
∼ Bηϕ(x)

1

β

∫ y2

y1

|t|1/β−1e−|t|dt θ(u)Ψ(n(u)),(15)

with y2 − y1 > 0 and

yi = xiI(xi > 0, lim
u→∞

ai(u) =∞})− xiI(xi > 0, lim
u→∞

ai(u) = −∞), i = 1, 2.(16)

ii) If γ ∈ (0,∞) and limu→∞ ai(u) = ai, i = 1, 2, with a1 ∈ [−∞, 0], a2 ∈ [0,∞] and a2 − a1 > x, then

P

(∫
E(u)

In(u)(Zu(t))dt > x

)
∼ Bγ|t|

β

ηϕ (x, [a1, a2])Ψ(n(u)).(17)

iii) If γ =∞ and

lim
u→∞

ai(u)

θ(u)
= bi, i = 1, 2,

with b1 ∈ [−∞,∞), b2 ∈ (−∞,∞], and b2 − b1 > x, then

P

(∫
E(u)

In(u)(Zu(t))dt > θ(u)x

)
∼ B0

|t|β (x, [b1, b2])Ψ(n(u)).(18)

Remark 2.2. i) If we assume that limu→∞∆(u) = 0 and σ2
η in (13) is a non-negative regularly varying function at

0 with index 2α0 ∈ (0, 2], then Theorem 2.1 still hold with ηϕ replaced by B2α0
.

ii) The case x = 0 in Theorem 2.1 generalizes the results in [17], [18], [19] and [20] and together with i) of this remark

covers the results for one dimensional case in [22].

In the following lemma we calculate the exact value of two special Berman constants.
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Lemma 2.3. For γ, β > 0

Bγt
β

0 (x) = Bγt
β

0 (x, [0,∞)) = e−γx
β

, B0
γ|t|β (x, (−∞, y]) =

{
e−γ(x−y)β , y < x/2

e−γ2−βxβ y ≥ x/2,
(19)

and B0
γ|t|β (x, [b1, b2]) is continuous for all x ≥ 0. For any x ≥ 0 and γ > 0

B̂γt
2

B2
(x) =

√
1 + γ

γ
e−

(1+γ)x2

4 .(20)

3. Applications

In this section we apply Theorem 2.1 to two classes of Gaussian processes: Gaussian processes with stationary incre-

ments and self-similar Gaussian processes.

3.1. Gaussian processes with stationary increments. Given X(t), t ∈ R a Gaussian process with stationary

increments and continuous sample paths, we consider

pT (u, x) := P

(
v(u)

∫ T

0

Iu(X(t)− ct)dt > x

)
, x ≥ 0,(21)

where the positive scaling function v will be specified later, and T ∈ (0,∞]. Let σ2(t) = V ar(X(t)). We distinguish

two cases, leading to qualitatively different asymptotics, namely T ∈ (0,∞) and T =∞.

3.1.1. Infinite time horizon. By the stationarity of increments of X the covariance function of X is completely deter-

mined by its variance function σ2. Along the same lines as in [20] or [25], we assume that

AI: σ2(0) = 0 and σ2(t) is regularly varying at ∞ with index 2α∞ ∈ (0, 2). Further, σ2(t) is twice continuously

differentiable on (0,∞) with its first derivative σ̇2(t) := dσ2

dt (t) and second derivative σ̈2(t) := d2σ2

dt2 (t)

being ultimately monotone at ∞.

AII: σ2(t) is regularly varying at 0 with index 2α0 ∈ (0, 2].

Assumptions AI-AII cover a wide range of Gaussian processes with stationary increments, including two impor-

tant families: (1) fractional Brownian motions Bα(t), α ∈ (0, 2] and (2) Gaussian integrated processes, i.e., the case

where X(t) =
∫ t

0
Z(s)ds, with Z a centered continuous stationary Gaussian process with variance 1 and correlation

function r(s) = Cov(X(t), X(t + s)), s, t ≥ 0 satisfying some regularity conditions; see, e.g., [18], [19], [20], [25] and

[26].

Suppose that c > 0 and let in the following (←−σ stands for the asymptotic inverse of σ)

1/v(u) =←−σ

(√
2σ2(ut∗)

u(1 + ct∗)

)
, t∗ =

α∞
c(1− α∞)

.(22)

According to (9), recall that

p∞(u, x) = P
(
uv(u)

∫ ∞
0

IM(u)

(
X(ut)

u(1 + ct)
M(u)

)
dt > x

)
,(23)

where

M(u) = inf
t>0

V ar−1/2

(
X(ut)

u(1 + ct)

)
= inf
t>0

u(1 + ct)

σ(ut)
.

We note that
X(ut)

u(1 + ct)
M(u), t ≥ 0

is a family of centered Gaussian processes with the maximum of their variance functions equal to 1.

Applying Theorem 2.1 we arrive at the following results, where

A =

(
α∞

c(1− α∞)

)−α∞ 1

1− α∞
, B =

(
α∞

c(1− α∞)

)−α∞−2

α∞.(24)
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Theorem 3.1. Let X(t), t ∈ R be a centered Gaussian process with continuous trajectories and stationary increments

satisfying AI-AII and c > 0. If

ϕ = lim
u→∞

σ2(u)

u
∈ [0,∞],

then for any x ≥ 0

p∞(u, x) ∼ BXϕ(x)

√
2Aπ

B

u

M(u)←−σ
(√

2σ2(ut∗)
u(1+ct∗)

)Ψ(M(u)),

where

Xϕ(t) =


B2α0(t), if ϕ = 0
1+ct∗√

2ϕt∗
X
(←−σ (√2ϕt∗

1+ct∗

)
t
)
, if ϕ ∈ (0,∞)

B2α∞(t), if ϕ =∞.

(25)

Application of Theorem 3.1 to X = B1 with comparison to (5) leads to the following corollary.

Corollary 3.2. For any x ≥ 0,

BB1(x) = (2 + x)Ψ

(√
x

2

)
−
√
x

π
e−

x
4 .

Next we analyze the asymptotic distribution of τ∗u(x1, x2) defined in (8), assuming that these random variables are

defined on the same probability space.

Corollary 3.3. Under the assumptions of Theorem 3.1, for 0 ≤ x1 ≤ x2 <∞, the following convergence in distribution

holds

τ∗u(x1, x2)− utu
A(u)

d→ Nx1,x2
, u→∞,

where

P (Nx1,x2
≤ y) =

BXϕ(x2)

BXϕ(x1)
P (N ≤ y) , y ∈ R, P (Nx1,x2

=∞) = 1−
BXϕ(x2)

BXϕ(x1)
,

with A(u) = σ(ut∗)
c

√
α∞

1−α∞ and N an N(0, 1) random variable.

3.1.2. Finite time horizon. In this subsection we consider the finite-time horizon case, i.e., we are interested in the

asymptotics of pT (u, x) as u → ∞, where X has stationary increments, x ≥ 0, T ∈ (0,∞) and c ∈ R. Due to the

finiteness of T , we allow in this section c ∈ R. Clearly,

pT (u, x) = P

(
v(u)

∫ T

0

I0
(
X(t)

u+ ct
− 1

)
dt > x

)

= P

(
v(u)

∫ T

0

Im(u)

(
X(t)

u+ ct
m(u)

)
dt > x

)
.(26)

where

m(u) =
u+ cT

σ(T )
.

We shall impose the following assumptions on σ.

BI σ(0) = 0 and σ ∈ C([0, T ]) with the first derivative σ̇(t) > 0, t ∈ (0, T ].

BII σ is regularly varying at 0 with index α0 ∈ (0, 1].

We note that both fBm and introduced in Section 3.1.1 Gaussian integrated processes
∫ t

0
Z(s)ds with correlation

of Z such that r(t) > 0 satisfy conditions BI-BII (note that σ2(t) = 2
∫ t

0

∫ s
0
r(u)duds, t ≥ 0 and α0 = 1).

Assumption BI ensures that the first derivative of σ(t)
u+ct is positive and further its maximizer over [0, T ] is unique

and equals T for sufficiently large u. Assumption BII gives the correlation structure of X(t)
u+ct around time t = T (see

Lemma 4.4 ii). Thus under the assumptions of BI-BII, X(t)
u+ctm(u), t ∈ [0, T ] is a centered continuous Gaussian process
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with the maximum of variance function attained at t = T and equal to 1.

Set

v(u) =

 1/←−σ
(√

2σ2(T )
u+cT

)
, limt→0

|t|
σ2(|t|) ∈ [0,∞)

(m(u))2, limt→0
|t|

σ2(|t|) =∞.

Theorem 3.4. Suppose that X(t), t ∈ [0, T ] is a centered continuous Gaussian process with stationary increments

satisfying BI-BII and let x ≥ 0, c ∈ R be given.

i) If t = o(σ2(t)) as t→ 0, then

pT (u, x) ∼ BB2α0
(x)

σ(T )

σ̇(T )

1

(m(u))2←−σ
(√

2σ2(T )
u+cT

)Ψ(m(u)).

ii) If limt→0 σ
2(t)/t = θ∈ (0,∞), then

pT (u, x) ∼ B
2σ(T )σ̇(T )

θ |t|
B1

(x)Ψ(m(u)).

iii) If σ2(t) = o(t) as t→ 0, then

pT (u, x) ∼ e−
σ̇(T )
σ(T )

xΨ(m(u)).

With the convention that inf ∅ =∞, define τu,T (x), T > 0, x ≥ 0 by

τu,T (x) = inf

{
t : v(u)

∫ t

0

Iu(X(s)− cs)ds > x, 0 ≤ t ≤ T
}
.(27)

Further, let

τ∗u,T (x1, x2) := τu,T (x2)
∣∣∣τu,T (x1) ≤ T, 0 ≤ x1 ≤ x2 <∞.(28)

Corollary 3.5. Suppose that X(t), t ∈ [0, T ] is a centered continuous Gaussian process with stationary increments

satisfying BI-BII, 0 ≤ x1 ≤ x2 <∞, c ∈ R are given and

lim
t→0

|t|
σ2(|t|)

∈ [0,∞].

Then
σ̇(T )

σ3(T )
u2(T − τ∗u,T (x1, x2))

d→ Ex1,x2 , 0 ≤ x1 ≤ x2 <∞, u→∞,

where

P (Ex1,x2
> y) = Γ(x1, x2)e−y, P (Ex1,x2

= −∞) = 1− Γ(x1, x2) ≥ 0, y ≥ 0,

with

Γ(x1, x2) =



BB2α0
(x2)

BB2α0
(x1) t = o(σ2(t))

B
2σ(T )σ̇(T )

θ
|t|

B1
(x2)

B
2σ(T )σ̇(T )

θ
|t|

B1
(x1)

σ2(t) ∼ θt

e
σ̇(T )
σ(T )

(x1−x2) σ2(t) = o(t)

, 0 ≤ x1 ≤ x2 <∞.

3.2. Self-similar Gaussian processes. In this subsection we apply our findings to the class of self-similar Gaussian

processes with drift. We focus on the exact asymptotic probabilities of sojourn time, without specifying analogs of

Corollaries 3.3 and 3.5, since they essentially lead to the same type of results as given in Section 3.1.

Suppose that X is a centered self-similar Gaussian process with self-similarity index H ∈ (0, 1), i.e.

{X(bt), t ≥ 0} d
= {bHX(t), t ≥ 0},(29)

where
d
= means the equality of finite dimensional distributions.

Equality (29) implies that σ2(t) = V ar(X(t)) = V ar(X(1))t2H . Without loss of generality, in what follows we assume

that V ar(X(1)) = 1 and hence σ2(t) = t2H .

Moreover, we assume that
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S There exist a function ρ which is regularly varying at 0 with index α ∈ (0, 2], ρ(0) = 0 and ρ(t) > 0, t > 0, and

t0 ∈ [0, T ] such that

lim
ε→0

sup
s6=t,|s−t0|<ε,|t−t0|<ε,s,t∈[0,T ]

∣∣∣∣1− Corr(X(s), X(t))

ρ(|t− s|)
− 1

∣∣∣∣ = 0.(30)

Condition S is satisfied by such classes of self-similar Gaussian processes as fBms, bi-fractional Brownian motions,

sub-fractional Brownian motions or generalized fractional Brownian motions; see, e.g., [27], [28], [29] or [30].

3.2.1. Infinite-time horizon. Suppose that T =∞ and c > 0. Then, by self-similarity of X, we have

P
(
v(u)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
= P

(
uv(u)

∫ ∞
0

Iu1−H

(
X(t)

1 + ct

)
dt > x

)
.

Note that the maximizer of

√
V ar

(
X(t)
1+ct

)
= tH

1+ct is unique and equals H
c(1−H) . Further, referring to [17],

Â
tH

1 + ct
= 1− B̂

2Â

(
t− H

c(1−H)

)2

(1 + o(1)), t→ H

c(1−H)
,(31)

with

Â =

(
H

c(1−H)

)−H
1

1−H
, B̂ =

(
H

c(1−H)

)−H−2

H.

We arrive at the following result.

Theorem 3.6. Let X(t) be a centered self-similar Gaussian process with self-similarity index H ∈ (0, 1) satisfying

(29) and S with t0 = H
c(1−H) . Suppose that

lim
t→0

t2

ρ(t)
= γ ∈ [0,∞]

and let x ≥ 0, c > 0 be given.

i) If γ = 0, then

P

(
1

u←−ρ ((Âu1−H)−2)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
∼ BBα(x)

√
2Âπ

B̂

1
←−ρ ((Âu1−H)−2)Âu1−H

Ψ(Âu1−H).

ii) If γ ∈ (0,∞), then

P

(
1

u←−ρ ((Âu1−H)−2)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
∼

√
2Â+ B̂γ

B̂γ
e−

2Â+B̂γ

8Â
x2

Ψ(Âu1−H).

iii) If γ =∞, then

P
(
u−H

∫ ∞
0

Iu(X(t)− ct)dt > x

)
∼ e− ÂB̂x

2

8 Ψ(Âu1−H).

3.2.2. Finite-time horizon. Let T ∈ (0,∞). We arrive at the following result.

Theorem 3.7. Let X(t) be a centered self-similar Gaussian process with self-similarity index H ∈ (0, 1) satisfying

(29) and S with t0 = T . For given x ≥ 0 and c ∈ R, let pT (u, x) be defined in (21) with v(u) = ←−ρ
(

T 2H

(u+cT )2

)
if

limt→0
|t|
ρ(|t|) ∈ [0,∞) and v(u) = (u+cT )2

T 2H if limt→0
|t|
ρ(|t|) =∞.

i) If t = o(ρ(t)) as t→ 0, then

pT (u, x) ∼ BBα(x)
T 2H+1−2H/α

H

1

u2←−ρ (u−2)
Ψ

(
u+ cT

TH

)
.

ii) If limt→0 ρ(t)/t = θ, then

pT (u, x) ∼ B
H
Tθ |t|
B1

(x)Ψ

(
u+ cT

TH

)
.

iii) If ρ(t) = o(t) as t→ 0, then

pT (u, x) ∼ e−HT xΨ

(
u+ cT

TH

)
.
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4. Technical Lemmas

We first present a modification of Theorem 5.1 in [23], which is crucial for the proofs below. Then we present two

lemmas related with the local behavior of the variance and correlation function of the investigated Gaussian process.

Let {ξu,k(t), t ∈ E, k ∈ Ku}, with Ku an index set and E = [a, b] with a ≤ 0 ≤ b be a family of centered continuous

Gaussian random processes with variance function σ2
ξu,k

. We impose the following assumptions:

C0: Let {gk(u), k ∈ Ku} be a sequence of deterministic functions of u satisfying

lim
u→∞

inf
k∈Ku

gk(u) =∞.

C1: σξu,k(0) = 1 for all large u and there exists a continuous function h on E such that

lim
u→∞

sup
t∈E,k∈Ku

∣∣∣∣g2
k(u)

(
1− σξu,k(t)

)
− h(t)

∣∣∣∣ = 0.

C2: There exists a centered Gaussian process with continuous trajectories and stationary increments ζ(t), t ∈ R,

satisfying AI-AII, and

lim
u→∞

sup
k∈Ku

sup
s 6=t,s,t∈E

∣∣∣∣∣∣∣
g2
k(u) (1− Corr (ξu,k(s), ξu,k(t)))

σ2
ζ(υ(u)∆(u)|t−s|)

σ2
ζ(∆(u))

− 1

∣∣∣∣∣∣∣ = 0,

where ∆(u), υ(u), u > 0 are positive functions such that

(32) lim
u→∞

∆(u) = ϕ ∈ [0,∞], lim
u→∞

υ(u) = υ ∈ [0,∞).

Let, for given x ≥ 0 and continuous function h

Bhζϕ(x,E) =

∫
R
P
(∫

E

I0
(√

2ζϕ(t)− σ2
ζϕ(t)− h(t) + z

)
dt > x

)
e−zdz,

with

ζϕ(t) =


B2α0

(υt) ϕ = 0
ζ(υϕt)
σζ(ϕ) ϕ ∈ (0,∞)

B2α∞(υt) ϕ =∞
.

In the special case υ = 0, ζϕ(t) ≡ 0. Note that by Borell-TIS Inequality [31, 32], we have

Bhζϕ(x,E) ≤ Bhζϕ(0, E)

=

∫
R
P
(

sup
t∈E

(√
2ζϕ(t)− σ2

ζϕ(t)− h(t)
)
> z

)
ezdz

≤ ea +

∫ ∞
a

e−
(z−a)2

2b ezdz <∞ ,

with

a = E
(

sup
t∈E

(√
2ζϕ(t)− σ2

ζϕ(t)− h(t)
))

<∞, b = sup
t∈E

V ar(
√

2ζϕ(t)) <∞.

Lemma 4.1. Let {ξu,k(t), t ∈ E, k ∈ Ku} with E = [a, b] be a family of centered continuous Gaussian processes

satisfying C1-C2. If gk(u), k ∈ Ku satisfies C0 and for any x ≥ 0

P
(∫

E

I0 (ξu,k(t)− gk(u)) dt > x

)
> 0, ∀ k ∈ Ku,

then

lim
u→∞

sup
k∈Ku

∣∣∣∣∣P
(∫
E
I0 (ξu,k(t)− gk(u)) dt > x

)
Ψ(gk(u))

− Bhζϕ(x,E)

∣∣∣∣∣ = 0(33)

holds for all x ≥ 0. Additionally, Bhζϕ(x,E) is a continuous function over [0,mes(E)).
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Remark 4.2. i) In the special case υ = 0, for all x ≥ 0, we have

lim
u→∞

sup
k∈Ku

∣∣∣∣∣P
(∫
E
I0 (ξu,k(t)− gk(u)) dt > x

)
Ψ(gk(u))

− Bh0 (x,E)

∣∣∣∣∣ = 0.(34)

ii) There exists a non-negative function ρ which is a regularly varying function at 0 with index 2α0 ∈ (0, 2] such that

lim
u→∞

sup
k∈Ku

sup
s 6=t,s,t∈E

∣∣∣∣∣∣g
2
k(u) (1− Corr (ξu,k(s), ξu,k(t)))

ρ(υ(u)∆(u)|t−s|)
ρ(∆(u))

− 1

∣∣∣∣∣∣ = 0,(35)

with ∆(u), υ(u), u > 0 positive functions satisfying (32) for ϕ = 0. If C2 is replaced by (35), then Lemma 4.1 still

holds with ζϕ(t) replaced by B2α0
(υt).

Proof of Lemma 4.1. In order to prove this lemma it suffices to check the conditions of Theorem 5.1 in [23]. That

is we have to prove that (with ξu,k(t) =
ξu,k(t)
σξu,k (t) )

i) limu→∞ infk∈Ku gk(u) =∞.
ii) σξu,k(0) = 1 for all large u and any k ∈ Ku, and there exists some bounded continuous function h on E such that

lim
u→∞

sup
t∈E,k∈Ku

|g2
k(u) (1− E {ξu,k(t)ξu,k(0)})− σ2

ζϕ(t)− h(t)| = 0.

iii) For any s, t ∈ E,

lim
u→∞

sup
k∈Ku

|g2
k(u)

(
V ar(ξu,k(t)− ξu,k(s))

)
− 2V ar(ζϕ(t)− ζϕ(s))| = 0.

iv) These exist positive constants C, ν, u0 such that

sup
k∈Ku

g2
k(u)E

{
ξu,k(t)− ξu,k(s)

}2 ≤ C‖s− t‖ν

holds for all s, t ∈ E, u ≥ u0.

It follows that i) holds straightforwardly from C0. Next we verify ii), iii) and iv).

We first prove iii). Uniform convergence theorem (see, e.g., [24]) gives that, for all υ ∈ [0,∞) and ϕ ∈ {0,∞},

lim
u→∞

sup
s,t∈E

∣∣∣∣∣σ2
ζ (υ(u)∆(u)|t− s|)

σ2
ζ (∆(u))

− V ar (ζϕ(t)− ζϕ(s))

∣∣∣∣∣ = 0.(36)

For υ ∈ [0,∞) and ϕ ∈ (0,∞), the above limit is still valid by the continuity of σ2
ζϕ

. Hence it follows from C2 that

lim
u→∞

sup
k∈Ku

sup
s,t∈E

∣∣g2
k(u)V ar

(
ξu,k(s)− ξu,k(t)

)
− 2V ar (ζϕ(s)− ζϕ(t))

∣∣ = 0.(37)

This confirms that iii) is satisfied.

We next focus on iv). Let f(t) =
σ2
ζ(t)

tλ
with 0 < λ < 2 min(α0, α∞). Then f is a regularly varying function at 0 and

∞ with index 2α0 − λ > 0 and 2α∞ − λ > 0, respectively. By C2, we have that, for u sufficiently large,

sup
k∈Ku

g2
k(u)E

{
(ξu,k(t)− ξu,k(s))2

}
≤ 4

σ2
ζ (υ(u)∆(u)|t− s|)

σ2
ζ (∆(u))

≤ 4(υ + 1)λ
f(∆(u)υ(u)|t− s|)

f(∆(u))
|t− s|λ, s, t ∈ E.

Uniform convergence theorem yields that for 0 < λ < 2 min(α0, α∞) and ϕ ∈ {0,∞}, υ ∈ [0,∞)

lim
u→∞

sup
s6=t,s,t∈E

∣∣∣∣f(∆(u)υ(u)|t− s|)
f(∆(u))

− (υ|t− s|)(2α0−λ)I{ϕ=0}+(2α∞−λ)I{ϕ=∞}

∣∣∣∣ = 0,

which implies that for u large enough

sup
s 6=t,s,t∈E

f(∆(u)υ(u)|t− s|)
f(∆(u))

< Q.

with Q a positive constant. For ϕ ∈ (0,∞) and υ ∈ (0,∞) the above inequality follows straightforwardly by noting

the continuity of f . Hence for u sufficiently large, for all ϕ ∈ [0,∞] and υ ∈ [0,∞)

sup
k∈Ku

g2
k(u)E

{
(ξu,k(t)− ξu,k(s))2

}
≤ Q|t− s|λ, s, t ∈ E,(38)
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with 0 < λ < 2 min(α0, α∞). This implies that iv) hold.

Finally, we prove ii). Notice that

1− E {ξu,k(t)ξu,k(0)} = (1− σξu,k(t)) + (1− Corr(ξu,k(t), ξu,k(0)))− (1− σξu,k(t))(1− Corr(ξu,k(t), ξu,k(0))).

In view of (37),

lim
u→∞

sup
t∈E,k∈Ku

|g2
k(u)(1− Corr(ξu,k(t), ξu,k(0)))− σ2

ζϕ(t)| = 0,

which combined with C1 leads to

lim
u→∞

sup
t∈E,k∈Ku

|g2
k(u)(1− Corr(ξu,k(t), ξu,k(0)))(1− σξu,k(t))| = 0.

Hence in view of C1 and the above limits,

lim
u→∞

sup
t∈E,k∈Ku

|g2
k(u)(1− E {ξu,k(t)ξu,k(0)})− σ2

ζϕ(t)− h(t)| = 0.

This confirms that ii) holds. Thus, applying Theorem 5.1 in [23], the claim is established for all the continuity points

of Bhζ (x,E).

Continuity of Bhζ (x,E). Next we show that Bhζ (x,E) is continuous over [0,mes(E)). Since Bhζ (x,E) is right-continuous

at 0, then we are left with the continuity of Bhζ (x,E) over (0,mes(E)). The claimed continuity at x ∈ (0,mes(E))

follows if ∫
R
P
(∫

E

I
(√

2ζϕ(t)− σ2
ζϕ(t)− h(t) + s > 0

)
dt = x

)
e−sds = 0.

Assume that the probability space (C(E),F ,P∗) with E = [a, b] is induced by the process {
√

2ζϕ(t)−σ2
ζϕ

(t)−h(t), t ∈
E} with C(E) denoting the collection of all continuous functions over E and equipped with sup-normal, and F being

the Borel σ-field on C(E). Thus in order to complete the proof, it suffices to prove that for any x ∈ (0,mes(E))∫
R
P∗
(∫

E

I
(
w(t) + s > 0

)
dt = x

)
e−sds = 0,

where w ∈ C(E). For any x ∈ (0,mes(E)), let

As =

{
w ∈ C(E):

∫
E

I
(
w(t) + s > 0

)
dt = x

}
, s ∈ R.

If
∫
E
I
(
w(t) + s > 0

)
dt = x with x ∈ (0,mes(E)), then inft∈E w(s) ≤ −s < supt∈E w(t). By the continuity of w, for

s < s′, ∫
E

I
(
w(t) + s′ > 0

)
dt ∈ (x,mes(E)].

This implies that

As ∩As′ = ∅, s 6= s′, s, s′ ∈ R.

Since As, s ∈ R are measurable sets and

sup
Λ⊂R,#Λ<∞

∑
s∈Λ

P∗ (As) ≤ 1,

where #Λ means the cardinality of set Λ, then

{s : s ∈ R such that P∗ (As) > 0}

is a countable set, which indicates that ∫
R
P∗ (As) e

−sds = 0.

Hence Bhζϕ(x,E) is continuous over (0,mes(E)). This completes the proof. �

Let

σ∗u(t) = V ar1/2

(
X(ut)

u(1 + ct)
M(u)

)
, t ≥ 0 ru(s, t) = Corr

(
X(us)

u(1 + cs)
,
X(ut)

u(1 + ct)

)
, s, t > 0.

Assume that δu > 0 with limu→∞ δu = 0. The following lemma is due to [25].
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Lemma 4.3. i) Suppose that AI is satisfied and let tu = arg inft>0
u(1+ct)
σ(ut) . If u is large enough then tu is unique and

limu→∞ tu = t∗ = α∞
c(1−α∞) . Moreover,

lim
u→∞

sup
t∈(tu−δu,tu+δu)\{tu}

∣∣∣∣∣ 1− σ∗u(t)
B
2A (t− tu)2

− 1

∣∣∣∣∣ = 0,(39)

with A,B defined in (24).

ii) If AI, AII hold, then

lim
u→∞

sup
s6=t,s,t∈(tu−δu,tu+δu)

∣∣∣∣∣∣1− ru(s, t)
σ2(u|s−t|)
2σ2(ut∗)

− 1

∣∣∣∣∣∣ = 0.(40)

Let next

σ̂u(t) = V ar1/2

(
X(t)

u+ ct
m(u)

)
, t ∈ [0, T ], r̂u(s, t) = Corr

(
X(s)

u+ cs
,
X(t)

u+ ct

)
, s, t ∈ [0, T ].

Lemma 4.4. i) If BI holds, then

lim
u→∞

sup
t∈(T−δu,T )

∣∣∣∣1− σ̂u(t)

|T − t|
− σ̇(T )

σ(T )

∣∣∣∣ = 0.(41)

ii) If BII holds and t = o(σ(t)) as t→ 0, then

lim
u→∞

sup
s6=t,s,t∈(T−δu,T )

∣∣∣∣∣∣1− r̂u(s, t)
σ2(|s−t|)
2σ2(T )

− 1

∣∣∣∣∣∣ = 0.(42)

5. Proofs

Hereafter, denote by Q, Qi, i = 1, 2, 3, . . . positive constants that may differ from line to line. The equivalence

f(u, S) ∼ h(u) as u → ∞, S → ∞ means that limS→∞ limu→∞
f(u,S)
h(u) = 1. Moreover, for any non-constant random

variable X, denote by X := X√
V ar(X)

.

Proof of Theorem 1.1 By the lack of upward jumps and using the strong Markov property, for any x, u ≥ 0 we have

P
(∫ ∞

0

Iu(X(t)− ct)dt > x

)
= P

(∫ ∞
0

I0(X(t)− ct)dt > x

)
P
(

sup
t≥0

(X(t)− ct) ≥ u
)

and using e.g. [33][Theorem 3.3] we get P
(
supt≥0(X(t)− ct) ≥ u

)
= e−αu, where α is the positive solution to the

equation ψ(α) = cα which by the strict convexity of ψ and the assumption ψ′(0+) < c exists and is unique. This

completes the proof. �

Proof of Theorem 2.1 We consider each case i)-iii) separately. The following notation is valid for all three cases.

Put for u > 0, x ≥ 0 and S > 0

π(u) = P

(∫
E(u)

I0(Zu(t)− n(u))dt > x

)
,

Zu,k(t) = Zu(kS + t), Ik = [kS, (k + 1)S], N1(u) =

[
a1(u)

S

]
− 1, N2(u) =

[
a2(u)

S

]
+ 1,

and for some ε ∈ (0, 1) set

n−u,k = n(u)

(
1 + (1− ε) inf

t∈Ik
w(g(u)|t|)

)
,

n+
u,k = n(u)

(
1 + (1 + ε) sup

t∈Ik
w(g(u)|t|)

)
.

Note that

π(u) ≤ P

 N2(u)+2∑
k=N1(u)−2

∫
Ik

I0(Zu(t)− n(u))dt > x


≤ P

(
∃N1(u)− 2 ≤ k ≤ N2(u) + 2 such that

∫
Ik

I0(Zu(t)− n(u))dt > x

)
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+P
(
∃N1(u)− 2 ≤ k, l ≤ N2(u) + 2, k 6= l such that

∫
Ik

I0(Zu(t)− n(u))dt > 0,

∫
Il

I0(Zu(t)− n(u))dt > 0

)
,

and

π(u) ≥ P

 N2(u)−2∑
k=N1(u)+2

∫
Ik

I0(Zu(t)− n(u))dt > x


≥ P

(
∃N1(u) + 2 ≤ k ≤ N2(u)− 2 such that

∫
Ik

I0(Zu(t)− n(u))dt > x

)
.

Hence in view of (11) and using Bonferroni inequality, we have

π+(u, S)− Σ1(u)− Σ2(u) ≤ π(u) ≤ π−(u, S) + Σ1(u) + Σ2(u),(43)

where

π±(u, S) =

N2(u)∓2∑
k=N1(u)±2

P
(∫

I0

I0
(
Zu,k(t)− n±u,k

)
dt > x

)
,

Σ1(u) =
∑

N1(u)−2≤k≤N2(u)+1

P

(
sup
t∈Ik

Zu(t) > n−u,k, sup
t∈Ik+1

Zu(t) > n−u,k+1

)
,

Σ2(u) =
∑

N1(u)−2≤k<k+1<l≤N2(u)+1

P
(

sup
t∈Ik

Zu(t) > n−u,k, sup
t∈Il

Zu(t) > n−u,l

)
.

� Case i) The idea of the proof is to divide E(u) into a large number of tiny intervals for each of which we give a

uniform exact asymptotics of sojourn times. For notational simplicity define

Θ(u) := β−1

∫ y2

y1

|t|1/β−1e−|t|dt
←−w (n−2(u))

g(u)
Ψ(n(u)).

Without loss of generality, we assume that x1 > 0, limu→∞ a1(u) = ∞ and x2 > 0, limu→∞ a2(u) = −∞. Then by

(16)

yi = xiI(xi > 0, lim
u→∞

ai(u) =∞})− xiI(xi > 0, lim
u→∞

ai(u) = −∞), i = 1, 2

we have y1 = x1 and y2 = −x2. By (43), in order to complete the proof, it suffices to prove that, as u→∞, S →∞,

π−(u, S) ∼ π+(u, S) and to show that Σi(u) = o(π+(u, S)), i = 1, 2.

Analysis of π±(u, S). We apply Lemma 4.1 to derive the uniform asymptotics for each term in the above sum. For

this, we have to check conditions C0-C2. Following the notation in Lemma 4.1, let

ξu,k(t) = Zu,k(t), σξu,k = 1, gk(u) = n−u,k, E = I0, Ku = {k : N1(u)− 2 ≤ k ≤ N2(u) + 2}.

Conditions C0-C1 hold straightforwardly with h(t) = 0. By (13), C2 holds for ζ = η, ν(u) = 1 and ∆(u) given in

(12). Hence we have that ζϕ(t) = ηϕ(t). Thus by Lemma 4.1, we have that for S > x

lim
u→∞

sup
k∈Ku

∣∣∣∣∣∣
P
(∫

I0
I0
(
Zu,k(t)− gk(u)

)
dt > x

)
Ψ(gk(u))

− Bηϕ(x, [0, S])

∣∣∣∣∣∣ = 0.(44)

Consequently,

π−(u, S) =

N2(u)+2∑
k=N1(u)−2

P
(∫

I0

I0
(
Zu,k(t)− n−u,k

)
dt > x

)

∼
N2(u)+2∑

k=N1(u)−2

Bηϕ(x, [0, S])Ψ(n−u,k)

∼ Bηϕ(x, [0, S])Ψ(n(u))

N2(u)+2∑
k=N1(u)−2

e−(1−ε)n2(u) inft∈Ik w(g(u)|t|), u→∞.(45)
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To get an upper bound for π−(u, S), it suffices to compute the sum above. Note that

lim
u→∞

g(u)|ai(u)| = 0, i = 1, 2.

Thus by Potter’s theorem (see [24]) or Lemma 6.1 in [34], we have for any 0 < ε < min(1, β) and all u sufficiently large

w(g(u)|s|)
w(g(u)|t|)

≥ (1− ε/2) min

(∣∣∣s
t

∣∣∣β−ε , ∣∣∣s
t

∣∣∣β+ε
)
, s, t ∈ E(u), t 6= 0(46)

implying that for u large enough

inf
t∈Ik

w(g(u)|t|) ≥ (1− ε/2)

(
|k| − 1

|k|

)β−ε
sup
t∈Ik

w(g(u)|t|), k ∈ Ku, k 6= 0.

Consequently, for any 0 < ε < 1, there exists kε ∈ N such that for |k| ≥ kε and k ∈ Ku when u is sufficiently large

inf
t∈Ik

w(g(u)|t|) ≥ (1− ε) sup
t∈Ik

w(g(u)|t|).

Hence, for u large enough

N2(u)+2∑
k=N1(u)−2

e−(1−ε)n2(u) inft∈Ik w(g(u)|t|) ≤ 2kε +
∑

k∈Ku,|k|≥kε

S−1

∫
Ik

e−(1−ε)2n2(u)w(g(u)|t|)dt

≤ 2kε + S−1

∫ a2(u)

a1(u)

e−(1−ε)2n2(u)w(g(u)|t|)dt

≤ 2kε + S−1(g(u))−1

∫ g(u)a2(u)

g(u)a1(u)

e−(1−ε)2n2(u)w(|t|)dt.(47)

We have that for S > x∫ g(u)a2(u)

g(u)a1(u)

e−(1−ε)2n2(u)w(|t|)dt ∼ (1− ε)−2/β←−w (n−2(u))β−1

∫ (1−ε)2y2

(1−ε)2y1
|t|1/β−1e−|t|dt.(48)

The proof of (48) is postponed to Appendix. Further by (45)-(48) we obtain for S > x

π−(u, S) ≤
Bηϕ(x, [0, S])

S
Θ(u)(1 + o(1)), u→∞(49)

and similarly,

π+(u, S) ≥
Bηϕ(x, [0, S])

S
Θ(u)(1 + o(1)), u→∞.(50)

Upper bound of Σi(u), i = 1, 2. (44) with x = 0 gives that

lim
u→∞

sup
N1(u)−2≤k≤N2(u)+2

∣∣∣∣∣∣
P
(

supt∈Ik Zu(t) > n−u,k

)
Ψ(n−u,k)

− Bηϕ(0, [0, S])

∣∣∣∣∣∣ = 0.(51)

Thus in light of (45)-(49) we have that

Σ1(u) ≤
∑

N1(u)−2≤k≤N2(u)+1

(
P
(

sup
t∈Ik

Zu(t) > n−u,k

)
+ P

(
sup
t∈Ik+1

Zu(t) > n−u,k+1

)

−P

(
sup

t∈Ik∪Ik+1

Zu(t) > ñu,k

))
≤

∑
N1(u)−2≤k≤N2(u)+1

Bηϕ(0, [0, S])Ψ(n−u,k)(1 + o(1))(52)

+
∑

N1(u)−2≤k≤N2(u)+1

Bηϕ(0, [0, S])Ψ(n−u,k+1)(1 + o(1))

−
∑

N1(u)−2≤k≤N2(u)+1

Bηϕ(0, [0, 2S])Ψ(ñu,k)(1 + o(1))

≤ QS−1
(
2Bηϕ(0, [0, S])− Bηϕ(0, [0, 2S])

)
Θ(u), u→∞,(53)
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where ñu,k = max(n−u,k, n
−
u,k+1). Moreover, by [21][Corollary 3.1] and (13) there exists C, C1 > 0 such that for

N1(u)− 2 ≤ k < k + 1 < l ≤ N2(u) + 1 and all u large enough

P
(

sup
t∈Ik

Zu(t) > n−u,k, sup
t∈Il

Zu(t) > n−u,l

)
≤ CS2e−C1|k−l|

γSγΨ(n̂u,k,l),

with n̂u,k,l = min(n−u,k, n
−
u,l) and γ = min(α0, α∞), which combined with (45)-(49) leads to

Σ2(u) ≤
∑

N1(u)−2≤k<k+1<l≤N2(u)+1

CS2e−C1|k−l|
γSγΨ(n̂u,k,l)

≤
∑

N1(u)−2≤k≤N2(u)+1

Ψ(n−u,k)
∑
l≥2

CS2e−C1l
γSγ

≤
∑

N1(u)−2≤k≤N2(u)+1

Ψ(n−u,k)QS2e−Q1S
γ

≤ QS2e−Q1S
γ

Θ(u), u→∞.(54)

Consequently, by (52) and (54), for any S > 0

Σ1(u) + Σ2(u) ≤ Q
(
S−1

(
2Bηϕ(0, [0, S])− Bηϕ(0, [0, 2S])

)
+ S2e−Q1S

γ
)

Θ(u).(55)

Exact asymptotics of π(u). Inserting (49), (50) and (55) into (43) and dividing each term by Θ(u), we have that for

S > x

lim sup
u→∞

π(u)

Θ(u)
≤
Bηϕ(x, [0, S])

S
+ Q

(
2
Bηϕ(0, [0, S])

S
−
Bηϕ(0, [0, 2S])

S
+ S2e−Q1S

γ

)
(56)

lim inf
u→∞

π(u)

Θ(u)
≥
Bηϕ(x, [0, S])

S
−Q

(
2
Bηϕ(0, [0, S])

S
−
Bηϕ(0, [0, 2S])

S
+ S2e−Q1S

γ

)
.(57)

Combination of (56)-(57) and the fact that (see [22] and [20])

lim
S→∞

Bηϕ(0, [0, S])

S
∈ (0,∞)

leads to

lim inf
S→∞

Bηϕ(x, [0, S])

S
= lim sup

S→∞

Bηϕ(x, [0, S])

S
<∞.

We next prove that

lim inf
S→∞

Bηϕ(x, [0, S])

S
> 0.(58)

Note that for P
(∫

E(u)
⋂

(∪k∈ZI2k)
I0(Zu(t)− n(u))dt > x

)
, similarly as in (56)-(57) we have for S > x

lim inf
u→∞

P
(∫

E(u)
⋂

(∪k∈ZI2k)
I0(Zu(t)− n(u))dt > x

)
Θ(u)

≥
Bηϕ(x, [0, S])

2S
−QS2e−Q1S

γ

,

which together with (56) gives that that for any S1 > x

lim inf
S→∞

Bηϕ(x, [0, S])

S
≥
Bηϕ(x, [0, S1])

S1
−QS2

1e
−Q1S

γ
1 .

Notice that for S > x, Bηϕ([0, S], x) is non-decreasing with respect to S for S > x and

Bηϕ([0, S], x) ≥
∫
R
P
(

inf
t∈[0,S]

(√
2ηϕ(t)− V ar(ηϕ(t))

)
> −z

)
e−zdz > 0.

Hence for some S1 > x,

lim inf
S→∞

Bηϕ(x, [0, S])

S
≥
Bηϕ(x, [0, S1])

S1
−QS2

1e
−Q1S

γ
1 > 0,

which confirms that (58) holds. Hence we have

Bηϕ(x) = lim
S→∞

Bηϕ(x, [0, S])

S
∈ (0,∞).

Letting S →∞ in (56)-(57), we derive

π(u) ∼ Bηϕ(x)Θ(u), u→∞.
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This completes the proof of case i).

� Case ii) Let us first assume that

lim
u→∞

a1(u) = −∞, lim
u→∞

a2(u) =∞.

By (11) observe that for u sufficiently large

p0(u) ≤ π(u) ≤ p0(u) + π1(u),(59)

where

p0(u) = P

(∫
[−S,S]

I0(Zu(t)− n(u))dt > x

)
, π1(u) =

N2(u)+2∑
k=N1(u)−2,k 6=−1,0

P
(

sup
t∈I0

Zu,k(t) > n−u,k

)
.

In order to complete the proof, we shall derive the asymptotics of p0(u) and show further that

π1(u) = o(p0(u)), u→∞, S →∞.

The analysis of p0(u). In order to apply Lemma 4.1, we need to check the validity of C0-C2. C0 holds straightfor-

wardly. By (14) and uniform convergence theorem (e.g., in [24])

lim
u→∞

sup
t∈[−S,S]

∣∣n2(u)w(g(u)|t|)− γ|t|β
∣∣

≤ lim
u→∞

sup
t∈[−S,S]

∣∣∣∣(n2(u)w(g(u))− γ
) w(g(u)|t|)
w(g(u))

∣∣∣∣+ γ lim
u→∞

sup
t∈[−S,S]

∣∣∣∣w(g(u)|t|)
w(g(u))

− |t|β
∣∣∣∣ = 0.

By (11), (14) and uniform convergence theorem (e.g., in [24]), we have that for any S > 0

lim
u→∞

sup
t∈[−S,S]

∣∣n2(u)(1− σu(t))− γ|t|β
∣∣ ≤ lim

u→∞
sup

t∈[−S,S]

∣∣n2(u)w(g(u)|t|)
∣∣ ∣∣∣∣ 1− σu(t)

w(g(u)|t|)
− 1

∣∣∣∣
+ lim
u→∞

sup
t∈[−S,S]

∣∣n2(u)w(g(u)|t|)− γ|t|β
∣∣

= 0,

which confirms that C1 hold with h(t) = γ|t|β . By (13), C2 is satisfied with ζϕ(t) = ηϕ(t). Thus we have

p0(u) ∼ Bγ|t|
β

ηϕ (x, [−S, S])Ψ(n(u)).(60)

Upper bound of π1(u). By (44)

π1(u) ∼
N2(u)+2∑

k=N1(u)−2,k 6=−1,0

Bηϕ(0, [0, S])Ψ(n−u,k)

≤ Bηϕ(0, [0, S])Ψ(n(u))

N2(u)+2∑
k=N1(u)−2,k 6=−1,0

e−(1−ε) inft∈Ik n
2(u)w(g(u)|t|), u→∞.

Further, using (46) for u sufficiently large and S > 1 we have

inf
t∈Ik

n2(u)w(g(u)|t|) ≥ γ

2
inf
t∈Ik

w(g(u)|t|)
w(g(u))

≥ Q(|k|S)β/2, N1(u)− 2 ≤ k ≤ N2(u) + 2, k 6= −1, 0.

Thus we have

π1(u) ≤ Bηϕ(0, [0, S])Ψ(n(u))

N2(u)+2∑
k=N1(u)−2,k 6=−1,0

e−Q(|k|S)β/2

≤ Bηϕ(0, [0, S])Q2e
−Q1S

β/2

Ψ(n(u)), u→∞.(61)

Exact asymptotics of π(u). Inserting (60) and (61) into (59) and dividing each terms by Ψ(n(u)), we have

Bγ|t|
β

ηϕ (x, [−S, S]) ≤ lim infu→∞
π(u)

Ψ(n(u))

≤ lim supu→∞
π(u)

Ψ(n(u))

≤ Bγ|t|
β

ηϕ (x, [−S, S]) + Bηϕ(0, [0, S])Q2e
−Q1S

β/2

.(62)
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This implies that for S1 > x

0 < lim
S→∞

Bγ|t|
β

ηϕ (x, [−S, S]) ≤ Bγ|t|
β

ηϕ (x, [−S1, S1]) + Bηϕ(0, [0, S1])Q2e
−Q1S

β/2
1 <∞.

Moreover, by case i)

lim
S→∞

Bηϕ(0, [0, S])

S
∈ (0,∞).

Therefore, letting S →∞ in (62), we have

π(u) ∼ Bγ|t|
β

ηϕ (x, (−∞,∞))Ψ(n(u)), u→∞.

This establishes the claim for a1 = −∞, a2 =∞.

Next we focus on the case ai ∈ (−∞,∞), i = 1, 2 with a2 − a1 > x. Note that for ε > 0 sufficiently small and u

sufficiently large

P

(∫
[a1+ε,a2−ε]

I0(Zu(t)− n(u))dt > x

)
≤ π(u) ≤ P

(∫
[a1−ε,a2+ε]

I0(Zu(t)− n(u))dt > x

)
.

Applying Lemma 4.1 it follows that

Bγ|t|
β

ηϕ (x, [a1 + ε, a2 − ε])Ψ(n(u)) ≤ π(u) ≤ Bγ|t|
β

ηϕ (x, [a1 − ε, a2 + ε])Ψ(n(u)), u→∞.(63)

Notice that

Bγ|t|
β

ηϕ (x, [a1 − ε, a2 + ε]) =

∫
R
P

(∫
[a1−ε,a2+ε]

I0(η̃(t) + z)dt > x

)
e−zdz

=

∫
R
P

(∫
[a1,a2]

I0(η̃(t) + z)dt+

∫
[a1−ε,a1]∪[a2,a2+ε]

I0(η̃(t) + z)dt > x

)
e−zdz,

where η̃(t) =
√

2ηϕ(t)− V ar(ηϕ(t))− γ|t|β , and

0 ≤
∫

[a1−ε,a1]∪[a2,a2+ε]

I0(η̃(t) + z)dt ≤ 2ε.

Hence

Bγ|t|
β

ηϕ (x, [a1, a2]) ≤ Bγ|t|
β

ηϕ (x, [a1 − ε, a2 + ε]) ≤ Bγ|t|
β

ηϕ (x− 2ε, [a1, a2]).

The continuity of Bγ|t|
β

ηϕ (x, [a1, a2]) ( see Lemma 4.1) leads to

lim
ε→0
Bγ|t|

β

ηϕ (x− 2ε, [a1, a2]) = Bγ|t|
β

ηϕ (x, [a1, a2]),

implying that

lim
ε→0
Bγ|t|

β

ηϕ (x, [a1 − ε, a2 + ε]) = Bγ|t|
β

ηϕ (x, [a1, a2]).(64)

We can analogously show that

lim
ε→0
Bγ|t|

β

ηϕ (x, [a1 + ε, a2 − ε]) = Bγ|t|
β

ηϕ (x, [a1, a2]).(65)

Letting ε→ 0 in (63), we have that

π(u) ∼ Bγ|t|
β

ηϕ (x, [a1, a2])Ψ(n(u)), u→∞.

This establishes the claim for case ai ∈ (−∞,∞), i = 1, 2 with a2 − a1 > x.

For the case that a1 = −∞, a2 ∈ (−∞,∞), and a1 ∈ (−∞,∞), a2 = ∞, we can establish the claim by using same

approach.

� Case iii) Let us first consider the case that

lim
u→∞

a1(u)
g(u)

←−w (n−2(u))
= −∞, lim

u→∞
a2(u)

g(u)
←−w (n−2(u))

=∞.
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By (11) we have

p1(u) ≤ π2(u) ≤
3∑
i=1

pi(u) + π3(u),(66)

where

π2(u) = P

(∫
E(u)

I0(Zu(t)− n(u))dt > θ(u)x

)

p1(u) = P

(∫
[−θ(u)S,θ(u)S]

I0(Zu(t)− n(u))dt > θ(u)x

)
,

pi(u) = P

(
sup

t∈Ii−3\[−θ(u)S,θ(u)S]

Zu(t) > n′(u)

)
, i = 2, 3,

π3(u) =

N2(u)+2∑
k=N1(u)−2,k 6=0,−1

P
(

sup
t∈Ik

Zu(t) > n−u,k

)
,

with

θ(u) =
←−w (n−2(u))

g(u)
, n′(u) = n(u)

(
1 + (1− ε) inf

t∈[−S,S]\[−θ(u)S,θ(u)S]
w(g(u)|t|)

)
, 0 < ε < 1.

We shall derive the exact asymptotics of p1(u) and then prove that p2(u), p3(u) and π3(u) are all negligible compared

with p1(u) as u→∞ and S →∞.

Analysis of p1(u). Substituting t by θ(u)s we obtain

p1(u) = P

(∫
[−S,S]

I0(Zu(θ(u)t)− n(u))dt > x

)
.

Next we check C0-C2 in Lemma 4.1. C0 holds straightforwardly. Moreover, by (11) and uniform convergence theorem

(e.g., in [24]), with noting that n2(u) = (w(←−w (n−2(u))))−1, we have that for any S > 0

lim
u→∞

sup
t∈[−S,S]

∣∣n2(u)(1− σu(θ(u)t))− |t|β
∣∣ ≤ lim

u→∞
sup

t∈[−S,S]

∣∣∣∣w(←−w (n−2(u))|t|)
w(←−w (n−2(u)))

∣∣∣∣ ∣∣∣∣ 1− σu(θ(u)t)

w(←−w (n−2(u))|t|)
− 1

∣∣∣∣
+ lim
u→∞

sup
t∈[−S,S]

∣∣∣∣w(←−w (n−2(u))|t|)
w(←−w (n−2(u)))

− |t|β
∣∣∣∣

= 0.

This confirms that C1 holds with h(t) = |t|β . It follows from (13) that

lim
u→∞

sup
s,t∈[−S,S],s6=t

∣∣∣∣∣∣n
2(u)(1− Corr(Zu(θ(u)t)− Zu(θ(u)s)))

σ2
η(θ(u)∆(u)|t−s|)

σ2
η(∆(u))

− 1

∣∣∣∣∣∣ = 0

with

lim
u→∞

θ(u) = lim
u→∞

←−w (n−2(u))

g(u)
= 0.

This means that C2 is satisfied with ζϕ = 0. Therefore we have that

p1(u) ∼ B|t|
β

0 (x, [−S, S])Ψ(n(u)).(67)

Upper bound for π3(u), pi(u), i = 2, 3. Next we find an upper bound of π3(u). Similarly as (61), by (44), we have

π3(u) ≤ Bηϕ(0, [0, S])Q2e
−Q1S

β/2

Ψ(n(u)), u→∞.(68)

Finally, we focus on deriving an upper bound of pi(u), i = 2, 3. In light of (44), we have that

pi(u) ≤ P

(
sup
t∈Ii−3

Zu(t) > n′(u)

)
∼ Bηϕ(0, [0, S])Ψ(n′(u)), i = 2, 3.(69)

By (46), we have that

n2(u) inf
t∈[−S,S]\[−θ(u)S,θ(u))S]

w(g(u)|t|) ≥ 1

2
inf

t∈[0,S/θ(u)]\[−S,S]

w(←−w (n−2(u))|t|)
w(←−w (n−2(u)))

≥ 1

4
inf

t∈[0,S/θ(u)]\[−S,S]
|t|β/2 ≥ 1

4
|S|β/2,
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which together with (69) leads to

pi(u) ≤ Bηϕ(0, [0, S])e−Q|S|
β/2/8Ψ(n(u)), u→∞, i = 2, 3.(70)

Exact asymptotics of π2(u). Inserting (67), (68) and (70) into (66), we have that

lim inf
u→∞

π2(u)

Ψ(n(u))
≥ B|t|

β

0 (x, [−S, S]),

lim sup
u→∞

π2(u)

Ψ(n(u))
≤ B|t|

β

0 (x, [−S, S]) + Bηϕ(0, [0, S])e−QS
β/2

,(71)

which implies that

0 < lim
S→∞

B|t|
β

0 (x, [−S, S]) ≤ B|t|
β

0 (x, [−S1, S1]) + Bηϕ(0, [0, S1])e−QS
β/2
1 <∞, S1 > x.

Letting S →∞ in (71) yields that

π2(u) ∼ B|t|
β

0 (x, (−∞,∞))Ψ(n(u)).

This establishes the claim for b1 = −∞, b2 =∞.

Next we focus on the case b1, b2 ∈ (−∞,∞) with b2 − b1 > x. For ε > 0 sufficiently small and u sufficiently large, we

have

P

(∫
[θ(u)(b1+ε),θ(u)(b2−ε)]

I0(Zu(t)− n(u))dt > θ(u)x

)
≤ π2(u) ≤ P

(∫
[θ(u)(b1−ε),θ(u)(b2+ε)]

I0(Zu(t)− n(u))dt > θ(u)x

)
.

Applying Lemma 4.1, similarly as in (67), we derive that

B|t|
β

0 (x, [b1 + ε, b2 − ε])Ψ(n(u)) ≤ π2(u) ≤ B|t|
β

0 (x, [b1 − ε, b2 + ε])Ψ(n(u)), u→∞.

In light of (64) and (65), letting ε→ 0 in above inequality, we get

π2(u) ∼ B|t|
β

0 (x, [b1, b2])Ψ(n(u)), u→∞.

Hence the claim for case b1, b2 ∈ (−∞,∞) is established.

The proofs of claims for other cases of b1 and b2 can be done by the same line of reasoning.

This completes the proof. �

Proof of Theorem 3.1 We set ∆(u) = ←−σ
(√

2σ2(ut∗)
u(1+ct∗)

)
. By (23) observe that for any u > 0 (recall the definition of

←−σ in (22))

π4(u) ≤ P
(

1

∆(u)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
≤ π4(u) + π5(u)(72)

where

π4(u) = P

(
u

∆(u)

∫
E1(u)

I0
(

X(ut)

u(1 + ct)
M(u)−M(u)

)
dt > x

)
,

π5(u) = P

(
sup

t∈[0,∞]\E1(u)

X(ut)

u(1 + ct)
M(u) > M(u)

)
,(73)

with

E1(u) =

[
tu −

lnM(u)

M(u)
, tu +

lnM(u)

M(u)

]
.(74)

The idea of the proof is to derive the exact asymptotics of π4(u) using Theorem 2.1 and to show that π5(u) = o(π4(u))

as u→∞.

The analysis of π4(u). Scaling time with u
∆(u) , we have

π4(u) = P

(∫
E2(u)

I0 (Zu(t)−M(u)) dt > x

)
,(75)

where

Zu(t) =
X(utu + ∆(u)t)

u(1 + ctu) + c∆(u)t
, E2(u) =

[
− u lnM(u)

∆(u)M(u)
,
u lnM(u)

∆(u)M(u)

]
.(76)



20 KRZYSZTOF DȨBICKI, PENG LIU, AND ZBIGNIEW MICHNA

It follows from (39) and (40) that

1−
√
V ar(Zu(t)) ∼

(√
B

2A

∆(u)

u
|t|

)2

, t ∈ E2(u),

lim
u→∞

sup
s 6=t,s,t∈E2(u)

∣∣∣∣∣∣M2(u)
1− Corr(Zu(s), Zu(t))

σ2(∆(u)|s−t|)
σ2(∆(u))

− 1

∣∣∣∣∣∣ = 0,(77)

which imply that (11) and (13) hold with

w(t) = t2, g(u) =

√
B

2A

∆(u)

u
, n(u) = M(u), η = X, ∆(u) =←−σ

(√
2σ2(ut∗)

u(1 + ct∗)

)
,

a1(u) = − u lnM(u)

∆(u)M(u)
, a2(u) =

u lnM(u)

∆(u)M(u)
.(78)

Next we check the assumptions of i) in Theorem 2.1. Following the notation in Theorem 2.1, we have

lim
u→∞

g(u) = lim
u→∞

√
B

2A

∆(u)

u
= 0, lim

u→∞
g(u)|ai(u)| = lim

u→∞

√
B

2A

lnM(u)

M(u)
= 0, i = 1, 2.(79)

Note that

n2(u)w(g(u)) =
B

2A

(
M(u)∆(u)

u

)2

∼ Q
(←−σ (u−1σ2(u))

σ(u)

)2

is a regularly varying function at ∞ with index 2τ with

τ =


2α∞−1
α0

− α∞, ϕ = 0

−α∞, ϕ ∈ (0,∞)
2α∞−1
α∞

− α∞, ϕ =∞.
(80)

Since τ < 0 for all ϕ, then for all ϕ ∈ [0,∞]

γ = lim
u→∞

n2(u)w(g(u)) = 0.(81)

Moreover,

lim
u→∞

n2(u)w(g(u)|ai(u)|) = lim
u→∞

B

2A
(lnM(u))2 =∞, i = 1, 2(82)

and by (80)

lim
u→∞

a1(u) = − lim
u→∞

u lnM(u)

∆(u)M(u)
= −Q lim

u→∞

σ(u)lnM(u)
←−σ (u−1σ2(u))

= −∞,(83)

which imply that y1 = −∞. Similarly we can check that y2 =∞. Additionally,

lim
u→∞

n(u)w(g(u)|ai(u)|) =
B

A
lim
u→∞

(lnM(u))2

M(u)
= 0, i = 1, 2.(84)

Hence all the assumptions in i) of Theorem 2.1 are satisfied, leading to

π4(u) ∼ BXϕ(x)
1

2

∫ ∞
−∞
|t|1/2−1e−|t|dt

√
2A

B

u

M(u)∆(u)
Ψ(M(u))

∼ BXϕ(x)

√
2Aπ

B

u

M(u)∆(u)
Ψ(M(u)), u→∞,(85)

where Xϕ is given in (25).

Upper bound of π5(u). By [20][Lemma 7] or [25][Lemma 5.6], we have

π5(u) = o

(
u

M(u)∆(u)
Ψ(M(u))

)
, u→∞,(86)

which combined with (72) and (85) leads to

P
(

1

∆(u)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
∼ BXϕ(x)

√
2Aπ

B

u

M(u)∆(u)
Ψ(M(u)), u→∞.
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This completes the proof. �

Proof of Corollary 3.3 We also set ∆(u) = ←−σ
(√

2σ2(ut∗)
u(1+ct∗)

)
. Observe that for 0 ≤ x1 ≤ x2 < ∞ and u > 0 the

conditional distribution can be rewritten as the ratio of two sojourn probabilities over different intervals, i.e.,

P
(
τ∗u(x1, x2)− utu

A(u)
< y

)
=

q(u)

P
(

1
∆(u)

∫∞
0

Iu(X(t)− ct)dt > x1

) ,(87)

where y ∈ R and

q(u) = P

(
1

∆(u)

∫
[0,utu+A(u)y]

Iu(X(t)− ct)dt > x2

)
.

Hence in order to complete the proof it suffices to derive the asymptotics of q(u). Using notation for E1(u) and π5(u)

introduced in (73) and (74), we have that

q1(u) ≤ q(u) ≤ q1(u) + π4(u),(88)

with

q1(u) = P

(
u

∆(u)

∫
[tu− lnM(u)

M(u)
,tu+

A(u)
u y]

I0
(

X(ut)

u(1 + ct)
M(u)−M(u)

)
dt > x2

)
.

Scaling time by u
∆(u) , we rewrite

q1(u) = P

(∫
E3(u)

I0 (Zu(t)−M(u)) dt > x2

)
,

where

Zu(t) =
X(utu + ∆(u)t)

u(1 + ctu) + c∆(u)t
, E3(u) =

[
− u lnM(u)

∆(u)M(u)
,
A(u)

∆(u)
y

]
.

Using the same notation as introduced in (78) with the exception that a2(u) = A(u)
∆(u)y, we have that (77), (79), (81)

and (84) also hold. We next get the value of yi, i = 1, 2. For this, note that

lim
u→∞

n2(u)w(g(u)|a2(u)|) = lim
u→∞

B

2A

(
M(u)A(u)

u
y

)2

=
α∞

c2(1− α∞)3

B

2A
y2 =

y2

2
,

where A and B are given in (24). Moreover, by (80)

lim
u→∞

A(u)

∆(u)
= Q lim

u→∞

σ(u)
←−σ (u−1σ2(u))

=∞.

Hence y2 = y2

2 I{y>0} − y2

2 I{y<0}. Additionally, it follows from (82)-(83) that y1 = −∞. Thus applying i) in Theorem

2.1 we have

q1(u) ∼ BXϕ(x2)

√
2Aπ

B

1

2
√
π

∫ y2

−∞
|t|−1/2e−|t|dt

u

M(u)∆(u)
Ψ(M(u))

∼ BXϕ(x2)

√
2Aπ

B
Φ(y)

u

M(u)∆(u)
Ψ(M(u)), u→∞.(89)

Combination of (86), (88) and (89) leads to

q(u) ∼ BXϕ(x2)

√
2Aπ

B
Φ(y)

u

M(u)∆(u)
Ψ(M(u)), u→∞.

Consequently, by Theorem 3.1 and (87)

P
(
τ∗u(x1, x2)− utu

A(u)
< y

)
=
BXϕ(x2)

BXϕ(x1)
Φ(y), u→∞

establishing the proof. �

Proof of Theorem 3.4 We set ∆(u) =←−σ
(√

2σ2(T )
u+cT

)
. Following (26), we have

λ(u) ≤ P

(
v(u)

∫ T

0

Iu(X(t)− ct)dt > x

)
≤ λ(u) + λ1(u),(90)
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where

λ(u) = P

(
v(u)

∫
E4(u)

I0
(
X(t)

u+ ct
m(u)−m(u)

)
dt > x

)
,

λ1(u) = P

(
sup

t∈[0,T ]\E4(u)

X(t)

u+ ct
m(u) > m(u)

)
,

with

E4(u) =

[
T −

(
lnm(u)

m(u)

)2

, T

]
, v(u) = 1/∆(u)

if limt→0
|t|

σ2(|t|) ∈ [0,∞) and

v(u) = (m(u))2

if limt→0
|t|

σ2(|t|) =∞. We shall derive the exact asymptotics of λ(u) by applying Theorem 2.1, and show that

λ1(u) = o(λ(u)), u→∞.

We distinguish three cases: limt→0
|t|

σ2(|t|) = 0, (0,∞) and ∞, respectively.

Case limt→0
|t|

σ2(|t|) = 0 .

Asymptotics of λ(u). Noting that v(u) = 1/∆(u) and scaling time by ∆(u) we get

λ(u) = P

(∫
E5(u)

I0 (Zu(t)−m(u)) dt > x

)
,(91)

with

Zu(t) =
X(T −∆(u)t)

u+ cT − c∆(u)t
m(u), E5(u) =

[
0, (∆(u))−1

(
lnm(u)

m(u)

)2
]
.(92)

In light of Lemma 4.4, we have that

1−
√
V ar(Zu(t)) ∼ σ̇(T )

σ(T )
∆(u)|t|, t ∈ E5(u),

lim
u→∞

sup
s6=t,s,t∈E5(u)

∣∣∣∣∣∣m
2(u)(1− Corr(Zu(t), Zu(s)))

σ2(∆(u)|t−s|)
σ2(∆(u))

− 1

∣∣∣∣∣∣ = 0.(93)

With the notation introduced in Theorem 2.1, (93) implies that

n(u) = m(u), w = t, g(u) =
σ̇(T )

σ(T )
∆(u), ∆(u) =←−σ

(√
2σ2(T )

u+ cT

)
, η = X,

E(u) = [a1(u), a2(u)], a1(u) = 0, a2(u) = (∆(u))−1

(
lnm(u)

m(u)

)2

.(94)

Next we check the conditions in i) of Theorem 2.1. It follows that

lim
u→∞

g(u) = lim
u→∞

σ̇(T )

σ(T )
∆(u) = 0, g(u)a1(u) = 0, lim

u→∞
g(u)a2(u) = lim

u→∞

(
lnm(u)

m(u)

)2

= 0,(95)

and

γ = lim
u→∞

n2(u)w(g(u)) = lim
u→∞

σ̇(T )

σ(T )
∆(u)(m(u))2 = Q lim

u→∞

←−σ (u−1)

σ2(←−σ (u−1))
= 0.

Moreover,

x1 = lim
u→∞

n2(u)w(g(u)|a1(u)|) = 0, x2 = lim
u→∞

n2(u)w(g(u)|a2(u)|) = Q lim
u→∞

σ̇(T )

σ(T )
(lnm(u))2 =∞,

lim
u→∞

a2(u) = Q lim
u→∞

σ2(←−σ (u−1))
←−σ (u−1)

lnm(u) =∞,

imply that y1 = 0 and y2 =∞. Additionally,

lim
u→∞

n(u)(w(g(u)|a1(u)|) + w(g(u)|a2(u)|)) = lim
u→∞

σ̇(T )

σ(T )

(lnm(u))2

m(u)
= 0, lim

u→∞
∆(u) = 0.
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Consequently, by i) of Theorem 2.1 and Remark 2.2 we have

λ(u) ∼ BB2α0
(x)

σ(T )

σ̇(T )

1

(m(u))2∆(u)
Ψ(m(u)).(96)

Upper bound of λ1(u). From (41) we have for sufficiently large u that

sup
t∈[0,T ]\E4(u)

V ar

(
X(t)

u+ ct
m(u)

)
≤ 1−Q

(
ln(m(u))

m(u)

)2

.

Further, by BII

(m(u))2V ar

(
X(t)

u+ ct
− X(s)

u+ cs

)
≤ 2(m(u))2

(
σ2(|t− s|)
(u+ ct)2

+
σ2(s)c2(t− s)2

(u+ ct)2(u+ cs)2

)
≤ Q

(
σ2(|t− s|) + |t− s|2

)
≤ Q|t− s|α0 , s, t ∈ [0, T ].

Consequently, in light of Piterbarg Theorem [Theorem 8.1 in [22]] we have that for u sufficiently large

λ1(u) ≤ Q1(m(u))2/α0Ψ

 m(u)√
1−Q

(
ln(m(u))
m(u)

)2

 .(97)

Combination of (90), (96) and (97) leads to

P

(
1

∆(u)

∫ T

0

Iu(X(t)− ct)dt > x

)
∼ BB2α0

(x)
σ(T )

σ̇(T )

1

(m(u))2∆(u)
Ψ(m(u)),

establishing the claim.

Case limt→0
|t|

σ2(|t|) = 1/θ ∈ (0,∞). First note that (91)-(95) still hold. Next we check the conditions of ii) in Theorem

2.1. Following the notation in Theorem 2.1, we have that

γ = lim
u→∞

n2(u)w(g(u)) = 2σ(T )σ̇(T ) lim
u→∞

←−σ (u−1)

σ2(←−σ (u−1))
=

2σ(T )σ̇(T )

θ
,

a1 = lim
u→∞

a1(u) = 0, a2 = lim
u→∞

a2(u) = lim
u→∞

(∆(u))−1

(
lnm(u)

m(u)

)2

=∞.

Consequently, in light of case ii) in Theorem 2.1 and Remark 2.2

λ(u) ∼ B
2σ(T )σ̇(T )|t|

θ

B2α0
(x)Ψ(m(u)), u→∞,

which together with (90) and (97) establishes the claim.

Case limt→0
|t|

σ2(|t|) =∞ . Noting that v(u) = (m(u))2, scaling of time by ∆(u) we have

λ(u) = P

(∫
E5(u)

I0 (Zu(t)−m(u)) dt >
x

∆(u)(m(u))2

)
,

with E5(u) defined in (92) and

Zu(t) =
X(T −∆(u)t)

u+ cT − c∆(u)t
m(u).

Next we verify conditions of case iii) in Theorem 2.1. Notice that (91)-(95) still hold. Using notation in Theorem 2.1,

we have

γ = lim
u→∞

n2(u)w(g(u)) = 2σ(T )σ̇(T ) lim
u→∞

←−σ (u−1)

σ2(←−σ (u−1))
=∞,

b1 = lim
u→∞

a1(u)g(u)
←−w (n−2(u))

= 0, b2 = lim
u→∞

b(u)g(u)
←−w (n−2(u))

= lim
u→∞

σ̇(T )

σ(T )

(lnm(u))2

m(u)
=∞.

Moreover,
x

∆(u)(m(u))2
=
←−w (n−2(u))

g(u)

σ̇(T )

σ(T )
x = θ(u)

σ̇(T )

σ(T )
x.

Consequently, by case iii) in Theorem 2.1 and Remark 2.2

λ(u) = P

(∫
E5(u)

I0 (Zu(t)−m(u)) dt >
←−w (n−2(u))

g(u)

σ̇(T )

σ(T )
x

)
∼ B|t|0

(
σ̇(T )

σ(T )
x, [0,∞)

)
Ψ(m(u)), u→∞,
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which combined with (90), (97) and (19) yields that

P

(
(m(u))2

∫ T

0

Iu(X(t)− ct)dt > x

)
∼ e−

σ̇(T )
σ(T )

xΨ(m(u)), u→∞.

This completes the proof. �

Proof of Corollary 3.5. Observe that for any y ≥ 0

P
(
σ̇(T )

σ3(T )
u2(T − τ∗u,T (x1, x2)) ≥ y

)
=

P (τu,T (x2) ≤ Tu(y))

P (τu,T (x1) ≤ T )
,(98)

with Tu(y) = T − u−2 σ
3(T )
σ̇(T ) y. By the definition of τu,T (x), we have

P (τu,T (x1) ≤ T ) = P

(
v(u)

∫ T

0

Iu(X(t)− ct)dt > x1

)
,

P (τu,T (x2) ≤ Tu(y)) = P

(
v(u)

∫ Tu(y)

0

Iu(X(t)− ct)dt > x2

)
,(99)

with v(u) = 1/←−σ
(√

2σ2(T )
u+cT

)
if limt→0

|t|
σ2(|t|) ∈ [0,∞), and v(u) = (m(u))2 if limt→0

|t|
σ2(|t|) =∞. Since limu→∞ Tu(y) =

T , we get that the asymptotics of (99) is the same as in Theorem 3.4 with T replaced by Tu(y) and x replaced by x2.

Using this fact and by Theorem 3.4 for all limt→0
|t|

σ2(|t|) ∈ [0,∞]

P (τu,T (x2) ≤ Tu(y))

P (τu,T (x1) ≤ T )
∼ Γ(x1, x2)

Ψ
(
u+cTu(y)
σ(Tu(y))

)
Ψ(m(u))

∼ Γ(x1, x2) exp

(
−1

2

(
u+ cT

σ(T )

)2
((

1− c(T − Tu(y))

u+ cT

)2(
1− σ̇(T )(T − Tu(y))

σ(T )

)−2

− 1

))
∼ Γ(x1, x2)e−y, y ≥ 0,

where Γ(x1, x2) is given in Theorem 3.5. This completes the proof. �

Proof of Theorem 3.6 By self-similarity of X, we have that

P

(
1

u←−ρ ((Âu1−H)−2)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
= P

(
1

←−ρ ((Âu1−H)−2)

∫ ∞
0

I0
(
X(t)

1 + ct
− u1−H

)
dt > x

)

= P

(
1

←−ρ ((Âu1−H)−2)

∫ ∞
0

I0
(
Â
X(t)

1 + ct
− Âu1−H

)
dt > x

)
.

Let

Z(t) = Â
X(t)

1 + ct
, n(u) = Âu1−H , ∆(u) =←−ρ ((n(u))−2).(100)

Observe that

$(u) ≤ P
(

1

∆(u)

∫ ∞
0

I0(Z(t)− n(u))dt > x

)
≤ $(u) +$1(u),(101)

where

$(u) = P

(
1

∆(u)

∫
[t0−(lnn(u))/n(u),t0+(lnn(u))/n(u)]

Iu(Z(t)− n(u))dt > x

)
,

$1(u) = P

(
sup

t∈[0,∞)\[t0−(lnn(u))/n(u),t0+(lnn(u))/n(u)]

Z(t) > n(u)

)
.

First we derive the asymptotics of $(u) by applying Theorem 2.1 and then show that ω1 is asymptotically negligible

in comparison to $(u) as u→∞. We distinguish between three cases: γ = 0, γ ∈ (0,∞) and γ =∞.



SOJOURN TIMES OF GAUSSIAN PROCESSES WITH TREND 25

Case γ = 0.

The asymptotics of $(u). In order to apply Theorem 2.1, we rewrite

$(u) = P

(∫
[−δu,δu]

I0(Z(t0 + ∆(u)t)− n(u))dt > x

)
,(102)

with δu = lnn(u)
n(u)∆(u) . By (30) and (31), we have that, as u→∞

1−
√
V ar(Z(t0 + ∆(u)t)) ∼ B̂

2Â
(∆(u)t)2, t ∈ [−δu, δu],(103)

and

lim
u→∞

sup
s6=t,s,t∈[−δu,δu]

∣∣∣∣∣∣n
2(u)(1− Corr(Z(t0 + ∆(u)s), Z(t0 + ∆(u)t)))

ρ(∆(u)|t−s|)
ρ(∆(u))

− 1

∣∣∣∣∣∣ = 0.

Thus we have that, corresponding to the notation in Theorem 2.1,

w(t) =
B̂

2Â
t2, g(u) = ∆(u), a1(u) = −δu, a2(u) = δu.(104)

A direct calculation shows that

lim
u→∞

n2(u)w(g(u)) =
B̂

2Â
lim
u→∞

(n(u)∆(u))2 =
B̂

2Â
lim
u→∞

(n(u)←−ρ ((n(u))−2))2 =
B̂

2Â
lim
t→0

t2

ρ(|t|)
= 0.(105)

lim
u→∞

n(u)w(g(u)|ai(u)|) =
B̂

2Â
lim
u→∞

(lnn(u))2

n(u)
= 0.

xi = lim
u→∞

n2(u)w(g(u)|ai(u)|) =
B̂

2Â
lim
u→∞

(lnn(u))2 =∞, i = 1, 2.

By the fact that

lim
u→∞

a1(u) = − lim
u→∞

lnn(u)

n(u)∆(u)
= −∞, lim

u→∞
a2(u) =∞,

we have that

y1 = −∞, y2 =∞.

Noting that limu→∞∆(u) = 0 and by i) in Theorem 2.1 and Remark 2.2 i), we have

$(u) ∼ BBα(x)2−1

∫ ∞
−∞
|t|−1/2e−|t|dt

√
2Â/B̂

n(u)∆(u)
Ψ(n(u))

∼ BBα(x)

√
2Âπ

B̂

1
←−ρ ((Âu1−H)−2)Âu1−H

Ψ(Âu1−H).

Upper bound of $1(u). Observe that, for u sufficiently large,

$1(u) ≤
4∑
i=2

$i(u),

where

$2(u) = P

(
sup
t∈[0,ε]

Z(t) > n(u)

)
, $3(u) = P

(
sup

t∈[ε,L]\[t0−(lnn(u))/n(u),t0+(lnn(u))/n(u)]

Z(t) > n(u)

)
,

$4(u) =

∞∑
k=0

P

(
sup

t∈[L+k,L+k+1]

Z(t) > n(u)

)
,

with L > t0. In order to prove that $1(u) = o($(u)), u → ∞, it suffices to show that $i(u), i = 2, 3, 4 are negligible

compared with $(u) respectively. We begin with $2(u). Using the fact that for ε > 0 sufficiently small there exists

0 < δ < 1 such that

sup
t∈[0,ε]

V ar(Z(t)) < 1− δ,
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and by Borell-TIS inequality (see [31, 32]), we have

$2(u) ≤ e−
(n(u)−E{supt∈[0,ε] Z(t)})2

2(1−δ) = o($(u)), u→∞.

Next we focus on $3(u). By (30) and self-similarity of X, we have that for s, t ≥ ε > 0 and r = t0
t

E
{(
X(t)−X(s)

)2}
= 2(1− Corr(X(s), X(t)))

= 2(1− Corr(X(rs), X(rt)))

≤ 4ρ(r|s− t|) ≤ 8 (t0/ε)
α/2 |t− s|α/2, |s− t| → 0,

which indicates that for s, t ≥ ε > 0 and |s− t| ≤ L1 <∞ with L1 a positive constant

E
{(
X(t)−X(s)

)2} ≤ Q|t− s|α/2.(106)

Hence (31) and Piterbarg inequality (Lemma 8.1 in [22]) leads to

$3(u) ≤ P

(
sup

t∈[ε,2t0]

X(t) >
n(u)

1−Q1(lnn(u))2/n2(u)

)

≤ Q(n(u))4/αΨ

(
n(u)

1−Q1(lnn(u))2/n2(u)

)
= o($(u)), u→∞.

Finally, we consider $4(u). Using the fact that

sup
t∈[L+k,L+k+1]

V ar (Z(t)) ≤

(
Â

c
(L+ k)H−1

)2

and (106), by Piterbarg inequality we have that, for L sufficiently large,

$4(u) ≤
∞∑
k=0

P

(
sup

t∈[L+k,L+k+1]

X(t) >
n(u)

Â
c (L+ k)H−1

)

≤
∞∑
k=0

Q(n(u))4/αΨ

(
n(u)

Â
c (L+ k)H−1

)

≤ Q(n(u))4/αΨ

(
n(u)

Q1LH−1

)
= o($(u)), u→∞.

Consequently, we conclude that

$1(u) = o($(u)), u→∞.(107)

Therefore,

P

(
1

u←−ρ ((Âu1−H)−2)

∫ ∞
0

Iu(X(t)− ct)dt > x

)
∼ BBα(x)

√
2Âπ

B̂

1
←−ρ ((Âu1−H)−2)Âu1−H

Ψ(Âu1−H).

This establishes the claim for γ = 0.

Case γ ∈ (0,∞).

The asymptotics of $(u). Note that (102)-(104) also hold for γ ∈ (0,∞). As in (105), we have that

lim
u→∞

n2(u)w(g(u)) =
B̂

2Â
lim
t→0

t2

ρ(|t|)
=

B̂

2Â
γ ∈ (0,∞).

Moreover,

lim
u→∞

g(u)ai(u) = 0, lim
u→∞

a1(u) = − lim
u→∞

lnn(u)

n(u)∆(u)
= −∞, lim

u→∞
a2(u) =∞.

Hence by ii) in Theorem 2.1, we have that

$(u) ∼ B̂
B̂γt2

2Â

B2
(x)Ψ(Âu1−H),
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which combined with (107) and (20) establishes the claim.

Case γ =∞.

The asymptotics of $(u). Using the notation for Z(t),∆(u), n(u), δu, $1(u) in (100)-(102), we have that

$5(u) ≤ P
(∫ ∞

0

Iu(X(t)− ct)dt > xuH
)
≤ $1(u) +$5(u),

where

$5(u) = P

(∫
[−δu,δu]

I0(Z(t0 + ∆(u)t)− n(u))dt >
xuH−1

∆(u)

)
.

We focus on $5(u). Note that in this case, (103)-(104) still hold. Following the notation in Theorem 2.1, we have that

lim
u→∞

n2(u)w(g(u)) =
B̂

2Â
lim
t→0

t2

ρ(|t|)
=∞, lim

u→∞
g(u)|ai(u)| = lim

u→∞

lnn(u)

n(u)
= 0, i = 1, 2.

Moreover,

b1 = lim
u→∞

a1(u)g(u)
←−w (n−2(u))

= −

√
B̂

2Â
lim
u→∞

lnn(u) = −∞, b2 = lim
u→∞

a2(u)g(u)
←−w (n−2(u))

=

√
B̂

2Â
lim
u→∞

lnn(u) =∞.

In this case, using the notation in (104) we have

xuH−1

∆(u)
= x

√
ÂB̂

2
←−w (n−2(u))/g(u).

In light of iii) in Theorem 2.1, we have that

$5(u) = P

∫
[−δu,δu]

I0(Z(t0 + ∆(u)t)− n(u))dt > x

√
ÂB̂

2
←−w (n−2(u))/g(u)


∼ Bt

2

0

√ ÂB̂

2
x, (−∞,∞)

Ψ(n(u)),

which together with (107) and (19) completes the proof. �

Proof of Theorem 3.7 It follows that

P

(
v(u)

∫ T

0

Iu(X(t)− ct)dt > x

)
= P

(
v(u)

∫ T

0

I0
(
X(t)

u+ ct

u+ cT

T 2H
− u+ cT

T 2H

)
dt > x

)
,

where

Xu(t) =
X(t)

u+ ct

u+ cT

T 2H
.

Direct calculation shows that

lim
u→∞

lim
t→T,t<T

∣∣∣∣1− V ar (Xu(t))

|T − t|
− H

T

∣∣∣∣ = 0.

Moreover, by S with t0 = T ,

lim
ε→0

sup
s6=t,T−ε≤s,t≤T

∣∣∣∣1− Corr (Xu(t), Xu(s))

ρ(|t− s|)
− 1

∣∣∣∣ = 0.

The local behavior of variance and correlation functions is the same as the one in Theorem 3.4 (see Lemma 4.4). Hence

proceeding similarly as in the proof of Theorem 3.4, that is replacing σ̇(T )
σ(T ) by H

T , σ2(·)
2σ2(T ) by ρ(·) and σ(T ) by TH in

the proof of Theorem 3.4, we establish the claim. �
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6. Appendix

Proof of (48). In order to prove (48), it suffices to prove that for c1 > 0∫ g(u)a2(u)

0

e−c1n
2(u)w(t)dt ∼ c−1/β

1
←−w (n−2(u))β−1

∫ c1y2

0

t1/β−1e−tdt, u→∞.

Recall that w is a regularly varying function at 0 with index β > 0 satisfying

lim
u→∞

n2(u)w(g(u)a2(u)) = y2 > 0,

where a2(u) > 0 and limu→∞ g(u) = ∞ and limu→∞ g(u)a2(u) = 0. We can assume that w(x) = `(x)xβ with `

normalized slowly varying function at 0. Then from [24], we know that `(x)xβ is ultimately monotone for any β 6= 0,

` is continuously differentiable and

lim
x→0

x`′(x)

`(x)
= 0.(108)

Let c1n
2(u)w(t) = s. Then we have that∫ g(u)a2(u)

0

e−c1n
2(u)w(t)dt =

1

c1n2(u)

∫ c1n
2(u)w(g(u)a2(u))

0

1

w′
(←−w ( s

c1n2(u)

))e−sds.
By (108), it follows that

w′(x) ∼ βw(x)

x
, x→ 0.

Hence ∫ g(u)a2(u)

0

ec1n
2(u)w(t)dt ∼

∫ c1n
2(u)w(g(u)a2(u))

0

←−w
(

s
c1n2(u)

)
βs

e−sds

=

←−w
(

1
c1n2(u)

)
β

∫ c1n
2(u)w(g(u)a2(u))

0

←−w
(

s
c1n2(u)

)
←−w
(

1
c1n2(u)

)s−1e−sds.

Note that ←−w is a regularly varying function at 0 with index 1/β. Moreover, using Potter’s bound for ←−w (see e.g. [24]

or [35] or Lemma 6.1 in [34]), we have that for any ε ∈ (0,min(1, 1/β)) and all u large

←−w
(

s
c1n2(u)

)
←−w
(

1
c1n2(u)

) ≤ (1 + ε)s1/β−ε, 0 < s < c1n
2(u)w(g(u)a2(u)).

Moreover, since ←−w is regularly varying at 0, then for any s > 0

lim
u→∞

←−w
(

s
c1n2(u)

)
←−w
(

1
c1n2(u)

) = s1/β .

Hence the dominated convergence theorem implies that∫ g(u)a2(u)

0

e−c1n
2(u)w(t)dt ∼ c−1/β

1
←−w (n−2(u))β−1

∫ c1y2

0

s1/β−1e−sds.

This completes the proof. �
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[15] J. Hüsler and V. Piterbarg, “A limit theorem for the time of ruin in a Gaussian ruin problem,” Stochastic Process.

Appl., vol. 118, no. 11, pp. 2014–2021, 2008.

[16] E. Hashorva and L. Ji, “Approximation of passage times of γ-reflected processes with FBM input,” J. Appl.

Probab., vol. 51, no. 3, pp. 713–726, 2014.
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[25] K. Dȩbicki and P. Liu, “Extremes of stationary Gaussian storage models,” Extremes, vol. 19, no. 2, pp. 273–302,

2016.
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